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ABSTRACT

Recent years have witnessed remarkable progress in generative AI, with natural
language emerging as the most common conditioning input. As underlying mod-
els grow more powerful, researchers are exploring increasingly diverse condition-
ing signals — such as depth maps, edge maps, camera parameters, and reference
images — to give users finer control over generation. Among different modal-
ities, sketches are a natural and long-standing form of human communication,
enabling rapid expression of visual concepts. Previous literature has largely fo-
cused on edge maps, often misnamed “sketches”, yet algorithms that effectively
handle true freehand sketches — with their inherent abstraction and distortions
— remain underexplored. We pursue the challenging goal of balancing photo-
realism with sketch adherence when generating images from freehand input. A
key obstacle is the absence of ground-truth, pixel-aligned images: by their na-
ture, freehand sketches do not have a single correct alignment. To address this,
we propose a modulation-based approach that prioritizes semantic interpretation
of the sketch over strict adherence to individual edge positions. We further in-
troduce a novel loss that enables training on freehand sketches without requiring
ground-truth pixel-aligned images. We show that our method outperforms exist-
ing approaches in both semantic alignment with freehand sketch inputs and in the
realism and overall quality of the generated images.

1 INTRODUCTION

In recent years, generative AI for visual content such as images and videos has progressed dramati-
cally. While research continues to push the boundaries of quality and realism, enabling greater user
control has become increasingly important. Researchers are exploring diverse conditioning signals
complementary to natural language — such as depth maps, edge maps, camera parameters, and
reference images. In this work, we focus on human-drawn (freehand) sketches, which, alongside
language, are among the oldest forms of human communication (Donald, 1993). With just a few
strokes, sketches can convey complex visual concepts that are difficult to express in words, making
them a natural conditioning choice for efficient, human-centered, controllable generative AI. Yet
algorithms that effectively handle true freehand sketches — with their inherent abstraction and dis-
tortions — remain underexplored. Critically, we distinguish between edge maps, often regarded as
“sketches” in the literature, and genuine freehand sketches. Perceptual studies show that freehand
sketches frequently represent abstracted object forms (Tversky, 2002; Eitz et al., 2012) and may
include distorted proportions or relative sizes (Hertzmann, 2025). Fig. 1 illustrates examples from
the FS-COCO dataset of scene sketches (Chowdhury et al., 2022). The first column shows the ref-
erence image presented to the participants, who were then asked to recreate it from memory within
a limited time, simulating how humans draw from a mental image. Objects in these sketches often
exhibit high levels of abstraction — for example, in the second row of Fig. 1, grass is represented
by a single strip of vertical strokes, while a forest is depicted with a few schematically drawn trees.
Relative sizes of objects also frequently deviate substantially from the reference images.

While freehand sketches provide rich semantic cues, their abstraction, distortions, and ambiguity
make them challenging for existing generative models to interpret effectively. Existing condition-
ing mechanisms often fail to capture the intended objects and relationships, producing images that
either ignore important sketch details or compromise realism (Fig. 1). These limitations highlight
two key challenges for generative models: (i) extracting meaningful semantic representations from
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Figure 1: A visual comparison of our method with state-of-the-art baselines: ControlNet (Zhang
et al., 2023) and T2I-Adapter (Mou et al., 2023), on freehand sketches from the FS-COCO
dataset (Chowdhury et al., 2022). The first column shows the reference image presented to par-
ticipants, who recreated it from memory within a limited time, simulating how humans draw from a
mental image. All methods use the sketch and text as input. Our approach achieves a strong balance
between sketch adherence and photorealism. For ControlNet and T2I-Adapter, we used parameter
settings selected via a user study and qualitative evaluation, detailed in Sec. 4.4.1 and App. C.

highly abstract sketches, and (ii) generating images that are both realistic and respect the sketch. In
our work, we pursue the challenging goal of balancing photorealism with sketch adherence when
generating images from freehand input.

First, we observe that for freehand sketches, the image quality of typical conditioning mechanisms,
such as ControlNet (Zhang et al., 2023) and Adapters (Mou et al., 2023), is limited by the latent
features of their conditional input encoders. Specifically, the VAE encoder used in ControlNet-based
models may lack semantic understanding of sketches, while the convolutional encoders in Adapter-
based approaches may not be expressive enough to learn robust semantic representations. For the
first time, we exploit semantic features from a CLIP-based sketch encoder (Bourouis et al., 2024),
fine-tuning its final layers for our task. To inject richer semantic features, we propose a dedicated
modulation network (Fig. 2a). This enables the encoder to maintain a semantically meaningful latent
space while capturing finer-grained visual details from sketches.

Second, we propose a novel loss that sidesteps the need for pixel-aligned ground-truth images during
training while preserving the semantics of the sketch input. To this end, we leverage the aforemen-
tioned semantic sketch encoder to estimate the likelihood of each sketch pixel belonging to a specific
object category. During training, these semantic likelihoods guide the cross-attention between the
corresponding textual tokens and the latent image representation, encouraging the generated image
to follow the freehand sketch (Fig. 2b). We train on a mix of synthetic sketches, algorithmically
generated from reference images, and freehand sketches. This approach enables the preservation of
semantic information, important details, and the generation of natural-looking images.

As sketches are often ambiguous — for example, the trees in Fig. 1 (first row) are depicted as
a set of arcs — we rely on text as an additional input. Fig. 1 (Ours SD2.1) demonstrates that
our method strikes a strong balance between the realism of generated images and adherence to the
sketch, preserving relative positions, orientations, and some finer details of objects, such as a bear
facing left and the curve of its back (Fig. 1, second row). We validate our designs via qualitative and
quantitative comparisons with previous methods, as well as via perceptual user studies.

In summary, our contributions are: (i) a new method that generates realistic images from freehand
and potentially abstract scene sketches; (ii) the use of semantic sketch features through integration
with the proposed modulation network in latent space; (iii) enabling efficient training on freehand
sketches with a loss function that emphasizes the semantic structure of sketch inputs.

2 RELATED WORK

Although earlier work on a general sketch- or edge-based image generation relied on GAN-based
approaches (Isola et al., 2017; Chen & Hays, 2018; Huang et al., 2018; Liu et al., 2020; Wang et al.,
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2021), recent work has demonstrated the superiority of diffusion-based approaches. In what follows,
we focus our discussion on the latter. For a broader overview of spatial control in diffusion models,
we refer the reader to recent surveys (Cao et al., 2024; Jiang et al., 2024).

