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Abstract

A central piece in enabling intelligent agentic
behavior in foundation models is to make them
capable of introspecting upon their behavior, to
reason and correct their mistakes. In this paper,
we introduce RISE: Recursive IntroSpEction,
an approach for fine-tuning large language mod-
els (LLMs) to enable introspection and self-
correction. RISE prescribes an iterative fine-
tuning procedure that teaches the model to alter
its response after seeing previously unsuccessful
attempts to solve a problem with additional envi-
ronment feedback. Inspired by online imitation
learning, we derive strategies for multi-turn data
collection and training to imbue an LLM with
the capability to recursively detect and correct its
mistakes in subsequent iterations. Experiments
show that RISE enables 7B Llama2 and Mistral
models to improve themselves with more turns on
math reasoning tasks, outperforming single-turn
strategies given equal inference-time computation,
without disrupting one-turn abilities.

1. Introduction
A promising approach for utilizing and deploying foun-
dation models, and in particular, large language models
(LLMs) is to treat them as general-purpose decision-making
machines, or ”agents”, as it is commonly referred to in
literature. To be successful, an LLM agent must not just
provide plausible completions for input text, but rather it
must exhibit interactive, goal-directed behavior to accom-
plish a given task. This requires mastering two qualities:
(a) producing responses that explicitly seek out informa-
tion about the task, followed by (b) making decisions and
improving them by ”thinking” and verifying them, by ac-
counting for external input. For instance, to succeed at using
a new coding library, an effective LLM agent should first
synthesize programs, then try the most promising subset
against a compiler, use the resulting feedback to improve
the program, and repeat the process for multiple turns. Be-
ing able to successfully improve a response over multiple
turns is equivalent to a form of ”self-improvement”, over
the course of interaction with the external world.
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Recent approaches using few-shot prompting (Chen et al.,
2023b; Gou et al., 2023; Madaan et al., 2023; Wei et al.,
2022; Zhang et al., 2024) or fine-tuning (Chen et al., 2023a;
Liu et al., 2023; Schick et al., 2023) fall short in producing
models that can correct their own mistakes in tasks requiring
logical reasoning (Huang et al., 2023b; Yang et al., 2023b).
We propose RISE: Recursive Introspection, an algorithm
that utilizes online imitation learning (Ross et al., 2011) to
improve an LLM’s self-improvement ability over multiple
turns of interaction. RISE bootstraps on-policy rollouts
from the learner with better responses obtained by running
best-of-N on revision candidates from the learner itself or
a capable model. This constructs rollouts demonstrating
how the learner can improve its responses under its own
distribution. Fine-tuning the learner on this data using a
reward-weighted regression (RWR) (Peters & Schaal, 2007)
objective instills a general self-improvement algorithm.

Even though we find that strong LLMs (Jiang et al.,
2023; Yuan et al., 2024a) often fail to revise their own re-
sponses over multiple turns, we show that training with
RISE successfully endows similarly-sized LLMs with
self-improvement capabilities, resulting in monotonically
increasing task performance after each turn. Specifi-
cally, on a common mathematical reasoning benchmark,
GSM8K (Cobbe et al., 2021), RISE improves the perfor-
mance of a fine-tuned LLaMa2-7B model by 17.7% over
the course of 5-turn introspection, improving over parallel
sampling at the first turn; a Mistral-7B model by 23.9%;
whereas GPT-3.5 only improves by 4.6% over five turns.
Similar trends hold on MATH (Hendrycks et al., 2021),
where RISE improves the LLaMa2-7B model by 4.6% and
Mistral-7B by 11.1% over 5 turns.

2. Problem Setup and Preliminaries
Concretely, given a dataset D = {(xi,y

∗
i )}Ni=1 of prob-

lems xi and oracle responses y∗
i , our goal is to obtain an

LLM πθ(·|[x, ŷ1:t, p1:t]) that, given the problem x, pre-
vious model attempts ŷ1:t at the problem, and auxiliary
prompts p1:t (e.g., instruction to find a mistake and improve
the response; or additional compiler feedback from the envi-
ronment) solves the problem in the fewest number of turns:

max
πθ

L∑
i=1

Ex,y∗∼D,ŷi∼πθ(·|[x,ŷ1:i−1,p1:i−1]) [I (ŷi == y∗)] .

Unlike standard supervised fine-tuning that trains the model
π to produce a single response ŷ given x, the above equation
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Figure 1: Recursive Introspection (RISE). Using iterative multi-round training on on-policy rollouts and supervision from a reward
function, RISE trains models that are capable of improving themselves over multiple turns. At inference, we run majority voting on
candidate outputs from different turns to obtain the final response.

trains π to also appropriately react to a given history of
responses coming its own previous attempts ŷ1:i−1. This
objective most closely resembles an RL objective and we
will indeed develop our approach by converting a single-turn
problem into a multi-turn MDP. Finally note that prompting-
based methods such as Self-Refine (Madaan et al., 2023) can
still be viewed as training π to optimize π(y∗|x) but when
only allowed to modulate the prompt pi to optimize this
objective. Naturally, since the parameters θ are unchanged,
this would not be effective at optimizing the objective fully.

