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ABSTRACT

This paper presents the first systematic study of evaluating Deep Neural Networks
(DNNs) designed to forecast the evolution of stochastic complex systems. We
show that traditional evaluation methods like threshold-based classification metrics
and error-based scoring rules assess a DNN’s ability to replicate the observed
ground truth but fail to measure the DNN’s learning of the underlying stochastic
process. To address this gap, we propose a new evaluation criteria called Fidelity
to Stochastic Process (F2SP), representing the DNN’s ability to predict the system
property Statistic-GT—the ground truth of the stochastic process—and introduce
an evaluation metric that exclusively assesses F2SP. We formalize F2SP within a
stochastic framework and establish criteria for validly measuring it. We formally
show that Expected Calibration Error (ECE) satisfies the necessary condition for
testing F2SP, unlike traditional evaluation methods. Empirical experiments on
synthetic datasets, including wildfire, host-pathogen, and stock market models,
demonstrate that ECE uniquely captures F2SP. We further extend our study to
real-world wildfire data, highlighting the limitations of conventional evaluation
and discuss the practical utility of incorporating F2SP into model assessment. This
work offers a new perspective on evaluating DNNs modeling complex systems by
emphasizing the importance of capturing underlying the stochastic process 1.

1 INTRODUCTION

Deep Neural Networks (DNNs) are increasingly employed to model complex systems and forecast
their evolution across diverse fields, including infectious disease spread (Keshavamurthy et al., 2022;
Ibrahim et al., 2021; Bomfim et al., 2020; Kuo & Fu, 2021), finance (Li et al., 2022), weather
prediction (Scher & Messori, 2021; Bonavita & Laloyaux, 2020), geophysics (Yu & Ma, 2021;
Tasistro-Hart et al., 2021), and wildfire prediction (Huot et al., 2022; Radke et al., 2019; Yang et al.,
2021). These systems exhibit complex global dynamics arising from relatively simple, localized, and
stochastic interactions between participating elements, referred to as agents (Ladyman et al., 2013).
Leveraging large-scale, multi-dimensional data—from satellite imagery to population records—DNNs
aim to learn the interaction rules for long-horizon forecasting.

A fundamental characteristic of such physical systems is randomness, making their evolution inher-
ently stochastic; thus, identical initial conditions can lead to multiple outcomes, forming a stochastic
process. However, we typically observe only a single outcome of the system’s evolution, a system
property termed the Observed Ground Truth (Observed-GT). Current evaluation metrics primarily
assess how closely a DNN’s predictions match this Observed-GT, an evaluation criteria we call
Fidelity to Realization (F2R). This focus on F2R raises a critical question when a DNN fails to
match the Observed-GT: is the mismatch due to inherent stochastic variability, or does it stem from
exposure to a fundamentally different stochastic process the DNN hasn’t modeled? Understanding
this distinction is key: a DNN that captures the stochastic process but mismatches the Observed-GT
may still be valuable, while failure to model the process entirely undermines its utility.

To address this problem, we formulate a new system property called the Statistic Ground Truth
(Statistic-GT). Statistic-GT captures the system’s expected behavior across all possible outcomes
from the same initial conditions. It provides a complete representation of the stochastic process

1Code–https://anonymous.4open.science/r/evaluate_stochastic_process-4EC7
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Figure 1: (a) The figure depicts the evolution of a stochastic process in a forest fire model. Starting
from same initial conditions, diverse outcomes emerge over the prediction horizon, depicted by the
shaded red region. The Observed-GT {bt,(i,j)}H×W represents one outcome on a H × W grid,
while the Statistic-GT {pt,(i,j)}H×W shows the normalized frequency of target state occurrences,
capturing the full stochastic process (§3). (b) This panel illustrates the proposed evaluation framework:
F2R evaluates alignment with Observed-GT (using AUC-PR), F2SP tests alignment with Statistic-
GT (using ECE), and MSE balances both criteria. The framework provides a unified approach for
interpreting model performance in stochastic settings. See §H for a practical guide on the framework.

and serves as a stable target for evaluation (Figure 1.a). With this new target, we propose an
evaluation criterion called Fidelity to Stochastic Process (F2SP), which measures how faithfully the
DNN predicts the Statistic-GT. A key challenge arises from the fact that Statistic-GT is not directly
observable in practical scenarios; only the Observed-GT is available, providing a partial glimpse of
the complete stochastic process. Thus, the challenge is testing F2SP using only the Observed-GT.

To address this challenge, we establish that Expected Calibration Error (ECE) is a suitable evaluation
metric that satisfies the necessary condition to test F2SP, whereas commonly used metrics like
classification-based (e.g., Area Under the Precision Recall Curve, AUC-PR) and probabilistic error-
based metrics (e.g., Mean Squared Error, MSE) fail to do so (Figure 1.b, §3). We then conduct
benchmark experiments on three synthetic complex systems—forest fire (Hargrove et al., 2000), host-
pathogen (Sayama, 2013), and stock market models (Wei et al., 2003) (§2)—demonstrating ECE’s
unique behavior across varying levels of stochasticity (§4). Finally, we evaluate on the real-world
"Next Day Wildfire Spread" dataset (Huot et al., 2022), showcasing the limitations of current metrics
and the practical utility of testing F2SP (§5). While ECE is traditionally used to estimate calibration
error, our work discovers ECE’s new utility for testing F2SP, broadening its role (§6).

Our key contributions are:

• We identify critical limitations in current evaluation strategies focused solely on matching
the Observed-GT, highlighting the need for a more robust approach in stochastic systems.

• We propose F2SP to assess DNN predictions against Statistic-GT, the system’s expected
behavior across all outcomes, ensuring stable evaluation in stochastic scenarios.

• We demonstrate, both formally and through benchmark experiments, that ECE uniquely
satisfies the necessary condition for testing F2SP using only the Observed-GT.

• Beyond the synthetic systems, we discuss our findings in the context of real-world wildfire
data, illustrating the practical utility of testing F2SP.

By shifting the focus from replicating Observed-GT to capturing underlying stochastic dynamics, our
work provides a novel perspective on evaluating DNNs that model complex systems. We recommend
adopting the proposed evaluation framework (shown in Figure 1.b), which integrates ECE for
assessing F2SP alongside F2R metrics, such as classification-based and proper scoring rules,
to achieve a stochasticity-compatible evaluation strategy. This simple framework has significant
implications for improving model evaluation, which this paper aims to explore and highlight.
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2 BACKGROUND AND DATASET

This section starts with defining the DNN prediction and evaluation framework (§2.1). It highlights
real-world challenges in observing the effects of stochasticity, motivating the use of synthetic
benchmarks (§2.2). Finally, it covers synthetic systems and their stochastic simulation (§2.3).

2.1 FORMULATION OF DNN PREDICTION AND EVALUATION FOR COMPLEX SYSTEMS.

We model the evolution of a complex system on a grid of size H ×W , where each grid cell (i, j)
at time t can occupy one of m discrete states, denoted as st,(i,j) ∈ {s1, s2, . . . , sm}. We are
particularly interested in tracking a specific state s∗. Let bt,(i,j) ∈ {0, 1} represent whether state
s∗ is present (1) or absent (0) in cell (i, j) at time t, collectively forming the grid-level ground
truth Bt = {bt,(i,j)}H×W . Additionally, Ot ∈ (Rn)H×W represents an n-dimensional vector of
observational variables (e.g., environmental factors, agent attributes) for each of the H ×W grid
cells at time t. The DNN predicts the probability of state s∗ being present at each cell (i, j), denoted
by p̂t,(i,j). These predictions form the joint conditional distribution P̂t = {p̂t,(i,j)}H×W , predicted
T timesteps into the future, using past states B1:t−T and observational variables O1:t−T :

P̂t := P̂ (Bt | B1:t−T , O1:t−T ) (1)

After prediction, we use an evaluation metric S(Bt, P̂t) : ({0, 1}H×W ×[0, 1]H×W ) → R to measure
prediction accuracy. Different choices of S assess different system properties (see §3.4). In the
Appendix B, Table 3 serves as a reference for the notations used throughout the paper.

2.2 STOCHASTICITY IN COMPLEX SYSTEMS AND CHALLENGES IN STOCHASTIC MODELING

Stochasticity in complex systems stems from randomness in interactions driven by environmental
factors, agent behaviors, and external interventions, adding noise to the "evolution rules" DNNs aim
to learn. For instance, wildfire spread is shaped by vegetation, terrain, weather, and human activity
(Liu et al., 2021), while infectious disease dynamics depend on movement, social interactions, and
interventions (Großmann et al., 2020). Small variations in these interactions can cause divergent
outcomes, akin to the "butterfly effect" (Lorenz, 2000), complicating long-term forecasting.

Real-world data, providing only a single observed outcome, obscures the true implications of
stochastic interactions in complex systems. To circumvent this limitation, we use simulation-based
approaches like agent-based models (ABMs) (e.g., NetLogo (Tisue & Wilensky, 2004)), proven
effective in capturing real-world complexities (Manson et al., 2012). See §C.1 for applications of
ABMs in complex system modeling. In this study, ABMs generate a range of potential evolutions
based on stochastic rules, allowing us to study emergent behaviors beyond real-world data constraints.

2.3 SYNTHETIC COMPLEX SYSTEMS AND THEIR STOCHASTIC SIMULATION

Synthetic environments in this work. We use three synthetic environments—forest fire (Hargrove
et al., 2000), host-pathogen (Sayama, 2013), and stock market models (Wei et al., 2003)—as examples

Table 1: Overview of the Synthetic Complex Systems

Environment Competitive States Interaction Rules Description
Forest Fire No empty, patch, fire, ember

s∗ = {fire, ember}
Fire spreads to neighboring patches
with probability pignite, based on
Rothermel’s heat transfer model.

Simulates fire spread through
land patches without opposing
states. Agents spread fire with-
out competition between states.

Host-Pathogen Yes empty, dead, healthy, infected
s∗ = {healthy}

Healthy agents are infected with
probability pinfect, infected agents
die with pdead, and dead cells are
cured by healthy cells with pcure.

Models disease transmission
and recovery, with competing
healthy and infected states.

Stock Market Yes hold, sell, buy, inactive
s∗ = {buy}

Investors buy, sell, or hold based on
market sentiment and neighbor ac-
tions with probability pinvest.

Simulates competing investor ac-
tions (buy vs. sell), influencing
market trends.

