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Abstract001

Large language models (LLMs) have shown002
strong performance in solving math problems,003
and there is growing research on evaluating004
their robustness. Unlike previous studies that005
create problem variants by adding perturbations006
to a single problem, this paper focuses on the007
interaction between problems. Specifically, we008
combine two original problems into one with009
a logical connection and measure the LLM’s010
performance on both the new and original prob-011
lems. We propose an automated pipeline with012
98.2% accuracy and conduct extensive experi-013
ments on three datasets (1 manual, 2 synthetic),014
covering 13 LLMs of various sizes, including015
open-source models (7B to 671B) and closed-016
source models like o1-mini and o1-preview. Re-017
sults show that simple format combinations can018
significantly reduce LLM performance, even019
when the underlying math remains unchanged.020
Additionally, combined problems with interme-021
diate variables and values offer a better way022
to evaluate solution accuracy. Finally, we an-023
alyze the impact of factors like difficulty and024
length on LLM performance, offering insights025
for future research.026

1 Introduction027

Mathematical reasoning is the key to the develop-028

ment of artificial intelligence (Tenenbaum, 2018)029

and thus serves as an important aspect for evalu-030

ating large language models (LLMs) (Guo et al.,031

2023; Chang et al., 2024; Ahn et al., 2024). Current032

mainstream evaluation methods focus on construct-033

ing benchmarks of various difficulty levels, ranging034

from elementary school-level benchmarks (Cobbe035

et al., 2021) to olympic-level (Huang et al., 2024;036

Zheng et al., 2022), to assess a model’s problem-037

solving capabilities. Although model scores on038

these benchmarks have been steadily increasing,039

the question remains contentious: have LLMs040

truly learned to solve math problems, or have they041

merely taken shortcuts through pattern matching042

Problem Solution from Llama3.1-70B-Inst
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1 What is the only integer v
alue of n for which �+1

13−�
 is 

a positive prime number?

Step 1: Understand the problem
... 

The final answer is:  12   ✔
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Let M and N denote the g
reatest and least positive 
two-digit multiples of 13. 
What is the value of M + 
N?

Step 1: Identify the range of two-digit multiples of 13
...

The final answer is:  104   ✔
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What is the only integer v
alue of n for which �+1

13−�
 is 

a positive prime number? 

Define p is the only intege
r value of n. 

q is 1 more than p. 

Let M and N denote the g
reatest and least positive 
two-digit multiples of q. W
hat is the value of M + N?

Step 1: Understand the problem
...
Step 6: Identify n
... n=12. ✔
...
Step 8: Define p and q.
... so q=p+1=12+1=13. ✔

Step 9: Determine the positive two-digit multiples of q.
The least positive two-digit multiple of 13 is 13 * 8=104. ✘
The greatest positive two-digit multiple of 13 is 13 * 7 = 91. ✔

Step 10: Calculate M + N.
M=104 and N=91, so M + N = 104 + 91 = 195. ✘

The final answer is:  195    ✘

Table 1: An example of a compositional math prob-
lem, where Llama3.1-70b-it successfully solves the seed
problems but fails on the compositional one.

