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Abstract001

Model merging has become one of the key tech-002
nologies for enhancing the capabilities and ef-003
ficiency of Large Language Models (LLMs).004
The open-source community has driven model005
evolution by iteratively merging existing mod-006
els. However, a principled understanding of007
the expected gains and underlying factors in008
model merging remains lacking. In this work,009
we examine model evolution through continual010
merging, analogous to biological evolution,011
and introduce the concept of model kinship,012
the degree of similarity or relatedness between013
LLMs. With comprehensive empirical analysis,014
we find that there is a certain relationship be-015
tween model kinship and the performance gains016
after model merging, which can help guide our017
selection of candidate models. Inspired by this,018
we propose a new model merging strategy: Top-019
k Greedy Merging with Model Kinship, which020
can yield better performance on benchmark021
datasets. Specifically, we discover that using022
model kinship as a criterion can assist us in023
continuously performing model merging, alle-024
viating the degradation (local optima) in model025
evolution, whereas model kinship can serve as026
a guide to escape these traps.027

1 Introduction028

Fine-tuning pre-trained models (PTMs) for down-029

stream tasks has become a popular practice, par-030

ticularly demonstrating significant effectiveness in031

Large Language Models (LLMs) (Kolesnikov et al.,032

2020; Qiu et al., 2020; Askell et al., 2021; Ouyang033

et al., 2022; Zhao et al., 2023). However, deploy-034

ing separate fine-tuned models for each task can be035

resource-intensive (Fifty et al., 2021), which drives036

the increasing demand for multitask learning solu-037

tions (Zhang and Yang, 2022; Lu et al., 2024; Liu038

et al., 2024).039

Recent studies suggest that model merging040

(Singh and Jaggi, 2020; Sung et al., 2023; God-041

dard et al., 2024; Matena and Raffel, 2022; Yang042

Figure 1: An intuitive comparison between wheat
evolution and model evolution. An interesting parallel
can be drawn between biological reproduction (Part a)
and the process of model evolution (Part b). In biologi-
cal systems, offspring inherit genetic material from both
parents, forming a new genotype through the combina-
tion of parental traits. Similarly, in model merging, the
merged model inherits parameters or weights from the
contributing models. Part c demonstrates the iterative
execution of model evolution. Starting with a group
of LLMs, the repository evolves through a Selection-
Merge-Recycle iteration. Notably, model kinship can
serve as an effective tool to guide this iterative model
merging process (e.g., infer whether there may be gains
after model merging.).

et al., 2024a; Jang et al., 2024) offers a viable ap- 043

proach for achieving multitask objectives by inte- 044

grating multiple expert models. Furthermore, ad- 045

vancements in model merging toolkits (Goddard 046

et al., 2024; Tang et al., 2024) enable users with 047

limited expertise to easily conduct merging exper- 048

iments, leading to an evolution of LLMs for the 049

community. 050

To date, researchers have developed various 051

powerful LLMs using model merging techniques 052

(Beeching et al., 2023). Many of these models are 053

created through a biologically inspired evolutionary 054

process that involves iterative merging, an approach 055

that we refer to as model evolution (Figure 1(a,b)). 056

Despite these successes, the current approach faces 057

critical limitations. Progress often relies on trial 058

and error and extensive human expertise, with little 059
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formal guidance or standardized procedure. To ad-060

dress this problem, we propose a strategic model061

evolution framework (Figure 1(c)) that leverages062

explicit strategies to guide the direction of model063

evolution toward improved performance. We show064

that even a simple greedy strategy can outperform065

baseline merging approaches.066

However, in the late stages of both the commu-067

nity experiments and the greedy strategy evolution,068

achieving further gains in generalization becomes069

increasingly difficult. To explore possible solutions,070

we introduce ’model kinship’, a metric inspired071

by the concept of kinship in evolutionary biology072

(Sahlins, 2013), to inform and enhance the merging073

process. Model kinship is designed to quantify the074

degree of similarity or relationship between mod-075

els throughout the iterative merging process. By076

providing a principled way to measure these rela-077

tionships, model kinship offers crucial insights for078

refining merging strategies.079

We conduct a comprehensive analysis of model080

merging experiments based on model kinship. We081

observe that the community model merging pro-082

cess consists of two distinct stages: (1) an improv-083

ing stage, where models exhibit significant perfor-084

mance gains, and (2) a saturation stage, where im-085

provements diminish and eventually plateau. Em-086

pirically, we find a strong correlation between087

model kinship and variations in average task088

performance, suggesting that model kinship is in-089

dicative of the potential effectiveness of a merge.090

These findings inspire two main insights: (1) high-091

kinship merges can lead to performance stagna-092

tion, akin to inbreeding; (2) low-kinship merges093

carry greater risk but may yield larger gains094

and facilitate escape from local optima.095

Inspired by this, we propose a new continual096

model merging strategy: Top-k Greedy Merging097

with Model Kinship. Specifically, we find that098

leveraging model kinship as a criterion enables099

more effective model merging, helping mitigate100

degradation and avoid local optima during model101

evolution. Model kinship also proves useful as an102

early stopping criterion, improving the efficiency103

of the merging process.104

In general, this paper makes four key contribu-105

tions:106

1. Continual Model Merging as a Feasible107

Framework for Model Evolution: We pro-108

pose continual model merging as a viable109

framework for evolving large language mod-110

els. Through strategically guided merging 111

across iterations, this approach yields consis- 112

tent improvements in generalization and task 113

performance. 114

2. Introducing Model Kinship: We introduce 115

model kinship, designed to assess the degree 116

of similarity or relationship between LLMs 117

during the merging process, which can guide 118

model merging strategies and holds promise 119

for advancing auto merging research. 120

3. Empirical Analysis of Model Evolution: We 121

present a comprehensive empirical analysis 122

of model evolution through iterative merging. 123

Our findings highlight the dynamics of mul- 124

titask performance improvement and stagna- 125

tion during evolution. In addition, we propose 126

a preliminary explanation of the underlying 127

mechanisms using model kinship. 128

4. Practical Model Merging Strategies using 129

Model Kinship: We demonstrate how model 130

kinship guides the model merging process to 131

tackle optimization challenges, and provide 132

practical strategies: Top-k Greedy Merging 133

with Model Kinship, to enhance efficiency and 134

effectiveness of model evolution. 135

2 Background 136

2.1 Model Merging: Fundamentals 137

Model merging aims to integrate two or more 138

domain-specific models into a unified framework, 139

thereby harnessing their composite capabilities 140

across multiple tasks (Sung et al., 2023). While 141

this approach shares conceptual similarities with 142

ensemble methods (Dietterich et al., 2002; Dong 143

et al., 2020; Jiang et al., 2023b), model merging 144

generates a single, generalized model, avoiding the 145

increased inference time associated with ensem- 146

bles. Let fi represent the i-th model for merging, 147

each with its unique parameters θi. If the merging 148

process follows method F , the prediction ŷ of the 149

merged model fmerge for input x is: 150

ŷ = fmerge(x) = F (f1(x; θ1), f2(x; θ2), . . . , fn(x; θn))
(1)

151

2.2 Continual Model Merging: Benefits and 152

Challenges 153

Parameter averaging methods enable the merged 154

model to retain the same architecture and parame- 155

ter size as the original models, allowing for reuse in 156
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future merging processes. Leveraging this property,157

the community has progressively enhanced models158

through repeated applications of model merging, a159

process we refer to as “Model Evolution”. Em-160

pirical evidence from the Open LLM Leaderboard161

(Beeching et al., 2023) shows that model evolution162

can yield highly generalized models, often outper-163

forming those produced through a single merging164

step (Maxime Labonne , 2024).165

However, current model evolution practices typ-166

ically involve random merging by multiple con-167

tributors, leading to high computational costs and168

unstable behavior that limit its feasibility for indus-169

trial applications.170

3 Strategic Model Evolution171

In this section, we demonstrate how strategic model172

evolution via continual merging can achieve better173

generalization across tasks.174

3.1 Method175

We first define an iterative process for model evo-176

lution, where models are incrementally merged177

to produce a more generalized model. The di-178

rection of model evolution is guided by a prin-179

cipled strategy that governs the model selection.180

At each iteration t, a selection strategy S is181

applied to the current pool of models Pt =182

{M (1)
t ,M

(2)
t , . . . ,M

(k)
t }, producing a subset of183

candidate models St ⊆ Pt. These selected mod-184

els are then combined using a merge method M,185

such as weighted averaging or linear interpolation186

in the weight space, resulting in the next-generation187

model Mt+1. This iterative process continues until188

a predefined end strategy E is matched. Formally,189

the process is defined as:190

Mt+1 = M(S(Pt)) subject to ¬E(Mt+1)
(2)191

3.2 Setup192

Baseline Method. We adopt two commonly used193

approaches for merging multiple models as base-194

lines. The first is multi-model merging, where all195

models are merged simultaneously. The second is196

sequential continual merging, where three models197

are merged in sequence using a pairwise merging198

strategy. For these baselines, we apply TIES (Ya-199

dav et al., 2023) and Linear Merge for the multi-200

model merging case and SLERP (Spherical Linear201

Interpolation) (Shoemake, 1985) for the pairwise 202

merging in the sequential strategy. 203

Top k Greedy Merging. Our method applies 204

continual model merging with greedy strategy, the 205

Top-k Greedy Merging approach on n LLMs (as 206

outlined in the black section of Algorithm 1 in Ap- 207

pendix C). Each single merging step in the con- 208

tinual merging experiments is performed using 209

SLERP. 210

Models and Datasets. We select three fine-tuned, 211

open-source LLMs based on the Mistral-7B archi- 212

tecture from HuggingFace: mistral-7b-instruct- 213

v0.2, metamath-mistral-7b, and open-chat-3.5- 214

1210. 215

Evaluation. Evaluation is performed using three 216

task-specific benchmark datasets: Winogrande, 217

GSM8k, and TruthfulQA. These benchmarks 218

demonstrate the distinct strengths of the three se- 219

lected fine-tuned models. Further details on the 220

tasks are provided in Appendix A.3. 221

3.3 Results 222

As shown in Table 1, Strategic Model Evolution 223

can yield better generalization when combining 224

multiple tasks. However, compared to simple se- 225

quential merging, the improvements are limited 226

due to the simplicity of the greedy strategy. This 227

observation raises an important question regarding 228

optimal merging strategies: 229

Problem: How can we design more principled
and effective strategies for model merging to
better facilitate model evolution?

