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Abstract

Diffusion models have shown improvement in synthetic
image quality as well as better control in generation. We
motivate and present Gen2Det, a simple modular pipeline
to create synthetic training data for object detection by
leveraging state-of-the-art grounded generation methods.
Unlike existing works which generate individual object in-
stances, require identifying foreground followed by pasting
on other images, we simplify to directly generating scene-
centric images. In addition to the synthetic data, Gen2Det
also proposes a suite of techniques to best utilize the gen-
erated data, including image-level filtering, instance-level
filtering, and better training recipe to account for imperfec-
tions in the generation. Using Gen2Det, we show healthy
improvements on object detection and segmentation tasks
on standard benchmarks like COCO and LVIS.

1. Introduction
Recent developments in generative modeling using diffu-
sion models has drastically improved the generation qual-
ity. Works like LDM [17], DALL-E [15, 16], Imagen [19],
Parti [23] have shown the generation power which diffusion
models possess. In addition to these models which can gen-
erate high quality images given a text input, there have been
multiple developments in the direction of higher control
in generation. Along this direction exist works which use
conditional control like ControlNet [25] and GLIGEN [9].
There are also works like LoRA [8] and Dreambooth [18]
which provide means to adapt these large models in a quick
and efficient manner to generate specific kinds of images.
With these developments in both quality and control of syn-
thetically generated images, it is only natural to come back
to the question of “How to best utilize data generated from
these models for improving recognition performance?”.

Most previous works [6, 20, 22] have explored using syn-
thetic data from diffusion models for classification and pre-
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Figure 1. Existing approaches which utilize synthetic data for
detection training follow a common methodology of generating
object-centric images and pasting instances on real images (top).
Gen2Det (middle) instead utilizes state-of-art grounded inpainting
diffusion model to directly generate scene-centric images. Fur-
ther, using filtering and modified training Gen2Det is able to uti-
lize synthetic instances better. As a result, our method consistently
improves over vanilla training and the AP improvements increase
(bottom) as the class becomes rare (i.e., long-tailed classes).

training tasks. The goal of our work is to look at utiliz-
ing more realistic scene configurations by generating im-
ages conditioned on the existing layout of boxes and labels
and use them for object detection and segmentation. A re-
cent work, XPaste [26], explores this problem and utilizes
techniques similar to simple copy-paste [4] to paste synthet-
ically generated object-centric instances onto real images
for object detector training. However, their method relies
on off-the-shelf segmentation methods built over CLIP [12–
14, 21, 24] to extract masks, and is thus subject to segmen-
tation errors. In addition to the extra components and com-
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pute, the generated images from XPaste are also not realistic
as they do not respect natural layouts due to random pasting
as shown in Figure 1 (top). In contrast, as shown in Figure 1
(middle), Gen2Det leverages state-of-art diffusion models
for grounded inpainting to generate scene-centric images
which look more realistic. The goal of our approach is
to show that utilizing such generated data from state-of-art
diffusion models can lead to improvement in performance
of object detection and segmentation models. By using a
grounded inpainting diffusion model we are able to gen-
erate synthetic versions of common detection datasets like
LVIS [5] and COCO [11] in a layout conditioned manner.
We then carefully design a set of filtering and training strate-
gies, with which we demonstrate that we can improve detec-
tion performance when training on the joint set of real and
synthetic images. More specifically, we sample batches of
synthetic and real images with a sampling probability. Dur-
ing loss computation we also modify the loss for synthetic
data to account for filtered instances. The clear improve-
ment over vanilla training shown in Figure 1 (bottom) for
classwise Box AP with increasing rarity of classes makes a
strong case for such a pipeline especially in long-tailed or
low data regimes.

2. Related Works
Diffusion Models for Controllable Image Generation.
Diffusion models have been shown to generate images with
unprecedented high quality. Amongst these models a few
of the popular models which can generate images from text
prompts include LDM [17], DALL-E [15, 16], Imagen [19],
and Parti [23]. One of the popular works ControlNet [25]
provides multiple ways to enable control including using
edge maps, scribbles, segmentation masks amongst other
modalities. Another work GLIGEN [9] brings in more
grounding control where they show image generation and
inpainting conditioned on boxes, keypoints, HED maps,
edge maps and semantic maps. We also utilize a similar pre-
trained state-of-art diffusion model for grounded inpainting.
Leveraging Synthetic Data from Diffusion Models. Due
to its high quality generation and the flexibility in han-
dling multimodal data (e.g., vision and language), there
has been a lot of recent work in using pretrained diffu-
sion models for different tasks. StableRep [22] uses data
generated by diffusion models to train self-supervised mod-
els. There have also been works exploring the use of syn-
thetic data from diffusion models to improve image clas-
sification [1, 2, 6, 7, 20]. While the classification task
has had a lot of exploration with synthetic data due to the
object-centric nature of images which these models can
generate easily, the detection task is less explored as it’s
harder to generate data with grounded annotations using
these models. A recent study [10] explored the use of
such data in highly constrained few shot settings for detec-