(Patel et al., 2021; Mirzadeh et al., 2024; Shi et al., 043

2023) or even data leakage (Golchin and Surdeanu, 044

2024)? For instance, studies by Zhou et al. (2024b) 045

and Mirzadeh et al. (2024) demonstrate that alter- 046

ing the entity names or adding irrelevant conditions 047

can confuse models and disrupt their performance. 048

This widespread situation has raised concerns about 049

the generalization and robustness of LLMs. 050

In response to these issues, we propose a novel 051

evaluation perspective for LLMs’ robustness eval- 052

uation. Unlike previous works (Mirzadeh et al., 053

2024; Li et al., 2024), which generate various kinds 054

of problems variants from single problems, our ap- 055

proach considers the interaction between problems, 056

focusing more on the compositional generalization 057

(Xu and Wang, 2024; An et al., 2023; Li et al., 058

2021) in robustness. Specifically, we combine two 059

existing mathematical problems into a new one by 060

applying simple conditional transformations. As 061

shown in Example of Figure 1, we replace the num- 062

ber 13 in problem2 with the variable q, and then 063

substitute q with an equivalent condition, which 064

1



is the problem1. For humans, if they have mas-065

tered both Problem1 and Problem2 individually,066

this combined problem can be easily solved as well.067

Such compositional generalization, which refers to068

understanding unseen combinations of seen primi-069

tives, is an essential reasoning capability in human070

intelligence (An et al., 2023). Therefore, by evalu-071

ating the model’s performance on both the original072

and the combined problem, we can assess its com-073

positional generalization ability.074

To automate the synthesis of problems, we pro-075

pose a four-step pipeline, which uses LLMs and076

Tool-Integrated Reasoning (TIR) (Gou et al., 2024;077

Tahmid and Sarker, 2024) to verify problems,078

achieving an accuracy of 98.2% in the generated079

problems. This method not only ensures the cor-080

rectness of the final answer but also provides in-081

sight into the intermediate variable names and val-082

ues. This allows us to detect cases where the solu-083

tion is correct but the reasoning process is flawed,084

making the evaluation results more objective and085

accurate. Using this pipeline, we synthesized three086

different datasets, one of which was additionally087

manually annotated.088

We conducted extensive experiments on the man-089

ually annotated dataset, covering 13 mainstream090

LLMs, including open-source models ranging from091

7B to 671B parameters, as well as state-of-the-art092

closed-source models like o1-mini and o1-preview.093

The experimental results show that even when the094

mathematical essence remains unchanged, a sim-095

ple form of combination can significantly reduce096

the performance of LLMs. Powerful reasoning097

models such as o1-mini and deepseek-r1 experi-098

enced a decrease of about 5% and 6%, respectively.099

This demonstrates that combined problems present100

an additional challenge to LLMs and reveal weak-101

nesses in their mathematical generalization capa-102

bilities.103

To further validate the reliability of these find-104

ings, we conducted detailed experiments: (1) By105

controlling the consistency of the problem context106

length, we confirmed the necessity of combining107

problems. (2) By ensuring consistent reasoning108

lengths, we verified the reliability of the conclu-109

sions. (3) Through confidence distribution exper-110

iments, we found that even when LLMs correctly111

solve all sub-problems consecutively up to 8 times,112

their confidence still decays when faced with a113

combined problem. (4) Finally, we try to analyze114

the impact of different feature combinations on the115

generalization ability of LLMs, providing insights116

and recommendations for future work. 117

2 Related Work 118

Through data collection and cleaning of resources 119

from textbooks, websites, and other materials 120

(Yue et al., 2024), many benchmark datasets have 121

been proposed to train and validate the mathemat- 122

ical problem-solving abilities of LLMs. These 123

datasets can be categorized based on difficulty into 124

elementary-school level (Cobbe et al., 2021), high- 125

school level (Hendrycks et al., 2021), college-level 126

(Sawada et al., 2023), and olympic-level (Huang 127

et al., 2024; Zheng et al., 2022) datasets. The abun- 128

dance of these datasets has greatly contributed to 129

the development of LLMs, with easier datasets 130

(Cobbe et al., 2021) almost solved (Qwen et al., 131

2025). However, these benchmarks mainly focus 132

on the final results of individual problems and do 133

not intuitively reflect the mathematical robustness 134

of LLMs (Zhou et al., 2024a). 135

To address this issue, many works have intro- 136

duced various modifications to the original bench- 137

marks to assess how models perform when faced 138

with subtle perturbations (Li et al., 2024), such as 139

semantic perturbations (Wang et al., 2023; Zhou 140

et al., 2024b), problem reversal (Yu et al., 2024; 141

Berglund et al., 2024), and irrelevant distractions 142

(Shi et al., 2023; Li et al., 2023). Most of these 143

works provide an automated synthesis pipeline. 144

However, mathematical problems often involve pre- 145

cise numerical design and logical interconnections, 146

making the accuracy of automated synthesis rel- 147

atively low (as shown in Table 3), which often 148

requires manual annotation and modification. 149

3 Compositional Problem Generation 150

This section introduces the pipeline for automati- 151

cally synthesizing math problems, as shown in Fig- 152

ure 1. The main process of the method is to mask a 153

digit in a math problem problem2 and replace the 154

digit with an equivalent condition, which is another 155

modified problem problem1. We break this process 156

down into four steps: handling problem1, handling 157

problem2, establishing relationships, and renaming. 158

Each step employs a validation strategy to check 159

whether the LLM’s execution results are correct. 160

Notably, for the comparison and computation of 161

numeric values within the pipeline, we adopted the 162

TIR (Gou et al., 2024; Tahmid and Sarker, 2024) 163

by using Python interpreter to obtain more reli- 164

able results. Python has well-established symbolic 165
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$new_variable1$ 
from definition

Problem1

Solve x2  - 1 = 0.

Answer1

x = 1 or x = -1

$new_variable1$ = 1.

Solve x2  - 1 = 0.
Define $new_variable1$ is 

the larger solution.

$new_variable1$ = 1.

① Get a number 
from Answer1 as
$new_variable1$ 

and get its definition ```python
    var1 = 1
    var2 = 1
    print(var1 == var2)
```

$new_variable2$ 
by comparison 

Problem2

Calculate 1+2+3+...+10.

Answer2

Answer is 55.

$new_variable2$ = 1.

Calculate $new_variable2$
+2+3+...+10.

$new_variable1$ = 1.

① Replace any 
one number as 

$new_variable2$.
```python
    var1 = 1
    var2 = 1
    print(var1 == var2)
```

Difference of 
two variables

$new_variable2$ 
from relationship

$new_variable2$ = 1.

$new_variable1$
from Answer1

$new_variable2$
from problem2

$new_variable2$

$new_variable1$

$new_variable1$ = 1.

$new_variable2 - 
new_variable1$ = 0.

$new_variable2$ = 1.

① Write a code for 
$new_variable1 - 

new_variable2$, and 
then define their 

relationship

$new_variable2$ is the same 
as $new_variable1$.

