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Abstract

Large language models (LLMs) have shown
strong performance in solving math problems,
and there is growing research on evaluating
their robustness. Unlike previous studies that
create problem variants by adding perturbations
to a single problem, this paper focuses on the
interaction between problems. Specifically, we
combine two original problems into one with
a logical connection and measure the LLM’s
performance on both the new and original prob-
lems. We propose an automated pipeline with
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98.2% accuracy and conduct extensive experi-
ments on three datasets (1 manual, 2 synthetic),
covering 13 LLMs of various sizes, including
open-source models (7B to 671B) and closed-
source models like o1-mini and ol-preview. Re-
sults show that simple format combinations can
significantly reduce LLM performance, even
when the underlying math remains unchanged.
Additionally, combined problems with interme-
diate variables and values offer a better way
to evaluate solution accuracy. Finally, we an-
alyze the impact of factors like difficulty and
length on LLM performance, offering insights
for future research.

1 Introduction

Mathematical reasoning is the key to the develop-
ment of artificial intelligence (Tenenbaum, 2018)
and thus serves as an important aspect for evalu-
ating large language models (LLMs) (Guo et al.,
2023; Chang et al., 2024; Ahn et al., 2024). Current
mainstream evaluation methods focus on construct-
ing benchmarks of various difficulty levels, ranging
from elementary school-level benchmarks (Cobbe
et al., 2021) to olympic-level (Huang et al., 2024;
Zheng et al., 2022), to assess a model’s problem-
solving capabilities. Although model scores on
these benchmarks have been steadily increasing,
the question remains contentious: have LLMs
truly learned to solve math problems, or have they
merely taken shortcuts through pattern matching

two-digit multiples of g. W

hat is the value of M + N? Step 10: Calculate M + N.

M=104 and N=91,so M + N = 104 + 91 = 195. X

The final answer is: X

Table 1: An example of a compositional math prob-
lem, where Llama3.1-70b-it successfully solves the seed
problems but fails on the compositional one.

(Patel et al., 2021; Mirzadeh et al., 2024; Shi et al.,
2023) or even data leakage (Golchin and Surdeanu,
2024)? For instance, studies by Zhou et al. (2024b)
and Mirzadeh et al. (2024) demonstrate that alter-
ing the entity names or adding irrelevant conditions
can confuse models and disrupt their performance.
This widespread situation has raised concerns about
the generalization and robustness of LLMs.

In response to these issues, we propose a novel
evaluation perspective for LLMs’ robustness eval-
uation. Unlike previous works (Mirzadeh et al.,
2024; Li et al., 2024), which generate various kinds
of problems variants from single problems, our ap-
proach considers the interaction between problems,
focusing more on the compositional generalization
(Xu and Wang, 2024; An et al., 2023; Li et al.,
2021) in robustness. Specifically, we combine two
existing mathematical problems into a new one by
applying simple conditional transformations. As
shown in Example of Figure 1, we replace the num-
ber 13 in problemy with the variable ¢, and then
substitute ¢ with an equivalent condition, which



is the problem;. For humans, if they have mas-
tered both Problem; and Problems individually,
this combined problem can be easily solved as well.
Such compositional generalization, which refers to
understanding unseen combinations of seen primi-
tives, is an essential reasoning capability in human
intelligence (An et al., 2023). Therefore, by evalu-
ating the model’s performance on both the original
and the combined problem, we can assess its com-
positional generalization ability.

To automate the synthesis of problems, we pro-
pose a four-step pipeline, which uses LLMs and
Tool-Integrated Reasoning (TIR) (Gou et al., 2024;
Tahmid and Sarker, 2024) to verify problems,
achieving an accuracy of 98.2% in the generated
problems. This method not only ensures the cor-
rectness of the final answer but also provides in-
sight into the intermediate variable names and val-
ues. This allows us to detect cases where the solu-
tion is correct but the reasoning process is flawed,
making the evaluation results more objective and
accurate. Using this pipeline, we synthesized three
different datasets, one of which was additionally
manually annotated.

We conducted extensive experiments on the man-
ually annotated dataset, covering 13 mainstream
LLMs, including open-source models ranging from
7B to 671B parameters, as well as state-of-the-art
closed-source models like 01-mini and ol-preview.
The experimental results show that even when the
mathematical essence remains unchanged, a sim-
ple form of combination can significantly reduce
the performance of LLMs. Powerful reasoning
models such as ol-mini and deepseek-r1 experi-
enced a decrease of about 5% and 6%, respectively.
This demonstrates that combined problems present
an additional challenge to LL.Ms and reveal weak-
nesses in their mathematical generalization capa-
bilities.

To further validate the reliability of these find-
ings, we conducted detailed experiments: (1) By
controlling the consistency of the problem context
length, we confirmed the necessity of combining
problems. (2) By ensuring consistent reasoning
lengths, we verified the reliability of the conclu-
sions. (3) Through confidence distribution exper-
iments, we found that even when LLMs correctly
solve all sub-problems consecutively up to 8 times,
their confidence still decays when faced with a
combined problem. (4) Finally, we try to analyze
the impact of different feature combinations on the
generalization ability of LLLMs, providing insights

and recommendations for future work.

2 Related Work

Through data collection and cleaning of resources
from textbooks, websites, and other materials
(Yue et al., 2024), many benchmark datasets have
been proposed to train and validate the mathemat-
ical problem-solving abilities of LLMs. These
datasets can be categorized based on difficulty into
elementary-school level (Cobbe et al., 2021), high-
school level (Hendrycks et al., 2021), college-level
(Sawada et al., 2023), and olympic-level (Huang
et al., 2024; Zheng et al., 2022) datasets. The abun-
dance of these datasets has greatly contributed to
the development of LLMs, with easier datasets
(Cobbe et al., 2021) almost solved (Qwen et al.,
2025). However, these benchmarks mainly focus
on the final results of individual problems and do
not intuitively reflect the mathematical robustness
of LLMs (Zhou et al., 2024a).