230

4 Preliminary Analysis of Model Kinship 231

To explore efficient strategies for model evolution, 232

we propose a novel metric, model kinship, which 233

captures task-related differences between models 234

and may help predict merging outcomes. We then 235

conduct a preliminary analysis of model kinship 236

in community merging experiments on LLMs to 237

evaluate its potential for informing and enhancing 238

model evolution strategies. 239

4.1 Model Kinship 240

Drawing inspiration from the parallel between arti- 241

ficial selection and model evolution (as detailed in 242

Appendix G), we hypothesize that a concept analo- 243

gous to kinship, the genetic relatedness studied in 244

evolutionary biology (Thompson, 1985), can also 245
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Method TruthfulQA Winogrande GSM8k Avg.

Ties 62.76 78.61 0.11 47.16
Linear 56.37 78.08 68.54 67.66

Continual Merge (ord1) 47.15 76.24 53.15 58.84
Continual Merge (ord2) 61.01 79.56 63.76 68.11
Continual Merge (ord3) 49.80 78.53 55.72 61.35

Strategic Model Evolution 50.94 80.11 75.13 68.72

Table 1: Performance Comparison across different merging methods.

apply to model merging. Specifically, we introduce246

the notion of model kinship, a metric designed to247

capture and quantify the evolutionary relationships248

between models. This analogy suggests that just249

as genetic kinship influences breeding outcomes,250

model kinship may similarly impact the effective-251

ness of merging strategies in enhancing generaliza-252

tion performance.253

We adopt the most intuitive representation, in-254

spired by the cosine similarity analysis introduced255

in the Task Arithmetic paper (Ilharco et al., 2023).256

This metric is designed to evaluate the degree of257

similarity or relatedness between the task capa-258

bilities of large language models (LLMs) based259

solely on their "genetic" information, meaning the260

changes in their weights, during model evolution.261

Considering two models mi, mj involved in a262

model evolution originated from the pre-trained263

model mbase, the weights of mi, mj are denoted264

as θi, θj ∈ Rd. Similarly, θbase ∈ Rd represents265

the weights of the pre-trained model. Since the dif-266

ferences between models emerge after fine-tuning267

and merging, the variation of weights during model268

evolution is crucial. It is calculated as:269

δi = θi − θbase, δj = θj − θbase (3)270

Model kinship r is designed to capture the simi-271

larity of task capabilities between models. In this272

paper, we explore multiple potential metrics for273

evaluating similarity. For the calculation, sim(·, ·)274

denotes the similarity metric function used. Consid-275

ering two cases merging of 2 models and merging276

of n models, we formally define model kinship r277

as:278

r =

{
sim(δ1, δ2), (Merge 2)

2
n(n−1)

∑
1≤i<j≤n sim(δi, δj), (Merge N)

(4)

279

We investigate the relationship between task per-280

formance and model kinship (see Appendix E for281

the full analysis). The results reveal strong corre- 282

lations, reinforcing the view that model kinship 283

reflects task-related differences between models. 284

4.2 Evaluation Metrics 285

Let T be the set of tasks in the task group, where 286

T = {T1, T2, . . . , Tn}. Each task Ti in the set T 287

is associated with a performance measure Pi for 288

the LLM. For a multitask objective, the Average 289

Task Performance (Avg.) P̄ is calculated using the 290

equation: 291

P̄ =
1

n

n∑
i=1

Pi (5) 292

To evaluate the effectiveness of a single merge, 293

we propose the merge gain metric. Assume we 294

have two models mpre−1 and mpre−2 and their 295

average task performance are P̄pre−1 and P̄pre−2, 296

intuitively, we believe the P̄merged lie around the 297

mean of P̄pre−1 and P̄pre−2. The merge gain is 298

calculated as the difference of P̄merged from the 299

mean value of P̄pre−1 and P̄pre−2. For a merging 300

recipe with k models, the merge gain is: 301

Gain = P̄merged −
1

k

k∑
i=1

P̄pre-i (6) 302

In the following analysis, we use the task group 303

T = {ARC, HellaSwag, MMLU, TruthfulQA, Wino- 304

grande, GSM8K}. All models are either fine-tuned 305

or merged from the Mistral-7B architecture. 306

4.3 Analysis of Model Kinship: Correlation 307

and Evolution Dynamics 308

In this section, we analyze model kinship from 309

two perspectives: (1) its correlation with perfor- 310

mance gain across a broad range of open-sourced 311

LLM merges, and (2) its dynamic along specific 312

model evolution paths. These analyses aim to clar- 313

ify the relationship between model kinship and 314

multitask capability improvements, as well as to 315

identify phases of merge effectiveness. 316
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Figure 2: Distribution of Sample Experiments: Relationship Between Model Kinship (X-axis) and Merge Gain
(Y-axis). Model kinships are calculated using PCC, CS, and ED.
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Figure 3: Change in Average Task Performance and Merge Gain across the Model Evolution Process: Paths
originate from two different base models. The vertical line marks the transition to the saturation stage. Path 2 is
temporally aligned with Path 1 for clarity.

4.3.1 Correlation Between Model Kinship and317

Performance Gain318

We begin by exploring the potential relationship319

between merge gain and model kinship using three320

similarity metrics: Pearson Correlation Coefficient321

(PCC), Cosine Similarity (CS), and Euclidean Dis-322

tance (ED). The models used in this analysis are323

based on the Mistral-7B architecture (Jiang et al.,324

2023a) and collected from HuggingFace, with refer-325

ence to the Open LLM Leaderboard (see Appendix326

A).327

As illustrated in Figure 2, the scatter plots de-328

rived from all three metrics suggest a moderate329

correlation between model kinship and merge gain.330

Table 2 reports Pearson correlation values for both331

signed and absolute merge gains. While the correla-332

tions for signed gains appear relatively weak (with333

p-values between 0.05 and 0.1), those for absolute334

merge gains are comparatively stronger and show335

greater statistical significance. These observations336

imply that model kinship may offer some indica-337

tion of the potential magnitude of merge gains,338

though it appears less effective at predicting the339

direction of change. While we cannot assert a340

causal relationship, the association provides use-341

ful insight into how kinship might relate to merge 342

outcomes. In light of the comparable performance 343

across the three metrics, we use PCC-based kinship 344

in the remainder of our analysis for consistency. 345

4.3.2 Model Kinship in Evolution Paths 346

As a further exploration, we examine model kin- 347

ship across independent model evolution paths to 348

investigate potential phase patterns in the merging 349

process. This analysis centers on the yamshadow 350

experiment 28-7B (Labonne, 2024), a Mistral-7B- 351

based model that ranks among the top-performing 352

merged models on the Open LLM Leaderboard. 353

From its model family tree, we extract two main 354

merging trajectories, referred to as Path 1 and Path 355

2, for comparison. 356

Figure 3 displays the average task performance 357

and the merge gains along the two evolution paths. 358

The merging process exhibits two distinct phases: 359

• Improving Stage. Rapid performance gains 360

and significant merge improvements, driven 361

by active multitask balance. 362

• Saturation Stage. Performance stabilizes, 363

and additional merges result in minimal or 364

no measurable improvement. 365
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controlled experiments. The red arrow shows the critical change between experiment 1 and experiment 2 in the
evolution path.

Metric Correlation Correlation
(Normal Value) (Absolute Value)

PCC -0.50 -0.59
P-value 0.063 0.023

CS -0.45 -0.66
P-value 0.098 0.008

ED 0.46 0.67
P-value 0.091 0.007

Table 2: Correlation of Model Kinship based on dif-
ferent correlation function sim(·, ·) with Merge Gain,
along with their corresponding p-values.