tion where the gains are expected. Recently, XPaste [26]
looked at more general benchmarks and showed consis-
tent improvements using the Centernet2 [27] architecture.
Specifically, XPaste [26] uses diffusion models to generate
object-centric images and uses multiple CLIP [14] based
approaches [12, 13, 21, 24] to extract segmentation maps
which makes it slow and error-prone. Following the extrac-
tion of instances and their segmentation maps, they use syn-
thetic and real instances (retrieved from an additional real
dataset) to perform copy-paste [4] augmentation to gener-
ate synthetic data. Gen2Det is able to directly generate di-
verse instances in a scene-centric manner and with proper
filtering and training recipes show improvements in perfor-
mance. Also in terms of training speed, we are 3.4× faster
compared to XPaste with the same configuration.

3. Approach

Through Gen2Det, we provide a modular way to generate
and utilize synthetic data for object detection and instance
segmentation. As shown in Figure 2, we start by generating
data using state-of-art grounded image inpainting diffusion
model. As the generations may not always be perfect we
perform image level and instance level filtering. The im-
age level filtering is performed using a pre-trained aesthetic
classifier [3] while the instance level filtering is performed
using a detector trained on the corresponding real data. To
train we perform a probability based sampling of a batch
to be composed of synthetic or real samples. Further while
computing the losses, we modify the negatives correspond-
ing to the synthetic data to be ignored from loss computa-
tion to account for the filtering we performed. We also do
not apply mask loss for synthetic samples as we do not have
the segmentation masks corresponding to them.

Image Generation. We start our pipeline by generating
synthetic images by utilizing a state-of-art grounded in-
painting diffusion model. This model is trained to support
multiple kinds of input conditions. We utilize the model
trained for image inpainting with the image, boxes, and cor-
responding labels as input. As inpainting model requires
an image and box level text description, for each box bi
we use the class name <ci> as the box level prompt and
a concatenation of strings <a c1, a c2, ... and a cn> as the
image level prompt where n is the number of instances in
the image. We show examples of images generated using
this technique in Figure 3.

Image Level Filtering. The first level of filtering we per-
form is an image level filtering using a pretrained classi-
fier. The model is trained to predict how pleasing the image
looks visually by assigning an aesthetic score to each im-
age. We utilize the publicly available weights from [3] and
pass every generated image through the classifier. Any im-
age with an aesthetic score less than τa is discarded and its

2



Synthetic Data with Annotations

Image
+

Instance
Level Filtering

Filtered Synthetic Data with Annotations

Box + Label Conditioned
Inpainting Diffusion Model

Diffusion
U-Net

Images with Box + Label Annotations Masked Images for Inpainting

Modified Detector
Training

ClassBoxMask

 Traditional Detector Training

Figure 2. Gen2Det: our proposed pipeline for generating and utilizing synthetic data for object detection and segmentation.
Gen2Det starts by generating grounded inpainted images using state-of-art diffusion model. The generated images are then filtered at
image and instance level. Finally, we train object detection and segmentation models using the filtered data along with our improved
training methodology by introducing sampling and background ignore.

Original Image Synthetic Image Synthetic Image Synthetic Image

Figure 3. Examples of generations using the inpainting diffusion
model on the COCO dataset.

annotations are removed. We show the effect of this filtering
by visualizing discarded samples in Figure 4.

Instance Level Filtering. We next perform instance level
filtering to remove annotations for specific generated in-
stances which do not have good generation quality. In order
to perform this filtering we first train a detector on only the
real data. We then pass all the generated images through
the trained detector and store its predictions. Based on the
detectors predictions we evaluate whether a ground truth
annotation corresponding to an inpainted region should be
utilized for training or not. To do this, for each generated
image we iterate over all ground truth annotations used to
generate it. For each annotation we go through all predic-
tions and remove the ground truth annotation if there is no
overlapping prediction with a score greater than τs and IoU
greater than τiou. We show results of the kind of annotations
removed using this filtering in Figure 5.

Training. We utilize both the real and synthetic data for
training the final model using a probabilistic sampling of
real and synthetic image batches. While the filtering we

perform at both image and instance level can deal with bad
quality generations, they also introduce some noise espe-
cially for classes for which the detector itself has poor qual-
ity predictions. Essentially, the instance level filtering re-
moves ground truth annotation corresponding to bad qual-
ity/incorrect generations but that does not remove the bad
instance itself from the image. Additionally, the genera-
tive model could have also hallucinated multiple instance of
an object class leading to missing annotations. To counter
the effect of both these scenarios we introduce an ignore
functionality during training. Essentially, for both the re-
gion proposal network (RPN) and detector head we ignore
the background regions from the loss computation, if their
fg/non-bg class prediction score is higher than a threshold
τi. This lets us train even in the presence of some bad qual-
ity regions without incorrectly penalizing the detector for
predicting objects at those locations.