To address this issue, many works have intro-
duced various modifications to the original bench-
marks to assess how models perform when faced
with subtle perturbations (Li et al., 2024), such as
semantic perturbations (Wang et al., 2023; Zhou
et al., 2024b), problem reversal (Yu et al., 2024;
Berglund et al., 2024), and irrelevant distractions
(Shi et al., 2023; Li et al., 2023). Most of these
works provide an automated synthesis pipeline.
However, mathematical problems often involve pre-
cise numerical design and logical interconnections,
making the accuracy of automated synthesis rel-
atively low (as shown in Table 3), which often
requires manual annotation and modification.

3 Compositional Problem Generation

This section introduces the pipeline for automati-
cally synthesizing math problems, as shown in Fig-
ure 1. The main process of the method is to mask a
digit in a math problem problem, and replace the
digit with an equivalent condition, which is another
modified problem problem,. We break this process
down into four steps: handling problem,, handling
problem,, establishing relationships, and renaming.
Each step employs a validation strategy to check
whether the LLM’s execution results are correct.
Notably, for the comparison and computation of
numeric values within the pipeline, we adopted the
TIR (Gou et al., 2024; Tahmid and Sarker, 2024)
by using Python interpreter to obtain more reli-
able results. Python has well-established symbolic
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Figure 1: The overall pipeline structure of automatic compositional math problem generation, including four steps
with LLM and Python interpreter. The main processing steps are on the left side of the dashed line, while the right
side verifies the result of LLM processing. Examples are provided in gray text beneath each entity.

math libraries such as SymPy' , which can handle
comparisons and calculations involving fractions,
decimals, and other cases, e.g., % and 0.5.

For the sake of clarity, we define the two prob-
lems being processed as p; and ps, with their
corresponding answers being a; and as. Our
goal is to derive the compositional problem pio
and its answer aj2 by LLM M and Python in-
terpreter Py. The prompts of instruction I =
{I, I, ..., 14, I}, I.} for each step are provided in
Appendix D.

3.1 Handling Problem;

Task. Given instruction [;, problem p;, and an-
swer aj, our goal is to extract a numeric value
vy from a1, which we denote as a new symbol
‘new_variable1’, and provide its definition d;:

o1 ~Pup(-|11 @ p1 @ ar), (D

where 01 = v1 @ dy, and @ refers to concatenation.
As the example shown in Figure 1, v; is the inte-

"https://www.sympy.org/

ger ‘1’, which is the larger answer to the problem
p1, and d; is the corresponding definition ‘Define
$new_variablel$ is the larger solution’.

In this step, we account for the possibility that
a1 may not be a number, but instead a choice (e.g.,
A, B, C), or may consist of multiple numbers, such
as coordinates or matrices. Detailed rules and mul-
tiple examples are provided to help the LLM better
extract the number and give its definition.

Validation of d;. The inherent nature of LLMs
means their outputs can be unstable, so we employ
additional steps to verify the correctness of the
results. First, we provide the modified problem
D1 = p1 @ dy and the answer a; to let the LLM
output the value of ‘new_variable1’, denoted as
v}, where the instruction is I{. Next, we give a
prompt /. and two instances of new_variable1 as
the input of LLM, writing Python code to verify if
they are equal.

V) ~Pr(| B p1®ar @ dv), (2)



01 = Py(Pm(-|I. ® v1 @ vY)), 3)

where o} € {true, false, 0} is the execution result
of code, and ¢ refer to other output text except true
or false. Although we have constrained the output
of the code to include true or false, there may be
instances where errors occur or the output is not
in the correct format. In the verification of this
step and all subsequent steps, we will only keep the
cases where the output is true.

3.2 Handling Problem;

Task. Given ps, our goal is to identify an arbitrary
numeric value vs from po and replace it with the
variable symbol ‘{new_variable2}’. The output
of the task is og = v2 @ Py, where D, is the masked
problem. To improve accuracy, we suggest the
model prioritize integers and fractions.

02 N]P)M('|I2 @pg). “4)

Validation of p,. Given ps and the p)), we ask the
LLM to output the value of {new_variable2}, de-
noted as Ué . Similar to 3.1, we write Python code
to validate if two instances of {new_variable2}
are equal. If the results o, € {true, false,d} is
true, it indicates that the P, and vy is correct. Ad-
ditionally, we have observed cases where informa-
tion is lost in the modified ps, so we filter out cases
where the length of py is greater than the p, by
comparing the number of characters.

vy ~ P (|15 @ p2 & Dsy), 5)

oy = Py(Paq(- |1 ® va & 05)). (6)

3.3 Establishing Relationships

Task. Given v; and v, we allow the model to
generate Python code to subtract the two values and
compute the difference 03. Based on the sign of o3,
we can determine their relationship r € {gt, eq, lt},
where gt indicates v; > v2, eq indicates v; = va,
and [t indicates v; < va. As shown in the example
in Figure 1, the execution result of the subtraction
code is 0, which indicates that {new_variable2}
is equal to new_variablel.

03 = Py(Pra(-|Iz © v1 @ v2)), (7

Validation of Relationship Definition. Given v;
and the relationship r, we ask the LLM to out-
put the value of {new_variable2}, denoted as v5,.
Then have the LLM write Python code to check

whether the two values of {new_variable2} are
equal. If the judgment of € {true, false,d} is
true, it indicates that the relationship definition is
correct.

vy ~Pu(-[I3 @ o1 @), ®)
03 = Py(Pa(-|1. ® v2 & v5)). 9)

3.4 Renaming

Task. Given the first problem with definition
Py, and the modified problem p,, we aim to re-
name the variable strings new_variablel and
{new_variable2} to more conventional, unused
variable names. Let these new variable symbols be
denoted by s1 and s, respectively. The task can be
formulated as:

04 ~ P (-|14 © Dy ® Po), (10)

where 04 = s1 @ sg is the output of LLM. After
that we replace new_variablel with s; and re-
place {new_variable2} with sy in p;, Dy, and 7,
obtaining their renamed version, denoted as p1, po,
and 7. This renaming step helps ensure the vari-
ables do not appear artificial and adhere to standard
naming conventions.

