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ABSTRACT

Robust loss functions are designed to mitigate the adverse impacts of label noise,
which enjoy theoretical guarantees that is agnostic to the training dynamics. How-
ever, these guarantees fail to characterize some empirical phenomenons. We unify
a broad array of loss functions into a novel standard form with a shared implicit
loss function and different implicit design choices along the sample-weighting
function and the output regularizer. The resulting curriculum view connects the
designs of loss functions and learning curricula, leading to a straightforward anal-
ysis of the training dynamics that helps demystify existing empirical observations.
In particular, we show that robust sample-weighting function sift and neglect cor-
rupted samples. We further analyze how regularizers affect the training dynamics
with different loss functions. Finally, we dissect the cause of the notorious under-
fitting issue and support our explanation with our effective fixes.

1 INTRODUCTION

Label noise is non-negligible in automatic labeling (Liu et al., 2021), crowd-sourcing (Russakovsky
et al., 2015) and expert annotation (Kato & Matsubara, 2010). Their adverse impacts can be miti-
gated with loss functions that are theoretically robust against label noise (Song et al., 2020), which
enjoys a bounded discrepancy between the optima obtained with clean or noisy labels (Ghosh et al.,
2017; Zhou et al., 2021). However, existing theoretical bounds do not account for the training dy-
namics towards these optima. This oversight has led to confounding empirical observations, e.g.,
robust loss functions can underfit, or perform poorly, on difficult tasks (Zhang & Sabuncu, 2018;
Wang et al., 2019c). In addition, it is unclear why seemingly contradictory regularizers (Lukasik
et al., 2020; Wei et al., 2021) can improve noise-robustness at the same time.

We unify loss functions with distinct theoretical motivations into a standard form, unveiling their
implicit design choices along the sample-weighting functions and the output regularizers (§3). The
shared implicit loss function in the standard form provides a common metric to track the learning
progress of each sample. We can demystify existing empirical observations by analyzing how differ-
ent design choices affect the evolution of implicit loss distributions. Notably, our derivation shows
that each loss function implicitly defines a learning curriculum, which specifies a sequence of train-
ing criteria at different training steps (Wang et al., 2020). This curriculum view connects the designs
of loss functions and curricula that are commonly viewed as distinct approaches (Song et al., 2020).

We provide a comprehensive analysis on how different design choices affect the training dynamics,
leading to plenty empirically supported understandings for these loss functions. We first show that
sample-weighting functions of robust loss functions act as sample sifts that neglect samples with
erroneous labels (§4.1), which utilizes the memorization effect (Arpit et al., 2017) similar to cur-
riculum based approaches (Li et al., 2020). We then analyze how regularizers affect the training
dynamics with different loss functions (§4.2). In particular, we are the first to show the vital role
of confidence reducing regularizers, e.g., weight decay, in successful training with robust loss func-
tion. Finally, we attribute the underfitting issue of robust loss functions to minimal sample weights
at initialization and support it with our effective fixes (§4.3).

2 RELATED WORK

Most existing studies on robust loss functions (Ghosh et al., 2017; Zhang & Sabuncu, 2018; Wang
et al., 2019c; Feng et al., 2020; Liu & Guo, 2020; Cheng et al., 2021; Zhou et al., 2021) focus
on deriving bounds of the difference between optima obtained with noisy and clean labels, which
are agnostic to the training dynamics. We unify them into a standard form and thoroughly analyze
how implicit choices along sample-weighting functions and output regularizers affect the training
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dynamics. Although the underfitting issue has been heuristically mitigated (Zhang & Sabuncu, 2018;
Wang et al., 2019a;c; Ma et al., 2020), we explicitly identify the cause and support it with our fixes.
Both confidence reducing (Lukasik et al., 2020) and promoting (Wei et al., 2021; Cheng et al., 2021)
regularizers are shown to improve the noise robustness of cross entropy. We analyze how different
regularizers affect the training dynamics with different loss functions, especially with robust loss
functions. We only consider loss functions with closed-form expressions and leave others (Amid
et al., 2019; Wei & Liu, 2021) to future work.

Our curriculum view connects existing robust loss functions to the seemingly distinct (Song et al.,
2020) curriculum learning. To achieve robustness against noisy labels, curriculum-based approaches
use either sample selection (Chen et al., 2019; Huang et al., 2019) or sample weighting (Chang et al.,
2017; Ren et al., 2018), typically based on the small loss trick (Song et al., 2020) utilizing the memo-
rization effect (Arpit et al., 2017). Our work differs in three important perspectives. First, the sample
weights analyzed in our work are implicitly defined by robust loss functions rather than explicitly
designed (Chang et al., 2017; Wang et al., 2019a;b) or predicted by a model (Jiang et al., 2018;
Ren et al., 2018). Second, we use the derived implicit loss function to track the learning of samples
unlike common metrics based on loss values (Kumar et al., 2010; Loshchilov & Hutter, 2015) or
gradient magnitudes (Gopal, 2016). Finally, instead of designing better sample-weighting curricula
(Chang et al., 2017; Wang et al., 2019a;b), we aim to thoroughly understand how the identified de-
sign choices of existing loss functions affects the training dynamics. Our work is also related to the
ongoing debate (Hacohen & Weinshall, 2019; Wang et al., 2020) on the strategies to select or weight
samples in learning curricula: either easier first (Bengio et al., 2009; Kumar et al., 2010) or harder
first (Loshchilov & Hutter, 2015; Zhang et al., 2018). The sample-weighting functions we identi-
fied in robust loss functions can be viewed as a combination of both strategies, which emphasizes
samples with moderate difficulty, providing a novel weighting paradigm for curriculum learning.

Most related to our work, Wang et al. (2019a) view the L1 norm of logit gradients as sample weights
and focus on an intuitive fix for the underfitting of MAE. We extend the analysis of logit gradients to
explicitly identify the implicit loss function and the aforementioned design choices for a wide range
of loss functions, leading to a unified standard form. In addition, we thoroughly analyze the training
dynamics with different design choices, resulting in deeper understanding of noise robustness and
vulnerability to underfitting that can facilitate better designs of loss functions and learning curricula.

3 DERIVING THE STANDARD FORM

We formulate classification with label noise and noise robustness before presenting our results. The
k-ary classification task with input x ∈ Rd can be solved by classifier argmaxi si, where si is the
score (logit) for the i-th class in function s : Rd → Rk parameterized by θ. With a slight abuse of
notation, we use s for both the scoring function s(x;θ) and its output. Given label y∗ ∈ {1, . . . , k}
for x in a clean data distribution D∗ and a loss function L(s, y∗), we can estimate θ with risk
minimization θ∗ = argminθ E(x,y∗)∼D∗ [L(s(x;θ), y∗)].

Labeling errors turn clean labels y∗ into noisy ones, y ∼ P (y|x, y∗), leading to a noisy data distri-
bution D with noise rate η = P (y ̸= y∗). A sample is corrupted when y ̸= y∗. Following Ghosh
et al. (2017), label noise is symmetric (uniform) if P (y|x, y∗) = η/(k − 1),∀y ̸= y∗ and asymmet-
ric (class-conditional) when P (y|x, y∗) = P (y|y∗). Loss function L is robust against label noise if
parameters estimated with D, θ′ = argminθ E(x,y)∼D[L(s(x;θ), y)], leads to bounded extra risk

E(x,y∗)∼D∗ [L(s(x;θ′), y∗)]− E(x,y∗)∼D∗ [L(s(x;θ∗), y∗)] ≤ ϵ, (1)

under clean data distribution (x, y∗) ∼ D∗, where ϵ is a constant.