3
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of complex systems. While all three models consist of four discrete states st,(i,j) ∈ {s1, s2, s3, s4},
they have completely different interaction dynamics. Further, the Host-Pathogen and Stock Market
models feature competing agents, reflecting socio-economic dynamics, unlike the natural processes
in the Forest Fire Model. We assume homogeneous agents (no observational variables Ot,(i,j)) to
focus solely on stochastic dynamics. See Table 1 for an overview and §D.1 for detailed descriptions.

Agent-Based Simulation Framework. We simulate on a 64× 64 grid, where each cell (i, j) at time
t represents an agent in state st,(i,j). Simulations start with agents randomly assigned initial states
s0,(i,j) based on a distribution P (s0,(i,j)). Agents interact with their neighbors according to stochastic
transition rules P (st+1,(i,j) | {st,(k,l)}(k,l)∈M(i,j)

), where M(i,j) represents the agent’s Moore
neighborhood. These local interactions drive global behaviors, manifesting as complex, fractal-like
patterns. The stochasticity in the interaction rules introduces randomness into the system’s evolution,
simulating the diverse behaviors. To control stochasticity, we use the S-Level parameter, with higher
S-Levels introducing more randomness and S-Level 0 representing deterministic interactions.

Role of S-Level and its realism. The S-Level acts as a control knob for adjusting stochasticity.
Its focus is not on realism, but on precise control of the stochastic process. This enables robust
assessment of evaluation metrics’ fidelity to the system property Statistic-GT across varying levels
of randomness (see §3.2). In real-world datasets (§5), the concept of S-Level is more complex,
as stochasticity can be represented using a distribution of S-Levels shaped by environmental and
temporal dynamics. However, the fundamental property of Statistic-GT remains relevant.

3 EVALUATING A COMPLEX STOCHASTIC PROCESS

This section formalizes Statistic-GT as an evaluation target aligned with system stochasticity (§3.1,
3.2) and emphasizes its importance by addressing F2R limitations (§3.3). It also provides theoretical
insights showing why ECE uniquely tests F2SP using Observed-GT (§3.4).

3.1 SIMULATING A COMPLEX STOCHASTIC PROCESS

Empirical Stochastic Process (ESP). We represent an ESP using 1000 Monte Carlo (MC) simu-
lations, each starting from identical initial conditions and running until all state transitions cease.
Identical initial conditions ensure variations in fire evolution arise solely from stochastic interactions.
In the wildfire example, the forest configuration and fire seed location define the initial conditions,
and the simulation runs until fuel depletion. Figure 2.a shows four distinct MC simulations (MC-1
to MC-4), illustrating different evolution pathways from the same starting point. For qualitative
examples of other complex systems, refer to §D.1.

MC-1

MC-2

MC-3

MC-4

Statistic
GT

(a) (b)

Simulation Strategy
Setup Stochastic

Train/TestESPDeterministic
Train/Test
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Figure 2: (a) The first four rows display four distinct MC simulations of forest-fire evolution from
the same initial condition. The last row shows the Statistic-GT representing the evolution of the
Stochastic Process (formally defined in §3.2)); (b) Table highlights the sources of randomness in the
synthetic dataset across different simulation strategies used in this study. Deterministic processes
randomize initial conditions but follow fixed fire evolution rules (S-Level = 0). Stochastic processes
(S-Level > 0) allow multiple evolutionary paths: the ESP fixes initial conditions, while stochastic
train/test setups (used in benchmark experiments, §4) randomize initial conditions across simulations.
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Random instances of deterministic vs. stochastic evolution. Figure 2.b highlights the sources of
randomness in the forest fire dataset: forest configuration, fire seed location, and fire evolution rules.
In deterministic evolution, only forest configuration and fire seed location are randomized, while
fire follows a single pathway, producing random instances of deterministic fire. In contrast, the ESP
allows multiple evolutionary paths from the same initial conditions due to stochastic evolution. When
all elements are randomized, we obtain random instances of stochastic fire evolution, used to train
DNNs in §4.1. This synthetic dataset simulates a simplified version of real-world scenarios.

3.2 FORMULATING A COMPLEX STOCHASTIC PROCESS

Micro-Level Modeling. At the micro-level, each grid cell (i, j) at time t is modeled using a binary
random variable (RV) Mt,(i,j), which captures the stochastic nature of the GT state bt,(i,j). Mt,(i,j)

follows a Bernoulli distribution with probability parameter pt,(i,j). This parameter is derived from
the ESP by normalizing the frequency of s∗ across all MC simulations at each timestep.

Statistic-GT. While individual Micro RVs, Mt,(i,j), represent independent probability parameters,
the ensemble Pt = {pt,(i,j)}H×W captures the joint probability distribution across the entire grid
as defined in Equation 1. These grid cells are spatially and temporally interdependent, forming the
Statistic-GT. This emergent behavior of the micro-level statistic pt,(i,j) is a representation of the full
stochastic process. The evolution of Statistic-GT is depicted in the fifth row of Figure 2.a. Typically,
only a single instance from this stochastic process (one MC simulation) is observable in practice.

3.3 WHY IS STATISTIC-GT A PROPERTY OF INTEREST: LIMITATIONS OF F2R

In complex systems, evaluation metrics assess a DNN’s performance by aggregating micro-level
comparisons between the bt,(i,j) and predicted forecasts p̂t,(i,j) for each grid cell (i, j) in Observed-
GT. This aggregation yields a macro-level score that summarizes model performance across grid,
reflecting its ability to replicate the Observed-GT. However, in stochastic systems, reliance on a single
observed instance of the system’s evolution increases sensitivity to variability in the Observed-GT.
This sensitivity creates challenges for the F2R strategy. We analyze this sensitivity by examining how
variability in Observed-GT affects the stability of evaluation metrics, including classification-based
metrics, MSE, and ECE, as detailed in §F.1, with key findings summarized in the main paper.

To formalize this analysis, we define the Macro Random Variable (RV) Zt, which represents the total
number of grid cells in the target state s∗ at time t. This variable provides a grid-level summary of the
system’s evolution, analogous to the evaluation metric calculation. Next, we show that classification-
based metrics are particularly sensitive to macro-variance (V ar[Zt]) because they exclusively test
F2R. Higher V ar[Zt] increases mismatches between Observed-GT and DNN predictions, leading
to: (1) score degradation due to randomness and (2) metric fluctuations caused by GT variability,
falsely indicating model instability. MSE and ECE are less sensitive to V ar[Zt] because they do not
exclusively test F2R. This underscores the instability of Observed-GT as a system property, making
F2R inadequate for evaluating models in highly stochastic scenarios.

In contrast, the Statistic-GT represents the system’s expected behavior across all possible outcomes,
offering a more stable evaluation target. Testing F2SP evaluates whether the model has learned the
underlying stochastic process, ensuring robust performance assessment in highly stochastic systems.

3.4 HOW DO WE TEST FIDELITY TO STATISTIC-GT?

As stated in Equation 1, given a DNN’s prediction P̂t and the Observed-GT map Bt, the evaluation
metric S(Bt, P̂t) measures a specific property. Our primary focus is on the property known as
Statistic-GT, denoted by Pt. The key challenge is testing a DNN’s fidelity to Statistic-GT using
only Observed-GT (Bt), as Statistic-GT is not directly measurable.

In our research, we discovered that ECE, an evaluation metric commonly used in Deep Learning and
calibration error estimation, possesses the unique ability to test fidelity to Statistic-GT using only the
Observed-GT. Next, we formally show how ECE achieves this and compare it to standard baseline
metrics, that lack this capability. In §4, we empirically validate this discovery.

5
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3.4.1 EXPECTED CALIBRATION ERROR TESTS FIDELITY TO STATISTIC-GT

We formally show that ECE satisfies the necessary condition for evaluating a DNN’s fidelity to the
Statistic-GT. Consider a grid of size H×W at time t, where each cell (i, j) is modeled as a Bernoulli
random variable Mt,(i,j) ∼ Bern(pt,(i,j)), indicating the presence (1) or absence (0) of s∗. The DNN
outputs predicted probabilities p̂t,(i,j) for each cell, forming the set P̂t = {p̂t,(i,j)}H×W .

We group the predicted probabilities into K bins Ik =
(
k−1
K , k

K

]
and define Hk = {(i, j) | p̂t,(i,j) ∈

Ik} as the set of indices in bin Ik. Let bt,(i,j) ∈ {0, 1} be the Observed-GT at cell (i, j). For each bin
Ik, the fraction of positives is: frac(k) = 1

|Hk|
∑

(i,j)∈Hk
bt,(i,j). A calibration curve plots frac(k)

against the representative predicted probability p̂k (usually the bin midpoint). A perfectly calibrated
model satisfies frac(k) = p̂k for all bins. The Expected Calibration Error (ECE) (Naeini et al., 2015)
summarizes calibration as: ECE =

∑K
k=1

|Hk|
N |frac(k)− p̂k| .

ECE tests fidelity to Statistic-GT. For a perfect predictor where p̂t,(i,j) = pt,(i,j) for all cells, we
examine E[frac(k)]. Since bt,(i,j) are realizations of Mt,(i,j), we have E[bt,(i,j)] = pt,(i,j) = p̂t,(i,j).
Therefore,

E[frac(k)] =
1

|Hk|
∑

(i,j)∈Hk

E[bt,(i,j)] =
1

|Hk|
∑

(i,j)∈Hk

p̂t,(i,j) = p̂k.

This shows that, on average, frac(k) = p̂k for a perfect predictor, implying zero ECE (see §F.2 for
calibration curves). Calculating frac(k) marginalizes over data points in bin Ik, treating them as
independent and ignoring dependencies among pt,(i,j) for all (i, j) ∈ Hk. Thus, a low ECE satisfies
the necessary condition for evaluating fidelity to Statistic-GT, but not the sufficient criterion.

Application of ECE in Deep Learning vs. Our Work. While ECE is widely used to measure the
calibration of DNN predictions in static tasks like image or text classification, our work uniquely
investigates its properties for evaluating multi-variate complex systems. Unlike prior studies that
simply use ECE for measuring DNN output calibration, we identify its unique suitability for assessing
fidelity to a fundamental system property (Statistic-GT) that aligns with the stochastic nature of these
systems. By addressing system randomness through F2SP, we position ECE as a complementary met-
ric. Our study establishes perfect calibration as a necessary condition for testing F2SP, a fundamental
insight overlooked in prior works, emphasizing that calibration should be central to the evaluation of
such stochastic systems rather than secondary to discriminative performance (see §C.2 for details).