3. Recursive Introspection
Having seen that even strong off-the-shelf models do not
exhibit an effective ability of improving themselves when
provided with sequential attempts at a given problem, a nat-
ural next step is to ask how to train for a self-improvement
ability. In this section, we will develop our approach, RISE,
for fine-tuning foundation models towards improving their
own predictions over multiple turns. Our approach will first
convert a problem into a multi-turn MDP, then collect data,
and finally run offline reward-weighted supervised learning
in this multi-turn MDP to induce this capability.

3.1. Multi-Turn Markov Decision Process (MDP)
The first step in RISE involves constructing a multi-turn
MDP M from a single-turn dataset D = (xi,y

∗
i ) of

prompts xi and oracle responses y∗
i . In this induced MDP,

states are prompts, actions a are model outputs. The reward
function indicates whether the action matches the oracle
response, with r([xi, · · · ],a) = 1 if and only if a = y∗

i .
The next state is obtained by concatenating the current state
s, action a, and a fixed prompt f encouraging introspection.
This construction D = (xi,y

∗
i ) → M is formalized as:

ρ(s0) = Unif(x1,x2, · · · ,xN ) (3.1)
P (s′|s,a) = δ (s′ = concat[s,a,f ]) (3.2)
r(s,a) = 1 (a = y∗

i if xi ∈ s) . (3.3)

3.2. Learning in the Multi-Turn MDP
With the MDP construction in place, the next step involves
training a model to improve itself over the course of a rollout.
We subscribe to an offline approach for learning:

Step 1: Data collection for self-improvement. To ensure

that the offline rollout data from this multi-turn MDP is
useful for imbuing a self-improvement capability into the
model, it must satisfy a few desiderata: (1) it must illustrate
the mistakes that the learner makes and showcase how to
improve upon them in the next turn, (2) the data must il-
lustrate responses that are relevant to the model given the
problem and previous attempts in context, and (3) it must
not contain any rollout that degrades in a subsequent turn.
Our data collection strategy that satisfies these desiderata.

At round k, for problem xi, we unroll the current model
πθk(·|·) to generate sequential attempts yi

t ∼ πθk(·|sit),
along with external input f i

t (e.g., in math problems we ask
the model to correct itself) and reward rit. Let us denote
this dataset of “on-policy” model rollouts as Don-policy :=
{(sit,yi

t, f
i
t , r

i
t)

T
t=1}. For each time-step, we construct an

improved response ỹi
t and its reward r̃it. The improved

response can be obtained through either:

Distillation: Query a stronger ”teacher” model to provide a
correct response given xi, yi

t, and f i
t .

D̃on-policy + distill :=
{{(

sit, ỹ
i
t, f

i
t , r̃

i
t

)}T

t=1

}|D|

i=1
. (3.4)

Self-Improvement: Sample N responses from the learner
and use the best one to relabel the next step:

D̃on-policy + self-improvement :={{(
sit+1, ỹ

i
t[m], f i

t+1, r̃
i
t[m]

)}T−1

t=0

}|D|

i=1
.

(3.5)

Step 2: Policy improvement. We train the model on the
constructed datasets using weighted supervised learning (Pe-
ters & Schaal, 2007). Specifically, we perform weighted
imitation learning, where the weights are given by the expo-
nential transformation of the reward values in D̃:

max
θ

Exi∼D̃

[
T∑

t=1

log πθ(ỹ
i
t|sit) · exp(rti/τ)

]
(3.6)

where τ is a temperature parameter. To avoid biasing to-
wards easy problems with high rewards, we modify Equa-
tion 3.6 by centering the exponentiated rewards around the
mean value across all attempts on a given prompt, similar to
advantage-weighted regression (Peng et al., 2019).
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Table 1: RISE vs. other approaches (Self-Refine, GLoRE) and baselines. Observe that RISE attains the biggest performance
improvement (in brown) between 1-turn (m5@t1) and 5-turn (m1@t5) performance w/o an oracle on both GSM8K and MATH. This
performance gap is even larger when oracle early termination is allowed (p1@t5 w/ oracle). Self-Refine (Madaan et al., 2023) largely
degrades performance across the board. GLoRE trains a separate refinement model, but still performs worse than RISE; more details
about it are in Appendix B. Using RISE on top of a better base model (Mistral-7B) is also effective (positive improvements with multiple
turns), and note the m1@t5 performance of Mistral-7B exceeds even state-of-the-art math models such as Eurus-7B-SFT (Yuan et al.,
2024a). Color coding indicates performance and improvement numbers that can be compared to each other.