We examine a broad array of loss functions with closed-form expressions in this work, among which
Cross Entropy (CE), Focal Loss (FL; Lin et al., 2017) and Symmetric Cross Entropy (SCE; Wang
et al., 2019c) are not robust as they have unbounded extra risk. In contrast, Mean Absolute Error
(MAE; Ghosh et al., 2017), Taylor Cross Entropy (TCE; Feng et al., 2020), Generalized Cross En-
tropy (GCE; Zhang & Sabuncu, 2018), Mean Square Error (MSE; Ghosh et al., 2017), Peer Loss
(PL; Liu & Guo, 2020) and asymmetric losses (Zhou et al., 2021) including Asymmetric Gener-
alized Cross Entropy (AGCE), Asymmetric Unhinged Loss (AUL) and Asymmetric Exponential
Loss (AEL) are all robust. See Appendix A.2 for a more thorough review and the derivation of
equivalence between the Reverse Cross Entropy (RCE; Wang et al., 2019c) and MAE.
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Name Formula with L̃(py) w(s, y) Constraints

CE − log py 1− py

FL −(1− py)
q log py (1− py)

q(1− py − qpy log py) q > 0

SCE −(1− q) log py + q(1− py) (1− q + q · py)(1− py) 0 < q < 1

TCE
∑q

i=1(1− py)
i/i py

∑q
i=1(1− py)

i q ∈ N+

GCE (1− pqy)/q pqy(1− py) 0 < q ≤ 1

RCE / MAE 1− py py(1− py)

AEL e−py/q py(1− py)e
−py/q/q q > 0

AUL [(a− py)
q − (a− 1)q]/q py(1− py)(a− py)

q−1 a > 1, q > 0

AGCE [(a+ 1)q − (a+ py)
q]/q py(1− py)(a+ py)

q−1 a > 0, q > 0

Table 1: Formulae, hyperparameter constraints and sample-weighting functions w(s, y) for loss
functions conforming to Eq. (3). See Appendix A.2 for plots of w(s, y). Notably, w(s, y) of all
robust loss functions emphasize samples with moderate ∆(s, y).

We now derive the standard form of the aforementioned loss functions. As shown in Table 1, most
loss functions are functions of the softmax probability, L(s, y) = L̃(py), where

py =
esy∑
i e

si
=

1

e−(sy−log
∑

i̸=y esi ) + 1
=

1

e−∆(s,y) + 1
,

with
∆(s, y) = sy − log

∑
i ̸=y

esi ≤ sy −max
i̸=y

si (2)

measuring the score margin between the labeled class y and any other classes. Since ∇s∆(s, y) has
a constant norm, ∥∇s∆(s, y)∥1 = 2, extracting it from the sample gradient ∇sL(s, y)

∇sL(s, y) =
dL̃(py)

d∆(s, y)
· ∇s∆(s, y) = −w(s, y) · ∇s∆(s, y)

factorizes the scale w(s, y) and direction ∇s∆(s, y). After detaching w(s, y) from derivative and
integral and integrating over s, equivalent under first-order optimizers, L(s, y) can be rewritten into

L′(s, y) = −w(s, y) ·∆(s, y) (3)

where w(s, y) = −κ[dL̃(py)/d∆(s, y)] > 0 is a sample-weighting function with κ(·) the detach
operator and ∆(s, y) serves as a shared implicit loss function. We show w(s, y) of different loss
functions in Table 1 and their plots in Fig. 5 of Appendix A. Intuitively, ∆(s, y) determines the gra-
dient directions to learn the labeled samples, while w(s, y) affects the priority of sample learning by
emphasizing different samples during training. Loss functions conforming to Eq. (3) thus implicitly
define different sample-weighting curricula. Unlike loss values (Loshchilov & Hutter, 2015) and
gradient magnitudes (Gopal, 2016), ∆(s, y) is shared by loss functions considered in this work and
isolates the influence of w(s, y) and arbitrary loss scales. It further avoids the sigmoid transform
in py rendering the change of large |∆(s, y)| less perceptible. ∆(s, y) is thus an effective common
metric for tracking the learning progress of samples with different loss functions.

Loss functions additionally depending on {pi}i ̸=y may fail to conform to Eq. (3), including Nor-
malized Cross Entropy (NCE; Ma et al., 2020), Mean Square Error (MSE; Ghosh et al., 2017), Peer
Loss (PL; Liu & Guo, 2020), Jensen-Shannon Divergence (JS; Englesson & Azizpour, 2021), and
CE with Confidence Regularization (CR; Cheng et al., 2021), Negative Label Smoothing (NLS; Wei
et al., 2021) or Label Smoothing (LS; Lukasik et al., 2020). However, we can extract an output regu-
larizer R(s) constraining the distribution of s, leaving a primary loss function L′(s, y) conforming
to Eq. (3). We show the derivation of NCE and leave other loss functions to Appendix A.5. Given

∇sLNCE(s, y) = ∇s
LCE(s, y)∑
i LCE(s, i)

=
−1∑k

i=1 log pi
∇sLCE(s, y)+

−k log py

(
∑k

i=1 log pi)
2
∇s

k∑
i=1

1

k
log pi
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Name Formula with pi Primary R(s) ∆(s∗, y)

NCE log py/
∑k

i=1 log pi −γ · log pi
∑k

i=1
1
k
log pi ±∞

MSE
∑k

i=1[I(i = y)− pi]
2 1− py

∑k
i=1 p

2
i − log k

PL (CE + CR) − log py + Ey∼D,x∼D[log py|x] − log py
∑k

i=1 P (y = i) log pi ±∞

JS a
∑

i pi log
pi
mi

+ (1− a)
∑

i ei log
ei
mi

L̃′
JS(py)

∑k
i=1 pi − log k

CE + LS −
∑k

i=1[I(i = y)(1− q) + q
k
] log pi − log py −

∑k
i=1

1
k
log pi − log k

CE + NLS −
∑k

i=1[I(i = y)(1 + r)− r
k
] log pi − log py

∑k
i=1

1
k
log pi ±∞

Table 2: Formulae, primary loss functions, output regularizers and ∆(s∗, y) at the minimum s∗ of
the regularizers for loss functions conforming to Eq. (4), where 0 < a < 1, 0 ≤ q < 1 and r > 0 are
all hyperparameters. We view PL in its expectation to derive its regularizer CR (Cheng et al., 2021).
py|x is the softmax probability of a random label y with a random input x sampled from the noisy
data distribution. For JS, ei = I(i = y) where I(·) is the indicator function and mi = api+(1−a)ei.
Finally, L̃′

JS(py) = apy log apy − (apy + 1− a) log(apy + 1− a).

by detaching weighting functions from derivative and integral and integrating over s, NCE becomes

L′′
NCE(s, y) = γ(s, y) · wCE(s, y) ·∆(s, y) + λNCE(s, y) ·RNCE(s)

where γ(s, y) = κ(−1/
∑k

i=1 log pi) and λNCE(s, y) = κ[−k log py/(
∑k

i=1 log pi)
2] are weight-

ing functions wrapped with the detach operator κ(·), and RNCE(s) =
∑k

i=1
1
k log pi is the output

regularizer of NCE. Similar derivations thus lead to a standard form of loss functions,

L′′(s, y) = L′(s, y) + λ(s, y) ·R(s) = −w(s, y) ·∆(s, y) + λ(s, y) ·R(s), (4)

where λ(s, y) is a weighting function adjusting the per-sample strength of regularization, which
is typically a constant when explicit regularization are applied, e.g., label smoothing. Intuitively,
the output regularizer R(s) constrains the distributions of ∆(s, y) towards a predefined optimum
∆(s∗, y), where s∗ = argmins R(s). We show loss functions conforming to Eq. (4), their primary
loss functions and regularizers, and ∆(s∗, y) of regularizers in Table 2.