```python
    var1 = 1
    var2 = 1
    print(var1 == var2)
```

$B$ is the same as $A$.Solve x2  - 1 = 0. Define $A$ 
is the lareger solution.

Calculate 
$B$+2+3+...+10.

Answer2

Answer is 55.

Solve x2  - 1 = 0. Define 
$new_variable1$ is the 

lareger solution.

Problem1
with definition

Modified 
problem2 

Relationship of 
two variables

Problem1
with defintion

Modified 
problem2

Calculate $new_variable2$ 
+2+3+...+10.

New names for 
two variables

$A$ and $B$. 

① Get new names 
that are never 

appears in problems.

② Check what value 
can be gotten from 

definition

② Check what value 
can be gotten by 

comparing two problem2

② Check what value 
can be gotten from 

relationship

② Replace with the 
new names

Solve x2  - 1 = 0. Define $A$ 
is the lareger solution.

Renamed 
relationship

Renamed 
problem1

Renamed 
problem2

Renamed 
problem1

Renamed 
problem2

Calculate 
$B$+2+3+...+10.

③ Generate code  
to determine if two 
numbers are equal.

③ Generate code to 
determine if two 

numbers are equal.

③ Generate code  
to determine if two 
numbers are equal.

③ Check if two 
problems contains 

same variables Yes or No

加框框

Figure 1: The overall pipeline structure of automatic compositional math problem generation, including four steps
with LLM and Python interpreter. The main processing steps are on the left side of the dashed line, while the right
side verifies the result of LLM processing. Examples are provided in gray text beneath each entity.

math libraries such as SymPy1 , which can handle166

comparisons and calculations involving fractions,167

decimals, and other cases, e.g., 1
2 and 0.5.168

For the sake of clarity, we define the two prob-169

lems being processed as p1 and p2, with their170

corresponding answers being a1 and a2. Our171

goal is to derive the compositional problem p12172

and its answer a12 by LLM M and Python in-173

terpreter Py. The prompts of instruction I =174

{I1, I ′1, ..., I4, I ′4, Ic} for each step are provided in175

Appendix D.176

3.1 Handling Problem1177

Task. Given instruction I1, problem p1, and an-178

swer a1, our goal is to extract a numeric value179

v1 from a1, which we denote as a new symbol180

‘new_variable1’, and provide its definition d1:181

o1 ∼ PM(·|I1 ⊕ p1 ⊕ a1), (1)182

where o1 = v1 ⊕ d1, and ⊕ refers to concatenation.183

As the example shown in Figure 1, v1 is the inte-184

1https://www.sympy.org/

ger ‘1’, which is the larger answer to the problem 185

p1, and d1 is the corresponding definition ‘Define 186

$new_variable1$ is the larger solution’. 187

In this step, we account for the possibility that 188

a1 may not be a number, but instead a choice (e.g., 189

A, B, C), or may consist of multiple numbers, such 190

as coordinates or matrices. Detailed rules and mul- 191

tiple examples are provided to help the LLM better 192

extract the number and give its definition. 193

Validation of d1. The inherent nature of LLMs 194

means their outputs can be unstable, so we employ 195

additional steps to verify the correctness of the 196

results. First, we provide the modified problem 197

p1 = p1 ⊕ d1 and the answer a1 to let the LLM 198

output the value of ‘new_variable1’, denoted as 199

v′1, where the instruction is I ′1. Next, we give a 200

prompt Ic and two instances of new_variable1 as 201

the input of LLM, writing Python code to verify if 202

they are equal. 203

v′1 ∼ PM(·|I ′1 ⊕ p1 ⊕ a1 ⊕ d1), (2) 204
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205
o′1 = Py(PM(·|Ic ⊕ v1 ⊕ v′1)), (3)206

where o′1 ∈ {true, false, δ} is the execution result207

of code, and δ refer to other output text except true208

or false. Although we have constrained the output209

of the code to include true or false, there may be210

instances where errors occur or the output is not211

in the correct format. In the verification of this212

step and all subsequent steps, we will only keep the213

cases where the output is true.214

3.2 Handling Problem2215

Task. Given p2, our goal is to identify an arbitrary216

numeric value v2 from p2 and replace it with the217

variable symbol ‘{new_variable2}’. The output218

of the task is o2 = v2⊕ p2, where p2 is the masked219

problem. To improve accuracy, we suggest the220

model prioritize integers and fractions.221

o2 ∼ PM(·|I2 ⊕ p2). (4)222

Validation of p2. Given p2 and the p′2, we ask the223

LLM to output the value of {new_variable2}, de-224

noted as v′2 . Similar to 3.1, we write Python code225

to validate if two instances of {new_variable2}226

are equal. If the results o′2 ∈ {true, false, δ} is227

true, it indicates that the p2 and v2 is correct. Ad-228

ditionally, we have observed cases where informa-229

tion is lost in the modified p2, so we filter out cases230

where the length of p2 is greater than the p2 by231

comparing the number of characters.232

v′2 ∼ PM(·|I ′2 ⊕ p2 ⊕ p2), (5)233

234
o′2 = Py(PM(·|Ic ⊕ v2 ⊕ v′2)). (6)235

3.3 Establishing Relationships236

Task. Given v1 and v2, we allow the model to237

generate Python code to subtract the two values and238

compute the difference o3. Based on the sign of o3,239

we can determine their relationship r ∈ {gt, eq, lt},240

where gt indicates v1 > v2, eq indicates v1 = v2,241

and lt indicates v1 < v2. As shown in the example242

in Figure 1, the execution result of the subtraction243

code is 0, which indicates that {new_variable2}244

is equal to new_variable1.245

o3 = Py(PM(·|I3 ⊕ v1 ⊕ v2)). (7)246

Validation of Relationship Definition. Given v1247

and the relationship r, we ask the LLM to out-248

put the value of {new_variable2}, denoted as v′′2 .249

Then have the LLM write Python code to check250

whether the two values of {new_variable2} are 251

equal. If the judgment o′3 ∈ {true, false, δ} is 252

true, it indicates that the relationship definition is 253

correct. 254

v′′2 ∼ PM(·|I ′3 ⊕ v1 ⊕ r), (8) 255
256

o′3 = Py(PM(·|Ic ⊕ v2 ⊕ v′′2)). (9) 257

3.4 Renaming 258

Task. Given the first problem with definition 259

p1, and the modified problem p2, we aim to re- 260

name the variable strings new_variable1 and 261

{new_variable2} to more conventional, unused 262

variable names. Let these new variable symbols be 263

denoted by s1 and s2, respectively. The task can be 264

formulated as: 265

o4 ∼ PM(·|I4 ⊕ p1 ⊕ p2), (10) 266

where o4 = s1 ⊕ s2 is the output of LLM. After 267

that we replace new_variable1 with s1 and re- 268

place {new_variable2} with s2 in p1, p2, and r, 269

obtaining their renamed version, denoted as p̂1, p̂2, 270

and r̂. This renaming step helps ensure the vari- 271

ables do not appear artificial and adhere to standard 272

naming conventions. 273

Validation of Renaming. To ensure that the re- 274

naming process is valid, we define the validation 275

as follows: Given the renamed problems p̂1 and 276

p̂2, we verify whether any variable names used in 277

p̂1 appear in p̂2, or whether any variable in p̂2 ap- 278

pears in p̂1. In other words, we check if the two 279

problems share any variables and confirm that no 280

conflict occurs. It can be formulated as: 281

o′4 ∼ PM(·|I ′4 ⊕ p̂1 ⊕ p̂2), (11) 282

where o′4 ∈ {true, false, δ} represents the valida- 283

tion output confirming that the renaming has been 284

correctly applied. 285

3.5 Final Problem and Answer 286

After the above steps, we have obtained all the 287

elements required for the final problem p12: the 288

renamed problems p̂1 and p̂2, and their relation- 289

ship r̂. By combining these three, we get the final 290

compositional problem and its answer: 291

p12 = p̂1 ⊕ r̂ ⊕ p̂2, (12) 292
293

a12 = a2. (13) 294

Compared to existing automated mathematical 295

problem generation methods, our approach is sta- 296

ble, and the final answer is accurate. 297
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Verify Sub-P Size P-Len. S-Len.