Figure 4 shows how the model kinship and366

normalized average performance change over the367

course of the merging process. Both metrics dis-368

play a similar two-stage trend: they increase during369

the Improving Stage and level off during the Sat-370

uration Stage. This parallel trajectory suggests a371

potential link between model kinship and per-372

formance gains, indicating that improvements in373

generalization may coincide with and possibly de-374

pend on increases in model kinship.375

Additionally, to generalize the findings from the376

Evolution Paths, we analyze how model kinship377

evolves across different stages of the merging pro-378

cess, thereby broadening the scope from individual 379

paths to the full evolution picture. (detailed in 380

Appendix D.1). The results show that the best per- 381

forming models exhibit high mutual kinship, which 382

may lead to a stagnation stage in the merging pro- 383

cess. 384

4.4 Discussion 385

Considering all results that we observed, this anal- 386

ysis provides two main inspirations for the applica- 387

tion of model kinship: 388

• High kinship merges may lead to perfor- 389

mance stagnation, similar to biological in- 390

breeding. 391

• Low kinship merges involve risk, but can 392

lead to greater gains, potentially enabling 393

escape from local optima caused by greedy 394

strategy. 395

5 Using Model Kinship to Improve Model 396

Merging 397

Building on the insights from section 4, we explore 398

how model kinship can be leveraged to improve 399
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Greedy Strategy + Model Kinship

Model Avg. Gain Kinship Model Avg. Gain Kinship

MetaMath 63.72 / / MetaMath 63.72 / /
Instruct 61.82 / / Instruct 61.82 / /
Open-chat 66.28 / / Open-chat 66.28 / /

model-1-1 62.17 -0.6 0.01 model-1-1 62.17 -0.6 0.01
model-1-2 64.02 -0.03 -0.02 model-1-2 64.02 -0.03 -0.02
model-1-3 66.84 +1.84 0.05 model-1-3 66.84 +1.84 0.05

model-2-1 68.72 +2.16 0.93 model-2-1 68.72 +2.16 0.93
model-2-2 61.47 -3.96 0.57 model-2-2 61.47 -3.96 0.57
model-2-3 61.32 -3.83 0.58 model-2-3 61.32 -3.83 0.58

model-3-1 68.59 +1.09 0.95 model-3-2 67.74 +1.09 0.93
model-3-2 67.74 -0.04 0.93 model-3-3 69.06 +0.74 0.24

- - - model-3-4 68.61 +1.13 0.32

model-4-1 68.51 -0.14 0.98 model-4-4 68.75 -0.14 0.54
model-4-2 68.04 -0.19 0.98 model-4-5 68.39 -0.27 0.66
model-4-3 68.53 +0.37 0.94 model-4-6 69.03 +0.15 0.52

- - - model-5-1 69.13 +0.04 0.65
- - - model-5-2 68.98 +0.07 0.65
- - - model-5-3 68.63 -0.37 0.98

Table 3: Results of merging experiments comparing the vanilla greedy strategy and our proposed approach. The
first three models serve as the foundation models in both experiments. Note: The model kinship experiment was
terminated at generation 5, as it has already outperformed the greedy strategy by that point.

the model merging process. Our main experiment400

centers on the Mistral-7B model, with detailed re-401

sults presented in the main text. To further evaluate402

the generalization of our approach, we also con-403

duct two supplementary experiments: one based404

on Llama-2 (see Appendix B) and another on a dis-405

tinct task set to test robustness across different eval-406

uation settings. Our results indicate that while407

greedy strategy focuses on short-term gains, it408

can lead to suboptimal outcomes. By integrating409

model kinship, we can help the strategy avoid local410

optima and gain further improvements.411

5.1 Main Experiment Setup412

For the main experiments, we follow the same413

settings as described in section 3, including the414

use of the three fine-tuned Mistral-7B variants and415

the evaluation on Winogrande, GSM8k, and Truth-416

fulQA. We adopt the Top-k Greedy Merging strat-417

egy as the baseline continual merging strategy.418

Top k Greedy Merging with Model Kinship.419

We propose an enhanced merging strategy that aug-420

ments the original greedy approach with an ad-421

ditional exploration step guided by model kinship422

(highlighted in blue in Algorithm 1). This approach423

aims to merge the best-performing model with the424

model that has the most distinct kinship, in order425

to discover potentially better solutions. In Figure 5426

(b), models generated by our strategy are marked427

in purple, while the best-performing models are 428

marked in yellow. 429

5.2 Results and Discussion 430
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Change between two
Evolution Paths.

Figure 5 (a) illustrates the 431

improvements in top av- 432

erage task performance 433

across merging genera- 434

tions. Table 3 pro- 435

vides the model average 436

task performance, merge 437

gain, and model kin- 438

ship for each genera- 439

tion, comparing the origi- 440

nal greedy merging strat- 441

egy with our kinship- 442

based method. While 443

both strategies achieve 444

the multitask objective, 445

the vanilla greedy strategy ceases to improve after 446

Generation 2, plateauing at an average task per- 447

formance of 68.72. In contrast, strategy utilizing 448

model kinship escapes the local optima (Model- 449

2-1) and continues to improve, reaching 69.13 by 450

Generation 5. 451

Merging Models with Low Kinship can Boost 452

Exploration. Figure 5 (b) shows the main branch 453

of the model family tree. To explore how low- 454

kinship merges help escape local optima during 455
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saturation, we analyze weight changes: v1 (from456

Model-2-1 to Model-3-1) and v2 (from Model-2-1457

to Model-3-3), with vpre (from Model-1-3 to Model-458

2-1) as baseline. Figure 6 shows that merging with459

the exploration model (v2) induces significant,460

novel weight changes, while v1 shows minimal461

change due to high similarity between openchat-462

3.5 and Model-2-1.463

Early Stopping at High Kinship can Improve Ef-464

ficiency. Iterative merging is resource-intensive.465

In our main experiments, a greedy strategy satu-466

rated after 2/4 merges with no further gains. Look-467

ing back at community experiments, 5/14 merges in468

path 1 averaged only 0.57 improvement, and 3/12469

merges in path 2 averaged 0.36. A high kinship470

score (PCC > 0.9) among top models may indicate471

convergence. Stopping merges early at high kin-472

ship generation saves 30% time with negligible473

performance loss.474

6 Related work475

Weight averaging, a widely used technique in476

model merging, traces its origins to Utans (1996).477

Since the 2010s, weight averaging has been widely478

applied in deep neural networks, notably for com-479

bining checkpoints to improve training stability480

and performance. (Nagarajan and Kolter, 2019;481

Tarvainen and Valpola, 2017; Izmailov et al., 2018;482

Li et al., 2023a; Stoica et al., 2023; Padmanab-483

han et al., 2023; Jang et al., 2023), leveraging484

task-specific information (Li et al., 2023b; Smith485

and Gashler, 2017; Ilharco et al., 2022; Izmailov486

et al., 2018), and parallel training of large lan-487

guage models (LLMs) (Li et al., 2022). Discov-488

ery of Linear Mode Connectivity (LMC) (Garipov489

et al., 2018; Frankle et al., 2020; Entezari et al.,490

2022) further expands the use of weight averag-491

ing in fusing fine-tuned models through averag-492

ing methods (Neyshabur et al., 2020; Wortsman493

et al., 2022). Further studies have explored optimiz-494

able weights for merging, such as Fisher-Merging495

(Matena and Raffel, 2022), RegMean (Jin et al.,496

2023), AdaMerging (Yang et al., 2024b), MaTS497

(Tam et al., 2024). Ilharco et al. (2023) introduce498

task vectors, representing the weight difference be-499

tween a fine-tuned model and its base. Further500

research on parameter interference led to TIES501

(Yadav et al., 2023), which preserves important502

weights and reduces sign conflicts, and DARE (Yu503

et al., 2024), which prevents interference by ran-504

domly dropping weights. The Model Breadcrumbs505

(Davari and Belilovsky, 2023) show that the re- 506

moval of outliers in parameters can reduce noise 507

in model merging. Merging models with different 508

initializations requires additional considerations. 509

Common methods exploit the permutation sym- 510

metry of neural networks (Ainsworth et al., 2022; 511

Tatro et al., 2020; Singh and Jaggi, 2020; Guerrero- 512

Peña et al., 2023), using alignment techniques to 513

mitigate the interpolation barrier (Xu et al., 2024; 514

Navon et al., 2024). While weight averaging cannot 515

be applied to models with different architectures, it 516

can still be used to enhance feasible fusion meth- 517

ods. Recent work like FuseChat (Wan et al., 2024b) 518

integrates it with Knowledge Fusion (Wan et al., 519

2024a) to enable novel fusion approaches. 520

Recently, there have been some works explor- 521

ing “model evolution”. Tellamekala et al. (2024) 522

propose the CoLD Fusion method, showing that 523

iterative fusion can create effective multitask mod- 524

els. Labonne (2024) develop a tool to automatically 525

merge models on HuggingFace. Akiba et al. (2024) 526

introduce Evolutionary Model Merge, employing 527

evolutionary techniques to optimize model combi- 528

nations. 529

7 Conclusion 530

We propose continual model merging as a frame- 531

work for evolving large language models through 532

strategic, iterative merges that yield consistent 533

gains in generalization and task performance. To 534

support this framework, we introduce model kin- 535

ship, a metric that guides merge candidate selection 536

and explains both performance gains and stagna- 537

tion during merging. Building on this, we propose 538

Top-k Greedy Merging with Model Kinship, a 539

strategy that uses kinship to escape local optima 540

and achieve further improvements. Kinship also 541

serves as an early stopping signal by detecting con- 542

vergence and reducing redundant computation. 543

In a broad sense, our work explores how models 544

can achieve autonomous evolution through model 545

merging. Model merging can, to some extent, be 546

likened to biological hybridization. Biological or- 547

ganisms have undergone billions of years of evo- 548

lution to reach their current state. However, how 549

silicon-based intelligence, represented by LLMs, 550

evolves remains an unresolved mystery. We aspire 551

that this work offer guidance and insights for the 552

future merging and evolution of LLMs. 553
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Limitations554