2.1 PIXEL ALIGNED

Earlier work enabling control via sketches often considers precise, pixel-aligned edge maps. Some
methods incorporate sketch conditions by concatenating them along the channel dimension, either
in the pixel space (Cheng et al., 2023) or in the feature space (Huang et al., 2023; Unlu et al., 2024).
These approaches often produce high-quality, pixel-aligned results, but typically involve training
or at least fine-tuning the entire model. To avoid the overhead of training full models, several
methods introduce sketch guidance through lightweight stand-alone modules integrated into pre-
trained diffusion models. ControlNet (Zhang et al., 2023) does this via a dedicated branch with zero
convolutions, significantly reducing the number of trainable parameters. T2I-Adapter (Mou et al.,
2023) trains a lightweight convolutional encoder aligned with a U-Net denoiser. ControlNext (Peng
et al., 2024) uses a lightweight encoder to learn conditional features and normalizes them to match
the distribution of denoising features, improving convergence. Our work is most closely related
to the UNet-based encoder–decoder method proposed by Ham et al. (2023), which modulates text-
conditioned latents with sketches represented as three-channel RGB images and encoded by a UNet.
Voynov et al. (2023) refine noisy latents using gradients of a similarity loss between edge-guidance
latents and the output of a trained MLP applied to multi-level U-Net features. However, we show
that none of these methods generalizes reliably to freehand sketches, such as those in Fig. 1.”

2.2 SEMANTIC GENERATION

Several works aim to improve sketch interpretation in generative models by focusing on the semantic
content of sketch inputs. We categorize these approaches into two groups: methods that require
training and those that are training-free.

2.2.1 TRAINED

Single-object DiffSketching (Wang et al., 2023) targets single-object inputs and relies on a classi-
fier guidance and perceptual losses (LPIPS Zhang et al. (2018a) and ResNet He et al. (2016)). This
strong reliance on classifier guidance makes it unsuitable for multi-object settings. CLAY (Zhang
et al., 2024a) uses dense cross-attention to incorporate sketch conditions into 3D model generation,
requiring a substantial number of training parameters. Koley et al. (2024) replace text guidance with
a global single-object sketch encoding. To fine-tune the CLIP-based sketch encoder, they align the
text and the sketch encoding during training and use a CLIP perceptual loss (Sain et al., 2023). Our
work focuses on scene sketches that usually contain multiple objects.

Multi-object Wu et al. (2023) fine-tune a pixel-space diffusion model on FS-COCO freehand
sketches (Chowdhury et al., 2022). They train a ResNet-based sketch encoder with additional trans-
former blocks from scratch, then pass those latent features instead of text to a denoiser. To boost
realism on freehand sketches, a discriminator in an image space is trained. Zhang et al. (2024b) pro-
pose a multi-step approach that requires fine-tuning a diffusion model for each semi-synthetic scene
sketch from SketchyCOCO (Gao et al., 2020), where scenes are composed by assembling individ-
ual object sketches. After manually segmenting objects, ControlNet generates their images, and
unique identity embeddings are obtained using multi-concept inversion (Avrahami et al., 2023a).
During inference, a blended latent diffusion model (Avrahami et al., 2023b) merges object and
background representations at high noise levels, while later denoising steps are conditioned on back-
ground prompts and object embeddings. However, depending on the noise schedule, outputs may
appear unrealistic or fail to reflect the intended object arrangement. Our method also targets free-
hand scene sketches and is designed for latent diffusion models. It aims at photorealistic generation
while closely adhering to sketch guidance, without adding any inference-time overhead.

2.2.2 TRAINING-FREE

Chen (2023) combines ControlNet with paint-with-words guidance (Balaji et al., 2022), which uses
user-drawn masks to steer cross-attention during inference to add semantic guidance. This approach

3
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Figure 2: Method overview. Modulation network (a). During training, the latent features zt are
generated by applying a noising process to the clean latent z0, which is obtained by encoding the
ground-truth image using the VAE encoder. During inference, zt is instead sampled from a standard
Gaussian distribution and then progressively denoised by the diffusion model. Text-conditioned
diffusion model generates time-dependent noise ϵt, which we modulate relying on semantic sketch
features. For details, please refer to Sec. 3.2 and Tab. 3. Attention supervision (b). Attention
supervision allows us to train on a combination of freehand sketches and sketches algorithmically
generated from reference images. It bypasses the need for pixel-aligned ground-truth images —
which are unavailable for freehand sketches — and helps the modulation network focus on sketch
semantics. For details, please refer to Sec. 3.4.

is sensitive to weighting, requiring careful tuning per category (Fig. 8). Several works rely on the
diffusion inversion of a reference sketch (Mo et al., 2024; Ding et al., 2024). FreeControl (Mo et al.,
2024) first generates text-conditioned images to extract semantic and appearance bases, then trans-
fers structural guidance by minimizing the distance between the basis coefficients of the generated
and reference images. Ding et al. (2024) update noisy latents using KL divergence gradients be-
tween cross-attention maps from the current generation and those obtained by diffusion inversion
of a reference sketch, showcasing the method only on single-object sketches. We also explore the
properties of cross-attention maps, supervising them at training time with the introduced loss.

3 METHOD

In this section, we describe the key components of our method, their motivation, and the necessary
background theory. We provide additional implementation details in Secs. 4.1 and 4.2.

3.1 PRELIMINARIES ON LATENT DIFFUSION MODELS

Latent Diffusion Models (LDMs) improve the efficiency and scalability of diffusion models by op-
erating in a compressed latent space instead of pixel space. A pre-trained autoencoder first uses its
encoder E to encode input images x0 ∈ R

H×W×3 into a lower-dimensional latent representation
z0 = E(x0).

During training, Gaussian noise is gradually added to a clean latent z0 over discrete timesteps t ∈
{1, . . . , T}, producing a noisy latent zt at each step. A neural network with parameters θ is then
trained to predict the noise ϵθ(zt, t, c) added to z0 at each timestep t, optionally conditioned on some
context c (e.g., class label or text embedding). The model is trained using the following objective:

Lnoise = Ez0,ϵ,t

[

∥ϵ− ϵθ(zt, t, c)∥2
]

, (1)

where ϵ ∼ N (0, I) is the Gaussian noise added at each timestep according to a predefined noise
schedule.

During inference, the model starts from Gaussian noise in the latent space and iteratively denoises
it using the learned reverse process. The final output is obtained by decoding the denoised latent
ẑ0(zt, t) using the decoder D: x̂0 = D(ẑ0).
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3.2 MODULATION NETWORK

To enable semantic image generation from abstract freehand scene sketches, we design a modula-
tion network that refines the predicted noise ϵθ(zt, t, ctext) at each timestep, incorporating sketch
guidance. Extending the ideas of noise modulation with spatial conditions Ham et al. (2023),
we propose a network explicitly designed to exploit semantic sketch features. Our network re-
ceives as input the semantic sketch features, the latent zt, and the predicted noise ϵθ(·) and pro-
duces scale St and shift Bt maps. These maps are used to modulate the noise prediction as
ϵ′θ(zt, t, ctext, csketch) = ϵθ ⊙ (1 + St) +Bt. The next section Sec. 3.3 details how semantic sketch
features are obtained. Here, we focus on the modulation network itself.