SEED Human 1 200 59 445
VCMD Pipeline,

Human
2 500 152 743

ECMD Pipeline 2 30,818 142 788
TCMD Pipeline 3 6,878 199 912

Table 2: The statistics of experimental datasets, where P
and S represent problem and solution, respectively. The
solution used to calculate the average length is sampled
from Llama-3.1-70b-it.

4 Experiment298

4.1 Datasets299

Table 2 shows the dataset used in our experiment.300

Firstly, we synthesized a dataset called VCMD301

(Verified Compositional Math Dataset), consisting302

of 500 problems, utilizing the Llama-3.1-70b-it303

(Meta-AI, 2024) model. The dataset was created304

by evenly selecting 200 questions from the MATH305

(Hendrycks et al., 2021) dataset’s test set as seed306

data, ensuring an equal representation across five307

difficulty levels and seven question types. Each308

seed question was then randomly combined with309

other questions five times, ensuring that every ques-310

tion was sampled an equal number of times. Each311

synthetic question was manually verified twice, and312

the error problems were repaired.313

As shown in Figure 2(a), our automated synthe-314

sis pipeline filtered out 120 failed combinations,315

leaving 380 valid questions, of which 373 were ver-316

ified by humans as correct, achieving an accuracy317

rate of 98.2%. Most of the errors observed were318

primarily due to two questions sharing the same319

variable (e.g., both containing the variable “x”).320

To further explore the factor contribution of com-321

positional problems, we combined the 200 seed322

questions in pairs, resulting in a total of 39,800323

combination tasks (200 × 199). After automatic324

verification, the final dataset size was 30,818 valid325

problems, which we named the ECMD (Extensive326

Compositional Math Dataset).327

Finally, we selected the seed problems where328

Llama-3.1-8b-it and Llama-3.1-70b-it all answered329

correctly in 8 samples as seed data. Every three330

questions were randomly combined into a new one,331

resulting in TCMD (Triplet Compositional Math332

Dataset), with size of 6,878.333

4.2 Models334

We conducted experiments on a range of state-of-335

the-art models, with the following selection and336

2724 
(7%)

4482 
(11%)

772 
(2%)

1004 (3%)

30818 
( 77%）

Step1 Filtered

Step2 Filtered

Step3 Filtered

Step4 Filtered

Unfiltered Problem

Error Problem

Correct Problem24 (5%)

86 
(17%)

4 (1%)
6 (1%) Error Probelm

7 (1.8%)

Correct Problem
373 (98.2%)

380 (76%)

(a) VCMD

2724 
(7%)

4482 
(11%)

772 
(2%)

1004 (3%)

30818 
( 77%）

Step1 Filtered

Step2 Filtered

Step3 Filtered

Step4 Filtered

Unfiltered Problem

Error Problem

Correct Problem24 (5%)

86 
(17%)

4 (1%)
6 (1%) Error Probelm

7 (1.8%)

Correct Problem
373 (98.2%)

380 (76%)

(b) ECMD

Figure 2: Component diagram of verification results.
The pie chart (a) shows the composition of VCMD de-
tected by pipeline and human, while the chart (b) shows
the composition of ECMD detected only by pipeline.

rationale: 337

Models of Different Sizes: The Llama-3.1 series 338

(Meta-AI, 2024) and the Gemma-2 series (Gemma- 339

Team, 2024), including Llama-3.1-8b-it, Llama- 340

3.1-70b-it, Gemma-2-9b-it and Gemma-2-27b-It, 341

are LLMs with different model sizes. These models 342

were selected to explore the effects of model size 343

on performance. 344

Math-Specialized Models: Mathstral-7b-v0.1 345

(Mistral-AI., 2024) are models specifically fine- 346

tuned for math problems, chosen for comparing 347

with Mistral-7b-it-v0.3 (Jiang et al., 2023). 348

Closed-Source Models: GPT-4o-mini (OpenAI, 349

2024b) and GPT-4o (OpenAI, 2024b) are powerful 350

closed-source models. 351

Reasoning Models: GPT-o1-mini (OpenAI, 352

2024c) and GPT-o1-preview (OpenAI, 2024c) fol- 353

low the "inference time scaling" paradigm, which 354

involves performing long reasoning before generat- 355

ing answers. These models demonstrate advanced 356

reasoning capabilities, particularly in mathemati- 357

cal tasks, that surpass human-level performance in 358

some cases. Additionally, we also evaluated the 359

open source reasoning models, the DeepSeek-r1 se- 360

ries (DeepSeek-AI, 2025), including DeepSeek-r1- 361

671B, DeepSeek-r1-distill-llama-8b and DeepSeek- 362

r1-distill-llama-70b. These models were chosen to 363

explore the comparative performance of reasoning 364

5



mistral-7b-it-v0.3 mathstral-7b-v0.1 llama3.1-8b-it gemma-2-9b-it gemma-2-27b-it llama3.1-70b-it gpt-4o-mini gpt-4o deepseek-r1-8b deepseek-r1-70b deepseek-r1 gpt-o1-preview gpt-o1-mini

70

60

50

40

30

20

10

0

10

20

30

40

50

60

70

80

90

100
D

R
O

P 
PE

R
C

EN
T(

%
)  

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 A

C
C

U
R

AC
Y 

(%
)

7.2%

20.5%

-65%

22.6%

53.0%

-57%

21.8%

47.0%

-54%

26.6%

56.8%

-53%

31.9%

58.5%

-45%

44.0%

69.0%

-36%

54.4%

78.5%

-31%

58.0%

79.0%

-27%

65.2%

86.5%

-25%

78.6%

88.9%

-12%

91.0%

96.0%

-5%

88.2%

93.0%

-5%

91.4%

95.5%

-4%

Metrics:
Compositional Accuracy
Seed Accuracy
Drop Percent

Figure 3: Comparison of various models on the combination problem dataset and on the original dataset.

models and general instruction-following LLMs.365

4.3 Metrics366

We evaluate the LLMs using Accuracy (acc) and367

the Accuracy score drop percent (ρ), which can be368

formulated as:369

acc =
Σ(x,y)∈DΠ[M(x), y]

|D|
· 100%, (14)370

371

ρ =
acc2 − acc1

acc1
· 100%, (15)372

where Π[·] is the operator to check equal, acc2 is373

the Accuracy on the target dataset and acc1 is the374

Accuracy on the corresponding original dataset.375

4.4 Main Results376

We conducted extensive experiments on the377

VCMD, and the main experimental result is shown378

in Figure 3. There are some notable observations:379

(1) Overall, all LLMs exhibited varying degrees of380

score reduction, and the magnitude of the decline381

is related to their original capability.382

(2) In terms of absolute Accuracy, Mathstral-7b-383

v0.1 has the highest decline by 30% and GPT-o1-384

mini has the lowest decline, nearly 4%. SOTA mod-385

els on the original dataset is DeepSeek-r1, which386

achieve 96%, but also showed a decrease of 5%.387

(3) In terms of relative decrease, the largest and388

smallest decreases were 65% for Misral-7b-it-v0.3389

and 4% for GPT-o1-mini, respectively.390

In fact, the score drop was expected, but the ex-391

tent of the decline was somewhat surprising. For392

humans, after learning to solve individual problems393

A and B, it is natural to learn how to solve the A+B,394

which is the simple combination of these two prob- 395

lems. However, this simple "generalization ability" 396

seems to be discounted in LLMs. This result under- 397

scores the significant value of using combinatorial 398

math problems to test the generalization capabili- 399

ties of models. 400

4.5 Ablation Study 401

From the above experiments, we concluded that 402

combinatorial problems challenge the generaliza- 403

tion ability of LLMs. However, the necessity of 404

our approach and the reliability of the conclusions 405

remain uncertain. In this section, we discuss these 406

issues. 407

The first issue to address is: Do we really need 408

to combine them? If we do not use our pipeline to 409

combine the problems, but instead directly give 410

the two problems to the LLMs to answer together, 411

does the difficulty remain the same? As shown in 412

Figure 4(a), the area of the green region, which 413

represents the score drop of independent problem 414

pairs compared to the original problems, is much 415

smaller than that of the red region, which repre- 416

sents the score growth compared to VCMD. On 417

the one hand, this result suggests that long context 418

without logical connections does not interfere with 419