3.4.2 BASELINE EVALUATION METRICS

Classification-Based Metrics (Ferri et al., 2009). The prediction problem can be framed as a
classification task, where the goal is to predict whether each grid cell will be in a specific state (e.g.,
presence of s∗). Metrics like Precision, Recall, F1-score, and AUC-ROC/PR are commonly used.
These metrics, based on thresholding or ranking, are favored for distinguishing between Type I and
Type II errors. They exclusively assess how well thresholded predictions match the Observed-GT.

Proper Scoring Rules. Scoring rules evaluate probability forecasts by ensuring the best score
is achieved when the forecast matches the GT distribution (Gneiting & Raftery, 2007). Strictly
proper scoring rules, such as MSE, Binary Cross-Entropy (BCE), and Continuous Ranked Probability
Score (CRPS), are commonly used in forecasting. These rules promote sharpness by penalizing
uncertain predictions and can be decomposed into calibration and sharpness components (Gneiting &
Raftery, 2007; Ramos et al., 2018). For example, MSE can be decomposed using the Brier Score
decomposition (Blattenberger & Lad, 1985):

MSE =

M∑
m=1

|Bm|
N

(frac(Bm)− pm)2︸ ︷︷ ︸
Calibration

+

M∑
m=1

|Bm|
N

frac(Bm)(1− frac(Bm))︸ ︷︷ ︸
Refinement

,

where the Refinement term promotes sharpness by penalizing uncertainty. This decomposition
highlights a key distinction: scoring rules penalize uncertain predictions at the micro level, making
them directly influenced by V ar[Zt], whereas ECE focuses solely on calibration and remains
unaffected by V ar[Zt] in its convergence. We elaborate further on this distinction in §D.2.

6
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4 BENCHMARK EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We employ a single-layer ConvLSTM architecture for its simplicity (Shi et al., 2015), designing
the ConvLSTM-CA variant to preserve spatial information essential for learning cellular automata
interaction rules (§E.1). Our experiments span various S-Levels, with 1,000 simulations for each
S-Level: 0, 5, 10, 15, and 20 for the forest fire model; 10, 15, and 20 for the host-pathogen model;
and 5, 10, and 15 for the stock market model (see §D.1 for S-Level definitions). Simulations are
initiated with randomized conditions and configurations, representing distinct random realizations of
specific stochastic processes, with varying S-Levels indicating different process complexities.

Training and testing parameters include the observation period tobs and the prediction period tpred.
The forest fire simulations use tobs = 10 frames and tpred = 50 frames, whereas the host-pathogen
and stock market models use tobs = 10 and tpred = 20 frames. For each S-Level, 700 simulations are
used for training and 300 for testing. The DNN predicts the subsequent tpred frames after observing
the first tobs frames. We employ BCE loss for model training.

While the main paper presents ConvLSTM-CA results for AUC-PR and MSE, extended evaluations
across multiple DNN architectures are detailed in §F.3. This includes multi-layer and spatial bot-
tleneck ConvLSTM variants (Shi et al., 2015) and Attentive Recurrent Neural Cellular Automata
(AR-NCA) (Kang et al., 2024), which specializes in modeling locally interacting discrete dynamical
systems like forest fire evolution.

4.2 TESTING ECE’S ABILITY TO ASSESS DNN’S FIDELITY TO STATISTIC-GT

Figure 3: DNNs trained on one S-Level and tested on another, evaluated using (a) (1− AUC-PR) ↓,
(b) MSE ↓, and (c) ECE ↓ across three complex systems. Top Row: Forest Fire, Middle Row:
Host-Pathogen, Bottom Row: Stock Market. The x-axis (test S-Level) and y-axis (train S-Level)
are consistent across all matrices. AUC-PR and MSE degrade with increasing S-Level, while ECE
exhibits a diagonal pattern, showing low scores only when training and test S-Levels match. This
highlights ECE’s unique ability to assess whether the DNN has learned the correct stochastic process.
Theoretical insights supporting this observation are provided in §3.4.1 and §3.4.2.

7
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4.2.1 SENSITIVITY TO S-LEVEL: ECE VS. BASELINES.

In §E.2, we confirm that the S-Level determines the Statistic-GT’s appearance at each time step. We
also verify that the DNN, trained with the self-supervised approach from §4.1, has learned to predict
the Statistic-GT. Thus, an evaluation metric that measures a DNN’s fidelity to Statistic-GT should
exhibit sensitivity to the match between training and test S-Levels. To test this, we create a matrix
heatmap where we evaluate five DNN versions (from §4.1), each trained at a specific S-Level, across
five test splits with different S-Levels.

Figure 3 presents the results, with each column representing a different evaluation metric and each
row corresponding to a complex system. Within a matrix, rows represent evaluation scores for a DNN
trained at a specific S-Level, and columns show scores for each test split at corresponding S-Levels.
Only the ECE matrix shows clear diagonal behavior, indicating optimal scores when training and
test S-Levels match. MSE shows partial diagonal trends, but its Refinement component weakens this
pattern (§3.4.2), while AUC-PR shows no such trends. In §F.3, we confirm the generality of these
findings across additional classification metrics (Precision, Recall, F1-Score), scoring rules (BCE,
CRPS, Energy Score), and a spatial correlation-based metric.

Figure 4: Two DNNs were trained on 700 forest fire simulations with different S-Levels—10 (orange,
low stochasticity) and 20 (blue, high stochasticity)—and evaluated on 300 test simulations with
S-Level 20. Evaluation metrics (a) AUC-PR, (b) MSE, and (c) ECE were measured over an extended
prediction horizon. AUC-PR shows similar trends for both models, failing to distinguish the stochastic
mismatch, while MSE declines more steeply for the mismatch case but also shows a declining trend
for both DNNs due to misalignment with the Observed-GT. ECE remains low and stable for the DNN
trained on S-Level 20. This highlights ECE’s unique ability to track alignment with the Statistic-GT,
unlike AUC-PR and MSE, which focus on the Observed-GT.

4.2.2 LONG HORIZON BEHAVIOR OF ECE

As discussed in §3.3, evaluating fidelity to the Statistic-GT offers potential long-term stability due
to the presence of a single Statistic-GT, unlike the wide range of Observed-GTs. We test whether
this stability is reflected in the behavior of the evaluation metric. We hypothesize that ECE will
remain low and stable over time when the DNN has learned the correct Statistic-GT, unlike traditional
metrics which focus on Observed-GTs. Conversely, if there is a mismatch in the Statistic-GT, only
ECE can exclusively capture this discrepancy, unlike baseline metrics.

Figure 4 shows two DNNs trained on different S-Levels (10 and 20) and tested on S-Level 20. For
both DNNs, baselines like AUC-PR and MSE exhibit similar declining trends as prediction horizon
increase, with MSE showing some distinction masked by system variance, and AUC-PR completely
failing to differentiate between the models entirely. In contrast, ECE remains low and stable for the
DNN trained on S-Level 20, indicating it has learned the correct Statistic-GT. Further exploration in
§F.4 exhaustively confirms across all S-Levels that while baseline metrics decline with increasing
S-Level and prediction horizon, ECE remains stable due to its alignment with the Statistic-GT.

What makes ECE different from the baseline metrics? Uncertain predictions at the micro level
can collectively reveal macro-level properties like the Statistic-GT. ECE bins the predictions in Ik
and then compares the average predicted score p̂k with the empirical fraction of positives frac(k) in
each bin. This property of ECE calculation allows for flexibility in micro-level mismatches while
focusing on macro-level calibration, effectively capturing fidelity to the Statistic-GT (see §D.2).
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5 CASE STUDY: REAL WORLD WILDFIRE PREDICTION

In this section, we apply our findings to the publicly available Next Day Wildfire Spread (NDWS)
dataset, a large-scale multivariate dataset of U.S. wildfires aggregated via Google Earth Engine (Huot
et al., 2022) (see G.1 for details on wildfire modeling). Unlike our synthetic experiments, where
the S-Level provided precise control over stochasticity, the NDWS dataset involves unpredictable
factors such as weather, vegetation, and human interventions, making it impossible to manipulate or
quantify stochasticity. Given this limitation, we reassess prior work on the NDWS dataset, analyzing
differences in evaluation metrics like ECE, AUC-PR, and MSE, and interpret these observations in
light of our benchmark experiments. We also explore how ECE can be integrated into the current
evaluation protocol to help resolve conflicts in DNN ranking.

fire-mask (t) fire-mask (t+1)
Observed GT

predicted 
fire-mask

Recall: 0.668
AUC-PR: 0.524

MSE: 0.054DC: 0.64

Recall: 0.000
AUC-PR: 0.066

MSE: 0.007DC: 0.08

Figure 5: DNN takes as input a fire mask
(left column) and 11 observational vari-
ables to predict the next-day fire mask
(right column), compared to Observed-
GT (middle column). F2R metrics indi-
cate suboptimal performance.

Table 2: Evaluation Metrics for Conv-AE stratified by
Dice Coefficient values measuring Fire Map Overlap
(FMO) between tth and t + 1th day. (↑ means higher
is better, ↓ means lower is better. Colors (normalized
column-wise) indicate relative performance, with red rep-
resenting worse scores and lighter shades representing
better scores. ECE trends differently from F2R metrics.

FMO (DC) Sup. Precision↑ Recall↑ AUC-PR↑ MSE↓ ECE↓
0.9-1.0 1 0.000 0.000 1.000 0.000 0.001
0.8-0.9 4 0.000 0.000 0.445 0.001 0.006
0.7-0.8 3 0.771 0.578 0.693 0.003 0.008
0.6-0.7 75 0.571 0.700 0.624 0.013 0.019
0.5-0.6 116 0.475 0.606 0.512 0.019 0.025
0.4-0.5 145 0.373 0.501 0.355 0.017 0.022
0.3-0.4 142 0.324 0.381 0.283 0.019 0.022
0.2-0.3 217 0.281 0.284 0.217 0.017 0.014
0.1-0.2 150 0.206 0.121 0.128 0.017 0.013
0.0-0.1 836 0.085 0.028 0.044 0.007 0.005
Overall 1689 0.346 0.311 0.247 0.012 0.012

Prediction Problem. The NDWS dataset compiles historical wildfire incidents into two-dimensional
grids at a 1 km resolution, with 11 observational variables: elevation, wind direction and speed,
temperature extremes, humidity, precipitation, drought index, vegetation, population density, and
energy (§G.2) (Huot et al., 2022). The dataset includes 18,545 wildfire events, providing sequential
snapshots of fire spread at times t and t+1 day. A convolutional autoencoder-based DNN architecture,
Conv-AE, is trained and tested on the data. The DNN takes as input a spatial map of the 11 variables
along with the fire spread at time t and outputs a binary map predicting fire spread at time t+ 1.