Our modulation network is an encoder-decoder CNN architecture. As illustrated in Fig. 2a., each
input modality is first processed through a separate downsampling path, projecting it into an embed-
ding space of equal dimensionality. The resulting feature maps are concatenated and passed through
a timestep-conditioned convolutional layer, followed by an activation function and another convolu-
tional layer. The fused features are then processed by three upsampling blocks. The final output is
split into scale St ∈ R

H×W×4 and shift Bt ∈ R
H×W×4 latent maps.

The model is trained with the loss defined in Eq. (1) and additional regularization losses. Similarly
to Ham et al. (2023), we apply L1 regularization on shift and scale parameters:

Lscale
1 = ∥St∥1, Lshift

1 = ∥Bt∥1. (2)

To promote more expressive and diverse transformations, we encourage variability in the predicted
scale and shift maps by penalizing low variance across their values:

Lvar = −(σ(St) + σ(Bt)), (3)

where σ is the standard deviation computed over the elements of the modulation maps St and Bt.

3.3 SEMANTIC SKETCH FEATURES

To extract semantic features from freehand sketches, we leverage a pre-trained CLIP-based encoder
(Bourouis et al., 2024). This encoder was trained on freehand sketches from the FS-COCO dataset
(Chowdhury et al., 2022) to perform open-vocabulary semantic segmentation of scene sketches.
However, for the task of sketch-conditioned image generation, these features may lack sufficient
fine-grained detail. Empirically, we found that fine-tuning the last few layers (three in our case) of
the encoder significantly improves the alignment between the generated image and the input sketch.

3.4 TRAINING WITH FREEHAND SKETCHES

Training diffusion models with freehand sketches presents a key challenge: pixel-aligned, realistic
reference images do not exist, and as discussed in Sec. 1, such images can rarely exist in practice.
Using misaligned reference images, such as those in the FS-COCO dataset (Fig. 1), introduces
ambiguity in the standard denoising objective (Eq. (1)). To overcome this, we propose a loss function
that bypasses pixel-level correspondence and instead focuses on preserving the sketch’s semantic
structure.

Before introducing our loss, we briefly review how text conditioning is commonly implemented in
generative models via a cross-attention mechanism:

Attention(Q,K, V ) = Softmax

(

QK⊤

√
d

)

V = MV, (4)

where the query matrix Q is derived from the latent representation z, while the key K and value V
matrices are obtained from the text embedding c. The latent dimensionality is denoted by d. Each
entry Mij in the attention matrix M captures the influence of the j-th text token on the i-th image
patch, therefore defining in which spatial locations each particular semantic concept appears.

We leverage the observation that the semantic encoder used in our modulation network, originally
trained for segmentation, provides a strong spatial signal indicating the location and identity of ob-
jects in the sketch (see Fig. 2b.). Therefore, we use the features of the original pre-trained sketch en-
coder (Bourouis et al., 2024) to compute ‘ground-truth’ attention maps Mgrth. For synthetic sketches,
we rely on the available segmentation maps in the MS-COCO dataset (Lin et al., 2014).
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From the modulated noise ϵ′θ(zt, t, ctext, csketch), we compute the denoised latent ẑ0(zt, t, ϵ
′
θ(·)).

We then pass ẑ0(·) through the denoising network (with text conditioning) to extract cross-attention
maps M at multiple layers. We supervise these cross-attention maps M using ground-truth attention
maps Mgrth, following the loss formulation introduced by Sun et al. (2024) in the context of layout-
based image generation:

Lattn =
∑

γ∈Γ

∑

i∈I

∑

bi∈B



1−
(

∑

p∼bi
M

(γ)
pi

∑

p M
(γ)
pi

)2

− λreg

∑

p∼bi

M
(γ)
pi



 , (5)

here, M
(γ)
pi denotes the attention value at pixel p for object Pi in layer γ. The set B contains spa-

tial regions derived from Mgrth, and I is the set of valid text token indices. The loss encourages
alignment of attention with the target layout while the regularization term, weighted by λreg, pre-
vents attention from leaking outside the target regions. The summation over γ ∈ Γ aggregates
contributions across multiple attention layers.

We define our total objective as a weighted sum of four loss components:

Ltotal = λ0Lnoise + λ1Lattn + λ2

(

Lscale
1 + Lshift

1 + Lvar

)

. (6)

4 EXPERIMENTS

4.1 TRAINING AND TEST DATA

For training, we use the FS-COCO dataset (Chowdhury et al., 2022), as the only available dataset
of freehand sketches. FS-COCO augments a subset of 10,000 MS-COCO (Lin et al., 2014) images
with paired freehand sketches and captions that describe the sketches. We use the split of FS-COCO
from (Bourouis et al., 2024), as it guarantees that the sketches in the test set contain a subset of
sketch styles not seen during training. In total, we use 9,525 samples for training and 475 for
testing. For each image in the FS-COCO training set, we additionally generate a synthetic sketch
using the method by Su et al. (2023). We conduct all analyses in this section based on the methods’
performance on the 475 freehand sketches.

4.2 IMPLEMENTATION DETAILS

We obtain Mgrth for freehand sketches by computing the similarity between each feature patch,
extracted using a pretrained semantic sketch encoder (Bourouis et al., 2024), and the CLIP text
embedding of object Pi. A threshold of 0.5 is then applied to produce a binary mask. We set
λ0, λ1 = 1.0 and λ2 = 0.1. Our batch consists of 50% freehand and 50% synthetic sketches.
For freehand sketches, we set λ0 = 0.0 and use captions from the FS-COCO dataset. Training
is restricted to the top 10% of diffusion timesteps, corresponding to high-noise regimes which are
known to control the overall semantic structure. During inference, only those 10% noise steps are
modulated. We ablate this choice in App. D.3. As the diffusion backbone, we adopt Stable Diffusion
2.1 (SD2.1) (Rombach et al., 2022), chosen for its relatively lightweight architecture and still strong
generative performance. During training, the total number of noise steps is T = 1000, and during
inference, it is T = 50. We train on a single A100 GPU.

4.3 EVALUATION METRICS

We evaluate our method using three metrics: (i) FID (Heusel et al., 2017), to assess the visual quality
and diversity of generated images against real ones; (ii) sketch-image similarity, computed via cosine
similarity between sketch encoder and CLIP image embeddings, assessing consistency with the input
sketch; and (iii) LPIPS (Zhang et al., 2018b), to measure perceptual similarity between generated
and reference images, capturing human-aligned visual fidelity beyond pixel-level differences..