Our derivation based on ∇sL(s, y) is inspired by Wang et al. (2019a), who view ∥∇sL(s, y)∥1 as
sample weights for MAE and CE. We further use our derivative-detach-integral trick to explicitly
extract the orthogonal components w(s, y), ∆(s, y) and R(s) from a wide range of loss functions,
which unifies them into a standard form and identifies their implicit differences in w(s, y) and R(s).

4 TRAINING DYNAMICS OF ROBUST LOSS FUNCTIONS

Based on the curriculum view with the standard form Eq. (4), we analyze the training dynamics of
loss functions from random initializations towards the optima. Ideal loss functions should facilitate
rapid learning while suppress the learning of corrupted samples. We analyze how implicit design
choices along the sample-weighting function w(s, y) and the output regularizers R(s) affect the
evolution of ∆(s, y) distributions, which provide a fine-grained view of the learning progress. We
mainly use MAE and CE for illustration as they exhibit typical empirical observations. Analysis of
other loss functions with similar results are left to Appendix B.

We conduct experiments on CIFAR10/100 (Krizhevsky, 2009) with synthetic symmetric and asym-
metric label noise following Ma et al. (2020); Zhou et al. (2021), as well as human label noise (Wei
et al., 2022). For symmetric label noise, the labels are randomly flipped to a different class. For
asymmetric label noise on CIFAR10, we randomly flip TRUCK → AUTOMOBILE, BIRD → AIR-
PLANE, DEER → HORSE, CAR ↔ DOG. For CIFAR100, the 100 classes are grouped into 20
super-classes and labels are flipped within the same super-class into the next in a circular fashion.
Human label noise is adopted from (Wei et al., 2022). To reflect more difficult settings than those
in existing research, we include results on the large scale noisy dataset WebVision (Li et al., 2017)
with larger subsets of classes. We use momentum 0.9, learning rate 0.1, batch size 128 and weight
decay 5e-4 across all settings. We adopt an 8-layer CNN for CIFAR10, a ResNet-34 for CIFAR100
and a ResNet50 for WebVision, respectively, all with batch normalization. We train for 120, 200

4



Under review as a conference paper at ICLR 2024

Clean Asymmetric Symmetric Human

η = 0.2 η = 0.2 η = 0.4 η = 0.8 η = 0.4
Loss Acc ∆acc ρ ∆acc ρ ∆acc ρ ∆acc ρ ∆acc ρ

CE 93.28 -6.79 74.24 -14.67 61.30 -29.54 47.38 -65.21 19.75 -27.73 44.70
FL 92.88 -3.31 77.33 -12.55 57.29 -27.20 43.42 -65.50 19.52 -25.64 41.08
SCE 93.09 -5.84 79.62 -6.72 74.02 -16.03 60.69 -55.27 23.39 -21.26 53.58

AEL 92.59 -2.03 90.00 -2.00 93.89 -4.69 84.88 -39.04 34.72 -11.15 66.41
AUL 92.52 -2.41 89.97 -1.83 93.66 -4.59 84.41 -35.25 36.30 -12.49 65.95
GCE 92.51 -1.99 90.92 -2.12 93.91 -4.98 84.92 -31.80 33.45 -11.21 67.99
TCE 92.67 -2.51 89.84 -2.12 93.65 -4.62 84.51 -35.08 36.79 -12.13 66.32
MAE 92.25 -10.60 87.64 -1.70 93.95 -4.43 84.41 -82.25 21.60 -22.18 65.89
AGCE 92.23 -20.27 85.95 -2.36 93.35 -3.99 83.20 -82.23 20.66 -29.75 64.37

Table 3: Robust loss functions assign larger weights to clean samples. We report drop in accuracy
∆acc and proportion of cumulative weights for clean samples ρ on CIFAR10 averaged with 3 differ-
ent runs. Hyperparameters tuned with symmetric noise η = 0.4 are listed in Table 7 of Appendix B.

(a) ∆(s, y) distributions of MAE (b) Learning curves of MAE

(c) ∆(s, y) distributions of CE (d) Learning curves of CE

Figure 1: Training dynamics of MAE and CE on CIFAR10 with symmetric noise η = 0.4. Points
of the top 1% and bottom 1% ∆(s, y) of corrupted and clean samples, respectively, are included to
demonstrate the effect of generalization in (a). We mark the median line of each distribution and
include test accuracies in (a, c). Epochs sampled in (a, c) are marked in (b, d).

and 250 epochs on CIFAR10, CIFAR100 and WebVision, respectively. Unlike standard settings, we
scale all w(s, y) to unit maximum to avoid complications, since hyperparameters of loss functions
can change the scale of w(s, y), essentially adjusting the learning rate of SGD.

4.1 EFFECTS OF SAMPLE-WEIGHTING FUNCTIONS

We show that w(s, y) of robust loss functions implicitly implement a sample sift that neglects cor-
rupted samples by utilizing the memorization effect (Arpit et al., 2017), i.e., models tend to learn
simple and general patterns before overfitting to noisy patterns. In addition, we show that the shared
monotonically decreasing right tail of w(s, y) for bounded parameter update is responsible to the
eventual shift into a noise overfitting phase observed in the memorization effect.

We first show that robust loss functions assign larger weights to clean samples, which leads to better
noise robustness. The emphasis on clean samples can be estimated with the ratio of their cumulative
weights, ρt =

∑
i I(yi = y∗i )wi,t/

∑
i wi,t, where wi,t is the weight of the i-th sample at epoch t and

I(·) is the indicator function. The weighted-averaged ρt with learning rate αt, ρ =
∑

t αtρt/
∑

t αt,
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(a) MAE (b) MAE + LS (c) MAE + WD

(d) CE (e) CE + LS (f) CE + NLS

Figure 2: Training dynamics with various loss functions and regularizers on CIFAR10 with sym-
metric noise η = 0.4. We mark the median (dashed lines) of each distribution, and include the test
accuracy of each sampled epoch.

reflects the overall emphasis of clean samples during training. In Table 3, loss functions with ro-
bustness guarantees have higher ρ in general. In addition, higher ρ generally corresponds to less
performance drop under label noise, i.e., being more robust empirically.