Observations in evaluation. Huot et al. reported an AUC-PR score of 0.284 for Conv-AE on the test
split. They noted that “while the metrics on the positive class seem low," qualitative visualizations
showed that "fires are predicted," "predicted fires are roughly in the target location," and there is
"good recognition of larger fires" (Huot et al., 2022). Similar observations are shown in Figure
5, displaying the fire mask at time t, the next-day fire mask at time t + 1 (Observed-GT), and the
Conv-AE forecast. Despite the low scores suggesting poor performance, qualitative insights indicate
otherwise. We hypothesize that the highly stochastic nature of wildfires limits the effectiveness of
classification-based metrics, prompting a reevaluation of the DNN’s performance.

Revisiting evaluation of Conv-AE. Huot et al. reported Precision, Recall, and AUC-PR for their
model. We stratify these metrics by the Dice Coefficient (DC) between fire masks at times t and t+1,
as shown in Table 2. Higher DC values indicate gradual fire progression, while lower values signify
abrupt changes, often in smaller fires. For example, a DC of 0.08 (Figure 5) represents a complete fire
front shift, while a DC of 0.64 shows slower progression. Table 2 reveals that Precision, Recall, and
AUC-PR decrease as DC drops, whereas MSE and ECE remain relatively low even for small overlaps.
This suggests fewer probabilistic errors and better modeling of stochasticity by the DNN in cases
of low DC. The calibration curve (§G.3) confirms that the DNN’s predictions are well-calibrated at
probability extremes, despite some overconfidence in the mid-range. Hence, our main observation is
that ECE behaves differently from classification-based metrics as DC varies, and therefore measures
a complementary aspect of performance. This can be attributed to ECE’s exclusive focus on testing
fidelity to Statistic-GT, as demonstrated in our benchmark experiments.
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Bridging metric conflicts. In §G.4, we simulate selecting the optimal DNN from five DNNs trained
on the NDWS dataset and observe rank conflicts between AUC-PR, MSE, and ECE. Such conflicts
are common in model development, with no clear strategy for metric prioritization (Heaton et al.,
2018). To address this, we introduce a cohesive evaluation framework shown in Figure 1.b. The
framework places AUC-PR on the y-axis, aligning with F2R, and ECE on the x-axis, aligning with
F2SP, reflecting their complementary roles. MSE sits between them, balancing both criteria. This
framework ensures models are first validated for their understanding of stochastic dynamics (F2SP)
before assessing accuracy for specific outcomes (F2R). A practical guide is provided in §H.

6 RELATED WORKS

Our interdisciplinary study bridges the application of deep learning to complex stochastic systems and
their evaluation. While deep learning plays a crucial role in forecasting for fields like epidemiology,
finance, weather, and geophysics, current evaluation strategies neglect the stochastic nature of these
systems, focusing solely on F2R (see §C.3). This limitation extends to computer vision tasks—where
many methods used in complex systems originate—such as stochastic video prediction (regression)
and segmentation map forecasting (classification), where evaluation predominantly relies on the F2R
strategy (see §C.4). Our work addresses this gap by introducing the evaluation criteria of testing F2SP.
We also contribute to sensitivity analysis of evaluation metrics, extending prior studies on simple,
low-dimensional setups with standard distributions (e.g., Normal, Exponential) to high-dimensional
environments using stochasticity as the sensitivity variable (see §C.5).

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We propose a new evaluation criterion to assess a DNN’s ability to capture the stochastic interactions
driving the evolution of complex systems. Through controlled experiments in a synthetic framework,
we show that ECE uniquely evaluates this capability compared to classification-based metrics and
proper scoring rules. Notably, ECE remains stable in long-horizon prediction performance, unlike
other metrics. Applying these insights to a real-world wildfire dataset, we address the disconnect
between positive qualitative assessments and negative performance scores and discuss an evaluation
framework to mitigate rank conflicts between metrics. While fully understanding complex systems
remains a challenge, they are crucial due to their societal impact. Our work highlights the need for
improved DNN evaluation in stochastic scenarios, paving the way for more robust strategies.

Limitations of ECE in stochastic contexts. While ECE is effective for testing F2SP, it has limitations
when applied to F2R evaluation. Specifically, ECE demonstrates lower discriminative capabilities
for comparing DNNs compared to classification-based metrics (§F.3). This limitation arises because
calibration error lacks a refinement term, which measures prediction sharpness and captures the
DNN’s ability to distinguish between different outcomes—a critical requirement for F2R evaluation
(§3.4.2). Further, ECE requires a sufficient number of samples for reliable convergence. In our
experiments, a test batch size of 10 grids (each 64 × 64) was sufficient for convergence in the
synthetic dataset (§F.5). Future work could explore improved calibration error estimators, such as
those proposed by (Gruber & Buettner, 2022), which offer stronger guarantees with smaller test sets.

Applications beyond binary classifications and future work. This paper focuses on binary and
discrete prediction tasks, leaving extensions to regression tasks for future work. While calibration
is intuitive for classification—where predicted probabilities should match observed frequencies—it
becomes more complex for regression tasks (Kuleshov et al., 2018; Levi et al., 2022). Future work
can explore adapting our findings to regression problems. While this work focuses on complex
systems, it would be important to explore if the F2SP evaluation strategy benefits vision problems
discussed in §C.3. Although such tasks are not traditionally classified as complex systems, their
problem formulation and local pixel interactions in videos provide a compelling analogy.

A key limitation of the NDWS dataset is its restriction to next-day predictions, preventing long-term
ECE tracking. Additionally, the absence of open-source complex system datasets—common in fields
like Computer Vision and Natural Language Processing—hampers broader experimental validation.
Future efforts should prioritize collecting and standardizing large-scale datasets for complex systems,
with data spanning multiple time steps to enable long-term ECE monitoring. Assessing ECE stability
and its potential benefits over time is a key avenue for future research.
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Table 3: Summary of notations used in this study

Symbol Description
H ×W Grid size
i, j Location of a single cell within the grid
st,(i,j) State of a cell at time t
s∗ A specific state of interest
bt,(i,j) s∗ present (1) or absent (0) at time t in cell (i, j)
Bt Observed-GT: System state across all cells at time t, Bt = {bt,(i,j)}H×W

Ot n-dimensional vector of observational variables across grid at time t, Ot ∈ (Rn)H×W

p̂t,(i,j) Predicted probability of state presence for cell (i, j) at time t

P̂t Predicted joint conditional distribution of system states
pt,(i,j) Probability of state s∗ actually present in cell (i, j) at time t
Mt,(i,j) ∼ Bern(pt,(i,j)) Micro random variable modeling s∗ presence/absence in cell (i, j) at time t with parameter pt,(i,j)
Pt Statistic-GT: Joint probability distribution of state s∗ across all cells at time t, Pt = {pt,(i,j)}H×W

Zt Macro random variable representing the collective state of the system at time t
S(·, ·) Evaluation metric
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C LITERATURE SURVEY AND RELATED WORKS

C.1 APPLICATION OF AGENT-BASED MODELS (ABMS) IN COMPLEX SYSTEMS.

ABMs, with each pixel acting as an individual agent, offer a natural way to simulate stochastic inter-
actions. These models, defined by discrete space and time, and marked by local spatial interactions,
align well with the physical nature of complex systems, e.g., (Gouveia Freire & Castro DaCamara,
2019). For example, In ABM forest fire models, each cell on fire is an agent capable of spreading the
fire based on neighborhood interaction rules, leading to emergent behaviors that mirror real-life fire
propagation patterns (Zinck & Grimm, 2008; Bak et al., 1987). In general, ABM has been applied to
a wide range of complex systems in recent years. Key application areas include social-ecological
systems, where ABMs have been used to study land-use changes, environmental adaptation, and
biodiversity protection Schulze et al. (2017). In urban planning and traffic simulation, ABMs have
modeled city growth, sustainability, and traffic flow dynamics Crooks et al. (2017). The COVID-19
pandemic has driven increased use of ABMs in public health and epidemiology for simulating disease
spread and evaluating intervention strategies Hoertel et al. (2020). In economics and finance, ABMs
have been employed to model market dynamics and assess economic policies Farmer & Foley (2009).
Environmental management has benefited from ABM applications in forest management and climate
change adaptation studies Belem & Saqalli (2018). These diverse applications demonstrate the
versatility and power of ABM in capturing the intricacies of real-world complex systems.

C.2 GENERAL USE OF ECE AS AN EVALUATION METRIC VS. OUR WORK

ECE is widely used to evaluate the calibration of DNNs in terms of confidence estimates and
uncertainty quantification. Typically applied in static tasks such as image or text classification and
object detection, ECE focuses on univariate predictions, where each test sample corresponds to a
single outcome and prediction. In these contexts, studies have shown that a DNN’s confidence is
influenced by training and architectural factors. For instance, (Guo et al., 2017) observed that model
capacity, batch normalization, and regularization techniques often lead to miscalibrated confidence
estimates. Another significant challenge arises with out-of-distribution samples, where a DNN’s lack
of knowledge impacts the reliability of its confidence scores, prompting research into uncertainty
quantification to address this limitation (Gal & Ghahramani, 2016).

Techniques such as temperature scaling (Guo et al., 2017), ensemble methods (Lakshminarayanan
et al., 2017), Bayesian neural networks (Denker & LeCun, 1990), dropout (Gal & Ghahramani, 2016),
and evidential deep learning (Sensoy et al., 2018), to name a few, aim to enhance calibration, with ECE
serving as the standard metric for assessing calibration quality (Naeini et al., 2015). Additionally, ECE
is widely employed in safety-critical domains like healthcare (Jiang et al., 2012) and cybersecurity
(Kumar et al., 2021), where reliable confidence estimates are critical. Importantly, all these prior
works focus on addressing the stochasticity in the model’s predictive distribution p(output|input).
This stochasticity is model-specific and reflects the uncertainty in DNN’s predictions for a given input.

However, in complex systems, stochasticity arises from the system’s dynamics (e.g., agent interactions
or environmental factors) which is fundamentally different from the model’s uncertainty about its
predictions. ECE’s conventional role does not naturally extend to capturing system properties like
the Statistic-GT. Beyond measuring calibration error for a DNN’s output distribution, we demonstrate
that ECE can evaluate F2SP by assessing predictions against the system property Statistic-GT using
only Observed-GT. Our findings establishes perfect calibration as a necessary condition for tracking
fidelity to the Statistic-GT, a fundamental insight that significantly extends the utility of ECE.