LLMs as much as expected. On the other hand, it 420

strongly supports the necessity of our method for 421

establishing connections between problems. 422

This leads to the second concern: Is it really 423

the poor math generalization ability that leads to 424

the decrease? Assume a seed problem has n steps 425

in its solution, each with a α (e.g., 0.01) error 426

probability. The final probability of a correct 427

6



deepseek-r1-70b

deepseek-r1-8b
gpt-4o

gpt-4o-mini

llama3.1-70b-it

gemma-2-27b-it

gemma-2-9b-it

mathstral-7b-v0.1

llama3.1-8b-it

mistral-7b-it-v0.3

MODEL

0

20

40

60

80

100
A

cc
ur

ac
y 

(%
)

Seed Problem
Independent Problem
Compositional Problem

(a) The performance of LLMs on independent problems.

deepseek-r1-70b

deepseek-r1-8b
gpt-4o

gpt-4o-mini

llama3.1-70b-it

gemma-2-27b-it

gemma-2-9b-it

mathstral-7b-v0.1

llama3.1-8b-it

mistral-7b-it-v0.3

MODEL

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Seed Problem
Completion Problem
Compositional Problem

(b) The performance of LLMs on completion problems.

0 1 2 3 4 5 6 7 8
Confidence C

0

10

20

30

40

Pe
rc

en
t o

f C
ou

nt
(%

) Conditions
llama3.1-8b-it on ECMD Subset
llama3.1-70b-it on ECMD Subset
llama3.1-8b-it on TCMD Subset
llama3.1-70b-it on TCMD Subset

(c) Confidence distribution chart, where the confidence of their
sub-problems are all equal to 8.

Figure 4: The results of ablation study.

answer would be (1 − α)n. After combining the428

problems, the final correct probability becomes429

(1 − α)2n. Naturally, the score would decrease.430

Based on this assumption, we set up a new431

experiment in which we provided the model with432

the first solution and asked it to answer only the433

remaining part, thus ensuring that the probability434

of a correct answer is close to that of the original435

problem. As shown in Figure 4(b), the score436

of LLMs in such completion problems showed437

an improvement, but it still had a significant438

gap (green area) compared to the score on the439

seed problem. This result confirms that "error440

probability accumulation," although it may have441

an impact, is not the main factor causing score442

reduction, thus confirming that combinatorial443

math problems can indeed reveal the weaknesses444

in LLMs’ generalization abilities. In particular,445

the deepseek-r1-70b and 8b models, due to the446

characteristics of the reasoning model, analyze447

each sentence of the input, which in turn causes 448

interference and leads to worse performance 449

compared to other regular models. 450

We also tested the confidence distribution when 451

all sub-problems can be solved. We first sampled 452

8 answers for the seed problem and defined the 453

number of correct answers as the confidence level 454

of the model in answering this problem, denoted 455

as C ∈ [0, 8]. Then, we evaluated all the cases 456

from ECMD and TCMD, which consist of seed 457

problems with C = 8. As shown in Figure 4(c), 458

even though LLMs have very high confidence in 459

the sub-problems, confidence tends to decay when 460

faced with combinatorial problems. Most of the 461

problems in ECMD are on the side where C > 462

4, while TCMD consists of three sub-problems, 463

making it more difficult. As a result, the majority 464

of the problem confidence in TCMD is distributed 465

on the side where C < 4. 466

4.6 Dominant Factor Analysis 467

In fact, a mathematical problem can have many 468

characteristics, such as difficulty, type, and length, 469

which may influence the combined problem’s out- 470

come. To identify the dominant factors affecting 471

LLMs, we evaluate LLMs with ECMD by sam- 472

pling 8 answers for each problem. We recorded the 473

accuracy score of each subset and the proportion 474

of score decay compared to the corresponding seed 475

problems. 476

Difficulty. We define the difficulty of two seed 477

problems as D1 ∈ [1, 5] and D2 ∈ [1, 5], where 478

the difficulty of the combined problem is D = 479

D1 + D2. As shown in Figure 5(a), as difficulty 480

increases, the performance of the models gradually 481

declines. Even the strongest model, Llama-3.1- 482

70b-it, achieves only a score of 12.01% on the 483

most difficult D = 10 problem, which is 66.13% 484

lower than the highest score. 485

Subproblem Confidence. The smaller confidence 486

level between the two sub problems, C ∈ [0, 8], 487

can be considered as a more personalized difficulty 488

indicator. As shown in Figure 5(b), the drop in con- 489

fidence values exhibits a greater degree of change 490

and trend than difficulty does. The difference be- 491

tween the highest and lowest scores is 68%. 492

Length. The token count of a problem is regarded 493

as its length L. As shown in Figure 5(c), in general, 494

longer problems tend to have lower scores, though 495

the correlation is not particularly strong. 496

Type. Different combinations of problem types, 497
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(f) Feature Cross Heatmap

Figure 5: The impact of features on LLMs’ generalization ability. Figure (f) is a heatmap with intersecting features
from Llama-3.1-70b-it, where cells without numbers represent problems with such features do not exist.

such as geometry and algebra, can enhance the498

problem’s diversity, which may also pose a chal-499

lenge. We tested two types T : “same type” and500

“different type”. The results, shown in Figure 5(d),501

are in line with expectations. However, LLMs do502

not seem to be very sensitive to this feature.503

Order. We compared the easy-to-difficult problem504

with the difficult-to-easy problem to analysis the505

influence of order O. Results shown in Figure506

5(e) suggest that LLMs tend to perform better on507

problems that progress from difficult to easy. This508

could be because, with fewer contextual clues at509

the beginning, LLMs’ attention mechanisms more510

easily focus on the correct reasoning path, allowing511

them to tackle the complex part first and solve the512

simpler parts later with fewer errors.513

Feature Interaction Analysis. Figure 5(f) shows a514

heatmap of the score performance based on various515

feature combinations for Llama3.1-70b-it, where516

the highest and lowest values were selected for each517

feature category. Obviously, confidence, length,518

and difficulty are all indicators that have a strong519

impact. The influence of confidence is the strongest520

among them. As long as C = 8, both subsets with521

D = 10 and subsets with L = 239 ∼ 267 receive522

relatively high scores.523

The results indicate that the combination of fea-524

tures such as "high difficulty, low confidence, dif-525

ferent types, long question length, and easy-to-526

difficult" poses a greater challenge to the model,527

making it more suitable for verifying the model’s 528

combined generalization ability. 529

4.7 Case Study 530

We have observed an interesting phenomenon 531

RAWR (Right Answer, Wrong Reasoning): inter- 532

mediate variable results were incorrect, but the fi- 533

nal answer was still correct. We identified two 534

scenarios where RAWR occurs: (1) Match learned 535

text patterns and forcefully apply them without any 536

logic. As the first case is shown in Appendix C, 537

GPT-4o got right answer because it matching the 538

similar pattern of (82 + 18)3. (2) The intermediate 539

results provide a weak constraint on the final result. 540

As shown in the second case, it will get the correct 541

answer as long as Q ∈ [9013 ,
92
13 ]. 542

The existence of RAWR suggests that it is better 543

to introduce intermediate checkpoints when evalu- 544

ate math problem, which is exactly what our com- 545

binational problems can naturally achieve. 546

5 Conclusion 547