However, there are several limitations to consider:555

a) The experiments in this study are conducted on556

models with two architectures, leaving uncertainty557

about the transferability of our metric and method558

to other architectures, such as Mamba (Gu and Dao,559

2023). Furthermore, scaling of tasks and candidate560

models requires further experimentation to under-561

stand the computational cost across various scenar-562

ios. b) The analysis is based on open source data563

from the Open Leaderboard, which is community-564

generated and may contain noise due to user bias.565

c) Possible correlation metrics for model kinship566

have not been fully explored. Other metrics may567

perform better than those discussed in this paper.568

d) The effectiveness of model kinship is demon-569

strated through empirical evidence. However, a570

theoretical framework (such as the assumptions in571

Appendix E.1) is needed to explain model evolu-572

tion and model kinship more rigorously. e) Model573

kinship currently guides merging and enhances per-574

formance, but does not support sustained evolution.575

Future progress may require environmental feed-576

back, reward models (Silver et al., 2021), as well577

as new architectures.578
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A Details of Experiments in Main913

Sections914

This section provides comprehensive details on the915

models used in the analysis of community exper-916

iments. The open merged models from these ex-917

periments are accessible through the Hugging Face918

Hub1. The evaluation results can be accessed in the919

Openleaderboard2 The following tables cover two920

primary aspects:921

• (1) Information on the selected model family922

trees for two distinct evolution paths, along923

with detailed analysis results for each merge.924

• (2) A summary of the merge experiments con-925

ducted for distribution analysis.926

A.1 Selecting the Evolution Path927

The evolution paths are selected using a structured928

process, focusing on identifying key sequences929

within the model family trees. The steps were as930

follows:931

• Model Family Tree Construction: The com-932

plete model family tree is constructed by ref-933

erencing model card details for each model934

involved.935

• Branch Identification: We identified the two936

longest branches within each tree, represent-937

ing significant sequences of model merging.938

• Performance and Kinship Evaluation:939

These branches were analyzed for changes940

in merging performance, particularly focusing941

on shifts in multitask capabilities and model942

kinship metrics.943

Table 4 and 5 present detailed information on944

the sequential merging process. The second and945

third columns record the foundational models in-946

volved in each merge, while the final column lists947

the resulting merged models.948

A.2 Additional Results in Analysis949

Table 6 and Table 7 present detailed analysis re-950

sults that are not reported in the main paper. These951

include Average Task Performance (ATP), merge952

gains, and model kinship values, which are com-953

puted using Pearson Correlation coefficient, Cosine954

Similarity, and Euclidean Distance for each merge.955

1https://huggingface.co/datasets
2https://huggingface.co/spaces/

open-llm-leaderboard-old/open_llm_leaderboards

Table 8 presents all merge experiments contribut- 956

ing to the distribution analysis. The selection of 957

sample experiments adheres to two rules: (1) Sam- 958

ples are evenly chosen across average task perfor- 959

mance values ranging from 0.7 to 0.7686 (the aver- 960

age task performance of the best 7B merged model) 961

to accurately reflect the full scope of model evolu- 962

tion. (2) The experiments involve merges of two 963

foundation models, as including multiple models 964

introduces excessive noise. 965

A.3 Details of Datasets Selection 966

In the main experiments, we utilize three 967

task-specific benchmark datasets—Winogrande, 968

GSM8k, and TruthfulQA—to evaluate the distinct 969

strengths of the models. These datasets assess the 970

following capabilities: 971

• Winogrande: Evaluates the model’s common- 972

sense reasoning. 973

• GSM8k: Measures the model’s mathematical 974

reasoning. 975

• TruthfulQA: Assesses the model’s ability to 976

identify and address human falsehoods. 977
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Gen Model-1 Model-2 Model-Merged
1 Marcoroni-7B-v3 Mistral-7B-Merge-14-v0.1 distilabeled-Marcoro14-7B-slerp
2 distilabeled-Marcoro14-7B UNA-TheBeagle-7b-v1 Beagle14-7B
3 NeuralBeagle14-7B Turdus TurdusBeagle-7B
4 TurdusBeagle-7B FernandoGPT-v1 StrangeMerges_9-7B-dare_ties
5 StrangeMerges_9-7B-dare_ties MBX-7B-v3 StrangeMerges_10-7B-slerp
6 StrangeMerges_10-7B-slerp NeuralBeagle14-7B StrangeMerges_11-7B-slerp
7 StrangeMerges_11-7B-slerp MBX-7B-v3 StrangeMerges_20-7B-slerp
8 StrangeMerges_20-7B-slerp NeuTrixOmniBe-7B-model StrangeMerges_21-7B-slerp
9 StrangeMerges_21-7B-slerp Experiment26 StrangeMerges_30-7B-slerp

10 StrangeMerges_30-7B-slerp Experiment24 StrangeMerges_31-7B-slerp
11 StrangeMerges_31-7B-slerp Experiment28 StrangeMerges_32-7B-slerp
12 StrangeMerges_32-7B-slerp ... shadow-clown-7B-slerp
13 shadow-clown-7B-slerp yam-jom-7B YamShadow-7B
14 YamShadow-7B Experiment28 YamshadowExperiment28-7B

Table 4: Model Family tree of evolution Path 1.

Gen Model-1 Model-2 Model-Merged
1 neural-chat-7b-v3-3 openchat-3.5-1210 CatPPT-base
2 Marcoroni-7B-v3 CatPPT-base CatMacaroni-Slerp
3 LeoScorpius-7B CatMacaroni-Slerp SamirGPT-v1
4 SamirGPT-v1 ... Daredevil-7B
5 NeuralBeagle14-7B NeuralDaredevil-7B DareBeagle-7B
6 Turdus DareBeagle-7B TurdusDareBeagle-7B
7 MarcMistral-7B TurdusDareBeagle-7B MarcDareBeagle-7B
8 MarcBeagle-7B MarcDareBeagle-7B MBX-7B
9 MBX-7B ... pastiche-crown-clown-7b-dare
10 pastiche-crown-clown-7b-dare ... shadow-clown-7B-slerp
11 yam-jom-7B shadow-clown-7B-slerp YamShadow-7B
12 Experiment28-7B YamShadow-7B YamshadowExperiment28-7B

Table 5: Model Family tree of evolution Path 2.

Gen Model-Merged ATP Gain PCC CS ED
1 distilabeled-Marcoro14-7B-slerp 73.63 0.55 0.82 0.76 5.15
2 Beagle14-7B 74.74 1.01 0.81 0.79 6.43
3 StrangeMerges_9-7B-dare_ties 75.15 0.45 0.93 0.89 4.66
4 StrangeMerges_9-7B-dare_ties 73.32 -0.69 0.90 0.84 4.70
5 StrangeMerges_10-7B-slerp 74.77 0.59 0.59 0.59 9.43
6 StrangeMerges_11-7B-slerp 74.8 0.045 0.87 0.86 5.31
7 StrangeMerges_20-7B-slerp 75.52 0.6 0.84 0.85 4.82
8 StrangeMerges_21-7B-slerp 76.29 0.38 0.85 0.89 4.28
9 StrangeMerges_30-7B-slerp 76.58 0.065 0.96 0.94 2.83
10 StrangeMerges_31-7B-slerp 76.67 -0.02 0.97 0.97 2.21
11 StrangeMerges_32-7B-slerp 76.68 0.11 0.99 0.99 0.62
12 shadow-clown-7B-slerp 76.64 -0.02 0.93 0.94 2.49
13 YamShadow-7B 76.6 -0.02 0.97 0.97 2.19
14 YamshadowExperiment28-7B 76.86 0.25 0.98 0.98 1.61

Table 6: Summary of Path 1 Results.
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Gen Model-Merged ATP Gain PCC CS ED
1 CatPPT-base 72.25 2.89 0.02 0.01 20.41
2 CatMacaroni-Slerp 72.74 0.35 0.88 0.83 6.16
3 SamirGPT-v1 73.11 0.64 0.79 0.70 6.47
4 Daredevil-7B 74.12 0.33 0.87 0.83 4.81
5 DareBeagle-7B 74.58 0.15 0.79 0.77 6.01
6 TurdusDareBeagle-7B 74.94 0.32 0.90 0.86 4.59
7 MarcDareBeagle-7B 74.75 0.67 0.87 0.87 4.17
8 MBX-7B 75.04 0.11 0.96 0.96 2.90
9 pastiche-crown-clown-7b-dare 76.50 0.29 0.83 0.84 5.38

10 shadow-clown-7B-slerp 76.64 -0.02 0.93 0.94 2.49
11 YamShadow-7B 76.60 -0.02 0.97 0.97 2.19
12 YamshadowExperiment28-7B 76.86 0.25 0.98 0.98 1.61

Table 7: Summary of Path 2 Results.