Validation of Renaming. To ensure that the re-
naming process is valid, we define the validation
as follows: Given the renamed problems p; and
P2, we verify whether any variable names used in
P1 appear in ps, or whether any variable in p> ap-
pears in p;. In other words, we check if the two
problems share any variables and confirm that no
conflict occurs. It can be formulated as:

(1)

where o) € {true, false,d} represents the valida-
tion output confirming that the renaming has been
correctly applied.

o)y ~Pp(-|I} ® p1 @ pa),

3.5 Final Problem and Answer

After the above steps, we have obtained all the
elements required for the final problem pj2: the
renamed problems p; and po, and their relation-
ship 7. By combining these three, we get the final
compositional problem and its answer:

(12)
(13)

Compared to existing automated mathematical
problem generation methods, our approach is sta-
ble, and the final answer is accurate.

pi2 = p1 B 7 D poa,

alg = ag.



Verify Sub-P  Size P-Len.  S-Len.
SEED Human 1 200 59 445
VCMD Pipeline, 2 500 152 743
Human
ECMD Pipeline 2 30,818 142 788
TCMD Pipeline 3 6,878 199 912

6 (1%)
4 (1%)

86

380 (76%)

Error Probelm

7 (1.8%)

Table 2: The statistics of experimental datasets, where P
and S represent problem and solution, respectively. The
solution used to calculate the average length is sampled
from Llama-3.1-70b-it.

4 Experiment

4.1 Datasets

Table 2 shows the dataset used in our experiment.
Firstly, we synthesized a dataset called VCMD
(Verified Compositional Math Dataset), consisting
of 500 problems, utilizing the Llama-3.1-70b-it
(Meta-Al, 2024) model. The dataset was created
by evenly selecting 200 questions from the MATH
(Hendrycks et al., 2021) dataset’s test set as seed
data, ensuring an equal representation across five
difficulty levels and seven question types. Each
seed question was then randomly combined with
other questions five times, ensuring that every ques-
tion was sampled an equal number of times. Each
synthetic question was manually verified twice, and
the error problems were repaired.

As shown in Figure 2(a), our automated synthe-
sis pipeline filtered out 120 failed combinations,
leaving 380 valid questions, of which 373 were ver-
ified by humans as correct, achieving an accuracy
rate of 98.2% . Most of the errors observed were
primarily due to two questions sharing the same
variable (e.g., both containing the variable *“x”).

To further explore the factor contribution of com-
positional problems, we combined the 200 seed
questions in pairs, resulting in a total of 39,800
combination tasks (200 x 199). After automatic
verification, the final dataset size was 30,818 valid
problems, which we named the ECMD (Extensive
Compositional Math Dataset).

Finally, we selected the seed problems where
Llama-3.1-8b-it and Llama-3.1-70b-it all answered
correctly in 8 samples as seed data. Every three
questions were randomly combined into a new one,
resulting in TCMD (Triplet Compositional Math
Dataset), with size of 6,878.

4.2 Models

We conducted experiments on a range of state-of-
the-art models, with the following selection and
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Correct Problem

373 (98.2%)
(a) VCMD

o
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4482 30818
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Unfiltered Problem

2724

(%) B Error Problem

m Correct Problem
(b) ECMD

Figure 2: Component diagram of verification results.
The pie chart (a) shows the composition of VCMD de-
tected by pipeline and human, while the chart (b) shows
the composition of ECMD detected only by pipeline.

rationale:

Models of Different Sizes: The LLlama-3.1 series
(Meta-Al, 2024) and the Gemma-2 series (Gemma-
Team, 2024), including Llama-3.1-8b-it, Llama-
3.1-70b-it, Gemma-2-9b-it and Gemma-2-27b-It,
are LL.Ms with different model sizes. These models
were selected to explore the effects of model size
on performance.

Math-Specialized Models: Mathstral-7b-v0.1
(Mistral-Al., 2024) are models specifically fine-
tuned for math problems, chosen for comparing
with Mistral-7b-it-v0.3 (Jiang et al., 2023).

Closed-Source Models: GPT-40-mini (OpenAl,
2024b) and GPT-40 (OpenAl, 2024b) are powerful
closed-source models.

Reasoning Models: GPT-ol-mini (OpenAl,
2024c) and GPT-ol-preview (OpenAl, 2024c) fol-
low the "inference time scaling" paradigm, which
involves performing long reasoning before generat-
ing answers. These models demonstrate advanced
reasoning capabilities, particularly in mathemati-
cal tasks, that surpass human-level performance in
some cases. Additionally, we also evaluated the
open source reasoning models, the DeepSeek-r1 se-
ries (DeepSeek-Al, 2025), including DeepSeek-r1-
671B, DeepSeek-r1-distill-llama-8b and DeepSeek-
rl-distill-llama-70b. These models were chosen to
explore the comparative performance of reasoning
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Figure 3: Comparison of various models on the combination problem dataset and on the original dataset.

models and general instruction-following LLMs.

4.3 Metrics

We evaluate the LLMs using Accuracy (acc) and
the Accuracy score drop percent (p), which can be
formulated as:

Z](ac,y)EDl_I['A/l (.CIZ‘), y]

ace — S100%,  (14)
|D|
p= 2278 400y, (15)
accy

where II[] is the operator to check equal, accy is
the Accuracy on the target dataset and acc; is the
Accuracy on the corresponding original dataset.