Building on this expanded utility, our work is the first to discover ECE’s unique utility in evaluating
stochastic complex systems with high-dimensional, multivariate outputs, such as the 64×64 grids in
our experiments. By addressing the system’s inherent randomness through F2SP, rather than solely
aligning with the Observed-GT as traditional F2R-focused strategies do, our findings position ECE
as a complementary metric. While current model development primarily emphasizes discriminative
performance through F2R strategy, calibration often takes a backseat (Naeini et al., 2015). For
forecasting stochastic complex systems, however, calibration must take center stage, as it tests fidelity
to fundamental system properties that inherently align with the stochastic nature of these systems.
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C.3 COMPLEX SYSTEMS, THEIR PREVALENCE, AND EVALUATION METRICS

Deep learning (DL) is increasingly applied to complex systems, leveraging multi-dimensional data
from sources like satellite imagery, population records, and the internet. These datasets enable DL
models to uncover intricate patterns crucial for accurate forecasting. Recent applications include
infectious disease prediction, where models integrate epidemiologic, geographic, and climatic factors
to forecast outbreaks (Keshavamurthy et al., 2022). Ibrahim et al. used LSTM models for COVID-19
forecasts (Ibrahim et al., 2021), while Bomfim et al. applied mobility data to improve dengue
transmission predictions (Bomfim et al., 2020). Kuo and Fu used county-level data to model COVID-
19 infection rates (Kuo & Fu, 2021). In finance, Li et al. leveraged DL for asset price forecasting,
capturing nonlinear dynamics (Li et al., 2022). In weather prediction, scoring rules like MSE and
CRPS are commonly used (Scher & Messori, 2021; Bonavita & Laloyaux, 2020). DL has also been
applied in geophysics, where models predict system states from geo-spatial data (Yu & Ma, 2021).
Hart et al. used DL to forecast geomagnetic storms using satellite data, evaluating with RMSE,
Pearson correlation, and calibration error to assess probabilistic accuracy (Tasistro-Hart et al., 2021).
While most evaluations use probabilistic metrics (e.g., MSE, RMSE, MAE), classification metrics
are applied in domains with well-defined outcomes, such as epidemic spread (Bomfim et al., 2020),
wildfire prediction (Huot et al., 2022). However, all approaches treat these problems deterministically
through F2R formulation, and do not account for the inherent stochasticity of such complex systems.

C.4 EVALUATION STRATEGY FOR MULTIVARIATE FORECASTING IN COMPUTER VISION

In the computer vision community, evaluation strategies for forecasting tasks across both regression
and classification problems predominantly focus on matching the Observed-GT (F2R). For instance,
in stochastic video prediction—a regression task—DNNs generate a range of potential outcomes,
and the score of the sample best matching the Observed-GT is reported (Oprea et al., 2022; Mathieu
et al., 2016; Henaff et al., 2017). Similarly, for classification tasks such as predicting the evolution of
segmentation maps, metrics like Intersection over Union and Average Precision (summarizing the
precision-recall curve) are standard (Luc et al., 2017; 2018).

While this F2R-centric approach is sufficient for scenarios where stochasticity is sporadic (e.g.,
unexpected car turns in video prediction (Oprea et al., 2022)), it falls short for complex systems
where stochasticity is inherent and consistent (Gallager, 2013). In such cases, our study emphasizes
the importance of matching the Statistic-GT (F2SP) as a more robust evaluation strategy, particularly
for high-risk, safety-critical applications. By providing stochastic interpretation and stochasticity-
compatible evaluation methods, we aim to enhance the reliability of DNNs in such scenarios.

C.5 SENSITIVITY STUDY OF EVALUATION METRICS

Our work aligns with broader research efforts on sensitivity analysis of evaluation metrics across
different use cases, highlighting their strengths and weaknesses. Marcotte et al. (2023) explored how
problem dimensionality and Monte Carlo approximation quality affect scoring rules’ discriminative
capability using synthetic univariate and multivariate distributions (e.g., Normal, Exponential).
Pinson & Tastu (2013) and Alexander et al. (2024) compared Energy Score with other scoring rules
under varying multivariate probabilistic forecast dependencies, modeled with Gaussian Distributions.
Koochali et al. (2022) identified CRPS-Sum’s limitations in distinguishing forecast quality in real-
world time series with up to eight variables. Ferri et al. (2009) compared 18 classification-based
metrics, analyzing their sensitivity to class threshold choice, ranking quality, calibration, and class
distribution. Unlike these studies focusing on simple variables, we focus on characterizing evaluation
metrics in high-dimensional stochastic complex systems, using stochasticity in interactions as the
key sensitivity variable. Additionally, a different set of works examines the sensitivity of calibration
error to various design choices, such as the binning process (Nixon et al., 2019; Roelofs et al., 2022).
Unlike these studies, where the sensitivity variable is a property or design choice of the evaluation
metric itself, our sensitivity variable is a parameter of the underlying complex system being evaluated.

Further, limitations of classification-based metrics have been studied in other contexts. Metrics like
F1 score, precision, and recall are sensitive to evaluation protocols. In anomaly detection and security,
factors like train-test splits, base rates, and decision thresholds impact these metrics (Fourure et al.,
2021; Arp et al., 2022). In medical applications, Hicks et al. (2022) showed that interpretations of
these metrics depend on class distribution and testing methods. In NLP, Yacouby & Axman (2020)
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noted that these metrics evaluate only the top prediction, proposing alternatives. For geo-spatial
grids similar to ours, Sofaer et al. (2019b) found AUC-PR more reliable than AUC-ROC due to its
insensitivity to dataset imbalance. Contributing to this literature, we highlight a new key limitation:
classification metrics become unreliable in highly stochastic systems, e.g., (Huot et al., 2022).

D BACKGROUND

D.1 DESCRIPTION OF THE SYNTHETIC COMPLEX ENVIRONMENTS

fire

ember

tree
empty

Time

dead

empty

healthy

infected

Time

hold

sell

buy

inactive

Time

(a) (b) (c)

Figure 6: Figure shows the three different synthetic environments used in this work: (a) Forest Fire
Model, (b) Host Pathogen Model, and (c) Stock Market Model. Each system includes four discrete
states driven by different temporal dependencies.
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𝒒𝒊,𝒋𝒕&∆𝒕 = 𝒒𝒊,𝒋𝒕 + 𝒒𝒕(𝑵𝑹) 𝒒𝒊,𝒋𝒕&∆𝒕 = 𝒒𝒊,𝒋𝒕 − 𝒒𝒅𝒊𝒆

dead

𝒒𝒊,𝒋𝒕 < 𝒒𝒕𝒉+

(1) heat accumulation

(2) fuel ignition

(3) heat radiation

(4) fuel depletion 

Agent Lifecycle

Figure 7: Snapshot of forest-fire evolution in NetLogo, using a 64x64 grid of locally interacting
agents. Simulation is initialized by randomly assigning each agent in the grid a patch (green) or
no-patch (black) value and different fire seed locations (3 in our case). Each patch agent goes through
four stages, the flowchart of which is depicted in the right. The interaction between the agents leads to
the emergent behavior of forest fire evolution. The agent’s deterministic evolution rules are inspired
from Rothermel’s work on a heat transfer based model for wildfire evolution (Rothermel, 1972).

Forest Fire Model. We simulate forest fire evolution using NetLogo, a popular ABM (Tisue
& Wilensky, 2004). Each grid cell (i, j) represents an agent in one of four states st,(i,j) ∈
{empty, patch,fire, ember} (denoted s1, s2, s3, s4). We focus on the burning states s∗ =
{fire, ember} and define the binary variable Mt,(i,j) = I(st,(i,j) ∈ s∗). The simulation starts
on a 64× 64 grid, with each pixel initialized as a ‘tree’ or ‘no-tree’. Agents have heat values q(i,j)
crucial for the heat transfer in forest fire evolution. Fire seeds, placed at randomized (or fixed)
locations, provide initial heat to agents. The initial condition is set as q(i,j) = Iseed × qthreshold for
seed locations (i, j), and q(i,j) = 0 otherwise, where qthreshold is the ignition threshold and Iseed
amplifies seed heat values. A ‘tree’ agent accumulates heat from activated neighbors in its Moore
neighborhood, in line with heat transfer mechanisms described by (Rothermel, 1972), following the
equation:

q(i,j)(t+∆t) = q(i,j)(t) +
∑

(k,l)∈NR

1(k,l)(t)q(k,l)(t)
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The indicator function 1(k,l)(t) ensures only ‘fire’ state agents contribute to heat transfer. An agent’s
heat value q(i,j) exceeding qthreshold triggers a state change from ‘patch’ to ‘fire’, and then to ‘ember’ in
the next time step. ‘Ember’ agents radiate heat at a rate of qdie to adjacent non-fire patches, gradually
losing heat until radiation ceases. This process ends when ‘ember’ agents darken, indicating q(i,j)
falling below a certain threshold, thus terminating heat radiation and transitioning to the ‘dead’ state.
The process is summarized in Figure 7.

To control the degree of stochasticity in the model, we introduce pignite, the probability of ignition after
conditions are met (i.e., q > qthreshold). In deterministic scenarios, pignite = 100%, ensuring ignition
once the threshold is reached. We define the S-Level parameter as (100%− pignite); higher S-Level
values indicate more randomness in agent interactions, with S-Level 0 corresponding to deterministic
interactions. Figure 2 shows four different Monte Carlo simulations of forest fire evolution from the
same initial condition.

time

MC-1

MC-2

MC-3

MC-4

Figure 8: Figure shows four distinct Monte Carlo simulations of the evolution in the host pathogen
system from the same initial condition.

time

MC-1

MC-2

MC-3

MC-4

Figure 9: Figure shows four distinct Monte Carlo simulations of the evolution in the stock market
system from the same initial condition.