This paper introduces a novel method for evaluat- 548

ing LLMs’ compositional generalization ability by 549

combining learned math problems to test whether 550

the model can solve them correctly. We propose an 551

automated pipeline with 98.2% accuracy and pro- 552

vide three compositional generalization datasets, 553

evaluated on 13 LLMs. Additionally, we analyze 554

key factors affecting compositional generalization 555

and offer guidance for problem synthesis. 556
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6 Limitations557

In this work, the compositional problems are syn-558

thesized from existing problems, which, compared559

to problems created by humans, do not lead to560

significant new mathematical breakthroughs for561

the models. If used as training data, it might be562

more suitable for improving the model’s general-563

ization ability. Furthermore, to ensure reliability,564

the pipeline calls the LLM multiple times for result565

verification. In the future, with models that have566

better performance, it may be possible to complete567

multiple-step reasoning in one go, streamlining the568

process. Additionally, the compositional problems569

is more complex and difficult, thus more suitable to570

use as the training data for reasoning models, like571

GPT-o1 and Deepseek-r1. We will implement it in572

the future work.573
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A Datasets798

As shown in Table 3, the accuracy of some exist-799

ing methods for automatically synthesizing mathe-800

matical problems is much lower than ours. More-801

over, the LLm they use for data synthesis is GPT-802

4o (OpenAI, 2024b) or GPT-4-Turbo (OpenAI,803

2024a), the cost of which is more than ours. The ac-804

curacy of MATH2 (Shah et al., 2024), GSM-PLUS805

(Li et al., 2024), and MATHCHECK (Zhou et al.,806

2024a) comes from the report in the paper, while807

ORCA (Mitra et al., 2024) is used for training and808

does not report the accuracy of the problem. There-809

fore, we randomly sampled 50 samples and eval-810

uated their accuracy. Compare with all of other811

methods, we do not have such high requirements812

for LLM capability in synthesizing data. We fol-813

lowed the template used in the Simple Eval2 project814

to check if the answers are equal, while we used815

LLM to extract the final answer instead of pattern816

matching.817

B Experiment Details818

We use vLLM-0.6.4 (Kwon et al., 2023) as our819

inference backend for data synthesis and model820

evaluation. When synthesizing data, we set the821

seed as 42 and the temperature to 1e-2. In the822

response sampling phase of the evaluation, we set823

the temperature to 0.8, and set 1e-2 to evaluate824

whether the answer is correct. Specifically, we set825

2A project created by OpenAI.

the max_token for all models to 4k, except for the 826

gpt-o1 series and deepseed-r1 series, which are set 827

to 16k. 828

C Case 829
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Method Annotation Pipeline Accuracy Use For ?

ORCA GPT-4o (Q+A) 72% Training
MATH2 GPT-4-Turbo (Q+A), Human (Q+A) 77% Evaluation
GSM-PLUS GPT-4-Turbo (Q+A), Human (Q+A) 81.15% Evaluation
MATHCHECK GPT-4-Turbo (Q+A), Human (Q+A) 84.61% Evaluation
Ours Llama3.1-70b-it (Q+A) , Human (Q+A) 98.2% Evaluation

Table 3: Comparison of the automatic math problem synthesize method.

Case 1 (About RAWR From GPT-4o)

Origin Problem1:
A regular octagon ABCDEFGH has an area of one square unit. What is the area of the rectangle ABEF ?
[asy] pair A,B,C,D,I,F,G,H; A=(-1,1); B=(1,1); H=(-2.41,-0.41); C=(2.41,-0.41); G=(-2.41,-2.41); D=(2.41,-2.41);
F=(-1,-3.82); I=(1,-3.82); draw(A–B–C–D–I–F–G–H–cycle,linewidth(0.7)); label("A",A,N); label("B",B,N);
label("C",C,E); label("D",D,E); label("E",I,S); label("F ",F,S); label("G",G,W); label("H",H,W); [/asy]

Origin Problem2:
What is the value of 823 + 3(822)(18) + 3(82)(182) + 183? (No calculators! And see if you can do it in your head!)

Combinational Problems:
A regular octagon ABCDEFGH has an area of one square unit. What is the area of the rectangle ABEF ?

[asy] pair A,B,C,D,I,F,G,H; A=(-1,1); B=(1,1); H=(-2.41,-0.41); C=(2.41,-0.41); G=(-2.41,-2.41); D=(2.41,-2.41);
F=(-1,-3.82); I=(1,-3.82); draw(A–B–C–D–I–F–G–H–cycle,linewidth(0.7)); label("A",A,N); label("B",B,N);
label("C",C,E); label("D",D,E); label("E",I,S); label("F ",F,S); label("G",G,W); label("H",H,W); [/asy]

Define K is the result of the area. X is 5
2

more than K.

What is the value of 823 + X(822)(18) + X(82)(182) + 183? (No calculators! And see if you can do it in
your head!)

Solution From GPT-4o:
### Step 1: Understand the problem setup We are tasked with determining the area of rectangle ABEF within a regular
octagon ABCDEFGH whose total area is 1 square unit. Then, we calculate K, analyze another variable X , and work
out a polynomial expression based on X . Let’s proceed step by step.
—
### Step 2: Find K, the area of rectangle ABEF #### Geometry of the octagon: 1. A regular octagon can be split into
a central square and 8 identical isosceles right triangles. 2. Let s be the side length of the octagon. The area of the entire
octagon is given as 1 square unit.
#### Determine the dimensions of the rectangle ABEF : - The rectangle ABEF includes two sides of the central
square and spans the lengths of adjacent isosceles right triangle bases. - The base of each isosceles right triangle equals
the side length s of the octagon. - Thus, the length of rectangle ABEF is 2s (the bases of two adjacent triangles) and
its width is s (the side of the central square).
#### Area of rectangle ABEF : The area of ABEF is:

Area of ABEF = length × width = (2s)(s) = 2s2

#### Total area of the octagon: The total area of the octagon is given as 1, which equals the sum of the central square
and the 8 isosceles right triangles:

Total area = s2 + 8× 1

2
s2 = s2 + 4s2 = 5s2

Thus:
5s2 = 1 =⇒ s2 =

1

5

#### Substitute s2 into the area of ABEF :

Area of ABEF = 2s2 = 2× 1

5
=

2

5

So, K = 2
5

. × The correct value of K should be 1
2

—
830
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### Step 3: Determine X The problem states that X is 5
2

more than K:

X = K +
5

2
=

2

5
+

5

2

To add these fractions, find a common denominator:

2

5
=

4

10
,

5

2
=

25

10
=⇒ X =

4

10
+

25

10
=

29

10

Thus, X = 29
10

. × The correct value of X should be 3
—
### Step 4: Simplify the given polynomial expression
The problem asks us to calculate:

823 +X(822)(18) +X(82)(182) + 183

#### Step 4.1: Factorize the expression
Notice that the expression has a binomial expansion structure:
✓ Here, LLMs derive the correct solution path from wrong reasoning because it matches the pattern of (82+18)3

823 +X(822)(18) +X(82)(182) + 183 = (82 + 18)3

#### Step 4.2: Simplify 82 + 18
82 + 18 = 100

#### Step 4.3: Expand 1003

1003 = 100× 100× 100 = 1, 000, 000

—
### Final Answer:

1, 000, 000 ✓The Answer is Correct!

831

Case 2 (About RAWR From GPT-o1-mini)

Origin Problem1:
Ryan has 3 red lava lamps and 3 blue lava lamps. He arranges them in a row on a shelf randomly, then turns 3 random
lamps on. What is the probability that the leftmost lamp on the shelf is red, and the leftmost lamp which is turned on is
also red?

Origin Problem2:
If a = 7 and b = 13, what is the number of even positive integers less than ab?

Combinational Problems:
Ryan has 3 red lava lamps and 3 blue lava lamps. He arranges them in a row on a shelf randomly, then turns 3 random
lamps on. What is the probability that the leftmost lamp on the shelf is red, and the leftmost lamp which is turned on is
also red?
Define P is the result of the problem. Q is 133

20
more than P .

If a = Q and b = 13, what is the number of even positive integers less than ab?

Solution From GPT-o1-mini:
To solve the problem, we need to determine the probability P and subsequently find the number of even positive integers
less than ab, where a = Q and b = 13.
### Step 1: Calculate P
**Given:** - Ryan has 3 red and 3 blue lava lamps. - He arranges them randomly in a row and turns on 3 lamps at
random. - P is the probability that: - The **leftmost lamp** on the shelf is **red**. - The **leftmost lamp that is
turned on** is also **red**.
**Approach:** 1. **Probability that the first lamp is red (P (A)):**

P (A) =
3

6
=

1

2

2. **Probability that the leftmost turned-on lamp is red given that the first lamp is red (P (B|A)):** - **Case 1:** The
first lamp is turned on.

P (first lamp turned on) =

(
5
2

)(
6
3

) =
10

20
=

1

2
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If turned on, it’s already red.
- **Case 2:** The first lamp is not turned on.

P (leftmost turned on lamp is red|first lamp not on) =
13

20

- Combining both cases:

P (B|A) =
1

2
× 1 +

1

2
× 13

20
=

33

40

3. **Calculate P :**
P = P (A)× P (B|A) =

1

2
× 33

40
=

33

80
× P should be 7

20

### Step 2: Calculate Q and ab
**Given:** - Q is 133

20
more than P .

Q = P +
133

20
=

33

80
+

133

20
=

113

16
× Q should be 7

- a = Q = 113
16

- b = 13
**Calculate ab:**

ab =
113

16
× 13 =

1469

16
≈ 91.8125 × ab should be 91

### Step 3: Number of Even Positive Integers Less Than ab
Since ab ≈ 91.8125, the even positive integers less than ab are:

2, 4, 6, . . . , 90

There are 90
2

= 45 such numbers.

### **Final Answer:**
**45** ✓It will get the correct answer as long as Q ∈ ( 90

13
, 92
13
].

833

Case 3 (Badcase From Deepseek-r1)

Origin Problem1: ✓Deepseek-r1 solve the problem successfully.
Find the 3× 3 matrix M such that

M

x
y
z

 =

 y
z

x+ y + z


for all real numbers x, y, and z.

Origin Problem2: ✓Deepseek-r1 solve the problem successfully.
Given that a particular positive integer is a four-digit palindrome, what is the probability that it is a multiple of 99?
Express your answer as a common fraction.

Combinational Problems:
Find the 3× 3 matrix M such that

M

x
y
z

 =

 y
z

x+ y + z


for all real numbers x, y, and z.
Define a is the element in the first row and the second column of the matrix M. b is 3 more than a.
Given that a particular positive integer is a $b$-digit palindrome, what is the probability that it is a multiple of 99?
Express your answer as a common fraction.

Solution From Deepseek-r1:
To find the 3× 3 matrix M such that

M

x
y
z

 =

 y
z

x+ y + z


834
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we analyze the linear combinations of x, y, and z for each component of the resulting vector. The matrix M is
determined to be:

M =

0 1 0
0 0 1
1 1 1


The element a in the first row and the second column is 1. Therefore, b = a+ 3 = 4. ✓a and b is correct.
Next, we consider 4-digit palindromes. A 4-digit palindrome has the form ABBA, where A ranges from 1 to 9 and B
ranges from 0 to 9. There are 9× 10 = 90 such palindromes.
A number is divisible by 99 if it is divisible by both 9 and 11. For divisibility by 11, all 4-digit palindromes are
automatically divisible by 11 because the difference between the sums of the digits in odd and even positions is zero.
For divisibility by 9, the sum of the digits 2A+ 2B must be a multiple of 9, which simplifies to A+B ≡ 0 (mod 9).
For each A (1 to 9), there is exactly one B (0 to 9) such that A + B ≡ 0 (mod 9). This gives 9 valid pairs (A,B).
Therefore, there are 9 four-digit palindromes divisible by 99.
The probability that a 4-digit palindrome is a multiple of 99 is 9

90
= 1

10
.

The final answer is
1

10
. × Final answer should be 1

9

835

D Instruction and Prompt Template 836

Ic Generate Code to Check Equal

Task Description:

Write a Python program to compare two given values and determine if they are equal. Follow these guidelines:

1. Use the ‘sympy‘ library to handle symbolic comparisons, ensuring that equivalent expressions (e.g., 2
4

and 1
2

) are
recognized as equal.

2. For values involving irrational constants (e.g., π, e), perform comparisons up to **two decimal places** for
practical equivalence.

3. Include clear intermediate steps in the program, such as evaluating or simplifying the values where appropriate.

4. Wrap the final comparison outcome in a ‘\boxed‘ command for clarity.

5. Provide both the Python code and the results of running the code.

Output Format:

′ ′ ′ python
{The Python code that compares the two given values, including print statements for intermediate steps and the
final_comparison_outcome .}

′ ′ ′

′ ′ ′ output
{The output of the Python program.}
′ ′ ′

—
Example1

—
...

—
Example3

—
Task:

Value1: {VALUE1}
Value2: {VALUE2}

837
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I1 Modify p1

Given a math problem and the final answer, your task is to output the modified math problem. Follow the steps below:

Step1: Identify a specific integer, float, or fraction within ‘final_answer‘ and name it as new_variable1; There are
several situations:

1. If the ‘final_answer‘ contains unknown variables:

(a) If the ‘final_answer‘ is an expression, choose one coefficient as new_variable1, for example, 2x + 3, you
can choose the coefficient of x as new_variable1, which is 2, and in the case of sin(x), there is a hidden
coefficient 1 and a hidden amplitude 1, you can choose either one as new_variable1;

(b) If the ‘final_answer‘ is an equation, you can choose one solution as new_variable1, for example, y = 2x +
1, you can define the value of y as new_variable1 when given x = 1, which is 3;

(c) If the ‘final_answer‘ is a symbol of an option, such as ’A’, ’B’, ’C’, etc, use their order in the alphabet as a
variable, such as ’A’ = 1, ’B’ = 2, ’C’ = 3, etc;

(d) If the ‘final_answer‘ contains 2 or more items, e.g. multiple choice questions, choose the smallest or the
largest one, and then apply the corresponding situation;

2. If the ‘final_answer‘ has no unknown variables, there are several situations:

(a) If the ‘final_answer‘ itself is a numerical value, like ’four’, ’4’, ’2 +
√
2’, ’3π’, and ’ 3

4
’, use it directly as

new_variable1;
(b) If the ‘final_answer‘ contains 2 or more numerical values, use the largest or the smallest one as

new_variable1;
(c) If the ‘final_answer‘ is an interval or ratio, choose one boundary and \infty is not allowed, for example,

[2,\infty), you can define the lower bound as new_variable1, which is 2;
(d) If the ‘final_answer‘ is a ratio, choose one part of the ratio, for example, 3:4; you can define the first part of

the simplified ratio as new_variable1, which is 3;
(e) If the ‘final_answer‘ is a non-base 10 number, for example, 10012, you can define ’the number of digits in

the base 2 representation’ as new_variable1, which is 4;
(f) If the ‘final_answer‘ is an angle or degree, choose the corresponding radian value, for example, 30\cric or

30°, define the corresponding radian value of final answer as new_variable1, which is \pi/6 or π/6.

All in all, find a way to identify a specific numerical value as new_variable1 without unknown, and make sure the
reader can get the value of new_variable1 from the ‘final_answer‘ through your definition.

Step2: Output the value of new_variable1, keep the exact value or math symbol, and simplify the fraction if necessary,
for example, keep the π as π, keep the

√
2 as

√
2, and simplify 6

8
as 3

4
, without rounding to a decimal point.

Step3: Output the definition of new_variable1 without mentioning the real value.

—

Output Format:
<Analysis>
{Identified a specific integer, float, or fraction as new_variable1}
</Analysis>

<The_Value_of_New_Variable1>
{The value of new_variable1, no other text, and output ’None’ if you can not find a suitable new_variable1}
</The_Value_of_New_Variable1>

<The_Definition_of_New_Variable1>