Approach
GSM8K (Cobbe et al., 2019) MATH (Hendrycks et al., 2021)

w/o oracle w/ oracle w/o oracle w/ oracle

m1@t1 → m5@t1 → m1@t5 p1@t5 m1@t1 → m5@t1 → m1@t5 p1@t5

RISE (Ours)
Llama2 Base 10.5 22.8 (+12.3) 11.1 (+0.6) 13.9 (+3.4) 1.9 5.1 (+3.2) 1.4 (-0.5) 2.3 (+0.4)
+Boost 32.9 45.4 (+12.5) 39.2 (+6.3) 55.5 (+22.6) 5.5 6.8 (+1.3) 5.5 (0.0) 14.6 (+9.1)
+Iteration 1 35.6 49.7 (+14.1) 50.7 (+15.1) 63.9 (+28.3) 6.3 8.8 (+2.5) 9.7 (+3.4) 19.4 (+13.1)
+Iteration 2 37.3 51.0 (+13.7) 55.0 (+17.7) 68.4 (+31.1) 5.8 10.4 (+4.6) 10.4 (+4.6) 19.8 (+14.0)

RISE (Ours)
Mistral-7B 33.7 49.4 (+15.7) 39.0 (+5.3) 46.9 (+13.2) 7.5 13.0 (+5.5) 8.4 (+0.9) 13.0 (+5.5)
+ Iteration 1 35.3 50.6 (+15.3) 59.2 (+23.9) 68.6 (+33.3) 6.7 9.5 (+2.8) 18.4 (+11.1) 29.7 (+22.4)

7B SoTA
Eurus-7B-SFT 36.3 66.3 (+30.0) 47.9 (+11.6) 53.1 (+16.8) 12.3 19.8 (+7.5) 16.3 (+4.0) 22.9 (+10.6)

Self-Refine → m1@t3 → p1@t3 → m1@t3 → p1@t3
Base 10.5 22.4 (+11.9) 7.1 (-3.4) 13.0 (+2.5) 1.9 5.1 (+3.2) 1.9 (0.0) 3.1 (+1.2)
+Iteration 2 37.3 50.5 (+13.2) 33.3 (-4.0) 44.5 (+7.2) 5.8 9.4 (+3.6) 5.7 (-0.1) 9.5 (+3.7)
GPT-3.5 66.4 80.2 (+13.8) 61.0 (-5.4) 71.6 (+5.2) 39.7 46.5 (+6.8) 36.5 (-3.2) 46.7 (+7.0)
Mistral-7B 33.7 48.5 (+14.8) 21.2 (-12.5) 37.9 (+4.2) 7.5 12.3 (+4.8) 7.1 (-0.4) 11.4 (+3.9)
Eurus-7B-SFT 36.3 65.9 (+29.6) 26.2 (-10.1) 42.8 (+6.5) 12.3 19.4 (+7.1) 9.0 (-3.3) 15.1 (+2.8)

GloRE → m1@t3 → p1@t3
+ORM 48.2 49.5 (+1.3) 57.1 (+8.9)
+SORM 48.2 51.6 (+3.4) 59.7 (+11.5) Not studied in (Havrilla et al., 2024)
+Direct 48.2 47.4 (-0.8) 59.2 (+11.0)

Inference at deployment time. RISE can be run in two
modes at inference time: (1) ”With Oracle”: The policy
πθ(·|·) is run within a multi-turn rollout, where the model
samples a new response conditioned on the past context.
The rollout terminates when the response is correct, and
(2) ”Without Oracle”: We run full-length rollouts and
use a majority voting mechanism (Wang et al., 2022b), i.e.,
decide the response for this turn based on majority votes
over responses from the current and the previous turns.

4. When and Why is Self-Improvement Over
Turns Possible?

A natural question to ask is why is self-improvement with
RISE even possible. One might surmise that the model
may simply not have enough knowledge to correct its own
mistakes if it is unable to correctly answer the problem in
the first turn. Then, why is it possible to teach the model
to correct its own mistakes? In this section, we provide
two reasons why this kind of self-improvement is possible,
supported with empirical evidence to justify our hypotheses.

Reason 1: Bounded-capacity models & flexible test-time
computation. Iteratively teaching a model how to make
updates on a given response is important when representing
the target distribution p∗(y|x) requires more capacity than
what the model πθ has. In this case, learning a sequence of
conditionals, πθ(yi+1|x,y0:i) followed by marginalization
is expected to induce a more flexible marginal distribution

Figure 2: Fraction of problems unsolved by pass@B at the first
turn that sequential 5-turn sampling from RISE solves, where
B = 5× k (k is the x-axis). RISE can solve several challenging
problems that sampling at the first turn with much larger budgets
cannot solve.

over yT given x. We tracked the training perplexity (loss)
of directly fitting oracle answers and compared it to the
perplexity of fitting a sequence of answers in Figure 8, and
found that the latter indeed does reduce the loss more then
the oracle response directly, thus supporting our hypothesis.
Of course, in problems which require “knowledge-based”
question answering, it is not be possible for the model to
produce any meaningful improvements because learning
p∗(y|x) is not bounded by insufficient capacity of πθ(y|x),
but rather due to the absence of features that are critical
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to learn a mapping from x to y. We expect that training
with RISE would only incentivize hallucinations in this
case (Kang et al., 2024). However, this is not the failure
mode on reasoning problems (Li et al., 2024), where maj@K
rates at turn 1 tend to be higher than pass@1. In fact, Fig-
ure 2 shows that the sequential procedure learned by RISE
can even solve a significant fraction of problems that were
unsolved by pass@B for much larger B in the first turn.