A monotonically increasing left tail of w(s, y) sifts samples via the memorization effect. Learning
is determined by gradients estimated using samples with nontrivial weights. In Fig. 1a, ∆(s, y) of
samples are randomly initialized around the left tail of wMAE(s, y). The similar or random gradient
directions among clean or corrupted samples enhance or cancel each other, respectively Chatterjee
& Zielinski (2022), leading to the assimilation of generalizable patterns during the early learning
stage, when clean samples quickly improves and receive more weights, which facilitate even faster
learning. Conversely, corrupted samples are unlearned due to generalization from clean samples and
improve slowly with lower sample weights. As lim∆(s,y)→−∞ wMAE(s, y) = 0, unlearned samples
can be ignored with minimal weights. Unlike wMAE(s, y), in Fig. 1c, wCE(s, y) emphasizes sam-
ples that are not well-learned, typically the corrupted ones, thus risk overfitting as shown in Fig. 1d.
See Fig. 6 and 7 in Appendix B for similar results with different loss functions and noise settings.

Sample-weighting functions of the loss functions considered share a monotonically decreasing right
tail with lim∆(s,y)→∞ w(s, y) = 0. Although it prevents unbounded updates of well-learned sam-
ples and ensures the convergence of gradient descent training, it is also responsible for the shift into
the noise overfitting stage. Despite initial dominance of the expected gradient, the faster learning
clean samples will eventually receive minimal weights. Corrupted samples then come into domi-
nance due to their relatively larger weights, when further training leads to overfitting, as shown by
the synchronous drop of ρt and test accuracies in Fig. 1d. Such explanation complements the the-
oretical analysis for binary linear classification in Liu et al. (2020), which reach similar conclusion
that corrupted samples dominate the expected gradients in the late training stage. Regularizers pre-
venting the overfitting phase, such as early stopping (Song et al., 2019), label smoothing (Lukasik
et al., 2020) or temporal ensembling (Liu et al., 2020), can thus improve noise robustness.

4.2 EFFECTS OF REGULARIZATION

We examine how the extracted regularizers in Table 2 help noise-robust learning with different loss
functions. They either promote (with ∆(s∗, y) = ±∞) or reduce (with ∆(s∗, y) = 0) the prediction
confidence py . We show benefits of proper regularization when using robust loss functions, and fur-
ther resolve the apparent contradiction that they both improve noise robustness of CE (Lukasik et al.,
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CIFAR10 CIFAR100

Clean η = 0 Symmetric η = 0.4 Clean η = 0 Symmetric η = 0.4

Loss Train Test α∗ Train Test α∗ Train Test α∗ Train Test α∗

CE 99.96 93.24 2.27 80.05 65.66 5.48 99.96 77.36 5.37 99.89 48.45 7.19
SCE 99.96 93.74 2.35 80.29 64.01 5.61 99.96 77.21 5.53 99.88 48.50 7.24
FL 99.89 93.08 1.94 80.14 66.14 5.38 99.93 77.70 5.08 99.84 52.87 6.71

AEL 99.88 92.97 2.01 77.05 67.31 3.75 99.51 76.75 2.05 67.92 62.07 1.63
AGCE 99.70 93.33 1.88 66.21 83.80 2.44 94.71 72.37 1.76 61.88 62.43 1.40
AUL 99.90 93.49 1.99 75.51 69.39 3.39 99.11 75.67 1.74 65.30 61.18 1.41
GCE 99.33 92.82 1.43 63.16 86.62 1.60 97.39 74.51 1.55 61.36 64.07 1.20
TCE 99.61 92.82 1.63 64.76 84.80 1.94 71.42 57.95 0.87 39.50 43.09 0.74
MAE 98.00 92.00 0.68 59.81 87.61 0.52 8.56 8.25 0.06 3.47 4.70 0.08

Table 4: Robust loss functions can underfit CIFAR100 but CIFAR10. We report training and test
accuracies and α∗ =

∑
t α

∗
t (scaled by 1000) at the final step under different noise settings averaged

with 3 different runs. Hyperparameters tuned on CIFAR100 with symmetric noise η = 0.4 are listed
in Table 7 in Appendix B.

(a) MAE (b) CE

Figure 3: Training dynamics of clean CIFAR100 and CIFAR10 with MAE and CE. We mark the
median (dashed line) of ∆(s, y) distributions and ∆(s, y) = − log k (solid line).

2020; Wei et al., 2021; Cheng et al., 2021). As weight decay constrains ∆(s, y) towards − log k,
it is disabled in this section except explicitly noted. We present results with typical regularizers on
CIFAR10 and leave additional results to Fig. 8 in Appendix B.

Confidence reducing regularizers can improve convergence rate and training stability1 of robust loss
functions. In Fig. 2a, a random subset of samples are assign with large weights at initialization with
wMAE(s, y). With a high noise rate, the false generalization from these faster learning samples keep
moving other samples into the low weight region, resulting in much spread and mixed ∆(s, y) distri-
butions of clean and corrupted samples. In contrast, with confidence reducing regularizers, samples
get dragged towards ∆(s, y) = − log 10 that corresponds to moderate sample weights, helping the
accidentally unlearned samples move to high weight region and preventing overfitting faster learning
samples, leading to compact and well separated ∆(s, y) distributions in Fig. 2b and 2c.

Both types of regularizers abate the emphasis of wCE(s, y) on slow-learning samples, typically the
corrupted ones with peculiar patterns. In Fig. 2e, confidence-reducing regularizers shrink ∆(s, y)
towards − log k, hampering the learning of corrupted samples. Conversely, in Fig. 2f, confidence-
promoting regularizers preserve the generalization from the faster learning clean samples, preventing
the learning of corrupted samples from distorting the correct generalization. Such explanation com-
plements the intuition that increasing prediction confidence improves noise robustness (Wei et al.,
2021; Cheng et al., 2021). However, as confidence promoting regularizers lead to unbounded pa-
rameter updates, they should be combined with early stopping to avoid numerical overflow.

1We observe that MAE without regularization can underfit on CIFAR10 with η = 0.8 under some random
initializations. In contrast, all experiments with proper weight decay stably achieve similars performance.
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(a) CIFAR10 (b) CIFAR100 (c) Shifted/Scaled MAE and IMAE

Figure 4: (a-b): comparisons between the simulated ∆(s, y) with si ∼ N (0, 1) and real ∆(s, y)
distributions at random initialization. The estimated Ek[∆(s, y)] is marked with green vertical lines.
(c): wIMAE and the shifted and scaled wMAE of MAE with hyperparamters T = 10 and τ = 3.4. The
∆(s, y) distribution of CIFAR100 at random initialization is included for reference.