4.4 Main Results

We conducted extensive experiments on the
VCMD, and the main experimental result is shown
in Figure 3. There are some notable observations:
(1) Overall, all LLMs exhibited varying degrees of
score reduction, and the magnitude of the decline
is related to their original capability.

(2) In terms of absolute Accuracy, Mathstral-7b-
v0.1 has the highest decline by 30% and GPT-o01-
mini has the lowest decline, nearly 4%. SOTA mod-
els on the original dataset is DeepSeek-r1, which
achieve 96%, but also showed a decrease of 5%.
(3) In terms of relative decrease, the largest and
smallest decreases were 65% for Misral-7b-it-v0.3
and 4% for GPT-o1-mini, respectively.

In fact, the score drop was expected, but the ex-
tent of the decline was somewhat surprising. For
humans, after learning to solve individual problems
A and B, it is natural to learn how to solve the A+B,

which is the simple combination of these two prob-
lems. However, this simple "generalization ability"
seems to be discounted in LLMs. This result under-
scores the significant value of using combinatorial
math problems to test the generalization capabili-
ties of models.

4.5 Ablation Study

From the above experiments, we concluded that
combinatorial problems challenge the generaliza-
tion ability of LLMs. However, the necessity of
our approach and the reliability of the conclusions
remain uncertain. In this section, we discuss these
issues.

The first issue to address is: Do we really need
to combine them? If we do not use our pipeline to
combine the problems, but instead directly give
the two problems to the LLMs to answer together,
does the difficulty remain the same? As shown in
Figure 4(a), the area of the green region, which
represents the score drop of independent problem
pairs compared to the original problems, is much
smaller than that of the red region, which repre-
sents the score growth compared to VCMD. On
the one hand, this result suggests that long context
without logical connections does not interfere with
LLMs as much as expected. On the other hand, it
strongly supports the necessity of our method for
establishing connections between problems.

This leads to the second concern: Is it really
the poor math generalization ability that leads to
the decrease? Assume a seed problem has n steps
in its solution, each with a «a (e.g., 0.01) error
probability. The final probability of a correct
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Figure 4: The results of ablation study.

answer would be (1 — «)". After combining the
problems, the final correct probability becomes
(1 — «)?". Naturally, the score would decrease.
Based on this assumption, we set up a new
experiment in which we provided the model with
the first solution and asked it to answer only the
remaining part, thus ensuring that the probability
of a correct answer is close to that of the original
problem. As shown in Figure 4(b), the score
of LLMs in such completion problems showed
an improvement, but it still had a significant
gap (green area) compared to the score on the
seed problem. This result confirms that "error
probability accumulation,” although it may have
an impact, is not the main factor causing score
reduction, thus confirming that combinatorial
math problems can indeed reveal the weaknesses
in LLMs’ generalization abilities. In particular,
the deepseek-r1-70b and 8b models, due to the
characteristics of the reasoning model, analyze

each sentence of the input, which in turn causes
interference and leads to worse performance
compared to other regular models.

We also tested the confidence distribution when
all sub-problems can be solved. We first sampled
8 answers for the seed problem and defined the
number of correct answers as the confidence level
of the model in answering this problem, denoted
as C' € [0,8]. Then, we evaluated all the cases
from ECMD and TCMD, which consist of seed
problems with C' = 8. As shown in Figure 4(c),
even though LLMs have very high confidence in
the sub-problems, confidence tends to decay when
faced with combinatorial problems. Most of the
problems in ECMD are on the side where C' >
4, while TCMD consists of three sub-problems,
making it more difficult. As a result, the majority
of the problem confidence in TCMD is distributed
on the side where C' < 4.

4.6 Dominant Factor Analysis

In fact, a mathematical problem can have many
characteristics, such as difficulty, type, and length,
which may influence the combined problem’s out-
come. To identify the dominant factors affecting
LLMs, we evaluate LLMs with ECMD by sam-
pling 8 answers for each problem. We recorded the
accuracy score of each subset and the proportion
of score decay compared to the corresponding seed
problems.

Difficulty. We define the difficulty of two seed
problems as D; € [1,5] and Dy € [1,5], where
the difficulty of the combined problem is D =
Dy 4+ Ds. As shown in Figure 5(a), as difficulty
increases, the performance of the models gradually
declines. Even the strongest model, Llama-3.1-
70b-it, achieves only a score of 12.01% on the
most difficult D = 10 problem, which is 66.13%
lower than the highest score.

Subproblem Confidence. The smaller confidence
level between the two sub problems, C' € [0, 8],
can be considered as a more personalized difficulty
indicator. As shown in Figure 5(b), the drop in con-
fidence values exhibits a greater degree of change
and trend than difficulty does. The difference be-
tween the highest and lowest scores is 68%.

Length. The token count of a problem is regarded
as its length L. As shown in Figure 5(c), in general,
longer problems tend to have lower scores, though
the correlation is not particularly strong.

Type. Different combinations of problem types,
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Figure 5: The impact of features on LLMs’ generalization ability. Figure (f) is a heatmap with intersecting features
from Llama-3.1-70b-it, where cells without numbers represent problems with such features do not exist.

such as geometry and algebra, can enhance the
problem’s diversity, which may also pose a chal-
lenge. We tested two types 1 “same type” and
“different type”. The results, shown in Figure 5(d),
are in line with expectations. However, LLMs do
not seem to be very sensitive to this feature.

Order. We compared the easy-to-difficult problem
with the difficult-to-easy problem to analysis the
influence of order O. Results shown in Figure
5(e) suggest that LL.Ms tend to perform better on
problems that progress from difficult to easy. This
could be because, with fewer contextual clues at
the beginning, LLMs’ attention mechanisms more
easily focus on the correct reasoning path, allowing
them to tackle the complex part first and solve the
simpler parts later with fewer errors.