{The definition of new_variable1 without mentioning the real value, and output ’None’ if you can not find a suitable
new_variable1}
</The_Definition_of_New_Variable1>

—
Example1

—
...

—
Example6

—
838
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Task:

Original Problem:
{PROBLEM1}

‘final_answer‘ of Problem:
{FINAL_ANSWER1}

839

I
′
1 Verify new_variable1

{PROBLEM1}
Assume that the final answer of the problem is {FINAL_ANSWER1}.
{DEFINITION_OF_NEW_VARIABLE1}

Then what is the value of new_variable1?

Please output the value of new_variable1 directly, wrapping it in \boxed{}, for example, \boxed{3}.
840

I2 Modify p2

Given a math problem, please identify a specific integer, float, or fraction within it and replace it with new_variable2.
The specific steps are as follows:

Step 1: Identify and list all the numerical values in the problem. There are several situations:

1. Containing unknown variables is not allowed, for example, in the case of 2a+ 3 = 5, ’2’, ’3’, and ’5’ are valid,
while 2a+ 3 isn’t.

2. Containing math symbols is allowed, do not simplify or round them to decimals. For example, keep 3π as 3π,
keep

√
2 as

√
2, keep 7! as 7!, and keep 6

8
as 6

8
.

3. Containing units is not allowed. For example, $120\circ$ or 120◦ should be replaced by ${new_variable2}\circ$
where {new_variable2} = 120; 10% can become {new_variable2}% where {new_variable2} = 10; and
10002 should choose the number of base to be defined as 1000new_variable2, etc.

4. Choose part of the expression like coefficient, numerator, or denominator is allowed. For example, the expression
7x+ 3 can be replaced by {new_variable2} · x+ 3.

Step 2: There are many types of numerical values, and choose one following the priority:

1. Integers like ’1’ > fractions like 1
2

or 1/2 > decimals like 0.5 > numbers in words like ’one’, ’two’, ’three’ >
numbers in other bases like 10002.

2. Small numbers are preferred when there are multiple numerical values of the same type.

3. If there are no numerical values in the problem, output ’None’ in the tag <The_Value_of_new_variable2>.

Output Format:

<Identify_new_variable2>
{Identified a specific integer, float, or fraction as new_variable2}
</Identify_new_variable2>

<The_Value_of_new_variable2>
{The value of new_variable2, no other text, and output ’None’ if there are no numerical values in the problem}
</The_Value_of_new_variable2>

<The_Definition_of_new_variable2>
{The definition of new_variable2 without mentioning the real value, and output ’None’ if there are no numerical
values in the problem}
</The_Definition_of_new_variable2>

<Modified_Problem>
{The modified problem with the new variable symbol new_variable2 without mentioning the real value of
new_variable2, and output ’None’ if there are no numerical values in the problem}
</Modified_Problem>

841
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—
Example 1:

—
...
—
Example 6:

—
Task:
Original Problem:
{PROBLEM2}

Output:
842

I
′
2 Verify new_variable2

Given two math problems, Problem 1 and Problem 2, where a numerical value in Problem 1 has been replaced by a
variable new_variable2 to form Problem 2, your task is to identify the value of new_variable2.

Output the results with the following format:

<The_Value_of_new_variable2>
The value of new_variable2, if identified, or ’None’ if no value can be determined.
</The_Value_of_new_variable2>

—
Example1

—
...

—
Example3

—
Task:
Original Problem 1:
{PROBLEM2}

Problem 2:
MODIFIED_PROBLEM2

Output:
843

I3 Establishing Relationship

Given the values of new_variable1 and new_variable2, your task is to calculate the difference
new_variable2− new_variable1 and establish the relationship between them. Follow these steps:

Step 1: Write a Python program that calculates the difference between new_variable2 and new_variable1. The
program should follow these guidelines:

1. Instead of writing functions, write programs directly.

2. Avoid using decimal values, and ensure that all fractions and square roots are simplified using functions from the
‘sympy‘ library.

3. If there are any intermediate variables, print them in the Python programs.

4. Print the final_answer at the end.

5. Provide the code output following the Python code.

Step 2: Describe the relationship between new_variable1 and new_variable2 based on the calculated difference.

—
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Output Format:

′ ′ ′ python
{The Python code that computes ‘new_variable2 − new_variable1‘, including print statements for intermediate
variables and the final answer.}
′ ′ ′

′ ′ ′ output
{The output of the Python code, including intermediate variables and the final answer.}
′ ′ ′

—
Example1

—
...

—
Example3

—
Task:
The values of new_variable1:
{new_variable1}

The values of new_variable2:
{new_variable2}

845

I
′
3 Verify Relationship

Task Description:
Write a Python program to calculate the value of ‘new_variable2‘ based on the given value of ‘new_variable1‘ and
the specified relationship. Follow these guidelines for your program:

1. Avoid using floating-point numbers for intermediate steps; instead, use the ‘sympy’ library to handle fractions,
square roots, and other symbolic representations.

2. Clearly print intermediate steps where appropriate.

3. Ensure that the output clearly shows the value of new_variable2 in its most simplified form.

4. The output should include both the Python program and the corresponding output produced by running the
program.

Output Format:

′ ′ ′ python
{The Python code that computes new_variable2, including print statements for intermediate calculations and the final
result.}
′ ′ ′

′ ′ ′ output
{The output of the Python program, showing intermediate steps and the final value of new_variable2.}
′ ′ ′

<The_Value_of_new_variable2>
{The value of ‘new_variable1‘ in the problem.}
</The_Value_of_new_variable2>

—
Example 1

—
...

—
Example 4
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—
Task:
The value of new_variable1:
{NEW_VARIABLE1}

The relationship:
{RELATIONSHIP}

847

I4 Renaming

Given a math problem, your task is to find a new variable name that never appears in the problem for new_variable1
and new_variable2. Note that:

1. The new variable names should be different from all the variables in the problem.

2. The new variable names should wraped in $$, for example, m, α.

—
Output Format:
<The_Symbol_of_new_variable1>
(the new variable name for new_variable1, no other text)
</The_Symbol_of_new_variable1>

<The_Symbol_of_new_variable2>
(the new variable name for new_variable2, no other text)
</The_Symbol_of_new_variable2>

—
Example:

—
Task:
Problem:
{MODIFIED_PROBLEM1}
{MODIFIED_PROBLEM2}

Output:
848

I
′
4 Verify Renaming

Given Math Problem 1 and Math Problem 2, confirm whether Problem 2 uses the same variable symbols or object
names as Problem 1, focusing on avoiding potential confusion if the two problems were combined.

1. If the same variable symbols (e.g. x, alpha, etc) are present in both problems, regardless of whether they have
different roles, output ’yes’.

2. If the same objects or entities (e.g. Xiaoming’s speed, the number of cakes, Triangle ABC, etc) are mentioned
and relevant to the problems, output ’yes’.

3. Otherwise, output ’no’.

Output Format:
<IsContain> yes or no </IsContain>

<Analysis> A brief analysis </Analysis>

—
Example1:

—
...

—
Example3:

—
Task
Problem 1:

849
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{RENAMED_PROBLEM1}

Problem 2:
{RENAMED_PROBLEM2}

Output:
850

21


	Introduction
	Related Work
	Compositional Problem Generation
	Handling  Problem1 
	Handling  Problem2 
	Establishing Relationships
	Renaming
	Final Problem and Answer

	Experiment
	Datasets
	Models
	Metrics
	Main Results
	Ablation Study
	Dominant Factor Analysis
	Case Study

	Conclusion
	Limitations
	Datasets
	Experiment Details
	Case
	Instruction and Prompt Template