4.3 DISSECTING THE UNDERFITTING ISSUE

Robust loss functions are notorious for underfitting difficult tasks (Song et al., 2020). By comparing
MAE with CE, Zhang & Sabuncu (2018) attribute underfitting of MAE to the lack of the 1/py term
in sample gradients, which “treats every sample equally” and thus hampers learning. In contrast, we
show that MAE emphasizes samples with moderate ∆(s, y) which is also observed by Wang et al.
(2019a). Ma et al. (2020) attribute underfitting to failure in balancing the active (∀i ̸= y, l(s, i) = 0)
and passive (∃i ̸= y, l(s, i) ̸= 0) parts of loss functions L(s, y) =

∑k
i=1 l(s, i). However, ambigu-

ities arise when specifying l(s, i): given LMAE(s, y) ∝
∑

i |I(i = y)− pi| ∝
∑

i I(i = y)(1− pi)
where I(·) is the indicator function, MAE can be active with l(s, i) = I(i = y)(1− pi) but passive
with l(s, i) = |I(i = y) − pi|. Wang et al. (2019a) view ∥∇sL(s, y)∥1 as weights for sample
gradients and argue that their low variance makes informative and uninformative samples less dis-
tinguishable. However, it is unclear how low variance of gradient magnitudes leads to underfitting.

Alternatively, for loss functions conforming to Eq. (3), we show that underfitting results from mini-
mal sample weights at initialization. The scale of parameter updates

∥θt−θt−1∥p ≤ ∥θt−θt−1∥1 ≤ αt · ∥∇sL(s, y)∥1 · ∥∇θs(x;θ)∥1 = 2αtw(s, y) · ∥∇θs(x;θ)∥1 ,
is affected by the effective learning rate α∗

t = 2αtw(s, y) with various loss functions. Loss functions
that underfit correspond to negligible cumulative effective learning rate α∗ =

∑
t α

∗
t in Table 4. As

shown in Fig. 3, since CIFAR100 has much smaller ∆(s, y) at initialization, with robust loss func-
tions like MAE, only a limited random proportion of samples receive noneligible weights, leading
to a less representative estimation of the expected gradient. The majority of samples thus get stuck
in the region of low sample weights. Weight decay helps little as ∆(s∗, y) = − log 100 corresponds
to negligible sample weights. These effects add up to the underfitting of MAE on CIFAR100.

The underfitting issue on CIFAR100 instead of CIFAR10 has been vaguely attributed to the increased
difficulty of CIFAR100. We further dissect what makes a task difficult. In particular, the increased
number of classes leads to smaller expected ∆(s, y) at initialization. Assume that class scores si are
i.i.d. Gaussian variables si ∼ N (µ, σ) at initialization. Typically, we have µ = 0 and σ = 1 with
standard settings (Glorot & Bengio, 2010; He et al., 2015; Ioffe & Szegedy, 2015). The expected
∆(s, y) with number of classes k can be approximated with

Ek[∆(s, y)] ≈ − log(k − 1)− σ2/2 +
eσ

2 − 1

2(k − 1)
(5)

where Ek[∆(s, y)] < 0 with σ ≈ 1 and a large k, e.g., k = 100. See Fig. 4a and 4b for a comparison
between the simulated and real ∆(s, y) distributions at random initialization. We leave derivations
and more comparisons between our assumptions and real settings to Appendix B. Combined with
the decreased ∆(s∗, y) = − log k of the confidence reducing regularizers, initial learning with
lim∆(s,y)→−∞ w(s, y) = 0 can get stuck with minimal sample weights, thus leading to underfitting.

Our analysis suggests that the fixed sample-weighting function w(s, y) is to blame for underfitting.
We can thus morph the weighting functions for nontrivial initial sample weights, which can be
simply achieved by scaling

w∗(s, y) = w∗(∆(s, y)) = w(∆(s, y)/|Ek[∆(s, y)]| · τ)

8
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Clean Symmetric Asymmetric Human
Loss η = 0 η = 0.4 η = 0.8 η = 0.4 η = 0.4

CE‡ 71.33 ± 0.43 39.92 ± 0.10 7.59 ± 0.20 40.17 ± 1.31 /
GCE‡ 63.09 ± 1.39 56.11 ± 1.35 17.42 ± 0.06 40.91 ± 0.57 /
NCE+AGCE‡ 69.03 ± 0.37 59.47 ± 0.36 24.72 ± 0.60 43.76 ± 0.70 /

CE 77.44 ± 0.13 49.96 ± 0.02 11.23 ± 0.45 45.73 ± 0.49 54.40 ± 0.35
GCE 73.88 ± 0.25 64.67 ± 0.49 23.90 ± 2.69 45.14 ± 0.13 56.95 ± 0.63
NCE+AGCE 76.37 ± 0.25 64.55 ± 0.46 26.19 ± 1.14 40.93 ± 1.22 53.67 ± 0.18

TCE 58.04 ± 1.15 45.91 ± 1.25 20.47 ± 1.45 28.35 ± 0.74 32.22 ± 1.22
TCE shift, τ = 4.2 77.14 ± 0.11 60.17 ± 0.47 18.16 ± 0.37 44.56 ± 0.71 55.07 ± 0.19
TCE scale, τ = 4.2 75.79 ± 0.17 62.88 ± 0.59 20.78 ± 1.53 43.57 ± 1.19 56.13 ± 0.22

MAE 7.46 ± 1.92 4.65 ± 1.55 3.21 ± 0.57 1.61 ± 0.53 1.54 ± 0.47
IMAE, T = 10 5.26 ± 3.19 45.01 ± 1.10 4.51 ± 0.69 48.09 ± 0.68 2.85 ± 1.05
MAE shift, τ = 3.4 76.65 ± 0.30 61.29 ± 0.49 19.30 ± 1.00 44.06 ± 1.23 54.83 ± 0.49
MAE scale, τ = 3.4 73.54 ± 0.32 64.92 ± 0.20 23.00 ± 2.44 48.88 ± 0.79 57.56 ± 0.41

Table 5: Shifting or scaling w(s, y) mitigates underfitting on CIFAR100 under different label noise.
We report test accuracies with 3 different runs. Both τ of the shifted/scaled MAE/TCE and T of
IMAE are tuned with symmetric noise η = 0.4. Previous best results from Zhou et al. (2021) are
included as context (denoted with ‡). See Appendix B for results with more noise rates.

Settings CE MAE IMAE MAE shift MAE scale TCE TCE shift TCE scale

k = 50 66.40 3.68 60.76 66.72
k = 200 70.26 0.50 59.31 71.92
k = 400 70.16 0.25 47.32 71.87

Table 6: Shifting or scaling w(s, y) mitigates underfitting on WebVision subsampled with different
numbers of classes. k = 50 is the standard “mini” setting in previous work (Ma et al., 2020; Zhou
et al., 2021). Hyperparameters roughly tuned for each setting are left to Table 10 of Appendix B.
We report test accuracy with a single run due to a limited computation budget.

or shifting

w+(s, y) = w+(∆(s, y)) = w(∆(s, y) + |Ek[∆(s, y)]| − τ)

the sample-weighting functions, where τ is a hyperparameter. Intuitively, these approaches cancel
the effect of large k on the weight of Ek[∆(s, y)] at initialization. Small τ thus lead to high initial
sample weights regardless of k. Alternatively, Wang et al. (2019a) propose IMAE as a fix to MAE,
which essentially applies a scaled exponential transform to wMAE(s, y)

wIMAE(s, y) = eTpy(1−py)

where T ≥ 0 is a hyperparameter. We visualize scaled and shifted sample-weighting functions of
MAE and wIMAE

2 in Fig. 4c. Notably, lim∆(s,y)→∞ wIMAE(s, y) > 0, which can lead to excessive
learning of well-learned samples and thus risk overfitting. We report results on CIFAR100 with
different label noise in Table 5, and results on the noisy large-scale dataset WebVision in Table 6.
In summary, both shifting and scaling significantly improve performance of MAE, thus alleviating
underfitting, making MAE comparable to the previous state-of-the-art.