Feature Interaction Analysis. Figure 5(f) shows a
heatmap of the score performance based on various
feature combinations for Llama3.1-70b-it, where
the highest and lowest values were selected for each
feature category. Obviously, confidence, length,
and difficulty are all indicators that have a strong
impact. The influence of confidence is the strongest
among them. As long as C' = 8§, both subsets with
D = 10 and subsets with L = 239 ~ 267 receive
relatively high scores.

The results indicate that the combination of fea-
tures such as "high difficulty, low confidence, dif-
ferent types, long question length, and easy-to-
difficult”" poses a greater challenge to the model,

making it more suitable for verifying the model’s
combined generalization ability.

4.7 Case Study

We have observed an interesting phenomenon
RAWR (Right Answer, Wrong Reasoning): inter-
mediate variable results were incorrect, but the fi-
nal answer was still correct. We identified two
scenarios where RAWR occurs: (1) Match learned
text patterns and forcefully apply them without any
logic. As the first case is shown in Appendix C,
GPT-40 got right answer because it matching the
similar pattern of (82 + 18)3. (2) The intermediate
results provide a weak constraint on the final result.
As shown in the second case, it will get the correct
answer as long as Q € [33, 22].

The existence of RAWR suggests that it is better
to introduce intermediate checkpoints when evalu-
ate math problem, which is exactly what our com-

binational problems can naturally achieve.

5 Conclusion

This paper introduces a novel method for evaluat-
ing LLMs’ compositional generalization ability by
combining learned math problems to test whether
the model can solve them correctly. We propose an
automated pipeline with 98.2% accuracy and pro-
vide three compositional generalization datasets,
evaluated on 13 LLMs. Additionally, we analyze
key factors affecting compositional generalization
and offer guidance for problem synthesis.



6 Limitations

In this work, the compositional problems are syn-
thesized from existing problems, which, compared
to problems created by humans, do not lead to
significant new mathematical breakthroughs for
the models. If used as training data, it might be
more suitable for improving the model’s general-
ization ability. Furthermore, to ensure reliability,
the pipeline calls the LLM multiple times for result
verification. In the future, with models that have
better performance, it may be possible to complete
multiple-step reasoning in one go, streamlining the
process. Additionally, the compositional problems
is more complex and difficult, thus more suitable to
use as the training data for reasoning models, like
GPT-o01 and Deepseek-r1. We will implement it in
the future work.
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A Datasets

As shown in Table 3, the accuracy of some exist-
ing methods for automatically synthesizing mathe-
matical problems is much lower than ours. More-
over, the LLm they use for data synthesis is GPT-
40 (OpenAl, 2024b) or GPT-4-Turbo (OpenAl,
2024a), the cost of which is more than ours. The ac-
curacy of MATH? (Shah et al., 2024), GSM-PLUS
(Li et al., 2024), and MATHCHECK (Zhou et al.,
2024a) comes from the report in the paper, while
ORCA (Mitra et al., 2024) is used for training and
does not report the accuracy of the problem. There-
fore, we randomly sampled 50 samples and eval-
uated their accuracy. Compare with all of other
methods, we do not have such high requirements
for LLM capability in synthesizing data. We fol-
lowed the template used in the Simple Eval® project
to check if the answers are equal, while we used
LLM to extract the final answer instead of pattern
matching.

B Experiment Details

We use vLLM-0.6.4 (Kwon et al., 2023) as our
inference backend for data synthesis and model
evaluation. When synthesizing data, we set the
seed as 42 and the temperature to le-2. In the
response sampling phase of the evaluation, we set
the temperature to 0.8, and set 1e-2 to evaluate
whether the answer is correct. Specifically, we set

%A project created by OpenAl.
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the max_token for all models to 4k, except for the
gpt-o1 series and deepseed-r1 series, which are set
to 16k.

C Case
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Method Annotation Pipeline Accuracy Use For ?

ORCA GPT-40 (Q+A) 72% Training

MATH? GPT-4-Turbo (Q+A), Human (Q+A) T7% Evaluation
GSM-PLUS GPT-4-Turbo (Q+A), Human (Q+A) 81.15% Evaluation
MATHCHECK  GPT-4-Turbo (Q+A), Human (Q+A) 84.61% Evaluation
Ours Llama3.1-70b-it (Q+A) , Human (Q+A) 98.2% Evaluation

Table 3: Comparison of the automatic math problem synthesize method.

Case 1 (About RAWR From GPT-40)

Origin Problem1:

A regular octagon ABC D EFGH has an area of one square unit. What is the area of the rectangle ABEF?

[asy] pair A,B,C,D,LF,G,H; A=(-1,1); B=(1,1); H=(-2.41,-0.41); C=(2.41,-0.41); G=(-2.41,-2.41); D=(2.41,-2.41);
F=(-1,-3.82); 1=(1,-3.82); draw(A-B-C-D-I-F-G-H-cycle,linewidth(0.7)); label("A",A,N); label("B",B,N);
label("C",C,E); label("D",D,E); label(" E"I,S); label(" F"E,S); label("G",G,W); label(" H" ,H,W); [/asy]

Origin Problem2:
What is the value of 823 4- 3(822)(18) + 3(82)(18?) + 182 (No calculators! And see if you can do it in your head!)

Combinational Problems:
A regular octagon ABC DEFGH has an area of one square unit. What is the area of the rectangle ABEF?

[asy] pair A,B,C,D,LE,G,H; A=(-1,1); B=(1,1); H=(-2.41,-0.41); C=(2.41,-0.41); G=(-2.41,-2.41); D=(2.41,-2.41);
F=(-1,-3.82); 1=(1,-3.82); draw(A-B-C-D-I-F-G-H-cycle,linewidth(0.7)); label("A",A,N); label("B",B,N);
label("C",C,E); label("D",D,E); label(" E"I,S); label(" F'",E,S); label("G",G,W); label(" H" ,H,W); [/asy]

Define K is the result of the area. X is g more than K.

What is the value of 82° + X (82)(18) + X (82)(18%) + 18%? (No calculators! And see if you can do it in
your head!)