Model 1 Model 2 Merge Gain
Multi_verse_model-7B Experiment26-7B 0.06
M7-7b StrangeMerges_32-7B-slerp -0.03
Ognoexperiment27 Multi_verse_model-7B 0.03
YamShadow-7B Experiment28 0.25
shadow-clown-7B-slerp yam-jom-7B -0.02
StrangeMerges_21-7B-slerp Experiment26 0.06
StrangeMerges_31-7B-slerp Experiment28 0.11
NeuralBeagle14-7B Turdus 0.45
DareBeagle-7B Turdus 0.32
TurdusBeagle-7B FernandoGPT-v1 -0.69
StrangeMerges_10-7B-slerp NeuralBeagle14-7B 0.04
TurdusDareBeagle-7B MarcMistral-7B 0.67
StrangeMerges_20-7B-slerp NeuTrixOmniBe-7B-model-remix 0.38
StrangeMerges_11-7B-slerp MBX-7B-v3 0.6
Marcoroni-7B-v3 Mistral-7B-Merge-14-v0.1 0.55
distilabeled-Marcoro14-7B-slerp UNA-TheBeagle-7b-v1 1.01
UNA-TheBeagle-7b-v1 distilabeled-Marcoro14-7B-slerp 0.89
CatPPT-base Marcoroni-7B-v3 0.35
CatMacaroni-Slerp LeoScorpius-7B 0.64
NeuralDaredevil-7B NeuralBeagle14-7B 0.15
StrangeMerges_9-7B-dare_ties MBX-7B-v3 0.59
mistral-ft-optimized-1218 NeuralHerems-Mistral-2.5-7B -0.85
neural-chat-7b-v3-2 OpenHermes-2.5-Mistral-7B 1.91
StrangeMerges_30-7B-slerp Experiment24 -0.02
openchat-3.5-1210 neural-chat-7b-v3-3 2.89
MultiverseEx26-7B-slerp CalmExperiment-7B-slerp -0.09
CapybaraMarcoroni-7B DistilHermes-2.5-Mistral-7B 0.47
Multi_verse_model-7B Calme-7B-Instruct-v0.9 0.04
StrangeMerges_16-7B-slerp coven_7b_128k_orpo_alpha -0.35
Kunoichi-DPO-v2-7B AlphaMonarch-7B -1.05
StrangeMerges_15-7B-slerp Kunoichi-7B 0.39
Mistral-T5-7B-v1 Marcoroni-neural-chat-7B-v2 -0.18
Marcoro14-7B-slerp mistral-ft-optimized-1218 -0.61
mistral-ft-optimized-1218 NeuralHermes-2.5-Mistral-7B -0.85
MarcDareBeagle-7B MarcBeagle-7B -0.07
MetaMath-Mistral-7B Tulpar-7b-v2 -0.29
YugoGPT AlphaMonarch-7B -5.96

Table 8: All Sample Experiments used in distribution analysis.
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B Full Evaluation Results of Main978

Experiments and Additional979

Experiments980

B.1 Main Mistral-7B Experiments981

Table 9 provides a detailed evaluation of the main982

experiments, including the results for the explo-983

ration models and their performance on specific984

tasks. The model kinship experiment is terminated985

early at generation 5, as a more promising evolution986

path is subsequently identified.987

B.2 Additional Experiments988

To assess the generalization of our strategy across989

different model architectures and task sets, we con-990

duct two additional experiments.991

B.2.1 Mistral-7B Experiments with a992

Different Task Set993

We perform further evaluations using Mistral-994

7B, based on three distinct foundation mod-995

els: MistralHermes-CodePro-7B-v1, metamath-996

mistral-7b, and open-chat-3.5-1210. These mod-997

els are assessed on the HumanEval, GSM8k, and998

TruthfulQA benchmarks. The model kinship-based999

merging process is terminated early at generation1000

3, as a more promising evolution trajectory is iden-1001

tified.1002

In this task setting, model kinship-guided explo-1003

ration successfully discovers models (e.g., Child3-1004

3) that significantly outperform their respective ini-1005

tial baselines.1006

B.2.2 LLaMA-2-8B Experiments1007

We further evaluate our strategy on LLaMA-2-8B1008

using three task-specific fine-tuned models. Ta-1009

ble 11 summarizes the results of these additional1010

experiments. The model kinship-based merging1011

process is terminated early at generation 6 upon the1012

discovery of a more favorable evolutionary path.1013

Consistent with the results from Mistral-7B,1014

model evolution guided by model kinship contin-1015

ues to facilitate performance improvements beyond1016

the capabilities of the original models.1017
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Model TruthfulQA Winogrande GSM8K Avg. Model Kinship

MetaMath 44.89 75.77 70.51 63.72 /
Instruct 68.26 77.19 40.03 61.82 /
Open-chat 52.15 80.74 65.96 66.28 /

model-1-1-greedy 52.51 76.16 57.85 62.17 0.01
model-1-2-greedy 58.04 76.32 57.72 64.02 -0.02
model-1-3-greedy 48.96 78.69 72.86 66.84 0.05

model-2-1-greedy 50.94 80.11 75.13 68.72 0.93
model-2-2-greedy 49.78 78.93 55.72 61.47 0.57
model-2-3-greedy 52.36 78.61 52.99 61.32 0.58
model-2-exp 61.01 79.56 63.76 68.11 -0.02

model-3-1-greedy 51.95 80.51 73.31 68.59 0.95
model-3-2-greedy 49.96 79.72 73.54 67.74 0.93
model-3-3 56.95 80.25 70.00 69.06 0.24
model-3-4 54.38 78.45 73.01 68.61 0.32
model-3-exp 54.13 78.69 71.65 68.15 0.03

model-4-1-greedy 50.82 80.11 74.60 68.51 0.98
model-4-2-greedy 50.36 79.47 74.31 68.04 0.98
model-4-3-greedy 51.04 79.72 74.83 68.53 0.94
model-4-4 53.31 79.40 73.54 68.75 0.54
model-4-5 52.48 79.01 73.68 68.39 0.66
model-4-6 53.69 79.72 73.69 69.03 0.52
model-4-exp 55.16 78.53 71.80 68.49 0.48

model-5-1 54.85 79.37 73.31 69.13 0.65
model-5-2 54.78 79.40 72.86 68.98 0.65
model-5-3 53.49 79.24 73.16 68.63 0.98
model-5-exp 52.98 79.32 72.78 68.36 0.59

Table 9: Evaluation Results of Main Experiments of Mistral-7B.
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Model TruthfulQA GSM8K HumanEval Avg. Model Kinship

MetaMath 44.89 70.51 17.68 44.36 /
Openchat-3.5-1210 52.15 65.96 2.44 40.18 /
MistralHermes-CodePro-7B-v1 49.67 60.88 22.56 44.37 /

child1-1-greedy 51.87 69.60 15.80 45.76 0.19
child1-2-greedy 48.04 72.78 9.15 43.32 0.08
child1-3-greedy 48.96 72.86 18.29 46.70 0.05

child2-1-greedy 50.24 71.72 12.20 44.72 0.15
child2-2-greedy 50.88 73.24 7.32 43.81 0.92
child2-3-greedy 51.15 67.32 19.51 45.99 0.34
child2-4-greedy 50.05 72.33 4.88 42.42 0.21
child2-exp 50.33 71.11 18.90 46.78 0.21

child3-1-greedy 51.47 69.22 21.34 47.34 0.73
child3-2-greedy 50.71 72.40 9.15 44.09 0.82
child3-3 49.69 74.37 21.34 48.47 0.82
child3-4 50.57 69.75 17.68 46.00 0.91

child4-1-greedy 50.56 68.46 12.20 43.74 0.79
child4-2-greedy 51.28 68.46 19.51 46.42 0.95

child5-1-greedy 51.36 68.69 20.73 46.93 0.99
child5-2-greedy 50.49 73.24 9.76 44.50 0.78

child6-1-greedy 50.50 73.24 9.15 44.30 0.78
child6-2-greedy 51.42 69.14 20.12 46.89 0.99

child7-1-greedy 51.36 68.82 20.34 46.84 0.99
child7-2-greedy 51.42 68.74 20.81 46.99 0.99
child7-3-greedy 51.44 69.15 20.44 47.01 0.99

Table 10: Evaluation Results of Additional Experiments of Mistral-7B.
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Model TruthfulQA Winogrande GSM8K Avg. Model Kinship

winogrande 42.0 77.9 6.4 42.1 /
GSM8K 39.0 73.4 38.0 50.1 /
TruthfulQA 56.7 68.9 9.5 45.0 /

child1-1-greedy 40.2 79.3 34.2 51.2 0.03
child1-2-greedy 46.7 74.4 34.2 51.7 0.01
child1-3-greedy 46.1 77.1 1.9 41.7 0.01

child-2-1-greedy 44.5 78.5 36.8 53.2 0.19
child-2-2-greedy 43.7 74.0 40.4 52.7 0.45
child-2-3-greedy 38.9 77.5 37.1 51.1 0.39
child-2-exp 43.3 81.2 28.5 51.0 0.01

child-3-1-greedy 44.2 77.1 37.3 52.8 0.88
child-3-2-greedy 45.4 77.5 34.5 52.4 0.79
child-3-3-greedy 45.0 73.8 36.6 51.8 0.89
child-3-exp 45.1 78.6 30.3 51.3 0.58

child-4-1-greedy 44.4 78.5 36.8 53.2 0.95
child-4-2-greedy 44.1 75.5 40.0 53.1 0.97
child-4-exp 43.3 80.9 32.6 52.2 0.81

child-5-1-greedy 44.2 77.1 37.2 52.8 0.97
child-5-2-greedy 44.3 77.4 36.7 52.8 0.91
child-5-3-greedy 44.3 78.3 36.8 53.1 0.98
child-5-exp 44.5 78.1 32.0 51.5 0.64

child-6-1-greedy 44.5 78.5 36.8 53.2 0.99
child-6-2-greedy 44.4 78.3 36.8 53.2 0.99
child-6-3-greedy 44.3 78.3 36.8 53.1 0.99
child-6-exp 44.3 80.4 35.3 53.4 0.80

Table 11: Evaluation Results of addtional experiments of Llama-2.
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C Algorithm Details for the Main1018