Host-Pathogen Model. The Host-Pathogen model (Sayama, 2013) simulates virus-host interactions
at the population level. Each grid cell (i, j) can be in one of four states: empty, dead, healthy, or
infected. We focus on the healthy state s∗ = healthy and define Mt,(i,j) = I(st,(i,j) = s∗). The
system evolves as follows: 1) Create a 64× 64 grid initialized with randomly distributed infected
(1%), healthy (75%), and empty (24%) cells. 2) Each dead cell is cured by neighboring healthy
cells with a probability pcure = 0.15. 3) Each healthy cell is infected by neighboring infected cells
with a probability pinfect = 0.85. 4) Infected cells transition to dead cells in the next timestep. 5)
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Repeat steps 2 to 4. This cycle models pathogen spread and recovery dynamics based on probabilistic
transition rules. To control the appearance of Statistic-GT, we used pcure as the S-Level parameter,
varying it between 10%, 15%, and 20%. Figure 8 shows four different Monte Carlo simulations of
system evolution from the same initial condition.

Stock Market Model. The Stock Market model (Wei et al., 2003) uses cellular automata to simulate
investor behavior influenced by neighboring investors. Each cell (i, j) represents an investor in
one of four states: hold, sell, buy, or inactive. We focus on the buying state s∗ = buy, defining
Mt,(i,j) = I(st,(i,j) = s∗). The system evolves as follows: 1) Create a 64× 64 grid with randomly
assigned states (buy, sell, hold, or inactive). 2) Each cell transitions stochastically based on the
dominant state of neighboring cells, following a transition matrix parameterized by market status
M = 0.05 (positive market sentiment) and investment probability pinvest = 0.95 (Wei et al., 2003). 3)
Cells that have been in the buying state for two consecutive timesteps become inactive. 4) Inactive
cells from the previous sequence transition back to buying. 5) Repeat steps 2 to 4. To control the
appearance of Statistic-GT, we introduced the S-Level parameter as 100−pinvest, resulting in S-Levels
of 5%, 10%, and 15%. This models investor dynamics influenced by market conditions and peer
interactions. Figure 9 shows four different Monte Carlo simulations of system evolution.

D.2 PROPER SCORING RULES PENALIZE UNCERTAIN PREDICTIONS AT MICRO SCALE

Uncertain 
Predictions are 

penalized

Only the high 
confidence predictions 
receive zero penalty

Figure 10: NLL for positive outcomes as a function of predicted probability in a binary classification
problem. NLL penalizes uncertain predictions at the micro-level detail.

To clarify why proper scoring rules cannot test fidelity to the Statistic-GT, consider evaluating a single
cell within the 64× 64 grid using Binary Cross-Entropy (BCE), which computes the Negative Log
Likelihood (NLL) of the true label y ∈ {0, 1} given the predicted probability p. NLL is an optimal
metric for evaluating probabilistic forecasts (Neyman & Pearson, 1933), calculated as:

BCE(y, p) = −[y log(p) + (1− y) log(1− p)].

As shown in Figure 10, NLL penalizes uncertain predictions—those with predicted probabilities
away from 0 or 1—even if they are accurate in expectation. Only high-confidence predictions receive
minimal penalty. Since proper scoring rules promote sharpness, they penalize uncertain predictions
at the micro-scale when they do not match the Observed-GT.

In contrast, the binning process in ECE allows flexibility in micro-scale mismatches as long as
the overall predictions are calibrated. This enables ECE to test fidelity to macro properties of the
stochastic complex system, such as the Statistic-GT.

E DNN CHARACTERIZATION

E.1 DESIGN RATIONALE BEHIND CONVLSTM-CA AND CONV-CA

The ConvLSTM architecture is chosen for its ability to efficiently model spatiotemporal systems,
aligning well with the characteristics of the Forest-Fire system. Our modified version (see Fig-
ure 11.(a)), convLSTM-CA, places a ConvLSTM cell with a 3× 3 kernel between an Encoder (with a
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Figure 11: (a) Auto-regressive training of the DNN, (b) Softmax probability map from a convLSTM
with a bottleneck, and (c) Softmax probability map from convLSTM-CA with no bottleneck.

3× 3 kernel) and a Decoder (with a 1× 1 kernel). The Encoder takes an RGB image and transforms
it into a latent tensor during a 10-timestep observation window. This tensor is then processed by the
ConvLSTM cell, maintaining its spatial dimensions, before the Decoder produces a burnt map grid
of softmax probabilities.

This design choice of preserving spatial dimensions is crucial for modeling the cellular automata
application. Reducing the spatial dimensions of the latent tensor is a popular design choice in video
prediction models such as recurrent neural network-based (Wang et al., 2017; 2018) and simple
CNN-based models (Gao et al., 2022). This reduction is often employed to decrease computational
complexity and to capture essential spatial features while discarding less informative details. However,
we observe that adding a bottleneck causes individual pixels (agents) to lose their identity. Maintaining
these dimensions helps preserve each agent’s identity, a critical factor for developing a DNN that
minimizes mis-calibrated forecasts arising from limited model capacity. For instance, as seen in
Figure 11. (b), using a compressed latent dimension results in a forecast cloud around predictions for
deterministic fire evolution scenarios, which does not accurately reflect the system’s true evolution. In
contrast, as shown in Figure 11.(c) an uncompressed latent space yields predictions without a forecast
cloud, aligning closely with the deterministic system’s true evolutionary rules. Conv-CA used in
Section G.4, is a version of Conv-AE (Huot et al., 2022) with the spatial bottleneck eliminated.

E.2 IMPACT OF CHANGING S-LEVEL ON STATISTIC-GT AND DNN PREDICTIONS

S-level: 0

S-level: 10

S-level: 20

Statistic-GT DNN
Prediction

Observed-GT

(a) (b)

DNN Forecast

Fr
eq

ue
nc

y

Figure 12: (a) Visualizations of forest-fire snapshots for different S-Levels (one per row), showing
Statistic-GT, Observed-GT, and corresponding DNN predictions (raw forecast values). DNN predic-
tions closely resemble Statistic-GT. (b) Histograms showing the frequency of DNN forecast values
for different S-Levels. The DNN’s predictions become less confident as S-Level increases.

In this section, we analyze the impact of changing S-Level on Statistic-GT and DNN’s raw predictions,
and further demonstrate that the DNN learns to predict the Statistic-GT in highly stochastic scenarios.
For a given initial condition (agent configuration, seed location), the S-Level uniquely determines
the macro-scale pattern observed in the Statistic-GT. This is evident in the first column of Figure
12.a, where all three S-Level rows share the same initial condition but differ in S-Level. As S-Level
increases, the cloudiness in the macro pattern also increases, confirming that S-Level uniquely
determines the macro pattern in the Statistic-GT for a given initial condition.
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Figure 13: Correlation between Statistic-GT and
DNN forecasts, indicating that the DNN is predict-
ing the system property Statistic-GT.

In the second and third columns of Figure 12.a,
we present the Observed-GT for a given Monte
Carlo (MC) sample and the corresponding DNN
prediction on that sample. Higher S-Levels cor-
relate with greater cloudiness in the DNN output.
While the DNN’s predictions begin to resemble
the Statistic-GT, the corresponding Observed-
GT can vary significantly and may not match
the DNN’s prediction.

To further investigate the alignment between the
DNN’s predictions and the Statistic-GT, we plot
the mean Statistic-GT against the corresponding
mean DNN forecast in Figure 13. The strong
correlation suggests that the DNN is learning
to predict the Statistic-GT (see qualitatives in
Figure 14). This capability is linked to the use
of Binary Cross-Entropy (BCE) loss—a proper scoring rule—which promotes calibrated forecasts
(Gneiting & Raftery, 2007).

As the DNN learns the Statistic-GT, it begins making more uncertain predictions. Figure 12.b
illustrates histograms of DNN predictions across 1000 simulations for each S-Level. In deterministic
settings, predictions are primarily binary (0 or 1), but at S-Level 20, predictions span the entire 0-1
range, indicating increased predictive uncertainty in highly stochastic scenarios. However, these
uncertain predictions still convey valuable information and contribute to a larger pattern that emerges
at the macro scale.

Due to the inherent stochasticity of the system, it is fundamentally impossible for the DNN to
replicate the Observed-GT; instead, it learns to replicate the Statistic-GT. If a DNN cannot predict the
Statistic-GT, it is fundamentally incapable of being used in that scenario, as it has learned a different
stochastic process.
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Stochastic ProcessObserved GT

DNN Forecast

Observed GT

DNN Forecast

Observed GT

DNN Forecast

Observed GT

DNN Forecast

Statistic GT

Figure 14: Qualitative visualizations of the DNN’s forecasts across four different Monte Carlo
simulations for the forest fire dataset. Frames are shown every five time steps. The DNN observes
the first 10 time steps (first 2 frames) and predicts the next 50 time steps (last 10 frames). We can
observe the difference between the DNN’s forecasts and the Statistic-GT, which arises because of the
determinism that is injected into the DNN’s predictions due to its observation of the first 10 frames of
the fire evolution. However, the DNN’s predictions closely resemble the evolution of Statistic-GT.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

F ADDITIONAL RESULTS

F.1 IMPACT OF MACRO-VARIANCE ON FIDELITY TO REALIZATION STRATEGIES

In this section, we show that classification-based metrics like Precision, Recall, and AUC-PR, which
test F2R, are highly sensitive to macro variance, exposing the limitations of Observed-GT as an
evaluation target. The section motivates the use of Statistic-GT as a more stable alternative for
assessing model performance in stochastic systems.

Macro Random Variable. To formalize the system-level modeling of stochastic fire evolution, we
leverage insights from statistical mechanics (Eastman, 2015). At the microscopic level, individual
agent behavior is captured through the Micro RV, Mt,(i,j). At the macroscopic level, the system
behavior is represented by the Macro RV, Zt. Formally, Zt is defined as:

Zt =

H∑
i=1

W∑
j=1

Mt,(i,j)

Applying the Central Limit Theorem for a large number of Micro RVs (≈ 103), Zt can be modeled
using a Normal distribution, characterized by its mean E[Zt] and variance V ar[Zt]. Sampling from
Zt provides a macrostate value, representing the aggregate state of all agents. It should be noted that
multiple microstates can correspond to the same macrostate value. Overall, V ar[Zt] captures the
system’s tendency to explore diverse macrostates, with higher variance indicating greater overall
unpredictability. The parameters of the Macro RV are extracted from the ESP by recording the
number of unburnt trees (macrostate) at each time step. Using 1000 MC simulations, we generate a
distribution at each time step to compute E[Zt] and V ar[Zt].

F.1.1 CHARACTERIZING THE S-LEVEL TEST CASES.