Reason 2: Implicitly learning a model of correctness. Un-
like Huang et al. (2023b), the reason why self-improvement
over turns is possible for us is because training with RISE
can implicitly instill a verification procedure into the learner:
training on data in Equation 3.4 should in principle make
the model capable of deducing whether or not a given input
response is correct using simple heuristics, for example,
evaluating the edit distance between the input and output.
The emergence of such test-time elimination or verification
strategies by training on on-policy data has been conceptu-
alized under the notion of learning generalizable strategies
in the multi-turn MDP (Ghosh et al., 2021), and indeed,
such test-time procedures learned by RISE can generalize
to out-of-distribution prompts (see Appendix B.2).

5. Experimental Evaluation
Our experiments aim to demonstrate RISE’s efficacy in en-
abling LLMs to self-improve over turns, focusing on three
main questions: (1) How effectively can RISE improve per-
formance over turns? (2) Does the performance of RISE
improve with iterative training? (3) How RISE’s responses
evolve over multiple turns. We also investigate the gen-
eralization of RISE’s self-improvement behavior to novel
out-of-domain problems and the best practices for collecting
training data (see Appendix B.2, B.3 for details). To this end,
we compare RISE to other approaches on GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021).

Baselines, comparisons, and evaluation. We compare
RISE to several prior methods that attempt to induce similar
self-improvement capabilities: (a) GloRE (Havrilla et al.,
2024), which trains a separate reward model to locate er-
rors and a refinement model to improve responses of a base
LLM; (b) self-refine (Huang et al., 2023b; Madaan et al.,
2023) that prompt a base model to critique and revise its
mistakes, and (c) self-consistency (Wang et al., 2022b) on
multiple responses from the first turn. We tried to construct
fair comparisons between RISE and these works by using a
similar-sized model (Jiang et al., 2023; Yuan et al., 2024a),
but differences in the base model, training data, and evalua-
tion setups prohibit us from performing an apples-to-apples
comparison. Nonetheless, we can still hope to understand
the ballpark of improvement by contextualizing our results
with these prior works.

We evaluate RISE in both modes, with and w/o an oracle, at
the end of five turns: while the run with the oracle terminates

a rollout as soon as the response is correct (“p1@t5”), w/o
oracle does not terminate a rollout earlier than five turns
(“m1@t5”). We also compare maj@K performance at the
first turn for all the models (“m1@t1”, “m5@t1”).

5.1. Does RISE improve performance over multi-turns?
We present the comparisons in Table 1. First, note that RISE
(“Iteration 1” and “Iteration 2”) boosts up the LLama2-based
model’s five-turn performance by 15.1% and 17.7% respec-
tively on GSM8K and 3.4% and 4.6% on MATH w/o any
oracle. Interestingly, we found using prompting-only Self-
Refine (Madaan et al., 2023) largely degrades performance
across the board, even with a strong proprietary model, GPT-
3.5. The strongest 7B base models, Mistral-7B and Eurus-
7B-SFT (Yuan et al., 2024a), when coupled with standard
prompting are also only able to improve their performance,
but only by 5.3% / 11.6% and 0.9% / 4.0% respectively on
GSM8K and MATH, which is significantly lower than our
approach. The performance of GLoRE improves by only
3.4% on GSM8K (over two turns), but this is still lower than
our approach that improves by 6.3% in two turns and 13.4%
in three turns (see Appendix B.1). Hence, RISE is effective
in attaining in teaching models how to improve themselves.

Can RISE effectively make use of mistakes and correct
them? One concern that arises in prior works is whether the
model can truly correct itself over turns or whether the im-
provement comes from the effect of sampling more answers
and picking the best one. In Table 1, we see that sequen-
tially improving responses via RISE (“maj@1@turn5”)
outperforms sampling 5 responses in parallel at the 1-turn
and applying a majority vote on them (“maj@5@turn1”).
In particular, comparing maj@5 performance at the end of
‘1-turn and ‘5-turn, we observe a consistent 4% to 8% im-
provement on GSM8K and an 6.5% improvement on MATH
(with Mistral-7B model). This means that RISE can imbue
models with a self-improvement ability while the simple
SFT, followed by parallel sampling cannot endow the same
ability. Also observe that running multiple iterations of
RISE still preserves the first turn performance.

How does the base model affect RISE? The performance
of RISE with Llama2-7B on an absolute scale is lower than
the best models specifically fine-tuned on math data (e.g.,
Eurus-7B-SFT or Mistral-7B). However, we find that RISE
is still effective on top of Mistral-7B. In fact, RISE at the
end of 5-turns outperforms one of the best 7B SFT models,
customized to math reasoning. Compare the m1@t5 perfor-
mance of Eurus-7B-SFT and Mistral-7B in RISE (ours).

Self-improvement version of RISE. We also compare the
performance of RISE with entirely self-generated data and
supervision (Equation 3.4, N = 16) after one iteration
directly on top of the more capable Mistral-7B model on
GSM8K in Table 2, without any boosting phase. We find
that this variant is also able to improve five-turn perfor-
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mance of the base Mistral-7B model. Though, with no
boosting, this approach is limited by its ability to generate
sufficiently diverse rollouts since the base Mistral-7B model
is unable to answer more than 66% of the GSM8K training
questions correctly. Nonetheless, training via RISE does
enhance multi-turn self-improvement capabilities, entirely
on its own.