Experiment1019

In this section, we present the detailed algorithms1020

employed in our main experiment, along with an1021

ablation study to validate our baseline method, Top1022

k Greedy Merging.1023

C.1 Algorithms1024

The Top-k Greedy Merging algorithm aims to1025

iteratively construct improved models through pair-1026

wise merging, guided by performance evaluation1027

and, in the extended version, model kinship. It1028

begins with a set of n foundation models M =1029

{m1,m2, . . . ,mn}. In the first step, all possible1030

pairs of models are merged to form the first genera-1031

tion G1 of merged models. These new models are1032

added back into the candidate set M .1033

The algorithm then evaluates all models in M us-1034

ing a task-specific evaluation function f and selects1035

the top k performing models to form the working1036

set S. It maintains an iterative loop that continues1037

as long as the top-k set S changes between itera-1038

tions, ensuring exploration continues only while1039

performance improves. Within each iteration, all1040

model pairs from S are merged to produce the next1041

generation of models Gi. These new models are1042

added into M , and their performance is evaluated1043

using f to update S.1044

In the variant with model kinship, additional1045

steps introduce a model exploration mechanism.1046

This kinship-guided exploration step is designed to1047

escape local optima by encouraging diversity in the1048

merging path, potentially leading to models with1049

better generalization or complementary capabilities.1050

The algorithm terminates when the top-k set S1051

stabilizes, indicating no further performance gains1052

are observed. Each model is named according to1053

its generation and creation order to track its origin1054

during analysis.1055

C.2 Ablation Study of Greedy Strategy1056

The ablation study on the Greedy Strategy is con-1057

ducted using the Mistral-7B architecture, follow-1058

ing the same experimental settings outlined in the1059

main experiments. For comparison, we employ the1060

random-merge strategy, where models in each1061

generation are merged with randomly selected mod-1062

els (excluding themselves) from the repository, as1063

illustrated in Algorithm 2.1064

The following table presents the evaluation re-1065

sults. Each column represents:1066

• Model: The name of each model. Note that 1067

the first three entries are fine-tuned foundation 1068

models used in our experiments. 1069

• TruthfulQA_mc2, Winogrande, GSM8K: 1070

The benchmark results for each dataset, indi- 1071

cating the model’s task-specific capabilities. 1072

• Average: The average score across all bench- 1073

marks, reflecting the model’s overall general- 1074

ization performance. 1075

• Model Kinship: The kinship score (Here, 1076

we use cosine similarity to measure model 1077

kinship) of the parent models involved in the 1078

merge, indicating their relatedness. 1079

• Parent-1 and Parent-2: The names of the 1080

parent models used in the merging process. 1081

In the random-merge strategy, the average per- 1082

formance in each generation fluctuates. The high- 1083

est average performance achieved is 68.55, slightly 1084

lower than the 68.72 observed in the greedy exper- 1085

iment. While the random-merge strategy avoids 1086

convergence to local optima, it demonstrates an 1087

unstable improvement process, which can lead to 1088

unpredictable results. 1089
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Model TruthfulQA_mc2 Winogrande GSM8K Average Model Kinship

MetaMath-mistral-7B 44.89 75.77 70.51 63.72 /
Mistral-7B-Instruct-v0.2 68.26 77.19 40.03 61.82 /
Open-chat-3.5-1210 52.15 80.74 65.96 66.28 /

child1-1 52.51 76.16 57.85 62.17 0.01
child1-2 58.04 76.32 57.72 64.02 0.01
child1-3 48.96 78.69 72.86 66.84 0.03

child2-1 44.68 74.00 50.80 56.40 0.29
child2-2 49.78 78.93 55.72 61.47 0.41
child2-3 61.01 79.56 63.76 68.11 0.01

child3-1 51.52 78.23 56.71 62.15 0.84
child3-2 43.52 75.22 47.43 55.39 0.59
child3-3 54.32 78.53 72.81 68.55 0.28

child4-1 55.32 78.41 56.23 63.32 0.54
child4-2 50.53 78.42 57.65 62.20 0.86
child4-3 53.45 79.31 72.65 68.47 0.67

Table 12: Evaluation results using the random-merge strategy.

Algorithm 1 Top k Greedy Merging with Model Kinship.

Require: A set M of n foundation models {m1,m2, . . . ,mn}, Evaluation function f , Similarity metric
function sim(·, ·) for model kinship.

1: Generate the first generation of merged models G1 by merging each pair in set M , and set generation
i = 1.

2: Combine the set G1 into set M .
3: Evaluate each model m in set M , and select the top k models. Denote this set as S =

{m1,m2, . . . ,mk}.
4: Initialize a variable Sprev = ∅ to store the top k models from the previous iteration.
5: while S ̸= Sprev do
6: i++
7: Set Sprev = S.
8: Select each model pair from S. Denote this set as P = {p1, p2, . . . , pj}.
9: Merge every selected pair in set P as merged model set Gi = {m1,m2, . . . ,mj} for generation i,

and add each merged model into set M .
10: Identify the current best model mbest ∈ S.
11: Identify the model mf ∈ S with the lowest model kinship to mbest from the Gi−1 according to the

similarity metric sim(·, ·).
12: Merge mf with mbest to generate a new model mexp, and add mexp into set Gi and set M .
13: Evaluate each new model m ∈ Gi using f and update S.
14: Evaluate mexp using f and update S.
15: end while

Note: The blue-highlighted steps are only executed in modified experiments incorporating model
kinship-based exploration. To distinguish between different models in the subsequent experiments, each
model generated in a given generation is named as model-generation-id.
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Algorithm 2 Random Merge Algorithm.

Require: A set M of n foundation models {m1,m2, . . . ,mn}, Evaluation function f .
1: Generate the first generation of merged models G1 by randomly merging pairs in set M , and set

generation i = 1.
2: Combine the set G1 into set M .
3: Evaluate each model m in set M .
4: Initialize a variable Sprev = ∅ to store the top k models from the previous iteration.
5: while S ̸= Sprev do
6: i++
7: Set Sprev = S.
8: Randomly select pairs of models from M . Denote this set as P = {p1, p2, . . . , pj}.
9: Merge each selected pair in set P to form the merged model set Gi = {m1,m2, . . . ,mj} for

generation i, and add each merged model into set M .
10: Evaluate each new model m ∈ Gi using f and update S.
11: end while
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D Additional Analysis for Community1090

Model Evolution1091

D.1 Analysis of Model Kinship Change across1092

Merging Stages1093

To determine whether the discovery of increas-1094

ing model kinship in model evolution paths can1095

be generalized to the entire model evolution pro-1096

cess, we perform an analysis of the merging stages.1097

Given the community’s predominant use of the1098

performance-prior strategy, we calculate model1099

kinship among models with similar performance,1100

simulating the selection of models at each stage.1101

For this analysis, we randomly select 5 models1102

from each merging stage, as delineated by bound-1103

aries identified in prior analysis - Saturation Stage1104

(≥ 0.75), Improving Stage (<0.75 and ≥0.73), and1105

Initial Merges (fine-tuned models) to form three1106

foundation model groups, representing potential1107

merges at different stages of model evolution.1108

D.2 Details of Model Group Selection1109

This section presents the exact models included1110

in each model group, as shown in Table 13. The1111

selection process is conducted across three distinct1112

groups: (1) the top 5 models on the leaderboard,1113

with a performance difference of 0.2, (2) 5 mod-1114

els with performance scores around 73 and a per-1115

formance difference of 0.2, and (3) 5 fine-tuned1116

models. It is important to note that the fine-tuned1117

models are not selected based on performance, and1118

may exhibit significant differences in results.1119

Group Models

Top Model Group

YamshadowExperiment28-7B
Yamshadow-7B

Experiment25-7B
StrangeMerges_24-7B-slerp

MonaTrix-v6

Mid Stage Model Group

Daredevil-7B
CatMarcoro14-7B

Mayo
Calmesmol-7B-slerp

StrangeMerges_4-7B-slerp

Fine-tuned Model Group

Zephyr-beta
MetaMath-Mistral-7B

Mistral-7B-Instruct-v0.2
openchat-3.5-1210

WizardLM-2

Table 13: Model Group in Kinship Matrix Analysis.

Figure 7 illustrates the model kinship between1120

models within each group. We observe that model1121

kinship increases with the average task perfor-1122

mance across models that follow different evolu-1123

tion paths. Additionally, during the saturation stage, 1124

all potential merges display a strong affinity, with 1125

model kinship values nearing 1. 1126
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Figure 7: The Model Kinship Matrices for the three
model groups. Each element represents the model kin-
ship value between the corresponding models. In Group
B and C, the merged models are arranged by average
task performance, ordered from high to low (left to
right).
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E Analysis between Task Relatedness and1127

Model Kinship1128

In the formulation of model kinship, we use the1129

placeholder ∼ (·, ·) as a similarity metric function1130

to explore options that can effectively capture task-1131

related differences. One such metric is cosine simi-1132

larity, derived from the analysis in the task vector,1133

which has been validated as effective for represent-1134

ing differences in single-task models through the1135

cosine similarity of delta parameters (task vectors).1136

In addition to cosine similarity, we also investigate1137

the Pearson correlation coefficient and Euclidean1138

distance.1139

However, we have not thoroughly evaluated the1140

applicability of these metrics in the context of1141

model evolution, particularly for merged models1142

with multitask capabilities. To address this, we ex-1143

amine the relationship between the similarity met-1144

rics and task information in subsequent sections.1145

Our analysis focuses on the LLaMA-2 architec-1146

ture, as we can find the necessary open-source fine-1147

tuned checkpoints on various datasets. To measure1148

differences between models, we currently use a1149

preliminary evaluation method: the Average Task1150

Performance Difference (ATPD), which aims to1151

represent task capability differences based on eval-1152

uation performance.1153

The Average Task Performance Difference1154

(ATPD) between two models, M1 and M2, is cal-1155

culated by averaging the absolute differences in1156

performance across all tasks. Let T denote the set1157

of tasks, and P
(j)
i represent the performance of1158

model Mj on task i. Then, the ATPD is defined as:1159

ATPD(M1,M2) =
1

|T |
∑
i∈T

∣∣∣P (1)
i − P

(2)
i

∣∣∣1160

• |T |: the total number of tasks.1161

• P
(1)
i and P

(2)
i : performances of models M11162

and M2 on task i.1163

•
∣∣∣P (1)

i − P
(2)
i

∣∣∣: absolute difference in perfor-1164

mance for task i.1165

Method Corr(cs) Corr(pcc) Corr(ed)
Value -0.77 -0.74 0.80

Table 14: Correlation values between ATPD and model
kinship.