4.4 COMPARISON TO STATE OF THE ART

In this section, we focus our evaluation on performance on freehand sketches; additional compar-
isons on synthetic sketches are provided in App. D.2. Results of the user study where participants
rank outputs from different methods are provided in App. A.2.
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4.4.1 BASELINES AND CHOICE OF THEIR OPTIMAL PARAMETER SETTINGS

We compare our approach with several widely adopted training-based conditional diffusion meth-
ods: ControlNet (Zhang et al., 2023) with two diffusion model backbones SD2.1 (Rombach et al.,
2022) and SDXL (Podell et al., 2023), ControlNext (Peng et al., 2024), T2I-Adapter (Mou et al.,
2023), and SG (Voynov et al., 2023). Note that these methods were originally trained on sketch
styles that match our synthetic sketches. We refer to this setting as zero-shot. We also compare our
method with the inference-time method FreeControl (Mo et al., 2024).

ControlNet and T2I-Adapter include control parameters that balance sketch fidelity and image real-
ism. ControlNet supports a scale factor w for the conditional branch connections. For T2I-Adapter,
there are two parameters Jiang et al. (2025): s, which controls how much the conditional features
are added in residual connections, and τ , which controls for which time steps t > T (1 − τ) the
spatial guidance is added, where T is the total number of steps used.

Since our goal is to generate images with the best trade off between photorealism and alignment with
the input sketch, we conduct a user study to identify the optimal parameter setting for each method
on our freehand sketches. When multiple settings yield similar user rankings, we additionally con-
sider quantitative metrics to select the configuration that provides the best overall performance. We
found the following setting to be optimal: w = 0.4 for ControlNet SD2.1, w = 0.6 for ControlNet
SDXL, and two sets of parameters for T2I s = 0.8, τ = 0.2 and s = 0.8, τ = 0.4. We refer the
reader to App. C.1 for more details, and visual comparisons among different parameter settings.

We begin by evaluating all models in a zero-shot setting, using pre-trained weights without modifi-
cation. To enable fair comparison, we further fine-tune each baseline on our training set using two
configurations: (i) optimization with the denoising loss alone (Eq. (1)), and (ii) joint optimization
with both the denoising and attention supervision losses (Eq. (5)).

4.4.2 QUANTITATIVE COMPARISON

Table 1 shows that our method achieves the best FID, CLIP similarity, and LPIPS sketch-to-image
alignment among all baselines. This demonstrates our model’s stronger ability to retain semantic
and structural cues from abstract sketches.

For ControlNet, we first perform naı̈ve fine-tuning independently on synthetic and freehand sketches
from our dataset, treating them as separate training sets. On synthetic sketches, while this leads to a
slight increase in FID, both CLIP similarity and LPIPS improve, suggesting better adherence to the
sketch input, expected from fine-tuning. The higher FID may stem from the image quality within
the MS-COCO dataset, which we use for both training and fine-tuning. However, when fine-tuning
on freehand sketches, all metrics degrade. We attribute this to the lack of pixel-level alignment in
freehand sketches, which limits model’s ability to learn effective spatial guidance from them. When
we add our proposed attention loss and train on a mix of synthetic and freehand sketches, FID
decreases only slightly, while both CLIP similarity and LPIPS improve substantially.

For T2I, s = 0.8, τ = 0.2 results in better FID scores, close to those of ControlNet, but a poor
alignment with freehand sketches. Setting s = 0.8, τ = 0.4 characterizes in lower FID scores,
but better alignment with input sketches. In both cases, naı̈ve fine-tuning on a mix of freehand and
synthetic sketches improves the performance according to all metrics. Adding the attention loss
further improves performance, with a particularly pronounced effect on FID scores. These results
show the importance of the proposed attention loss when targeting freehand sketch inputs.

ControlNet SDXL (zero-shot) results in images of poor quality, poorly aligned with input sketches.
Finally, ControlNext Peng et al. (2024) (Fig. 13) generates visually appealing images but often fails
to accurately follow the structural guidance provided by the sketch input.

4.4.3 QUALITATIVE COMPARISON

As shown in Fig. 3 and Figs. 6 and 7, our method produces photorealistic images that faithfully
capture the key structural elements of the input sketches. ControlNet SD2.1 frequently fails in the
zero-shot setting on freehand sketches, often generating implausible images that do not adhere to
the input guidance. While ControlNet SDXL might better adhere to the sketch input than its SD2.1
counterpart, its outputs tend to be desaturated, blurry, or exhibit a cartoon-like appearance. Lower
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Method Setup FID↓ CLIP↑ LPIPS↓

Zero-shot 135.595 1.136 0.773
Lnoise only (syn) 136.821 1.141 0.771
Lnoise only (free) 139.872 1.042 0.789

CntrlNet SD2.1 (Zhang et al., 2023)

Lnoise + Lattn 135.891 1.196 0.768

Zero-shot 144.329 -0.203 0.813
Lnoise only 138.479 0.318 0.779

T2I
Adapter
s = 0.8 τ = 0.2 (Mou et al., 2023) Lnoise + Lattn 137.982 0.391 0.774

Zero-shot 159.816 0.213 0.819
Lnoise only 151.736 0.426 0.781

T2I
Adapter
s = 0.8 τ = 0.4 (Mou et al., 2023) Lnoise + Lattn 139.568 0.454 0.778

CntrlNet SDXL (Zhang et al., 2023) Zero-shot 174.462 0.027 0.825
CntrlNext SDXL (Peng et al., 2024) Zero-shot 134.094 0.909 0.774

SG (Voynov et al., 2023) Zero-shot 137.381 1.043 0.782

FreeControl (Mo et al., 2024) Inference-time 141.632 1.089 0.793

Ours Full 123.959 1.272 0.743

Table 1: Comparison on 475 test sketches from the FS-COCO dataset (Chowdhury et al., 2022) with
baseline methods with different fine-tuning setups. The used metrics are summarized in Sec. 4.3.
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Figure 3: Visual comparison between our method and baselines in a zero-shot setting (using weights
of pretrained models) and with the ones fine-tuned with the proposed attention loss on a mix of
freehand and synthetic sketches.

values of the weighting factor w would yield higher visual quality, but at the cost of reduced sketch
adherence, as illustrated in Fig. 11. Similarly, T2I variants with the user-study-based parameter
settings overall follow sketch inputs, but produce washed-out, often cartoonish images. Higher
values of τ lead to better sketch adherence, but lower image quality.

Fine-tuning on a mix of synthetic and freehand sketches using our attention loss leads to improved
visual adherence to the input sketches and more vivid color palettes compared to zero-shot coun-
terparts. However, the results remain less consistent and exhibit a higher prevalence of artifacts
compared to our full method.

4.5 ABLATIONS

4.5.1 ROLE OF SKETCH REPRESENTATION

First, we ablate the choice of sketch representation used in our modulation network. A common
baseline is to encode sketches using the VAE encoder shared with image inputs, as done in Con-
trolNet (Zhang et al., 2023). In this setup, we introduce a separate branch for VAE-based sketch
features. This branch mirrors the architecture of the noise and latent branches but employs its own
set of weights. As shown in Fig. 4, this leads to significantly higher FID and lower CLIP similarity
scores, indicating degraded performance. In this configuration, the modulation network underper-
forms compared to ControlNet (Tab. 1).