Figure 15.(a) shows the Macro RV Zt over time, with colors from red (S-Level=0) to black (S-
Level=50) in increments of 5. The central line and shaded areas represent E[Zt] and V ar[Zt].
Figure 15.(b) highlights V ar[Zt] over time for select S-Levels (0, 5, 10, 15, 20) used in our bench-
marks. Key observations: At S-Level 0 (deterministic), the absence of V ar[Zt] reflects a singular
evolutionary path. Generally, V ar[Zt] increases with S-Level and time, peaking at S-Level 20,
indicating maximum variance and chaotic behavior typical of real-world systems (Zinck & Grimm,
2008). Beyond S-Level 20, fire dies out, reducing active pixels and V ar[Zt]. This setup allows us to
test evaluation metrics under varying stochasticity, with S-Level 0 being deterministic and S-Level 20
representing peak randomness.

F.1.2 SENSITIVITY OF F2R EVALUATION STRATEGY TO THE SYSTEM MACRO-VARIANCE

Methodology. For this experiment, we perform inference on the DNN trained with S-Level 20.
The test dataset comprises 1000 MC simulations of the S-Level 20 ESP forest fire test case, all

𝑽𝒂
𝒓(
𝒁 𝒕
)

time

#u
nb
ur
nt
-tr
ee
s

time

Figure 15: Characterizes the Macro RV Zt: (left) ESP representing Zt across different S-Levels:
mean is the center line (Statistic-GT) and variance is the shaded region; (right) V ar[Zt] over time for
selected S-Level test cases used in this study. S-Level 20 shows chaos (peak variance).
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𝑽𝒂𝒓(𝒁𝒕)

Figure 16: SD of evaluation metrics versus V ar[Zt] at S-Level 20. Higher SD indicates increased
sensitivity to V ar[Zt]. Classification-based metrics (Precision, Recall, AUC-PR) show greater
sensitivity in highly stochastic environments, highlighting their unreliability in these settings. In
contrast, MSE and ECE exhibit reduced sensitivity as they do not exclusively test F2R.

with identical initial conditions. We calculate the evaluation metric independently for each timestep
of each MC simulation. Each simulation at a given timestep t has a specific V ar[Zt], reflecting
macro-variance at that moment. We measure the Standard Deviation (SD) of the evaluation metric
across the 1000 MC simulations against V ar[Zt] to assess the metric’s sensitivity to macro-variance.
Since all simulations originate from the same stochastic process, an ideal metric that is faithful to the
stochastic process, should demonstrate minimal sensitivity to individual realizations of the ESP.

Results. Figure 16 shows the SD of evaluation metrics against V ar[Zt]. The significant increase
in SD for classification-based metrics (Precision, Recall, AUC-PR) highlights their heightened
sensitivity to macro-variance and reduced reliability. Precision and Recall suffer high variance in
stochastic settings due to their reliance on thresholding, which can produce predictive outcomes
misaligned with the actual GT. This issue stems from the incompatibility of "thresholding" with
stochastic processes, extending beyond the common critique of arbitrary threshold selection, such as
a 0.5 cutoff (Fourure et al., 2021). Although AUC-PR is less sensitive than other threshold-based
metrics, it still encounters challenges from its integration of False Positives (FP) through Precision,
where the traditional concept of FP loses relevance because any non-zero forecast by the DNN renders
both outcomes (1 and 0) plausible.

In contrast, MSE and ECE demonstrate lower sensitivity to macro-variance due to their inherent
asymptotic convergence guarantees (Gneiting & Raftery, 2007). While both metrics exhibit similar
trends in their standard deviation relative to V ar[Zt], they converge to different steady-state values.
Specifically, the steady-state value of MSE is directly influenced by V ar[Zt], making it a function of
this variance, whereas ECE’s steady-state value remains unaffected by V ar[Zt] in its convergence
(see Figure 17). This theoretical distinction is further explored in §3.4.2.
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(a) (b)
Figure 17: Testing the asymptotic convergence of MSE and ECE. The DNN is trained and tested on
the same S-Level. Each sample is a grid of 64× 64 predictions at t=59 in the test split of the synthetic
forest dataset. As the number of samples increase in the calculation of MSE and ECE, they both
converge. The MSE converges to a value that incorporates the V ar(Zt), while the ECE converges to
a low value as it excludes the impact of V ar(Zt).

F.2 CALIBRATION CURVE OF THE PERFECT PREDICTOR PREDICTING STATISTIC-GT

Figure 18: Calibration of a perfect predictor (predicting Statistic-GT) for different ESP test cases.

F.3 GENERALIZABILITY OF ECE’S DIAGONAL BEHAVIOR

F.3.1 OTHER DNN ARCHITECTURES

Details about the DNN Architectures: (1) AR-NCA (Kang et al., 2024): AR-NCA involves a recurrent
cellular attention module that couples long short-term memory (LSTM) and cellular self-attention, (2)
multi-layer ConvLSTM (num_layers=2), (3) convLSTM-btk-2: convLSTM with a spatial bottleneck
that downsamples by 2, (4) convLSTM-btk-4: convLSTM with a spatial bottleneck that downsamples
by 4. Using the deterministic case as the basis (train-test s-level=0), DNN quality is of the order
1 ≈ 2 > 3 > 4.
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AR-NCA multi-layer ConvLSTM ConvLSTM-btk-2 ConvLSTM-btk-4

AR-NCA multi-layer ConvLSTM ConvLSTM-btk-2 ConvLSTM-btk-4

(b) MSE
AR-NCA multi-layer ConvLSTM ConvLSTM-btk-2 ConvLSTM-btk-4

(c) 𝟏 −	AUC-PR

(a) ECE

Figure 19: Evaluation metric scores for four different DNNs, from strongest (leftmost) to weakest
(rightmost) using evaluation metrics (a) ECE, (b) MSE, (c) AUC-PR, and (d) Recall. While MSE,
AUC-PR, Recall depict marked degradation in performance, ECE remains fairly stable, though slight
increase is observed. In general, ECE shows lower variation on the synthetic dataset, indicating that
it has a lower discriminating power.

F.3.2 OTHER EVALUATION METRICS

(a) (d)(c)(b)

Figure 20: Matrix heatmap for error-based scores. First three, BCE, CRPS, Energy Score are proper
scoring rules. Last one, is a popular spatial correlation based evaluation metric. None of them exhibit
the sensitivity to stochasticity which can be observed for ECE.

(a) (d)(c)(b)

Figure 21: Matrix heatmap for other classification based metrics.
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Figure 22: Long Horizon Performance of the DNN using (a) AUC-PR, (c) MSE, and (d) ECE
[calibration curve in inset]. ECE demonstrates that the DNN’s long horizon predictions remain stable.

F.4 LONG HORIZON BEHAVIOR OF ECE VS. BASELINES

Figure 22 illustrates the DNN performance for the forest fire model using AUC-PR, MSE, and
ECE when the s-levels of the training and test data match, corresponding to the diagonal in Figure
3. Each evaluation score aggregates predictions and GT across 300 test simulations per time step.
While baselines show declining scores with increasing S-Level and longer prediction horizons, ECE
scores remain stable, indicating faithfulness to the Statistic-GT. In the special case of deterministic
evolution (S-Level 0), all three evaluation metrics agree. For a perfect predictor, Refinement is 0 for
deterministic evolution since frac(Bm) = 0 or 1 (§3.4.2), resulting in stable MSE. AUC-PR (F2R) is
effective since there is only one possible realization. AUC-PR is measuring the ability of the DNN to
generalize over different forest and fire seed configurations considering deterministic evolution.

F.5 ECE CONVERGENCE VS. NUMBER OF SAMPLES

DNN trained and tested on same S-Level DNN trained on S-Level 10

Figure 23: Testing the asymptotic guarantees of ECE. Each sample is a grid of predictions (64× 64)
at t=59 in the test split of the synthetic forest dataset. As the number of samples increase in the
calculation, ECE converges. We can observe, that for the asymptotic guarantees to kick in, sufficient
number of samples are required.
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G APPLICATION OF DEEP LEARNING IN WILDFIRE MODELING

G.1 MODELS FOR WILDFIRE MODELING

Currently, forest fire spread models are categorized into three classes: empirical, semi-empirical,
and physical. Empirical models, e.g., DNN modeling using remote sensing data (Jain et al., 2020),
analyze fire data statistically without exploring combustion mechanisms. Semi-empirical models,
often the preferred choice, like (Finney, 1998; Rothermel, 1972) integrate physical laws, such as heat
transfer, but necessitate resource-intensive ground surveys for calculating model parameters (Finney,
1998). Physical models, involving complex equations for heat dynamics (Séro-Guillaume & Margerit,
2002), are too complex for broad application. All these classes of models are deterministic and do
not explicitly assume fire dynamics to be stochastic.

Table 4: Selected works in Wildfire Prediction

Work Window Size DNN Evaluation Metric

(Radke et al., 2019) Obs.: T
Pred.: T+24h CNN F1-score,

Recall, Accuracy

(Yang et al., 2021) Obs.: [T-52w, T]
Pred.: T+5w

CNN,
LSTM AUC-ROC, MSE

(Huot et al., 2022) Obs.: T
Pred.: T+24h CNN AUC-PR,

Precision, Recall

Table 5: Current Evaluation Metrics

Metric Description

Precision Proportion of true positive
predictions among all positive predictions

Recall Proportion of true positive
predictions among all actual positive instances

Accuracy Proportion of correct
predictions among all predictions

F1-score Harmonic mean of precision
and recall

AUC-PR Area under the precision-recall curve,
evaluating trade-off between precision and recall

AUC-ROC
Area under receiver operating characteristic curve,

evaluating trade-off between true positive rate
and false positive rate

MSE Mean squared error, measuring average squared
difference between predicted and actual values

DNN-based modeling of Wildfires. A critical application area is wildfire prediction, where the need
for improved forecasts is driven by the growing frequency and severity of wildfires (Westerling et al.,
2006; Thompson et al., 2016). DNNs in this domain utilize multivariate observations—including
weather, topology, and historical fire data—to predict future fire maps, identifying whether specific
locations will burn (Huot et al., 2022; Radke et al., 2019; Yang et al., 2021). The DNN must learn the
stochastic "rules" of fire evolution to make accurate predictions. Leveraging the broad spatial and
temporal coverage of remote sensing data from satellites (Huot et al., 2022) and aircraft-based sensors
(Doshi et al., 2019), DNN models are trained to capture fire evolution dynamics. Conventional
modeling tools, such as FARSITE (Finney, 1998), have high operational costs due to reliance on
ground-based data collection. The growing application of DNNs in wildfire prediction, especially
with remote sensing data, is evident in key studies (Radke et al., 2019; Huot et al., 2022; Yang et al.,
2021) summarized in Table 4 and reviewed comprehensively in (Jain et al., 2020). For example,
FireCast (Radke et al., 2019) outperforms traditional models by 20% in predicting 24-hour wildfire
perimeters using satellite imagery (Finney, 1998). These DNNs integrate various covariates like
vegetation, terrain, and weather conditions; for example, Huot et al. use a 64 x 64-pixel grid, each
containing 11 observational variables (Huot et al., 2022). DNNs operate in two phases for wildfire
prediction: learning fire evolution rules during observation, and applying this knowledge for future
predictions. DNNs are trained using Binary Cross Entropy (BCE) loss. Post-training, the DNNs are
evaluated using evaluation metrics in Table 52.