4. Results

4.1. Experimental Setting

We evaluate our approach on LVIS [5] and COCO [11]
datasets. LVIS is a long tailed dataset with 1203 classes
utilizing the same images as COCO which contains only 80
classes. The long tailed nature of LVIS makes it especially
appealing to showcase the use of synthetic data for the rare
categories. We report the Average Precision (AP) for both
these datasets and compare using the box AP (APb) as well
as mask AP (APm). Additionally for LVIS, we also report
APs specific to rare, common, and frequent classes.

For data generation, we utilize a state-of-art diffusion
model for grounded inpainting using the images from LVIS
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Method Box Mask

AP APr APc APf AP APr APc APf

Vanilla (real only) 33.80 20.84 32.84 40.58 29.98 18.36 29.64 35.46
Vanilla (synth only) 11.27 6.54 9.35 15.51 - - - -
Vanilla (synth+real) 31.82 20.68 31.18 37.42 27.49 18.35 27.08 31.96
XPaste 34.34 21.05 33.86 40.71 30.18 18.77 30.11 35.28
Ours 34.70 23.78 33.71 40.61 30.82 21.24 30.32 35.59

Table 1. Comparisons on LVIS with baselines using Centernet2 architecture. We report
the overall AP and also AP for rare (APr), common (APc) and frequent (APf ) classes.

Method APb APm

Vanilla (real only) 46.00 39.8
Vanilla (synth only) 24.51 -
Vanilla (synth+real) 44.35 37.03
XPaste 46.60 39.90
Ours 47.18 40.44

Table 2. Comparisons with baselines on
COCO dataset using Centernet2 architec-
ture using APb (box) and APm (mask).

Figure 4. Samples discarded during the image level filtering.

and COCO along with their annotations which contain the
boxes and class labels. For aesthetic filtering, we utilize the
open source model available in their repository [3]. For aes-
thetic filtering we set τa to 4.5 which is roughly the same
as the average aesthetic score on real COCO images. For
detector filtering we set τs as 0.2 and τiou as 0.3 for LVIS.
We use the same τiou for COCO and set τs as 0.1. During
training, we use a sampling probability p = 0.2. We set τi
to 0 for both datasets thus effectively ignore all background
regions corresponding to the synthetic data from the loss.

4.2. Quantitative Results

Comparison on LVIS. We start by comparing our ap-
proach to the existing works in Table 1 on the LVIS dataset
with CenterNet2 backbone. Over vanilla training we show
that our method improves the Box and Mask AP over rare
categories by 2.94 and 2.88 respectively with a 0.9 and
0.84 Box and Mask AP improvement overall. Despite the
fact that XPaste utilizes four different CLIP based mod-
els [12, 13, 21, 24] to obtain segmentation masks and is also
3.5× slower to train compared to our approach on LVIS,
we are able to outperform XPaste by 2.73 Box AP and 2.47
Mask AP on the rare categories and by 0.36 and 0.64 Box
and Mask AP across all categories. The huge gains in rare
categories and overall improvements highlight our methods
effectiveness in both long tailed as well as general settings.
Comparison on COCO. Similar to LVIS, we compare on
the COCO benchmark in Table 2. On COCO too we show
an improvement of 1.18 and 0.64 on Box and Mask AP over
vanilla training. Compared to XPaste we improve by 0.58
Box AP and 0.54 Mask AP. We note that compared to LVIS

Original Image Synthetic Image Original Image Synthetic Image

Figure 5. Instances discarded by instance level filtering (red).

the improvements are slightly lower here as LVIS is a more
long-tailed dataset where adding synthetic data shines.

It should be noted that the improvement in mask AP for
both COCO and LVIS is without additional mask annota-
tions as the synthetic data only contains box annotations.

4.3. Qualitative Results

We show the outputs of different parts of pipeline qualita-
tively on the COCO dataset. First, in Figure 3 we show
a few samples which are synthetic images generated using
the pre-trained grounded inpainting diffusion model. In Fig-
ure 4 we highlight a few samples which are rejected from
the image level filtering. Finally, in Figure 5 we show some
examples of instances discarded by detector filtering.

5. Conclusion
With the huge strides in image generation in terms of both
quality and control, we try to tackle the problem of training
detection and segmentation models with synthetic data. Our
proposed pipeline Gen2Det utilizes state-of-art grounded
inpainting diffusion model to generate synthetic images
which we further filter at both image and instance level be-
fore using in training. We also introduce some changes in
the detector training to utilize the data better and take care
of shortcoming which the data might pose. We show im-
provement across both LVIS and COCO and show higher
improvements on rare classes in the long tailed LVIS set-
ting. Most interestingly, we show improvement in segmen-
tation performance without using any additional segmenta-
tion masks like existing works.
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