Next, we experiment with directly using sketches as input to the modulation network, following the
approach of Ham et al. (2023). Unlike our method, their modulation network employs a single-
branch UNet (Ronneberger et al., 2015), where all inputs are concatenated before being processed.
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Figure 4: Quantitative evaluation of the role of sketch representation. Please refer to Sec. 4.5.1 for
the details.

In contrast, we find that using separate downsampling branches for each modality leads to improved
performance. In this experiment, sketches are encoded using a dedicated branch consisting of pro-
gressive downsampling and channel expansion via convolutional layers with SiLU activations, fol-
lowed by several time-conditioned convolutional blocks. As shown in Fig. 4, this setup results in the
worst performance, suggesting that it fails to fully leverage the information encoded in sketches.

Finally, Fig. 4 underscores the importance of our sketch encoder fine-tuning strategy. Even without
fine-tuning, our model outperforms all baselines (Tab. 1). However, the original CLIP encoder
(Radford et al., 2021), even with fine-tuning, fails to match our approach.

4.5.2 ROLE OF EACH OF THE LOSSES

We first ablate the role of attention loss by training a variant of our model with λ0 = 1 and λ2 = 0 for
both synthetic and free-hand sketches, effectively reducing the objective to a standard diffusion loss
with regularization terms without attention supervision. As shown in Fig. 5, removing the attention
loss leads to a modest improvement in FID score, but significantly reduces sketch-image alignment.

Removing Lvar degrades both image quality, as indicated by higher FID scores, and sketch-image
alignment, as reflected in lower CLIP similarity (Fig. 5). Thus, this loss results in higher expressivity
of the model, facilitating the learning process.
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Figure 5: Qualitative and quantitative evaluation when we (i) remove the attention loss Lattn (Eq. (5)),
‘WO attention loss’, and (ii) when we remove Lvar (Eq. (3)), ‘WO variance loss’. Please refer to
Sec. 4.5.2 for the detailed discussion.

5 CONCLUSIONS

Our main contribution lies in shifting the focus of pixel-aligned spatial conditioning to semantic-
aware generation, which emphasizes what is in the scene and where it is located. We address the
under-explored problem of generating images from real freehand scene sketches, which often ex-
hibit abstraction and distortion. We show how to extract semantic features using an appropriate
encoder and condition a diffusion model on them without altering the backbone architecture. Our
design, including our proposed attention loss, allows us to effectively train on freehand sketches,
consistently improving performance across baseline conditioning methods.

9



486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Under review as a conference paper at ICLR 2026

REFERENCES

Omri Avrahami, Kfir Aberman, Ohad Fried, Daniel Cohen-Or, and Dani Lischinski. Break-a-scene:
Extracting multiple concepts from a single image. In SIGGRAPH Asia 2023 Conference Papers,
pp. 1–12, 2023a.

Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended latent diffusion. ACM Transactions on
Graphics (TOG), 42(4), 2023b.

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang, Karsten
Kreis, Miika Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image diffusion models with
an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324, 2022.

Ahmed Bourouis, Judith E Fan, and Yulia Gryaditskaya. Open vocabulary semantic scene sketch
understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4176–4186, 2024.

Pu Cao, Feng Zhou, Qing Song, and Lu Yang. Controllable generation with text-to-image diffusion
models: A survey. arXiv preprint arXiv:2403.04279, 2024.

Li-Wei Chen. https://github.com/lwchen6309/sd-webui-controlnet-pww, 2023. URL https://

github.com/lwchen6309/sd-webui-controlnet-pww.

Wengling Chen and James Hays. Sketchygan: Towards diverse and realistic sketch to image syn-
thesis. In CVPR, 2018.

Shin-I Cheng, Yu-Jie Chen, Wei-Chen Chiu, Hung-Yu Tseng, and Hsin-Ying Lee. Adaptively-
realistic image generation from stroke and sketch with diffusion model. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, 2023.

Pinaki Nath Chowdhury, Aneeshan Sain, Ayan Kumar Bhunia, Tao Xiang, Yulia Gryaditskaya, and
Yi-Zhe Song. Fs-coco: towards understanding of freehand sketches of common objects in context.
In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part VIII, pp. 253–270. Springer, 2022.

Sandra Zhang Ding, Jiafeng Mao, and Kiyoharu Aizawa. Training-free sketch-guided diffusion with
latent optimization. arXiv preprint arXiv:2409.00313, 2024.

Merlin Donald. Origins of the modern mind: Three stages in the evolution of culture and cognition.
Harvard university press, 1993.

Mathias Eitz, James Hays, and Marc Alexa. How do humans sketch objects? ACM Transactions on
Graphics (TOG), 31(4), 2012.

Chengying Gao, Qi Liu, Qi Xu, Limin Wang, Jianzhuang Liu, and Changqing Zou. Sketchycoco:
Image generation from freehand scene sketches. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 5174–5183, 2020.

Cusuh Ham, James Hays, Jingwan Lu, Krishna Kumar Singh, Zhifei Zhang, and Tobias Hinz. Mod-
ulating pretrained diffusion models for multimodal image synthesis. In ACM SIGGRAPH 2023
Conference Proceedings, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Aaron Hertzmann. Comparing perspective in drawings, photographs, and perception. Art & Percep-
tion, 1, 2025.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Lianghua Huang, Di Chen, Yu Liu, Yujun Shen, Deli Zhao, and Jingren Zhou. Composer: cre-
ative and controllable image synthesis with composable conditions. In Proceedings of the 40th
International Conference on Machine Learning, 2023.

10

https://github.com/lwchen6309/sd-webui-controlnet-pww
https://github.com/lwchen6309/sd-webui-controlnet-pww


540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

Under review as a conference paper at ICLR 2026

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-
image translation. In ECCV, 2018.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017.

Lifan Jiang, Shuang Chen, Boxi Wu, Xiaotong Guan, and Jiahui Zhang. Vidsketch: Hand-drawn
sketch-driven video generation with diffusion control. arXiv preprint arXiv:2502.01101, 2025.

Rui Jiang, Guang-Cong Zheng, Teng Li, Tian-Rui Yang, Jing-Dong Wang, and Xi Li. A survey of
multimodal controllable diffusion models. Journal of Computer Science and Technology, 39(3):
509–541, 2024.

Subhadeep Koley, Ayan Kumar Bhunia, Deeptanshu Sekhri, Aneeshan Sain, Pinaki Nath Chowd-
hury, Tao Xiang, and Yi-Zhe Song. It’s all about your sketch: Democratising sketch control in
diffusion models. In CVPR, 2024.