Table 2: RISE with self-generated data on GSM8K. RISE is able
to improve 5-turn maj@1 performance of the model with entirely
self-generated data and supervision, despite the base Mistral-7B
model not producing correct answers for several problems.

RISE (Self) w/o oracle w/ oracle

m1@t1 → m5@t1 → m1@t5 p1@t5

Mistral-7B 33.7 49.4 (+15.7) 39.0 (+5.3) 46.9 (+13.2)
+ Iteration 1 36.8 44.4 (+7.6) 39.5 (+6.6) 48.7 (+15.9)

5.2. Does Iterative Training Help RISE?
Next, we aim to understand if RISE improves with multi-
ple rounds of training. As shown in Tables 1 and 2, the
performance of RISE improves from iteration to iteration
constantly. The 5-turn performance of RISE, both with
and without an oracle, exhibits a clear improvement with
more rounds across all domains and models. This implies
that iterative self-training like STaR (Zelikman et al., 2022)
can also be combined with RISE for training models for
self-improvement.

5.3. Error Analysis of RISE over Turns
Following the protocol of Huang et al. (2023b), in this sec-
tion, we perform an error analysis of the improvement per-
formed by RISE (without any oracle feedback) to under-
stand how the fraction of incorrect and correct responses
changes over turns, when no oracle is used for early termi-
nation. We demonstrate this in the form of Venn diagrams
in Figure 3. First note that there is a consistent increase in
the portion of problems that stay correct and a consistent de-
crease in the portion of problems that stay incorrect, which
means that the model is able to answer more and more prob-
lems as we increase the number of turns. Second, there is a
consistent decrease in the number of problems that transi-
tion from being correct to incorrect, which is often also not
the case for strong proprietary LLMs such as GPT in Huang
et al. (2023b). Finally, while we also note that there is a de-
crease in the total number of incorrect problems that become
correct in the subsequent turn, this is a direct consequence
of the size of the incorrect response set shrinking as more
problems become correct over turns. This indicates that one
can induce “intrinsic” self-improvement via fine-tuning
with RISE, even when no external environment input is
provided.

Qualitative examples. We inspect GSM8K test set exam-
ples to understand RISE’s behavior over turns, observing
patterns like complete rewrites for incorrect responses, small

Figure 3: Change in the fraction of responses that transition
their correctness values over the course of multi-turn rollouts
from RISE, w/o oracle. Fraction of Correct → Correct responses
increases; Incorrect → Incorrect responses decreases; and the
fraction of Correct → Incorrect responses also decreases.

edits for mostly correct ones, implicit error localization and
refinement, and tolerance to noisy feedback without oracle-
assisted early termination (see Appendix C).

Discussion, Future Directions, and Limitations
We presented RISE, an approach for fine-tuning LLMs to be
able to improve their own responses over multiple turns se-
quentially. RISE prescribes an iterative RL recipe on top of
on-policy rollout data, with expert or self-generated supervi-
sion to steer self-improvement. RISE significantly improves
self-improvement abilities of 7B models on reasoning tasks
(GSM8K and MATH), attaining an improvement over turns
that past work (Huang et al., 2023b) has not observed in
strong proprietary models. In addition, while RISE out-
performs prior approaches that attempt to tackle similar
problems of refinements and correction, it is simpler in that
it does not require running multiple models at once and can
work well with just one model. Despite these good results,
there are still many open questions and limitations. Due
to computational constraints, we were not able to perform
more than two iterations of training with RISE, and no more
than one iteration when the supervision comes from the
learner itself. Improving with self-generated supervision
will likely require compute. RISE requires running manual
iterations and hence, a more “online” variant of RISE is
likely the solution in the long run.

Impact Statement
Our work has no special societal implications than any other
work attempting to build learning methods for fine-tuning
LLMs. That said, very capable LLMs can have significant
implications on society and human life, and hence must be
deployed cautiously, though this is not unique to our work.
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A. Related Work
Several prior works build techniques to improve reasoning and thinking capabilities of foundation models for downstream
applications. Typically these works focus on building prompting techniques for effective multi-turn interaction with external
tools (Charalambous et al., 2023; Chen et al., 2023b; Gao et al., 2023; Nijkamp et al., 2023; Wang et al., 2023a; Yang
et al., 2023a; Yao et al., 2022), sequentially refining predictions by reflecting on actions (Chen et al., 2023b; Gou et al.,
2023; Zhang et al., 2022), asking the model to verbalize its thoughts (Nye et al., 2021; Wei et al., 2022; Zhou et al., 2023),
asking the model to critique and revise itself (Madaan et al., 2023; Shinn et al., 2023) or by using other models to critique a
primary model’s responses (Bai et al., 2022; Du et al., 2023; Huang et al., 2023a; Yang et al., 2023a). While a subset of this
work does improve self-improvement abilities, this self-correction ability often requires access to detailed error traces (e.g.,
execution traces from code compilers (Chen et al., 2023b; Madaan et al., 2023)) in order to succeed. In fact, (Huang et al.,
2023b) and Table 1 both indicate that self-improvement guided by the LLM itself (i.e., “intrinsic self-correction”) is often
infeasible for off-the-shelf LLMs, but fine-tuning with RISE induces this capability as we show in this paper.