Solution From GPT-40:

#i## Step 1: Understand the problem setup We are tasked with determining the area of rectangle AB E F within a regular
octagon ABCDEFGH whose total area is 1 square unit. Then, we calculate K, analyze another variable X, and work
out a polynomial expression based on X. Let’s proceed step by step.

### Step 2: Find K, the area of rectangle ABEF' #i### Geometry of the octagon: 1. A regular octagon can be split into
a central square and 8 identical isosceles right triangles. 2. Let s be the side length of the octagon. The area of the entire
octagon is given as 1 square unit.

#### Determine the dimensions of the rectangle ABEF': - The rectangle ABEF includes two sides of the central
square and spans the lengths of adjacent isosceles right triangle bases. - The base of each isosceles right triangle equals
the side length s of the octagon. - Thus, the length of rectangle ABEF is 2s (the bases of two adjacent triangles) and
its width is s (the side of the central square).

#### Area of rectangle ABEF": The area of ABEF is:

Area of ABEF = length x width = (2s)(s) = 2s°

#### Total area of the octagon: The total area of the octagon is given as 1, which equals the sum of the central square
and the 8 isosceles right triangles:

1
Total area = s> + 8 x 532 = s? 4 45% = 55>

Thus:
582 =1 s 52 =

##HH# Substitute s into the area of ABEF":

AreaofABEF:232:2><%:g

So, K = % x The correct value of K should be é

12
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##4# Step 3: Determine X The problem states that X is g more than K:

To add these fractions, find a common denominator:

2_4 5% o 4 252
57100 27 10 10 10 10

Thus, X = %. x The correct value of X should be 3

### Step 4: Simplify the given polynomial expression
The problem asks us to calculate:

82° + X (82%)(18) 4 X (82)(18%) + 18°

##H### Step 4.1: Factorize the expression
Notice that the expression has a binomial expansion structure: '
v Here, LLM:s derive the correct solution path from wrong reasoning because it matches the pattern of (82 +18)?

82° + X (82%)(18) 4+ X (82)(18%) + 18° = (82 + 18)*

#i#H#H# Step 4.2: Simplify 82 + 18
82+ 18 =100

#### Step 4.3: Expand 1003
100% = 100 x 100 x 100 = 1,000, 000

### Final Answer:
1,000,000 | v The Answer is Correct!
\ J
Case 2 (About RAWR From GPT-01-mini)
Origin Problem1:

Ryan has 3 red lava lamps and 3 blue lava lamps. He arranges them in a row on a shelf randomly, then turns 3 random
lamps on. What is the probability that the leftmost lamp on the shelf is red, and the leftmost lamp which is turned on is
also red?

Origin Problem2:
If @ = 7 and b = 13, what is the number of even positive integers less than ab?

Combinational Problems:

Ryan has 3 red lava lamps and 3 blue lava lamps. He arranges them in a row on a shelf randomly, then turns 3 random
lamps on. What is the probability that the leftmost lamp on the shelf is red, and the leftmost lamp which is turned on is
also red?

Define P is the result of the problem. Q) is %3 more than P.

If a = Q and b = 13, what is the number of even positive integers less than ab?

Solution From GPT-01-mini:

To solve the problem, we need to determine the probability P and subsequently find the number of even positive integers
less than ab, where a = () and b = 13.

### Step 1: Calculate P

**Given:** - Ryan has 3 red and 3 blue lava lamps. - He arranges them randomly in a row and turns on 3 lamps at
random. - P is the probability that: - The **leftmost lamp** on the shelf is **red**. - The **leftmost lamp that is
turned on** is also **red**.

** Approach:** 1. **Probability that the first lamp is red (P (A)):**

2. **Probability that the leftmost turned-on lamp is red given that the first lamp is red (P(B|A)):** - **Case 1:** The
first lamp is turned on.

_ () _1w0_1
P(first lamp turned on) = @ =30~ 3
~ J
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If turned on, it’s already red.
- **Case 2:** The first lamp is not turned on.

P(leftmost turned on lamp is red|first lamp not on) = %

- Combining both cases:

1 1 13 33
P(BJA) = 5 x 1+ 5 x 55 =&

3. **Calculate P:** 1 33 33 7
X — = — x P should be —

P = P(A4) x P(BJA) = 5 x 12 = == o

T2
### Step 2: Calculate @) and ab
**Given:** - Q is % more than P.

133 33 133 113
Q—P‘F%_%"’%_ﬁ x @ should be 7

ca=Q = lTlg
-b=13
**Calculate ab:** 113 .
ab = 6 x 13 = 16 ~ 91.8125 x ab should be 91

### Step 3: Number of Even Positive Integers Less Than ab
Since ab ~ 91.8125, the even positive integers less than ab are:

2.4,6,...,90
There are 2 = 45 such numbers.

### **Final Answer:**

*¥45%% /Tt will get the correct answer as long as Q € (22, 22].

137 13

Case 3 (Badcase From Deepseek-rl)

Origin Problem1: v Deepseek-rl solve the problem successfully.
Find the 3 x 3 matrix IM such that

x
Mly| = z
z
for all real numbers x, y, and z.

Origin Problem2:  Deepseek-rl solve the problem successfully.
Given that a particular positive integer is a four-digit palindrome, what is the probability that it is a multiple of 997
Express your answer as a common fraction.

Combinational Problems:
Find the 3 x 3 matrix M such that

z Y

Mly| = z

z r+y+z
for all real numbers x, y, and z.
Define a is the element in the first row and the second column of the matrix M. b is 3 more than a.
Given that a particular positive integer is a $b$-digit palindrome, what is the probability that it is a multiple of 997
Express your answer as a common fraction.