Tencent ARC Lab. t2i-adapter-sketch-sdxl-1.0. https://huggingface.co/TencentARC/
t2i-adapter-sketch-sdxl-1.0, 2023. Accessed: 2025-09-24.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV. Springer,
2014.

Runtao Liu, Qian Yu, and Stella X Yu. Unsupervised sketch to photo synthesis. In ECCV. Springer,
2020.

Sicheng Mo, Fangzhou Mu, Kuan Heng Lin, Yanli Liu, Bochen Guan, Yin Li, and Bolei Zhou.
Freecontrol: Training-free spatial control of any text-to-image diffusion model with any condi-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 7465–7475, 2024.

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, and
Xiaohu Qie. T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image
diffusion models. arXiv preprint arXiv:2302.08453, 2023.

Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia. Controlnext:
Powerful and efficient control for image and video generation. arXiv preprint arXiv:2408.06070,
November 2024.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Aneeshan Sain, Ayan Kumar Bhunia, Pinaki Nath Chowdhury, Subhadeep Koley, Tao Xiang, and
Yi-Zhe Song. Clip for all things zero-shot sketch-based image retrieval, fine-grained or not.
CVPR, 2023.

11

https://huggingface.co/TencentARC/t2i-adapter-sketch-sdxl-1.0
https://huggingface.co/TencentARC/t2i-adapter-sketch-sdxl-1.0


594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Under review as a conference paper at ICLR 2026

Zhuo Su, Jiehua Zhang, Longguang Wang, Hua Zhang, Zhen Liu, Matti Pietikäinen, and Li Liu.
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A ADDITIONAL EVALUATIONS

A.1 ADDITIONAL VISUAL RESULTS

Additional visual results, comparing our method and baselines, are provided in Figs. 6 and 7.
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Figure 6: Qualitative results comparison between our method and baselines. Please see Sec. 4.4.2
for the detailed discussion. Sketch and text are both passed in as inputs.

A.2 USER PREFERENCE STUDY

We conducted a user study involving 23 participants to subjectively evaluate generation quality. We
compared our method against the best-performing baselines: ControlNet SD2.1, ControlNet SDXL,
and T2I-Adapter. The sketches were randomly selected from the entire test set for each participant.
Each participant was asked to evaluate 20 pairwise comparisons: ours against one of the baselines.
The same sketch was not shown twice to users. We asked participants to pick an image according to
each of the following criteria: (i) Which of the two images looks more photorealistic (i.e., most like
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Figure 7: Qualitative results comparison between our method and baselines. Please see Sec. 4.4.2
for the detailed discussion. Sketch and text are both passed in as inputs.

a real photograph)? (ii) Which image is more similar to the sketch in terms of layout and overall
structure? (ii) Which image is the better trade-off between photorealism and similarity to the sketch?

Baseline
Photorealism (%) Sketch similarity (%) Best trade-off (%)
Ours Base Und. Ours Base Und. Ours Base Und.

SDXL T2I s=0.8 τ=0.2 47.2 34.9 17.9 46.4 37.1 16.5 66.0 20.6 13.4
SDXL T2I s=0.8 τ=0.4 47.4 39.2 13.4 55.0 35.8 9.2 71.0 22.0 7.0
ControlNet SDXL 40.4 45.2 14.4 54.0 37.0 9.0 54.4 32.2 13.3
ControlNet SD2 70.0 21.2 8.8 64.8 30.8 4.4 88.8 10.0 1.2

Table 2: Pairwise user study preferences. Please see App. A.2 for the details.

As shown in Tab. 2, our method is consistently preferred across all baselines for the third question
(“best trade-off”). While it trails slightly behind ControlNet SDXL in perceived photorealism –
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likely due to the latter’s stronger diffusion backbone – it is strongly favored over ControlNet SD2.1,
which shares the same backbone. Our method is also consistently rated as producing images that
better match the input sketches.

A.3 COMBINING CONTROLNET WITH PAINT-WITH-WORDS GUIDANCE (BALAJI ET AL.,
2022).

A public implementation (Chen, 2023) combines ControlNet with paint-with-words guidance (Balaji
et al., 2022), which uses user-drawn masks to steer cross-attention during inference to add semantic
guidance. Fig. 8 shows that the performance is dependent on the setting of control parameters
for each object category, while our method produces consistent results, without the need for the
segmentation masks and object-specific parameter tuning.
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boat,2.0

aurora,1.0,

full moon,1.0 

mountains,1.0

a half-frozen lake,1.0

boat,1.0
A digital painting of a 
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A digital painting of a 
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moon and aurora. A boat is 
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Inputs
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Parameter 

settings

Parameter 

settings

Results Results

Our method

Inputs Results

Figure 8: A visual comparison between our method and a public implementation Chen (2023) of the
method that combines ControlNet with paint-with-words guidance Balaji et al. (2022).
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B IMPLEMENTATION DETAILS

B.1 MODULATION NETWORK

The detailed design of our modulation network is shown in Tab. 3. Our sketch encodings have di-
mensions 512×14×14, where 512 denotes the number of channels. The VAE latent representations
are of size 4× 128× 128, where 4 is the number of channels.

Path/Block Layer/Operation Input Ch. Output Ch. Spatial Change

Sketch Path
DoubleConv 512 256 -
DoubleConv 256 128 -
Interpolate (bilinear) 128 128 Match latent/noise size

Noise ϵ Path

DoubleConv 4 16 -
MaxPool2d (2) 16 16 /2
DoubleConv 16 32 -
MaxPool2d (2) 32 32 /2
DoubleConv 32 64 -
MaxPool2d (2) 64 64 /2
DoubleConv 64 128 -

Latent zt Path

DoubleConv 4 16 -
MaxPool2d (2) 16 16 /2
DoubleConv 16 32 -
MaxPool2d (2) 32 32 /2
DoubleConv 32 64 -
MaxPool2d (2) 64 64 /2
DoubleConv 64 128 -

Fusion Concat [s2, p4, l4] 384 - -
DoubleConv (fusion) 384 256 -

Upsampling

ConvTranspose2d (up1) 256 128 ×2
DoubleConv (up conv1) 128 64 -
ConvTranspose2d (up2) 64 32 ×2
DoubleConv (up conv2) 32 16 -
ConvTranspose2d (up3) 16 8 ×2
DoubleConv (up conv3) 8 8 -

Final Conv2d (final) 8 8 -
torch.chunk 8 4+4 -

Table 3: Architecture of the proposed modulation network.