Beyond prompting, prior works also attempt to fine-tune LLMs to obtain self-improvement capabilities (Chen et al., 2023a;
Schick et al., 2023; Zeng et al., 2023). These works attempt to improve reasoning performance by training on self-generated
responses (Luo et al., 2023; Toshniwal et al., 2024; Yu et al., 2023; Yuan et al., 2024a; Yue et al., 2023). To achieve
this, these works use a combination of learned verifiers (Lightman et al., 2023; Uesato et al., 2022; Wang et al., 2023b),
search (Gandhi et al., 2024; Lehnert et al., 2024; Nye et al., 2021; Saha et al., 2023), contrastive prompting on negative
data (Chia et al., 2023; Wang et al., 2022a), and iterated supervised or reinforcement learning (RL) (Chen et al., 2024;
Rosset et al., 2024; Yuan et al., 2024b). While our approach also trains on model-generated data, we aim to introduce a
complementary capability of improving performance over sequential turns of interaction, instead of improving single-turn
performance alone. Other work fine-tunes LLMs for multi-turn interaction directly via RL (Snell et al., 2022; Zhou et al.,
2024): while this is indeed related to us, single-turn problems posed in multi-turn scenarios require addressing distinct
challenges than generic multi-turn RL: (i) sample-efficiency is not a concern since the entire MDP is fully characterized
by the training dataset of prompts and oracle answers, and (ii) we need to generalize to novel test prompts. Multi-turn RL
focuses on sample efficiency, which is not critical in our setting. More generally, our main focus is to show that it is possible
to train models for self-improvement via appropriately designing multi-turn fine-tuning objectives. This is orthogonal from
the choice of RL, contrastive or supervised learning approach used for optimizing the said objective.

Perhaps the most related to our work, are GLoRE (Havrilla et al., 2024) and Self-Correct (Welleck et al., 2023), which train
separate models to identify errors and refine incorrect answers of other LLMs. Unlike these works, our approach trains a
single model to produce answers and improve them over more than two turns, which is the maximal number of turns studied
in these works. We show that doing so successfully requires a careful design choices: an iterative (i.e., STaR (Zelikman
et al., 2022)-like) on-policy data generation strategy along with a training objective that can learn from both successful and
unsuccessful rollouts.

From an algorithmic standpoint, our work is similar to online imitation learning (Ross et al., 2011; Sun et al., 2018), in that
it queries expert supervision on states attained by on-policy rollouts. On-policy distillation for LLMs (Agarwal et al., 2023;
Chang et al., 2024) utilizes this principle, but queries an expert to provide completions on partially-generated responses
instead of sequentially proposing revisions with the reward signal that we utilize. We also emphasize that our goal is not
necessarily to propose a novel learning objective, but to show that even the simple reward-weighted RL can endow the
model with self-improvement capabilities.
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B. Additional Results
B.1. Complete Comparisons and Discussion: Extended Version of Table 1

We provide an extended version of Table 1, with a clear explanation of how we implement baselines and a discussion of
comparisons.

Table 3: Comparing RISE with other approaches (Self-Refine, GLoRE, and V-STaR) and other baseline approaches. Observe that
RISE attains the biggest performance improvements between 1-turn and 5-turn performance without the use of an oracle on both GSM8K
and MATH. This performance gap is even larger when oracle early termination is allowed (5-turn w/ oracle). Self-Refine largely degrades
performance across the board. GLoRE trains a separate refinement model, but still performs worse than RISE.

Approach
GSM8K (Cobbe et al., 2019) MATH (Hendrycks et al., 2021)

w/o oracle w/ oracle w/o oracle w/ oracle

m1@t1 → m5@t1 → m1@t5 → p1@t5 m1@t1 → m5@t1 → m1@t5 → p1@t5

RISE (Ours)
Llama2 Base 10.5 22.8 (+12.3) 11.1 (+0.6) 13.9 (+3.4) 1.9 5.1 (+3.2) 1.4 (-0.5) 2.3 (+0.4)
+Boost 32.9 45.4 (+12.5) 39.2 (+6.3) 55.5 (+22.6) 5.5 6.8 (+1.3) 5.5 (+0.0) 14.6 (+9.1)
+Iteration 1 35.6 49.7 (+14.1) 50.7 (+15.1) 63.9 (+28.3) 6.3 8.8 (+2.5) 9.7 (+3.4) 19.4 (+13.1)
+Iteration 2 37.3 51.0 (+13.7) 55.0 (+17.7) 68.4 (+31.1) 5.8 10.4 (+4.6) 10.4 (+4.6) 19.8 (+14.0)

RISE (Ours)
Mistral-7B 33.7 49.4 (+15.7) 39.0 (+5.3) 46.9 (+13.2) 7.5 13.0 (+5.5) 8.4 (+0.9) 13.0 (+5.5)
+ Iteration 1 35.3 50.6 (+15.3) 59.2 (+23.9) 68.6 (+33.3) 6.7 9.5 (+2.8) 18.4 (+11.1) 29.7 (+22.4)