2AUC-ROC is not recommended due to class imbalance (Huot et al., 2022; Sofaer et al., 2019a).
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G.2 OBSERVATIONAL VARIABLES IN NEXT DAY WILDFIRE SPREAD (NDWS) DATASET

Table 6: Observational variables and their description in the NDWS dataset (Huot et al., 2022)

Observational Variable Description
Elevation Terrain height above sea level
Wind Direction The direction from which the wind originates
Wind Speed Velocity of the wind
Minimum Temperature Lowest daily temperature
Maximum Temperature Highest daily temperature
Humidity Amount of water vapor in the air
Precipitation Amount of rain, snow, etc., that falls
Drought Index Measure of dryness indicating drought conditions
Vegetation Vegetation indices indicating plant health and coverage
Population Density Number of individuals per unit area
Energy Release Component (ERC) Indicator of fire potential energy release

G.3 CALIBRATION CURVE ON NDWS DATASET

Figure 24: [Left] displays the histogram of forecasts generated by Conv-AE; [Right] shows a
Calibration Curve that illustrates forecast accuracy in an interpretable manner. This curve suggests
(1) the DNN’s tendency towards overconfidence in mid-range forecasts, and (2) the accuracy of its
probabilistic predictions is better for forecasts at the lower and upper ends of the probability spectrum.

G.4 RESOLVING RANK CONFLICT IN DNN RANKINGS

Table 7: Performance of DNNs on NDWS Dataset (ranks in parentheses by each evaluation metric)

DNN AUC-PR↑ MSE↓ ECE↓
Conv-AE (Huot et al., 2022) 0.2473 (5) 0.0124 (4) 0.0119 (4)
Conv-CA 0.2631 (4) 0.0146 (5) 0.0207 (5)
AR-NCA (Kang et al., 2024) 0.2790 (2) 0.0099 (2) 0.0012 (1)
SegFormer (Xie et al., 2021) 0.2727 (3) 0.0100 (3) 0.0020 (2)
U-Net (Ronneberger et al., 2015) 0.3302 (1) 0.0096 (1) 0.0023 (3)

Conflicts in model rankings are key to model selection (Heaton et al., 2018). We simulate selecting
the optimal DNN and explore how ECE complements existing metrics.

DNN Models used. We use five architectures: Conv-AE, a convolutional autoencoder from Huot
et al. (Huot et al., 2022); Conv-CA, a modified Conv-AE without the spatial bottleneck (details in
Appendix E.1); AR-NCA, an Attentive Recurrent Neural Cellular Automata for locally interacting
discrete systems like forest fires (Kang et al., 2024); SegFormer, a transformer-based segmentation
model (Xie et al., 2021); and U-Net, a convolution-based model (Ronneberger et al., 2015).

Results and Discussion. Table 7 presents evaluation scores (AUC-PR, MSE, and ECE) for five DNNs
on the test split, revealing rank conflicts between the metrics. This raises the question: Which metric
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best reflects model performance? Based on our findings, each metric evaluates a different system
property: AUC-PR measures fidelity to the Observed-GT, ECE assesses fidelity to the Statistic-GT,
and MSE lies somewhere in between. In complex systems, failure to replicate the Observed-GT
isn’t necessarily problematic due to inherent stochasticity, but a high ECE indicates a fundamental
mismatch between the trained DNN and the test data, meaning the model should not be used. The
evaluation strategy should prioritize ECE as the first metric, as a high ECE indicates the DNN has
failed to capture the test data’s stochasticity. Afterward, fidelity to realization metrics should be
applied. This study ultimately advocates for a multi-faceted evaluation approach, with fidelity to
the stochastic process as a crucial factor. While the NDWS dataset has a one-step forecast horizon,
limiting our ability to assess ECE’s stability over time, future work with datasets featuring longer
horizons could explore this further.
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H A PRACTICAL USER GUIDE FOR EVALUATING COMPLEX SYSTEMS
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Figure 25: Visualization of prediction performance across different scenarios within the proposed
evaluation framework. The evaluation framework distinguishes between two criteria: F2R and F2SP.
F2R evaluates how closely the model predictions match a single observed outcome, assessed using
metrics like AUC-PR (plotted along the x-axis as 1−AUC-PR, where lower values are better). F2SP
evaluates whether the model captures the underlying stochastic process, measured by ECE (y-axis,
where lower values indicate better calibration). The dashed gray line represents MSE, which balances
F2R and F2SP. The × symbols represent the DNN’s performance for different metrics. (A) Low
errors across all metrics indicate the DNN matches the Observed-GT and captures the stochastic
process. (B) High AUC-PR error but low ECE suggests the DNN has learned the stochastic process
but fails to replicate the single Observed-GT. (C) High errors across all metrics suggest the DNN fails
to match both the Observed-GT and the stochastic process. This visualization helps users analyze
model performance across different evaluation criteria. See Table 8 for detailed interpretation.

Complex systems are modeled as a set of interacting components. These components exhibit random
interactions, resulting in highly divergent outcomes and posing unique challenges for evaluation. This
guide introduces a practical evaluation framework for machine learning (or statistical) models that
forecast the behavior of such high-dimensional complex systems. The framework evaluates model
predictions against ground truth while accounting for the inherent randomness in system evolution.

Traditional evaluation criteria focus on matching a single observed outcome. However, in stochastic
systems, this outcome represents just one sample of the underlying process, as identical starting
points can yield diverse results. This makes the current evaluation criteria inadequate.

Our evaluation framework offers a unique perspective on model performance in stochastic complex
systems by distinguishing between Fidelity to Realization (F2R), which focuses on matching a
single observed outcome, and Fidelity to Stochastic Process (F2SP), which evaluates whether a
model captures the system’s broader stochastic dynamics (§3). Using metrics like AUC-PR, ECE,
and MSE, the framework provides a cohesive evaluation strategy by integrating these metrics within
a unified structure. Rather than treating them independently and risking rank conflicts (§G.4), this
framework aligns the metrics to offer a comprehensive and actionable understanding of a model’s
ability to balance individual outcome prediction with capturing the underlying stochastic process.
Figure 25 visually summarizes this framework, highlighting scenarios based on these metrics.

Examples of Applications:

• Remote Sensing Grids: Cells represent land areas, e.g., wildfire spread or weather events.
• Virtual Grids: Cells represent assets in financial markets or road segments in traffic systems.
• Epidemiology: Cells track infection in regions or neighborhoods.

The next page provides a detailed explanation of the framework’s implementation and interpretation.
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FRAMEWORK REQUIREMENTS

Modeling Complex Systems on a Grid: We model the system on a grid of size H ×W , where:

• Grid Cells: Each cell (i, j) at time t occupies one of m states, st,(i,j) ∈ {s1, . . . , sm}.
• Target State: A specific state s∗ is tracked over time for each grid cell.
• Observed Ground Truth (Observed-GT): For state s∗, define bt,(i,j) = 1 if st,(i,j) = s∗,

else 0. Collectively, these values form the ground truth grid Bt = {bt,(i,j)}H×W .

• DNN Predictions: For each grid cell, the DNN predicts p̂t,(i,j) ∈ [0, 1], representing the
probability of s∗. These predictions form the grid-level output P̂t = {p̂t,(i,j)}H×W , which
is compared against the corresponding Bt over the forecast horizon t = 1, 2, . . . , T .

CALCULATING EVALUATION METRICS

For each time step t, calculate evaluation metrics using ground truth Bt and predictions P̂t (standard
library implementations in footnotes):

• AUC-PR: Measures how well predictions match the Observed-GT (F2R)3.
• ECE: Assesses calibration against expected outcomes (F2SP)4.
• MSE: Balances F2R and F2SP5.

Note: Ensure the grid size H ×W is large enough for reliable metric computation.
Larger grids or batch sizes improve reliability (see limitations of ECE in §7).

Example Usage: In our evaluation, we tested 300 simulations where the DNN observed the first 10
frames and predicted the next 50. This resulted in 300× 50× 64× 64 (B × T ×H ×W ) ground
truth samples (Bt) and predictions (P̂t), each of size 64× 64. For the long-horizon plot in Figure 4,
scores were calculated for each time step T along the B axis. For the stochastic matrix in Figure 3,
these scores were averaged across time into a single value. Metrics can also be computed in batches
for finer-grained analysis, provided a sufficiently large batch size is used for convergence (see §F.5).

INTERPRETING EVALUATION SCENARIOS WITH THE PROPOSED FRAMEWORK

Table 8 summarizes three evaluation scenarios to help users interpret results and their implications.

Table 8: Evaluation Scenarios and Their Impact.

Scenario 1− AUC-PR ECE Interpretation and Impact
A. Low Errors
Across All Metrics

Low Low The DNN matches the Observed-GT and is well-
calibrated, capturing both the specific outcome
and the underlying stochastic process. Ideal for
low-stochasticity environments, this indicates the
model is suitable for deployment.

B. High AUC-PR Er-
ror but Low ECE

High Low The DNN is well-calibrated but doesn’t match the
Observed-GT. It captures the stochastic process
but fails to replicate a single realization, making
it useful for high-stochasticity settings or longer
prediction horizons. Predictions provide valuable
insights into risk and variability.

C. High Errors
Across All Metrics

High High The DNN is poorly calibrated and fails to match the
Observed-GT, indicating fundamental issues with
model training or system complexity. Predictions
are unreliable and unsuitable for decision-making.

3Scikit-learn AUC documentation
4Uncertainty-calibration documentation
5Scikit-learn MSE documentation
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https://scikit-learn.org/dev/modules/generated/sklearn.metrics.auc.html
https://pypi.org/project/uncertainty-calibration/
https://scikit-learn.org/1.5/modules/generated/sklearn.metrics.mean_squared_error.html
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