For this study, we utilize models from additional 1166

LLaMA-2 experiments (Appendix.B). These mod- 1167

els are merged from three fine-tuned models, al- 1168

lowing us to control the generated models to focus 1169

solely on the corresponding task capabilities. The 1170

following table presents the results, with Wino- 1171

grande, TruthfulQA, and GSM8K representing the 1172

performance differences across each task. 1173

The results in Table.14 demonstrate strong cor- 1174

relations: Cosine Similarity (-0.77) and Pearson 1175

Correlation Coefficient (-0.74) exhibit negative cor- 1176

relations, while Euclidean Distance (0.80) shows 1177

a positive correlation. This supports that model 1178

kinship is related to task differences. As mentioned 1179

in the limitations, the current metrics are viable but 1180

not optimal. Combining them with task informa- 1181

tion studies could further enhance the value of our 1182

work. 1183

E.1 Additional Results: Analysis of Model 1184

Kinship and Average Task Performance 1185

This section provides supplementary analysis on 1186

the relationship between model kinship and average 1187

task performance. Figure 8 illustrates a compari- 1188

son between average task performance and model 1189

kinship using two additional metrics not included 1190

in the main paper. From an intuitive observation, 1191

model kinship based on the three metrics exhibits a 1192

similar correlation with average task performance. 1193
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Model 1 Model 2 Winogrande TruthfulQA GSM8K ATPD Kinship(cs) Kinship(pcc) Kinship(ed)
child-4-1-greedy child-5-3-greedy 0.10 0.00 0.20 0.10 0.99 0.99 2.17
child-2-1-greedy child-4-1-greedy 0.20 0.10 0.00 0.10 0.98 0.99 4.22
child-2-1-greedy child-5-3-greedy 0.10 0.10 0.20 0.13 0.99 0.99 2.19
child-4-exp child-2-1-greedy 1.10 0.90 0.10 0.70 0.80 0.75 25.53
child-2-1-greedy child-3-1-greedy 0.20 1.30 0.70 0.73 0.95 0.98 6.74
child-4-1-greedy child-6-exp 0.10 1.90 1.40 1.13 0.74 0.71 25.54
child-4-1-greedy child-4-2-greedy 0.30 3.00 3.20 2.17 0.97 0.98 6.57
child-2-2-greedy child-3-1-greedy 0.50 3.10 3.10 2.23 0.97 0.98 6.57
child-2-1-greedy child-4-2-greedy 0.50 3.10 3.20 2.27 0.91 0.96 9.29
child-3-exp child-2-1-greedy 0.70 0.20 6.30 2.40 0.64 0.52 35.52
child-4-exp child-2-1-greedy 1.10 2.50 4.00 2.53 0.78 0.75 25.53
child-2-1-greedy child1-2-greedy 2.30 4.00 2.40 2.90 0.79 0.89 15.75
child-2-1-greedy child-2-2-greedy 0.70 4.40 3.80 2.97 0.88 0.95 12.43
child-2-2-greedy child1-2-greedy 3.00 0.40 6.20 3.20 0.89 0.92 11.68
child1-1-greedy GSM8K 1.20 5.90 3.80 3.63 0.39 0.46 36.39
child1-1-greedy child1-2-greedy 6.50 4.90 0.00 3.80 0.19 0.16 38.07
child-2-exp child-2-1-greedy 1.10 2.80 8.10 4.00 0.58 0.77 28.33
child1-2-greedy GSM8K 7.70 1.00 3.80 4.17 0.45 0.38 26.32
child-2-1-greedy child1-3-greedy 7.80 3.10 2.90 4.60 0.58 0.51 45.24
child-3-1-greedy child-2-exp 0.90 4.10 8.80 4.60 0.58 0.63 32.45
winogrande TruthfulQA 14.70 9.00 3.10 8.93 0.01 0.01 74.49
child1-2-greedy child1-3-greedy 0.60 2.70 32.30 11.87 0.64 0.52 46.06
child1-2-greedy winogrande 4.70 3.50 27.80 12.00 0.01 0.02 55.89
winogrande GSM8K 3.00 4.50 31.60 13.03 0.03 0.11 54.01
child1-1-greedy child1-3-greedy 5.90 2.20 32.30 13.47 0.52 0.64 44.16
GSM8K TruthfulQA 17.70 4.50 28.50 16.90 0.01 0.01 61.56

Table 15: Summary of Model Merging Results.
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F Optimization Assumption of Model1194

Evolution1195

Figure 9: An intuitive illustration of how model evolu-
tion can fall into local optima due to a performance-
prior strategy. It shows that Merged Model 2 may be
overlooked, despite its potential for better multitask per-
formance.

Our findings using new strategy offer a new per-1196

spective on model evolution through multiple merg-1197

ing. If the merging process can be improved using1198

a common optimization strategy, it raises the ques-1199

tion of whether the underlying mechanism mirrors1200

this optimization problem. Thus, we hypothesize1201

the following:1202

Hypothesis: The evolution process may be sim-
plified to a binary search process for most
weight-averaging-based model merging meth-
ods.

1203

Figure 10 illustrates the ideal scenario in our as-1204

sumption where multiple merges produce a highly1205

generalized model. For the generalization task t,1206

the y-axis represents the model performance for1207

task t and the x-axis represents the model’s weight1208

space. In early merging stages, models fine-tuned1209

with different tasks exhibit significant weight space1210

dissimilarity. The merging process averages these1211

weight spaces, and the experiment conductor se-1212

lects the better-merged models while discarding the1213

inferior ones. In stage 2, the search area narrows1214

and the improvements become stable, eventually1215

leading to an optimized state in stage 3 when “sat-1216

uration stage” occurs.1217

In this context, Model Kinship serves as a metric1218

to quantify the weight space distance between two1219

models, with a higher model kinship indicating a1220

lower weight space distance. Following this as-1221

sumption, our findings of the optimization problem1222

in model evolution can be elucidated in Figure 9.1223

However, we currently lack sufficient evidence 1224

to validate this hypothesis. Future work is needed 1225

to explore this further. 1226
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Figure 10: An intuitive illustration of the optimization process assumption in model evolution, where models
progressively converge towards the optimal model.

Figure 11: An intuitive comparison between selective breeding and continual model merging. The left process
demonstrates breeding a tall and frutful plant by selecting parents with the desired traits in an biological scenario.
The right process shows developing a model with capabilities of coding and math through model evolution.

27



G Referenced Concepts in Evolutionary1227

biology1228

In this section, we detail the conceptual parallels1229

between biological processes and model merging,1230

highlighting our motivation for employing model1231

kinship.1232

G.1 Iterative Merging vs. Artificial Selection1233

We draw inspiration for model evolution from bio-1234

logical evolution, specifically focusing on the cor-1235

relation between biological evolution through ar-1236

tificial selection and model evolution via model1237

merging. Artificial selection involves retaining de-1238

sirable traits by manually selecting breeding pairs1239

in each generation, typically those exhibiting the1240

most significant features. Similarly, model evo-1241

lution, as explored in this paper through Iterative1242

Model Merging, adopts a comparable approach:1243

users preserve desired task capabilities by strate-1244

gically selecting merging pairs. Through iterative1245

merging, they can develop a model that is profi-1246

cient in all tasks in a given task set. To illustrate1247

this comparison more effectively, Figure 11 shows1248

an example of combining two features/task capa-1249

bilities in evolution.1250

G.2 Inbreeding Depression vs. Saturation1251

Stage1252

As highlighted in the main paper, one of our key1253

findings is that the late stage of model evolution of-1254

ten enters a saturation stage, during which models1255

exhibit minimal differences from one another. This1256

phenomenon parallels "inbreeding depression" in1257

artificial selection, where breeding closely related1258

individuals reduces genetic diversity and fitness.1259

Although genetic inheritance and model weights1260

operate differently, merging closely related mod-1261

els leads to new models with minimal variation,1262

thereby reducing the effectiveness of merging, par-1263

ticularly in weight averaging. To address this issue,1264

we propose quantifying the differences between1265

models, a concept we term model kinship, to guide1266

the merging process and mitigate the challenges1267

associated with the saturation stage in model evo-1268

lution.1269
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H References to Open Models1270