Baselines
GPT-3.5 66.4 80.6 (+14.2) 71.0 (+4.6) 74.7 (+8.3) 39.7 47.8 (+8.1) 45.1 (+5.4) 54.3 (+14.6)
Mistral-7B 33.7 49.4 (+15.7) 39.0 (+5.3) 46.9 (+13.2) 7.5 13.0 (+5.5) 8.4 (+0.9) 13.0 (+5.5)
Eurus-7b-SFT 36.3 66.3 (+30.0) 47.9 (+11.6) 53.1 (+16.8) 12.3 19.8 (+7.5) 16.3 (+4.0) 22.9 (+10.6)

Self-Refine → m1@t3 → p1@t3 → m1@t3 → p1@t3
Base 10.5 22.4 (+11.9) 7.1 (-3.4) 13.0 (+2.5) 1.9 5.1 (+3.2) 1.9 (0.0) 3.1 (+1.2)
+Boost 32.9 45.3 (+12.4) 26.5 (-6.4) 40.9 (+8.0) 5.5 6.5 (+1.0) 2.9 (-2.6) 7.2 (+1.7)
+Iteration1 35.6 49.5 (+13.9) 31.7 (-3.9) 43.7 (+8.1) 6.3 8.7 (+2.4) 5.9 (-0.4) 9.9 (+3.6)
+Iteration2 37.3 50.5 (+13.2) 33.3 (-4.0) 44.5 (+7.2) 5.8 9.4 (+3.6) 5.7 (-0.1) 9.5 (+3.7)
GPT-3.5 66.4 80.2 (+13.8) 61.0 (-5.4) 71.6 (+5.2) 39.7 46.5 (+6.8) 36.5 (-3.2) 46.7 (+7.0)
Mistral-7B 33.7 48.5 (+14.8) 21.2 (-12.5) 37.9 (+4.2) 7.5 12.3 (+4.8) 7.1 (-0.4) 11.4 (+3.9)
Eurus-7b-SFT 36.3 65.9 (+29.6) 26.2 (-10.1) 42.8 (+6.5) 12.3 19.4 (+7.1) 9.0 (-3.3) 15.1 (+2.8)

GloRE → m1@t3 → p1@t3
+ORM 48.2 49.5 (+1.3) 57.1 (+8.9)
+SORM 48.2 51.6 (+3.4) 59.7 (+11.5) N/A
+Direct 48.2 47.4 (-0.8) 59.2 (+11.0)

V-STaR → m64@t1
+STaR 28.0 46.1 (+18.1)
+Verification 28.0 56.2 (+28.2) N/A
+V-STaR 28.0 63.2 (+35.2)

Comparison with Self-Refine (Madaan et al., 2023). To build a self-refine baseline (Madaan et al., 2023) evaluation, we
slightly modified our evaluation pipeline following the self-refine approach. In this setup (Figure 4), the model generates an
initial response, and then the environment prompts the model to locate errors in the generated solution and refine its answer
based on the initial response and the identified error.

However, our experiments show that without any oracle hint from the environment or human feedback, the self-refine
approach leads to a degradation in performance across all models. Only when oracle feedback is available to assist with early
termination does the self-refine approach provide a slight performance boost. This highlights the limitation of the self-refine
structure in effectively improving model performance without external guidance, which is also observed in (Huang et al.,
2022).
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Self-Refine

System: You are an AI language model designed to assist with math problem-solving. In this task, I will provide you
with math problems. Your goal is to solve the problem step-by-step, showing your reasoning at each step. After you
have finished solving the problem, present your final answer as \boxed{Your Answer}.

<One-shot Example 14>

User: <Query>

Agent: <Initial Answer>

User: There is an error in the solution above because of lack of understanding of the question. What is the error? To
find the error, go through each step of the solution, and check if everything looks good.

Agent: <Critic>

User: Now, rewrite the solution in the required format:

Agent: <Refined Answer>

Figure 4: Prompt for Self-Refine: We follow the standard pipeline of the original paper, prompt the LLM to refine and
correct its previous mistakes.

In contrast, the model trained with RISE can attain consistent performance improvements without relying on an oracle.
By training the model to iteratively refine its responses, our method enables the model to self-correct and improve its
performance over multiple turns. This showcases the effectiveness of our approach in comparison to the self-refine baseline,
as it allows for more robust and consistent performance gains without the need for the oracle assistance.

Comparison with GLoRE (Havrilla et al., 2024). GLoRE is a multi-model system that relies on a student model to propose
drafts, an Outcome-based Reward Model (ORM) or Step-wise ORM to locate errors at different granularity levels, and a
Global or Local Refinement Model for adjusting these errors. Since no code was openly available for this approach, in our
experiments, we compared to the numbers from the main paper Havrilla et al. (2024). While the comparison against GLoRE
is already apples-to-oranges since our method only trains a single end-to-end model, while GLoRE trains multiple models.
Performance-wise, GLoRE’s global and local refinement models show little to no improvement in overall accuracy without
an oracle, and even exhibit decreasing accuracy in some cases. However, when an oracle is used to guide the refinement
process, GLoRE demonstrates a 10% improvement on the 7B model in the GSM8K dataset.