B.2 CONTROLNET AND T2I ADAPTER FINE-TUNING

We start from pretrained sd21-controlnet-scribble Zhang (2023) and finetune it on our dataset
Sec. 4.1. Our training objective combines the standard diffusion loss Eq. (1) with an attention align-
ment loss Eq. (5). We extract attention maps from the U-Net decoder at resolutions 8×8, 16×16,
32×32 and supervise them with Mgrth using Eq. (5). Training uses AdamW (lr=1e-5) for 5k itera-
tions on a single A100 GPU, with batch size of 32 and batch composition of 50% freehand and 50%
synthetic sketches.

We use t2i-adapter-sketch-sdxl-1.0 Lab (2023) pre-trained model for the fine-tuning of the T2I
adapter. We apply the same attention supervision strategy by extracting cross-attention maps from
decoder layers at 8×8, 16×16, 32×32 resolutions. We use identical hyperparameters (AdamW, lr=1e-
5, batch size 32) and train for 5k iterations.
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C SELECTING PARAMETERS IN CONTROLNET AND T2I

As mentioned in Sec. 4.4.1, ControlNet Zhang et al. (2023) and T2I-Adapter Mou et al. (2023)
include control parameters that balance sketch fidelity and image realism. ControlNet supports
setting a layer-dependent scale factor w for the conditional branch connections. In practice, it is
sufficient to define w for the top layer, as values for lower layers are automatically inferred based on
the layer’s depth.

For T2I-Adapter, we experiment with two parameters Jiang et al. (2025): s, which controls how
much the conditional features are added in residual connections, and τ , which controls for which
time steps t > T (1− τ) the spatial guidance is added, where T is the total number of steps used.

C.1 SELECTING THE BEST SETTING

To select the best settings of control parameters, we run a user study, where for each of the baselines
we ask a user to choose among a few possible image options obtained with different parameter
settings. 7 participants took part in this user study. The results of the user study are summarized in
Fig. 9. Visual results are shown in Figs. 10 to 13, while numerical results are shown in Tab. 4.

w
0.

2

w
0.

4

w
0.

6

w
0.

8

w
1.

0

w
1.

2

Parameter Values

0

1

2

3

4

5

A
v
e
ra

g
e
 S

e
le

c
ti

o
n
 C

o
u
n
t

5.7

4.2

3.7

3.2

0.7
0.8

ControlNet_SD2: Photorealism

w
0.

2

w
0.

4

w
0.

6

w
0.

8

w
1.

0

w
1.

2

Parameter Values

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 S

e
le

c
ti

o
n
 C

o
u
n
t

1.4 1.3

1.9

2.6

4.2

6.8

ControlNet_SD2: Sketch Similarity

w
0.

2

w
0.

4

w
0.

6

w
0.

8

w
1.

0

w
1.

2

Parameter Values

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
v
e
ra

g
e
 S

e
le

c
ti

o
n
 C

o
u
n
t

3.7

2.3

3.6

4.0

2.0

2.7

ControlNet_SD2: Best Trade-off

w
0.

2

w
0.

4

w
0.

6

w
0.

8

w
1.

0

w
1.

2

Parameter Values

0

2

4

6

8

10

12

14

A
v
e
ra

g
e
 S

e
le

c
ti

o
n
 C

o
u
n
t

15.2

7.6

0.8

0.0 0.0
0.4

ControlNet_SDXL: Photorealism

w
0.

2

w
0.

4

w
0.

6

w
0.

8

w
1.

0

w
1.

2

Parameter Values

0

1

2

3

4

5

6

A
v
e
ra

g
e
 S

e
le

c
ti

o
n
 C

o
u
n
t

0.6

5.0

3.0

5.8
6.0

3.6

ControlNet_SDXL: Sketch Similarity

w
0.

2

w
0.

4

w
0.

6

w
0.

8

w
1.

0

w
1.

2

Parameter Values

0

2

4

6

8

10

A
v
e
ra

g
e
 S

e
le

c
ti

o
n
 C

o
u
n
t

5.0

11.4

4.2

1.8

1.0
0.6

ControlNet_SDXL: Best Trade-off

s0
.8

 τ0
.2

s0
.8

 τ0
.4

s0
.8

 τ0
.6

s1
.0

 τ0
.2

s1
.0

 τ0
.4

s1
.0

 τ0
.6

Parameter Values

0

2

4

6

8

A
v
e
ra

g
e
 S

e
le

c
ti

o
n
 C

o
u
n
t

7.0

2.4

1.6

8.8

2.2

0.4

T2I: Photorealism

s0
.8

 τ0
.2

s0
.8

 τ0
.4

s0
.8

 τ0
.6

s1
.0

 τ0
.2

s1
.0

 τ0
.4

s1
.0

 τ0
.6

Parameter Values

0

2

4

6

8

A
v
e
ra

g
e
 S

e
le

c
ti

o
n
 C

o
u
n
t

1.2

3.0

3.8

0.2

5.6

8.6

T2I: Sketch Similarity

s0
.8

 τ0
.2

s0
.8

 τ0
.4

s0
.8

 τ0
.6

s1
.0

 τ0
.2

s1
.0

 τ0
.4

s1
.0

 τ0
.6

Parameter Values

0

1

2

3

4

5

6

A
v
e
ra

g
e
 S

e
le

c
ti

o
n
 C

o
u
n
t

6.6

5.2

2.0

2.8

4.6

1.2

T2I: Best Trade-off

Average Parameter Preferences by Model and Question
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Baseline Param FID ↓ CLIPsim ↑ LPIPS↓
w0.2 141.46 0.911 0.780
w0.4 138.62 0.927 0.774
s0.6 135.60 1.136 0.773
w0.8 137.35 0.765 0.773
w1.0 143.42 0.668 0.786

ControlNet
SD2

w1.2 147.53 0.468 0.791

w0.2 162.35 0.032 0.822
w0.4 174.46 0.027 0.825
w0.6 196.35 -0.412 0.830
w0.8 236.58 -0.455 0.846
w1.0 219.09 -0.222 0.836

ControlNet
SDXL

w1.2 243.59 -0.039 0.831

w0.2 131.58 0.841 0.772
w0.4 134.09 0.909 0.774
w0.6 149.19 0.279 0.781
w0.8 192.92 -0.357 0.796
w1.0 232.27 -1.036 0.843

ControlNext
SDXL

w1.2 237.38 -0.934 0.837

s0.8 τ 0.2 144.33 -0.203 0.813
s0.8 τ 0.4 159.82 0.213 0.819
s0.8 τ 0.6 165.52 0.057 0.827
s1.0 τ 0.2 149.13 0.132 0.821
s1.0 τ 0.4 152.41 0.213 0.820