See Table 16.1271
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Model Name Hugging Face Reference
Multi_verse_model-7B https://huggingface.co/MTSAIR/multi_verse_model
Experiment26-7B https://huggingface.co/yam-peleg/Experiment26-7B
M7-7b https://huggingface.co/liminerity/M7-7b
StrangeMerges_32-7B-slerp https://huggingface.co/Gille/StrangeMerges_32-7B-slerp
Ognoexperiment27 https://huggingface.co/automerger/OgnoExperiment27-7B
YamShadow-7B https://huggingface.co/automerger/YamShadow-7B
Experiment28 https://huggingface.co/yam-peleg/Experiment28-7B
shadow-clown-7B-slerp https://huggingface.co/CorticalStack/shadow-clown-7B-slerp
yam-jom-7B https://huggingface.co/mayacinka/yam-jom-7B
StrangeMerges_21-7B-slerp https://huggingface.co/Gille/StrangeMerges_21-7B-slerp
StrangeMerges_31-7B-slerp https://huggingface.co/Gille/StrangeMerges_31-7B-slerp
NeuralBeagle14-7B https://huggingface.co/mlabonne/NeuralBeagle14-7B
Turdus https://huggingface.co/udkai/Turdus
DareBeagle-7B https://huggingface.co/shadowml/DareBeagle-7B
TurdusBeagle-7B https://huggingface.co/leveldevai/TurdusBeagle-7B
FernandoGPT-v1 https://huggingface.co/samir-fama/FernandoGPT-v1
StrangeMerges_10-7B-slerp https://huggingface.co/Gille/StrangeMerges_10-7B-slerp
TurdusDareBeagle-7B https://huggingface.co/leveldevai/TurdusDareBeagle-7B
MarcMistral-7B https://huggingface.co/flemmingmiguel/MarcMistral-7B
StrangeMerges_20-7B-slerp https://huggingface.co/Gille/StrangeMerges_20-7B-slerp
NeuTrixOmniBe-7B-model-remix https://huggingface.co/Kukedlc/NeuTrixOmniBe-7B-model-remix
StrangeMerges_11-7B-slerp https://huggingface.co/Gille/StrangeMerges_11-7B-slerp
MBX-7B-v3 https://huggingface.co/flemmingmiguel/MBX-7B-v3
Marcoroni-7B-v3 https://huggingface.co/AIDC-ai-business/Marcoroni-7B-v3
Mistral-7B-Merge-14-v0.1 https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1
distilabeled-Marcoro14-7B-slerp https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp
UNA-TheBeagle-7b-v1 https://huggingface.co/fblgit/UNA-TheBeagle-7b-v1
CatPPT-base https://huggingface.co/rishiraj/CatPPT-base
CatMacaroni-Slerp https://huggingface.co/cookinai/CatMacaroni-Slerp
LeoScorpius-7B https://huggingface.co/viethq188/LeoScorpius-7B
NeuralDaredevil-7B https://huggingface.co/mlabonne/NeuralDaredevil-7B
StrangeMerges_9-7B-dare_ties https://huggingface.co/Gille/StrangeMerges_9-7B-dare_ties
mistral-ft-optimized-1218 https://huggingface.co/OpenPipe/mistral-ft-optimized-1218
NeuralHermes-Mistral-2.5-7B https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B
neural-chat-7b-v3-2 https://huggingface.co/Intel/neural-chat-7b-v3-2
OpenHermes-2.5-Mistral-7B https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
StrangeMerges_30-7B-slerp https://huggingface.co/Gille/StrangeMerges_30-7B-slerp
Experiment24 https://huggingface.co/yam-peleg/Experiment24-7B
neural-chat-7b-v3-3 https://huggingface.co/Intel/neural-chat-7b-v3-3
MultiverseEx26-7B-slerp https://huggingface.co/allknowingroger/MultiverseEx26-7B-slerp
CalmExperiment-7B-slerp https://huggingface.co/allknowingroger/CalmExperiment-7B-slerp
CapybaraMarcoroni-7B https://huggingface.co/AtAndDev/CapybaraMarcoroni-7B
DistilHermes-2.5-Mistral-7B https://huggingface.co/eren23/DistilHermes-2.5-Mistral-7B
Calme-7B-Instruct-v0.9 https://huggingface.co/MaziyarPanahi/Calme-7B-Instruct-v0.9
StrangeMerges_16-7B-slerp https://huggingface.co/Gille/StrangeMerges_16-7B-slerp
coven_7b_128k_orpo_alpha https://huggingface.co/raidhon/coven_7b_128k_orpo_alpha
Kunoichi-DPO-v2-7B https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B
AlphaMonarch-7B https://huggingface.co/mlabonne/AlphaMonarch-7B
StrangeMerges_15-7B-slerp https://huggingface.co/Gille/StrangeMerges_15-7B-slerp
Kunoichi-7B https://huggingface.co/SanjiWatsuki/Kunoichi-7B
Mistral-T5-7B-v1 https://huggingface.co/ignos/Mistral-T5-7B-v1
Marcoroni-neural-chat-7B-v2 https://huggingface.co/Toten5/Marcoroni-neural-chat-7B-v2
Marcoro14-7B-slerp https://huggingface.co/Rupesh2/Marcoro14-7B-slerp
MarcDareBeagle-7B https://huggingface.co/leveldevai/MarcDareBeagle-7B
MarcBeagle-7B https://huggingface.co/leveldevai/MarcBeagle-7B
MetaMath-Mistral-7B https://huggingface.co/meta-math/MetaMath-Mistral-7B
openchat-3.5-1210 https://huggingface.co/openchat/openchat-3.5-1210
Tulpar-7b-v2 https://huggingface.co/HyperbeeAI/Tulpar-7b-v2
YugoGPT https://huggingface.co/gordicaleksa/YugoGPT

Table 16: Model and Hugging Face Reference Links
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https://huggingface.co/MTSAIR/multi_verse_model
https://huggingface.co/yam-peleg/Experiment26-7B
https://huggingface.co/liminerity/M7-7b
https://huggingface.co/Gille/StrangeMerges_32-7B-slerp
https://huggingface.co/automerger/OgnoExperiment27-7B
https://huggingface.co/automerger/YamShadow-7B
https://huggingface.co/yam-peleg/Experiment28-7B
https://huggingface.co/CorticalStack/shadow-clown-7B-slerp
https://huggingface.co/mayacinka/yam-jom-7B
https://huggingface.co/Gille/StrangeMerges_21-7B-slerp
https://huggingface.co/Gille/StrangeMerges_31-7B-slerp
https://huggingface.co/mlabonne/NeuralBeagle14-7B
https://huggingface.co/udkai/Turdus
https://huggingface.co/shadowml/DareBeagle-7B
https://huggingface.co/leveldevai/TurdusBeagle-7B
https://huggingface.co/samir-fama/FernandoGPT-v1
https://huggingface.co/Gille/StrangeMerges_10-7B-slerp
https://huggingface.co/leveldevai/TurdusDareBeagle-7B
https://huggingface.co/flemmingmiguel/MarcMistral-7B
https://huggingface.co/Gille/StrangeMerges_20-7B-slerp
https://huggingface.co/Kukedlc/NeuTrixOmniBe-7B-model-remix
https://huggingface.co/Gille/StrangeMerges_11-7B-slerp
https://huggingface.co/flemmingmiguel/MBX-7B-v3
https://huggingface.co/AIDC-ai-business/Marcoroni-7B-v3
https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1
https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp
https://huggingface.co/fblgit/UNA-TheBeagle-7b-v1
https://huggingface.co/rishiraj/CatPPT-base
https://huggingface.co/cookinai/CatMacaroni-Slerp
https://huggingface.co/viethq188/LeoScorpius-7B
https://huggingface.co/mlabonne/NeuralDaredevil-7B
https://huggingface.co/Gille/StrangeMerges_9-7B-dare_ties
https://huggingface.co/OpenPipe/mistral-ft-optimized-1218
https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B
https://huggingface.co/Intel/neural-chat-7b-v3-2
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://huggingface.co/Gille/StrangeMerges_30-7B-slerp
https://huggingface.co/yam-peleg/Experiment24-7B
https://huggingface.co/Intel/neural-chat-7b-v3-3
https://huggingface.co/allknowingroger/MultiverseEx26-7B-slerp
https://huggingface.co/allknowingroger/CalmExperiment-7B-slerp
https://huggingface.co/AtAndDev/CapybaraMarcoroni-7B
https://huggingface.co/eren23/DistilHermes-2.5-Mistral-7B
https://huggingface.co/MaziyarPanahi/Calme-7B-Instruct-v0.9
https://huggingface.co/Gille/StrangeMerges_16-7B-slerp
https://huggingface.co/raidhon/coven_7b_128k_orpo_alpha
https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B
https://huggingface.co/mlabonne/AlphaMonarch-7B
https://huggingface.co/Gille/StrangeMerges_15-7B-slerp
https://huggingface.co/SanjiWatsuki/Kunoichi-7B
https://huggingface.co/ignos/Mistral-T5-7B-v1
https://huggingface.co/Toten5/Marcoroni-neural-chat-7B-v2
https://huggingface.co/Rupesh2/Marcoro14-7B-slerp
https://huggingface.co/leveldevai/MarcDareBeagle-7B
https://huggingface.co/leveldevai/MarcBeagle-7B
https://huggingface.co/meta-math/MetaMath-Mistral-7B
https://huggingface.co/openchat/openchat-3.5-1210
https://huggingface.co/HyperbeeAI/Tulpar-7b-v2
https://huggingface.co/gordicaleksa/YugoGPT
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