5 CONCLUSION

We unify a broad array of loss functions into the same standard form, explicitly connecting the
design of loss functions to the design of sample-weighting curricula. Based on the curriculum view,
we gain more insights into how different design choices affect the training dynamics, especially the
noise robustness and vulnerability to underfitting. Our theoretical and empirical findings can help
design better loss functions and learning curricula in future work.

2wIMAE is also normalized to unit maximum.
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A REVIEW AND DERIVATIONS OF LOSS FUNCTIONS

We provide a comprehensive review of loss functions in Tables 1 and 2. We ignore the differences
in constant scaling factors and additive bias as they can be absorb into other hyperparameters. We
examine how hyperparameters affect different sample-weighting functions in Fig. 5.
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A.1 LOSS FUNCTIONS WITHOUT ROBUSTNESS GUARANTEES

We first review loss functions not satisfying Eq. (1).

Cross Entropy (CE)
LCE(s, y) = − log py

is the standard loss function for classification.

Focal Loss (FL; Lin et al. 2017)

LFL(s, y) = −(1− py)
q log py

aims to address label imbalance when training object detection models.

Symmetric Cross Entropy (SCE; Wang et al. 2019c)

LSCE(s, y) = a · LCE(s, y) + b · LRCE(s, y)

∝ (1− q) · (− log py) + q · (1− py)

is a weighted average of CE and RCE (MAE), where a > 0, b > 0, and 0 < q < 1. It exhibit better
noise-robustness due to the combination with RCE (MAE).

A.2 SYMMETRIC LOSS FUNCTIONS

A loss function L is symmetric (Ghosh et al., 2017) if

k∑
i=1

L(s, i) = C, ∀s ∈ Rk,

with a constant C. It is proved to be robust against symmetric label noise when η < (k − 1)/k.

Mean Absolute Error (MAE; Ghosh et al. 2017)

LMAE(s, y) =

k∑
i=1

|I(i = y)− pi| = 2− 2py ∝ 1− py

is a classic symmetric loss function, where I(i = y) is the indicator function.

Reverse Cross Entropy (RCE; Wang et al. 2019c)

LRCE(s, y) = −
k∑

i=1

pi log I(i = y) = −
∑
i ̸=y

pi log 0 = −(1− py)A ∝ 1− py = LMAE(s, y)

is equivalent to MAE in implementation, where I(·) is the indicator function and log 0 is truncated
to a negative constant A to avoid numerical overflow.

Ma et al. (2020) argued that any generic loss functions with L(s, i) > 0,∀i ∈ {1, ..., k} can become
symmetric by simply normalizing them. As an example,

Normalized Cross Entropy (NCE; Ma et al. 2020)

LNCE(s, y) =
LCE(s, y)∑k
i=1 LCE(s, i)

=
− log py∑k
i=1 − log pi

is a symmetric loss function.

A.3 ASYMMETRIC LOSS FUNCTIONS

L as a function of the softmax probability pi, L(s, i) = l(pi), is asymmetric (Zhou et al., 2021) if

r̃ = max
i ̸=y

P (ỹ = i|x, y)
P (ỹ = y|x, y)

≤ inf
0≤pi,pj≤1
pi+pj≤1

l(pi)− l(pi + pj)

l(0)− l(pj)
,
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(a) FL (b) AUL, a = 2.0 (c) AUL, q = 0.1

(d) AGCE, a = 1.0 (e) AGCE, q = 0.5 (f) AEL

(g) GCE (h) SCE (i) TCE

Figure 5: How hyperparameters affect the sample-weighting functions in Table 1. The initial ∆(s, y)
distributions of CIFAR100 extracted with a randomly initialized model are included as reference.

where pj is a valid increment of pi. An asymmetric loss function is robust against generic label
noise when r̃ < 1, i.e., there are more clean samples than corrupted samples. Zhou et al. (2021)
propose the following asymmetric loss functions with conditions to satisfy the asymmetric criterion:

Asymmetric Generalized Cross Entropy (AGCE)

LAGCE(s, y) =
(a+ 1)− (a+ py)

q

q

where a > 0 and q > 0. It is asymmetric when I(q ≤ 1)(a+1
a )1−q + I(q > 1) ≤ 1/r̃.

Asymmetric Unhinged Loss (AUL)

LAUL(s, y) =
(a− py)

q − (a− 1)q

q

where a > 1 and q > 0. It is asymmetric when I(q ≤ 1)( a
a−1 )

q−1 + I(q ≤ 1) ≤ 1/r̃.

Asymmetric Exponential Loss (AEL)

LAEL(s, y) = e−py/q

where q > 0. It is asymmetric when e1/q ≤ 1/r̃.

A.4 OTHER ROBUST LOSS FUNCTIONS

Generalized Cross Entropy (GCE; Zhang & Sabuncu 2018)

LGCE(s, y) =
1− pqy

q

can be viewed as a smooth interpolation between CE and MAE, where 0 < q ≤ 1. CE or MAE can
be recovered by setting q → 0 or q = 1.
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Taylor Cross Entropy (TCE; Feng et al. 2020)

LTCE(s, y) =

q∑
i=1

(1− py)
i

i

is derived from Taylor series of the log function in CE. It reduces to MAE when q = 1. Interestingly,
the summand of TCE (1 − py)

i/i with i > 2 is proportional to AUL with a = 1 and q = i. Thus
TCE can be viewed as a combination of symmetric and asymmetric loss functions.

Active-Passive Loss (APL; Ma et al. 2020) Ma et al. (2020) propose weighted combinations of
active and passive loss functions. Active loss follows ∀i ̸= y, l(s, i) = 0, which emphasize the
learning of labeled class. Passive loss complies with ∃i ̸= y, l(s, i) ̸= 0, which focus on unlearning
other classes. In their derivation, NCE is active while MAE is passive. However, ambiguities arise
when determine whether l(s, i) is active or pasive: given

LMAE(s, y) ∝
∑

i
|I(i = y)− pi| ∝

∑
i
I(i = y)(1− pi)

with I(·) the indicator function, MAE can be active with l(s, i) = I(i = y)(1− pi) but passive with
l(s, i) = |I(i = y)− pi|. We include NCE+MAE as an example:

LNCE+MAE(s, y) = a · LNCE(s, y) + b · LMAE(s, y)

∝ (1− q) · − log py∑k
i=1 − log pi

+ q · (1− py)

where a > 0, b > 0, and 0 < q < 1.

A.5 LOSS FUNCTIONS WITH OUTPUT REGULARIZERS

We extract the output regularizers from existing loss functions.

Mean Square Error (MSE; Ghosh et al. 2017)

LMSE(s, y) =

k∑
i=1

(I(i = y)− pi)
2 = 1− 2py +

k∑
i=1

p2i

∝ 1− py +
1

2
·

k∑
i=1

p2i = LMAE(s, y) + α ·RMSE(s)

is more robust than CE (Ghosh et al., 2017), where α = 0.5 and the regularizer

RMSE(s) =

k∑
i=1

p2i (6)

increases the entropy of the softmax output. We can generalize α to a hyperparamter, making MSE
a combination of MAE and an entropy regularizer RMSE.