T2I

s1.0 τ 0.6 144.05 0.525 0.809

Table 4: Detailed performance comparison of all baseline models with different parameters. The
settings highlighted in bold are the versions selected for the main paper.
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Man posing behind the fence in front of a a giraffe in background.
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d
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A woman sitting on a wooden bench in a park with her dog on the left side under the bench.
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A cow in a field walking while a dog is lying down.
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d
2

a big tree and a bench near the hillside

Figure 10: Visualization of image generated with ControlNet SD2 for different values of control
parameter. Each row shows results for a specific sketch and text prompt using two random seeds.
Text captions are shown below each sketch group.
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Figure 11: Visualization of image generated with ControlNet SDXL for different values of control
parameter. Each row shows results for a specific sketch and text prompt using two random seeds.
Text captions are shown below each sketch group.
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Figure 12: Visualization of image generated with T2I with SDXL model for different values of
control parameters. Each row shows results for a specific sketch and text prompt, generated using
two random seeds. Text captions are shown below each sketch group.
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Figure 13: Visualization of image generated with ControlNext for different values of control param-
eter. Each row shows results for a specific sketch and text prompt using two random seeds. Text
captions are shown below each sketch group.
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D ADDITIONAL ABLATIONS

D.1 TRAINING ON FREEHAND SKETCHES ONLY

To evaluate the importance of training on both synthetic and freehand sketches, we train a variant
of our model using only freehand sketches optimized with the full objective in Eq. (6). As shown in
Tab. 5, it results in worse performance on freehand sketches across all metrics.

Method FID ↓ CLIP ↑ LPIPS ↓

Freehand only 142.27 0.955 0.750
Ours (full) 123.96 1.272 0.743

Table 5: Ablation: Comparing training on freehand sketches alone versus training on a combination
of freehand and synthetic sketches, with evaluation performed on freehand sketches from the FS-
COCO dataset Chowdhury et al. (2022).

D.2 TRAINING ON SYNTHETIC SKETCHES ONLY

We additionally investigate a variant trained exclusively on synthetic sketches, denoted as Ours (syn-
thetic). This ablation allows us to evaluate whether our architecture can generalize when restricted
to sketches with pixel-aligned ground-truth images.

D.2.1 PERFORMANCE ON SYNTHETIC EDGE-ALIGNED SKETCHES

As shown in Fig. 14, Ours (synthetic) achieves performance comparable to state-of-the-art edge-
conditioned methods such as ControlNet (Zhang et al., 2023) and T2I-Adapter (Mou et al., 2023).
This indicates that our modulation network and attention-based supervision are effective in capturing
the sketch structure when constrained to just edge maps.
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Figure 14: Qualitative results comparison between our method, our method trained on only synthetic
sketches, Controlnet, and T2I adapter

Quantitatively, our synthetic variant outperforms both ControlNet SD2.1 and SDXL across all met-
rics, achieving lower FID (106.74 vs. 124.57 / 112.69) and LPIPS (0.423 vs. 0.458 / 0.432), as
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well as higher CLIP similarity (1.280 vs. 1.247 / 1.286). While T2I-Adapter SDXL achieves the
best overall scores, our method remains competitive, particularly in FID and perceptual similarity,
demonstrating the effectiveness of our approach using only synthetic sketches.

Method FID ↓ CLIP ↑ LPIPS ↓

ControlNet SD2.1 124.57 1.247 0.458
ControlNet SDXL 112.69 1.286 0.432
T2I-Adapter SDXL 102.43 1.383 0.379

Ours (synthetic) 106.74 1.280 0.423
Ours (full) 109.08 1.193 0.484

Table 6: Quantitative comparison of our method trained on synthetic sketches (Ours (synthetic))
against baselines trained similarly, evaluated on synthetic sketches, as the ones shown in Fig. 14.
The best results are highlighted in bold, and the second-best results are underlined.

D.2.2 PERFORMANCE ON FREEHAND SKETCHES
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Figure 15: Qualitative comparison between our method, our method trained on only synthetic
sketches, ControlNet, and T2I Adapter tested on freehand sketches.

We further evaluate this model on freehand sketches to test its robustness beyond pixel-aligned
inputs. As summarized in Tab. 7 and illustrated in Fig. 15, training solely on synthetic sketches
leads to a clear drop in performance compared to our full model: CLIP similarity falls to 0.817 and
LPIPS increases to 0.793. This suggests that while synthetic training suffices for edge-like inputs,
exposure to genuine freehand sketches is essential to handle abstraction and distortion reliably. The
qualitative results in Fig. 15 confirm this gap: Ours (synthetic) often captures coarse scene layout but
struggles with object details and proportions, whereas the full model better respects both semantics
and realism.

D.3 NUMBER OF NOISE STEPS

We first evaluate the noise steps on which our modulation network is trained. We experiment with
10%, 20%, 30%, 40% and 50% of timesteps corresponding to high noise regimes. However, as can
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Method FID ↓ CLIP ↑ LPIPS ↓

ControlNet SD2.1 135.59 1.136 0.773
ControlNet SDXL 174.46 0.027 0.825
T2I-Adapter SDXL 159.82 0.213 0.819

Ours (synthetic) 132.17 0.817 0.793
Ours (full) 123.96 1.272 0.743

Table 7: Quantitative comparison of our method trained on synthetic sketches only (Ours (synthetic))
with edge-conditioned baselines tested on freehand sketches

be seen in Fig. 16, as we train on more time steps, both FID and CLIP scores gradually degrade,
over-constraining the model. A similar observation was reported in the T2I-Adapter paper Mou et al.
(2023), which also emphasized focusing training on high-noise regimes. Our choice of restricting
training to the top 10% of noise steps not only improves performance but also leads to faster conver-
gence compared to training on a broader noise range. The rest of the experiments in this section are
trained for 10% of the highest noise steps.

sketch

120.0

140.0

160.0

123.96
131.66

153.06
161.35 161.68

139.18

FID Score

Ours 20% 30% 40% 50% All

1.10

1.20

1.30 1.27
1.19 1.18

1.13 1.11
1.05

CLIP Score

10% (Ours) 20% 30% 40% 50% All

Figure 16: Qualitative and quantitative evaluation when training with 10%, 20%, 30%, 40%, 50%
and 100% of timesteps corresponding to high noise regimes. Modulation is performed for the same
number of time steps as the respective training. Please refer to App. D.3 for the detailed discussion.

D.4 CONTROLNET AND OUR MODULATION NETWORK

We experimented with integrating our modulation network into ControlNet. As shown in Tab. 8,
this combination yields only marginal performance changes, likely due to the dominant influence of
ControlNet’s conditional branch.

Method Setup FID↓ CLIP↑ LPIPS↓

Zero-shot 135.595 1.136 0.773
Lnoise only (syn) 136.821 1.141 0.771
Lnoise only (free) 139.872 1.042 0.789
Lnoise + Lattn 135.891 1.196 0.768

CntrlNet SD2.1 (Zhang et al., 2023)

Lnoise + Lattn + Mod. 134.771 1.192 0.767

Ours Full 123.959 1.272 0.743

Table 8: Comparison on 475 test sketches from the FS-COCO dataset (Chowdhury et al., 2022) with
ControlNet versions.
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