Solution From Deepseek-r1:
To find the 3 x 3 matrix M such that

14
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we analyze the linear combinations of x, y, and z for each component of the resulting vector. The matrix M is
determined to be:

M =

—= o O
=
=)

The element a in the first row and the second column is 1. Therefore, b = a+ 3 = 4. v a and b is correct.

Next, we consider 4-digit palindromes. A 4-digit palindrome has the form ABB A, where A ranges from 1 to 9 and B
ranges from 0 to 9. There are 9 x 10 = 90 such palindromes.

A number is divisible by 99 if it is divisible by both 9 and 11. For divisibility by 11, all 4-digit palindromes are
automatically divisible by 11 because the difference between the sums of the digits in odd and even positions is zero.
For divisibility by 9, the sum of the digits 24 + 2B must be a multiple of 9, which simplifies to A + B =0 (mod 9).
For each A (1 to 9), there is exactly one B (0 to 9) such that A + B = 0 (mod 9). This gives 9 valid pairs (A, B).
Therefore, there are 9 four-digit palindromes divisible by 99.

The probability that a 4-digit palindrome is a multiple of 99 is 9% = %.

€
10 |

The final answer is x Final answer should be %

D Instruction and Prompt Template

1. Generate Code to Check Equal

Task Description:
Write a Python program to compare two given values and determine if they are equal. Follow these guidelines:

1. Use the ‘sympy" library to handle symbolic comparisons, ensuring that equivalent expressions (e.g., % and %) are
recognized as equal.

2. For values involving irrational constants (e.g., 7, e), perform comparisons up to **two decimal places** for
practical equivalence.

3. Include clear intermediate steps in the program, such as evaluating or simplifying the values where appropriate.
4. Wrap the final comparison outcome in a ‘\boxed‘ command for clarity.
5. Provide both the Python code and the results of running the code.

Output Format:

11t
python
{The Python code that compares the two given values, including print statements for intermediate steps and the

final_comparison_outcome |.}
11

" output

{The output of the Python program.}

11t

Examplel

Example3

Task:

Valuel: { VALUEL}
Value2: { VALUE2}

15



I, Modify p1

Given a math problem and the final answer, your task is to output the modified math problem. Follow the steps below:

Step1: Identify a specific integer, float, or fraction within ‘final_answer‘ and name it as new_variablel; There are
several situations:

1. If the ‘final_answer* contains unknown variables:

(a) If the ‘final_answer* is an expression, choose one coefficient as new_variablel, for example, 2x + 3, you
can choose the coefficient of x as new_wvariablel, which is 2, and in the case of sin(x), there is a hidden
coefficient 1 and a hidden amplitude 1, you can choose either one as new_variablel;

(b) If the ‘final_answer‘ is an equation, you can choose one solution as new_variablel, for example, y = 2x +
1, you can define the value of y as new_variablel when given x = 1, which is 3;

(c) If the ‘final_answer* is a symbol of an option, such as *A’, ’B’, ’C’, etc, use their order in the alphabet as a
variable, suchas ’A’=1,’B’ =2, ’C’ = 3, etc;

(d) If the ‘final_answer‘ contains 2 or more items, e.g. multiple choice questions, choose the smallest or the
largest one, and then apply the corresponding situation;

2. If the ‘final_answer‘ has no unknown variables, there are several situations:

(a) If the ‘final_answer" itself is a numerical value, like ’four’, ’4’, ’2 + V2,737, and ’%’, use it directly as
new_variablel;

(b) If the ‘final_answer® contains 2 or more numerical values, use the largest or the smallest one as
new_variablel;

(c) If the ‘final_answer* is an interval or ratio, choose one boundary and \infty is not allowed, for example,
[2,\infty), you can define the lower bound as new_variablel, which is 2;

(d) If the “final_answer‘ is a ratio, choose one part of the ratio, for example, 3:4; you can define the first part of
the simplified ratio as new_variablel, which is 3;

(e) If the ‘final_answer" is a non-base 10 number, for example, 10012, you can define "the number of digits in
the base 2 representation’ as new_variablel, which is 4;

(f) If the ‘final_answer* is an angle or degree, choose the corresponding radian value, for example, 30\cric or
30°, define the corresponding radian value of final answer as new_variablel, which is \pi/6 or 7/6.

All in all, find a way to identify a specific numerical value as new_variablel without unknown, and make sure the
reader can get the value of new_variablel from the ‘final_answer* through your definition.

Step2: Output the value of new_variablel, keep the exact value or math symbol, and simplify the fraction if necessary,
for example, keep the 7 as 7, keep the v/2 as /2, and simplify g as %, without rounding to a decimal point.

Step3: Output the definition of new_variablel without mentioning the real value.

Output Format:

<Analysis>

{Identified a specific integer, float, or fraction as new_variablel}
</Analysis>

<The_Value_of New_Variable1>
{The value of new_variablel, no other text, and output 'None’ if you can not find a suitable new_variablel}
</The_Value_of_New_Variable1>

<The_Definition_of_New_Variable1>
{The definition of new_variablel without mentioning the real value, and output ’None’ if you can not find a suitable

new_variablel}
</The_Definition_of_New_Variable1>

Examplel

Example6

16
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Task:

Original Problem:
{PROBLEM1}

‘final_answer* of Problem:
{FINAL_ANSWER1}

/ .« .
1, Verify new_variablel

{PROBLEM1}
Assume that the final answer of the problem is { FINAL_ANSWERI1}.
{DEFINITION_OF_NEW_VARIABLE]1}

Then what is the value of new_variablel?

Please output the value of new_variablel directly, wrapping it in \boxed{ }, for example, \boxed{3}.
. J

12 MOdlfy D2

Given a math problem, please identify a specific integer, float, or fraction within it and replace it with new_variable2.
The specific steps are as follows:

Step 1: Identify and list all the numerical values in the problem. There are several situations:

1. Containing unknown variables is not allowed, for example, in the case of 2a + 3 = 5, °2’,’3’, and ’5’ are valid,
while 2a + 3 isn’t.