Peer Loss (PL; Liu & Guo 2020)

LPL(s, y) = L(s, y)− L(s, y)

makes a generic loss function L(s, y) robust against label noise, where s denotes the score of an input
x and y the label, both randomly sampled from the noisy data distribution D. Its noise robustness
is theoretically established for binary classification and extended to multi-class setting (Liu & Guo,
2020).

Confidence Regularizer (CR; Cheng et al. 2021)

RCR(s) = −Ey∼D,x∼D[log py|x]

is shown (Cheng et al., 2021) to be the regularizer induced by PL in expectation. Minimizing
RCR(s) makes the softmax output distribution p deviate from the prior label distribution of the
noisy dataset P (ỹ = i), reducing the entropy of the softmax output.
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CIFAR10 CIFAR100
Loss a q a q

FL / 3.0 / 3.0
AGCE 5.4 1.5 0.1 0.1
AUL 6.1 4.8 2.0 8.7
AEL / 5.0 / 0.2
GCE / 0.9 / 0.7
TCE / 2 / 6
SCE / 0.9 / 0.15

Table 7: Hyperparameters of loss functions for results in Table 3 and Table 4, tuned with symmetric
label noise η = 0.4 on CIFAR10 and CIFAR100, respectively.

Generalized Label Smoothing (GLS; Wei et al. 2021)

Lukasik et al. (2020) show that label smoothing (LS; Szegedy et al. 2016) can mitigate overfitting
with label noise, which is later extended to GLS. Cross entropy with GLS is

LCE+GLS(s, y) =
k∑

i=1

−[I(i = y)(1− α) +
α

k
] log pi

= −(1− α) log py − α · 1
k

k∑
i=1

log pi

∝ − log py −
α

1− α
· 1
k

k∑
i=1

log pi = LCE(s, y) + α′ ·RGLS(s)

where α′ = α/(1− α), has regularizer RGLS

RGLS(s) = −
k∑

i=1

1

k
log pi (7)

With α′ > 0, RGLS corresponds to the original LS, which increases the entropy of softmax outputs.
In contrast, α′ < 0 corresponding to Negative Label Smoothing (NLS; Wei et al. 2021), which
decreases the output entropy similar to RCR.

Normalized Cross Entropy (NCE; Ma et al. 2020)

LNCE(s, y) =
LCE(s, y)∑k
i=1 LCE(s, i)

=
− log py∑k
i=1 − log pi

has been reviewed in Appendix A.2. However, our derivations in §3 shows that it encompass an
output regularizer

RNCE(s) =
∑k

i=1

1

k
log pi

which is equivalent to NLS. Jensen-Shannon Divergence (JS; Englesson & Azizpour, 2021)

LJS(s, y) = a
∑
i

pi log
pi

api + (1− a)ei
+ (1− a)

∑
i

ei log
ei

api + (1− a)ei

= a
∑
i

pi log
pi

api + (1− a)ei
+ (1− a) log

1

apy + (1− a)

= a
∑
i̸=y

pi log
pi
api

+ apy log
py

apy + 1− a
+ (1− a) log

1

apy + (1− a)

= a
∑
i

pi log
pi
api

− apy log
py
apy

+ apy log
py

apy + 1− a
+ (1− a) log

1

apy + (1− a)

= apy log apy − (apy + 1− a) log(apy + 1− a)− a log a
∑
i

pi

= L′
JS(s, y) + a′RJS(s)
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(a) CE, symmetric 0.2 (b) SCE, symmetric 0.2 (c) MAE, symmetric 0.2

(d) CE, human 0.4 (e) SCE, human 0.4 (f) MAE, human 0.4

(g) CE, asymmetric 0.4 (h) SCE, asymmetric 0.4 (i) MAE, asymmetric 0.4

Figure 6: Additional results to Fig. 1 with different label noise and loss functions: (a-c) symmetric
label noise with η = 0.2; (d-f) human label noise with η = 0.4; (g-i) asymmetric label noise with
η = 0.4. We include the median line of each distribution, test accuracies and the sampled epochs
for reference.

is proposed as another combination of CE and MAE, where 0 < a < 1 is the hyperparameter with
lima→0 LJS(s, y) = LCE(s, y) and lima→1 LJS(s, y) = LMAE(s, y). a′ = −a log a is the weight
for regularizer

RJS(s) =
∑
i

pi

which can be regarded as a hyperparameter.
L′
JS(s, y) = apy log apy − (apy + 1− a) log(apy + 1− a)

is the primary loss function of JS conforming to Eq. (3) with
wJS(s, y) = apy(py − 1)(log apy − log(apy + 1− q))

B ADDITIONAL RESULTS OF THE TRAINING DYNAMICS

We complement §4 in the main text with detailed derivations, experiment settings and additional
results. Hyperparameters of robust loss functions are summarized in Table 7.

Additional results of Fig. 1. In Fig. 6 and 7 we show extended results on the training dynamics
with different label noise and loss functions. They follow the same trend as the results in Fig. 1 in
the main text.

Additional results of Fig. 2. In Fig. 8 we show extended results on how different regularizers affect
noise robust training. They follow the same trend as the results in Fig. 2 in the main text.
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(a) FL, symmetric 0.4 (b) AEL, symmetric 0.4 (c) TCE, symmetric 0.4

(d) FL, human 0.4 (e) AEL, human 0.4 (f) TCE, human 0.4

(g) FL, asymmetric 0.4 (h) AEL, asymmetric 0.4 (i) TCE, asymmetric 0.4

Figure 7: Additional results to Fig. 1 with different label noise and loss functions: (a-c) symmetric
label noise with η = 0.2; (d-f) human label noise with η = 0.4; (g-i) asymmetric label noise with
η = 0.4. We include the median line of each distribution, test accuracies and the sampled epochs
for reference.

Derivation of Ek[∆(s, y)] in Eq. (5) Assume that class scores at initialization are i.i.d. normal
variables si ∼ N (µ, σ),

Ek[∆(s, y)] = E[sy − log
∑
i ̸=y

esi ] = µ− E[log
∑
i ̸=y

esi ]

≈1 µ− logE[
∑
i̸=y

esi ] +
V[

∑
i ̸=y e

si ]

2E[
∑

i ̸=y e
si ]2

=2 µ− log{(k − 1)E[esy ]}+ (k − 1)V[esy ]
2{(k − 1)E[esy ]}2

=3 µ− log[(k − 1)eµ+σ2/2] +
(k − 1)(eσ

2 − 1)e2µ+σ2

2[(k − 1)eµ+σ2/2]2

= − log(k − 1)− σ2/2 +
eσ

2 − 1

2(k − 1)

where ≈1 follows the approximation with Taylor expansion E[logX] ≈ logE[X]−V[X]/(2E[X]2)
(Teh et al., 2006), =2 utilizes properties of sum of log-normal variables (Cobb et al., 2012), and =3

substitutes E[esy ] and V[esy ] with expressions for log-normal distributions.
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(a) MAE (b) MAE + LS (c) MAE + RMSE

(d) MAE + WD (e) CE (f) CE + LS

(g) CE + WD (h) CE + NLS (i) CE + CR

Figure 8: Training dynamics with various loss functions and regularizers on CIFAR10 with sym-
metric noise η = 0.4. We include the median (dashed) of each distribution and − log k (solid) lines
and the test accuracy of each epoch.
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(a) CIFAR10 (b) WebVision50 (c) CIFAR100

(d) WebVision200 (e) WebVision400 (f) WebVision1000

Figure 9: Comparisons between shapes of the simulated and real ∆(s, y) distributions at initial-
ization. Simulations are based on the assumption that class scores follow normal distribution
si ∼ N (0, 1) at initialization. Real distributions are extracted with randomly initialized models.
We also mark the estimated Ek[∆(s, y)] with vertical green lines.