2. Containing math symbols is allowed, do not simplify or round them to decimals. For example, keep 37 as 3,
keep v/2 as v/2, keep 7! as 7!, and keep £ as £.

3. Containing units is not allowed. For example, $120\ circ$ or 120° should be replaced by ${new_variable2}\circ$
where {new_variable2} = 120; 10% can become {new_variable2}% where {new_variable2} = 10; and
10002 should choose the number of base to be defined as 1000,,e variabie2, €tC.

4. Choose part of the expression like coefficient, numerator, or denominator is allowed. For example, the expression
Tx + 3 can be replaced by {new_variable2} - z + 3.

Step 2: There are many types of numerical values, and choose one following the priority:

1. Integers like "1’ > fractions like %

numbers in other bases like 1000-.

or 1/2 > decimals like 0.5 > numbers in words like *one’, ’two’, ’three’ >

2. Small numbers are preferred when there are multiple numerical values of the same type.
3. If there are no numerical values in the problem, output ’None’ in the tag <The_Value_of_new_variable2>.
Output Format:

<Identify_new_variable2>
{Identified a specific integer, float, or fraction as new_variable2}
</ldentify_new_variable2>

<The_Value_of new_variable2>
{The value of new_variable2, no other text, and output ’None’ if there are no numerical values in the problem}
</The_Value_of new_variable2>

<The_Definition_of_new_variable2>

{The definition of new_variable2 without mentioning the real value, and output 'None’ if there are no numerical
values in the problem}

</The_Definition_of new_variable2>

<Modified_Problem>

{The modified problem with the new variable symbol new_variable2 without mentioning the real value of
new_variable2, and output 'None’ if there are no numerical values in the problem}

</Modified_Problem>

17
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Example 1:

Example 6:

Task:
Original Problem:
{PROBLEM2}

Output:

1. ; Verify new_variable2

Given two math problems, Problem 1 and Problem 2, where a numerical value in Problem 1 has been replaced by a
variable new_variable2 to form Problem 2, your task is to identify the value of new_variable2.

Output the results with the following format:
<The_Value_of new_variable2>

The value of new_variable2, if identified, or 'None’ if no value can be determined.
</The_Value_of new_variable2>

Examplel

Example3

Task:
Original Problem 1:
{PROBLEM2}

Problem 2:
MODIFIED_PROBLEM?2

Output:

I3 Establishing Relationship

Given the values of new_variablel and new_variable2, your task is to calculate the difference
new_variable2 — new_variablel and establish the relationship between them. Follow these steps:

Step 1: Write a Python program that calculates the difference between new_variable2 and new_variablel. The
program should follow these guidelines:

1. Instead of writing functions, write programs directly.

2. Avoid using decimal values, and ensure that all fractions and square roots are simplified using functions from the
‘sympy* library.

3. If there are any intermediate variables, print them in the Python programs.

4. Print the at the end.

5. Provide the code output following the Python code.

Step 2: Describe the relationship between new_variablel and new_variable2 based on the calculated difference.

18
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Output Format:
"7 python
{The Python code that computes ‘new_variable2 — new_variablel®, including print statements for intermediate

variables and the final answer. }
11

" output

{The output of the Python code, including intermediate variables and the final answer. }
11t

Examplel

Example3

Task:
The values of new_variablel:
{new_variablel }

The values of new_variable2:
{new_variable2}

1. , Verify Relationship

Task Description:
Write a Python program to calculate the value of ‘new_variable2° based on the given value of ‘new_variablel* and
the specified relationship. Follow these guidelines for your program:

1. Avoid using floating-point numbers for intermediate steps; instead, use the ‘sympy’ library to handle fractions,
square roots, and other symbolic representations.

2. Clearly print intermediate steps where appropriate.
3. Ensure that the output clearly shows the value of new_variable2 in its most simplified form.

4. The output should include both the Python program and the corresponding output produced by running the
program.

Output Format:
""" python
{The Python code that computes new_variable2, including print statements for intermediate calculations and the final

result. }
11

" output

{ The output of the Python program, showing intermediate steps and the final value of new_variable2.}
11

<The_Value_of _new_variable2>
{The value of ‘new_variablel® in the problem.}
</The_Value_of_new_variable2>

Example 1

Example 4
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Task:
The value of new_variablel:
{NEW_VARIABLEI}

The relationship:
{RELATIONSHIP}
\ y,

14 Renaming

Given a math problem, your task is to find a new variable name that never appears in the problem for new_variablel
and new_variable2. Note that:

1. The new variable names should be different from all the variables in the problem.

2. The new variable names should wraped in $$, for example, m, a.

Output Format:

<The_Symbol_of_new_variablel1>

(the new variable name for new_variablel, no other text)
</The_Symbol_of_new_variable1>

<The_Symbol_of_new_variable2>
(the new variable name for new_variable2, no other text)
</The_Symbol_of_new_variable2>

Example:

Task:

Problem:
{MODIFIED_PROBLEM1}
{MODIFIED_PROBLEM2}

Output:
\ J

/ by .
14 Verify Renaming

Given Math Problem 1 and Math Problem 2, confirm whether Problem 2 uses the same variable symbols or object
names as Problem 1, focusing on avoiding potential confusion if the two problems were combined.

1. If the same variable symbols (e.g. X, alpha, etc) are present in both problems, regardless of whether they have
different roles, output "yes’.

2. If the same objects or entities (e.g. Xiaoming’s speed, the number of cakes, Triangle ABC, etc) are mentioned
and relevant to the problems, output ’yes’.

3. Otherwise, output 'no’.

Output Format:
<IsContain> yes or no </IsContain>

<Analysis> A brief analysis </Analysis>

Examplel:

Example3:

Task

Problem 1:
\ J
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{RENAMED_PROBLEM1}

Problem 2:
{RENAMED_PROBLEM2}

Output:
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