Clean Symmetric
Loss η = 0 η = 0.2 η = 0.4 η = 0.6 η = 0.8

CE‡ 71.33 ± 0.43 56.51 ± 0.39 39.92 ± 0.10 21.39 ± 1.17 7.59 ± 0.20
GCE‡ 63.09 ± 1.39 61.57 ± 1.06 56.11 ± 1.35 45.28 ± 0.61 17.42 ± 0.06
NCE+TCE‡ 69.03 ± 0.37 65.66 ± 0.46 59.47 ± 0.36 48.02 ± 0.58 24.72 ± 0.60

CE 77.44 ± 0.13 64.84 ± 0.19 49.96 ± 0.02 30.41 ± 0.60 11.23 ± 0.45
GCE 73.88 ± 0.25 70.55 ± 0.73 64.67 ± 0.49 52.57 ± 0.47 23.90 ± 2.69
NCE+AGCE 76.37 ± 0.25 72.19 ± 0.26 64.55 ± 0.46 52.79 ± 0.22 26.19 ± 1.14

TCE 58.04 ± 1.15 52.13 ± 1.92 45.91 ± 1.25 33.64 ± 0.22 20.47 ± 1.45
TCE shift, τ = 4.2 77.14 ± 0.11 71.28 ± 0.44 60.17 ± 0.47 40.91 ± 0.33 18.16 ± 0.37
TCE scale, τ = 4.2 75.79 ± 0.17 71.11 ± 0.39 62.88 ± 0.59 46.52 ± 0.39 20.78 ± 1.53

MAE 7.46 ± 1.92 4.65 ± 1.55 3.21 ± 0.57 1.61 ± 0.53 1.54 ± 0.47
IMAE, T = 10 5.26 ± 3.19 11.81 ± 3.10 45.01 ± 1.10 28.94 ± 1.92 4.51 ± 0.69
MAE shift 76.65 ± 0.30 71.36 ± 0.70 61.29 ± 0.49 42.68 ± 1.14 19.30 ± 1.00
MAE scale 73.54 ± 0.32 69.96 ± 0.55 64.92 ± 0.20 54.98 ± 0.17 23.00 ± 2.44

Table 8: Extended result of Table 5: shifting or scaling w(s, y) mitigates underfitting on CI-
FAR100 with symmetric label noise. We report test accuracies with 3 different runs. Both τ of
the shifted/scaled MAE/TCE and T of IMAE are tuned with symmetric noise η = 0.4. Previous
best results from Zhou et al. (2021) are included as context (denoted with ‡). Previous best results
from Zhou et al. (2021) are included as context (denoted with ‡).

Simulated ∆(s, y) approximate real settings. We compare the simulated ∆(s, y) distributions
based on si ∼ N (0, 1) to distributions of real datasets at initialization in Fig. 9. The expectations
of simulated ∆(s, y) are similar to real settings, which supports the analysis in §4.3. The esti-
mated Ek[∆(s, y)] fits the median of simulation well. Finally, increasing the number of classes k
consistently decreases ∆(s, y) at initialization.

Additional results on the effectiveness of shifting and scaling w(s, y). We show additional results
on how shifting and scaling w(s, y) affect noise robust training in Tables 8 and 9. Hyperparameters
for results of the WebVision dataset are shown in
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Clean Asymmetric
Loss η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

CE‡ 71.33 ± 0.43 64.85 ± 0.37 58.11 ± 0.32 50.68 ± 0.55 40.17 ± 1.31
GCE‡ 63.09 ± 1.39 63.01 ± 1.01 59.35 ± 1.10 53.83 ± 0.64 40.91 ± 0.57
NCE+AGCE‡ 69.03 ± 0.37 67.22 ± 0.12 63.69 ± 0.19 55.93 ± 0.38 43.76 ± 0.70

CE 77.44 ± 0.13 72.08 ± 0.19 64.75 ± 0.49 55.62 ± 0.12 45.73 ± 0.49
GCE 73.88 ± 0.25 72.29 ± 0.16 67.96 ± 0.24 57.83 ± 1.02 45.14 ± 0.13
NCE+AGCE 76.37 ± 0.25 73.73 ± 0.21 64.58 ± 0.37 52.23 ± 1.18 40.93 ± 1.22

TCE 58.04 ± 1.15 53.51 ± 1.18 45.14 ± 1.25 34.59 ± 2.47 28.35 ± 0.74
TCE shift, τ = 4.2 77.14 ± 0.11 71.82 ± 0.60 63.41 ± 0.06 54.91 ± 0.47 44.56 ± 0.71
TCE scale, τ = 4.2 75.79 ± 0.17 72.64 ± 0.48 63.58 ± 0.32 53.73 ± 0.58 43.57 ± 1.19

MAE 7.46 ± 1.92 4.65 ± 1.55 3.21 ± 0.57 1.61 ± 0.53 1.54 ± 0.47
IMAE, T = 10 5.26 ± 3.19 10.05 ± 2.16 14.90 ± 1.41 32.61 ± 0.24 48.09 ± 0.68
MAE shift, τ = 3.4 76.65 ± 0.30 71.82 ± 0.44 63.37 ± 0.28 53.81 ± 0.57 44.06 ± 1.23
MAE scale, τ = 3.4 73.54 ± 0.32 71.85 ± 0.31 69.43 ± 0.39 63.14 ± 0.37 48.88 ± 0.79

Table 9: Extended result of Table 5: shifting or scaling w(s, y) mitigates underfitting on CI-
FAR100 with asymmetric label noise. We report test accuracies with 3 different runs. Both τ of
the shifted/scaled MAE/TCE and T of IMAE are tuned with symmetric noise η = 0.4. Previous
best results from Zhou et al. (2021) are included as context (denoted with ‡). Previous best results
from Zhou et al. (2021) are included as context (denoted with ‡).

Settings CE MAE IMAE MAE shift MAE scale TCE TCE shift TCE scale

k = 50 / / T =? τ = 2.0 τ = 2.0 q =? q =?, τ =? q =?, τ =?
k = 200 / / T =? τ = 1.8 τ = 1.8 q =? q =?, τ =? q =?, τ =?
k = 400 / / T =? τ = 1.6 τ = 1.6 q =? q =?, τ =? q =?, τ =?

Table 10: Hyperparameters roughly tuned with each settings for results of WebVision in Table 6.
For TCE shift/scale, we only tune τ and leave q intact to demonstrate the effect of the shift/scale
fixes.
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