As anticipated, since we run RISE from a less advanced base model (Llama2 7B), we observe a slightly lower absolute
performance compared to GLoRE. However, RISE demonstrates its effectiveness in self-improvement by sequentially
enhancing its performance by an impressive 13.4% within just 3 turns without an oracle feedback, and by a remarkable
23.4% with an oracle on GSM8K. This showcase of RISE’s capabilities is particularly noteworthy considering that GLoRE
utilizes 3 independent models - one for generating candidate solutions, one reward model for locating errors, and one
refinement model for refinement.

Comparison with V-STaR (Hosseini et al., 2024). V-STaR requires training an additional verifier model to rank candidate
answers generated by the targeted model, but it does not make any sequential revisions or improvements to a response.
While comparing RISE to using a verifier for re-ranking the top 5 responses at the first turn (as a base comparison) would
have been informative, we were unable to find this specific result in the original V-STaR paper. The results presented in the
official table 3 for V-STaR correspond to running 64 samples, which improves the base model’s performance by 35.2% for
each prompt during evaluation. In contrast, our method, RISE, after the same amount of finetuning iterations (3 iterations)
and using only 5 samples, improves upon the base model by 44.5% (calculated as 55.0% - 10.5% = 44.5%). This comparison
highlights RISE’s efficiency in achieving significant improvements with fewer samples and iterations compared to V-STaR’s
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approach of using a large number of samples without sequential refinement.

Moreover, V-STaR’s performance is inherently bounded by the candidate generator’s performance. As discussed in Section
5, if there is no correct response among the generated candidates, the problem remains unsolved. In contrast, we show
in Figure 2 that RISE can also solve problems that were not solved by majority voting with a much higher budget in the
first turn. Furthermore, we believe that combining V-STaR with RISE could lead to even better performance, as RISE can
generate better models and a verifier can be complementarily used for filtering.

Comparison with other base models. Mistral-7B (Jiang et al., 2023) and Eurus-7B-SFT (Yuan et al., 2024a) are models
that exhibit comparable performance to our method in terms of the absolute maj@5 performance. However, it is crucial to
note that these base models are fine-tuned using a vast amount of data, including data specifically tuned for math reasoning
performance (Yuan et al., 2024a), while our model is fine-tuned on a single domain. That said, we do show that fine-tuning
with RISE can still enhance the performance of Mistral-7B models.

To summarize, our method offers several advantages over GLoRE and V-STaR, such as end-to-end error correction with
a single model, superior performance with fewer samples, and the ability to solve problems that cannot be solved by
random sampling in the first turn. Although our maj@1 performance is lower than GLoRE’s base model EI, which is an
apples-to-oranges comparison our ultimate 5-turn performance surpasses their best absolute performance in both oracle and
non-oracle scenarios. Compared to other base models like Mistral-7B and Eurus-7B-SFT, our method achieves comparable
performance while being fine-tuned on a single domain, and it can be generalized to further enhance the performance of
better base models.

B.2. Does the Self-Improvement Strategy Learned by RISE Generalize to Novel Problems?

Figure 5: Performance of models fine-tuned in GSM8K / MATH tasks on GSM8K, MATH, and SVAMP datasets. We evaluate
model fine-tuned on MATH on the GSM8K test set (Left); model fine-tuned GSM8K on MATH (Center); and the model fine-tuned on a
mixture of GSM8K and MATH on the SVAMP (Right) data. Observe that with more iterations of RISE training, as the number of turns
increases, the models are able to produce more effective improvements.

An important aspect we study is whether the learned LLM can generalize to novel problems. In Figure 5, we demonstrate
the generalizability of the self-improvement procedure learned by RISE. Specifically, we compare the performance of the
RISE model trained on MATH when evaluated to the test subset of the GSM8K dataset (Figure 5 Left); RISE model trained
on GSM8K when evaluated on the test subset of the MATH dataset (Figure 5 Center); and the RISE model trained on both
MATH and GSM8K datasets when evaluated on the SVAMP dataset (Figure 5 Right). We observe that the model trained
on one dataset is still able to improve the base model’s performance on another dataset. Notably, more iterations of RISE
training (i.e., from Boost → Iteration 1 → Iteration 2) not only improve performance at the first turn but also produce more
effective improvements (compare “Iteration 2” against the “Boost” model from the training data), including a higher rate of
improvement from turn to turn) as the number of turns grows on the x-axis. This means that even though these models have
not seen queries similar to the evaluation dataset, simply training with RISE on some kind of mathematical prompts still
boosts the efficacy of the self-improvement strategy on a new distribution of test prompts. This finding suggests that RISE is
capable of instilling self-improvement procedures that can generalize effectively beyond the distribution of prompts in the
fine-tuning data.

B.3. What Data Compositions and Data Quantity are Crucial for RISE?
We now study how different data compositions affect the performance of RISE: should we collect on-policy error correction
data like DAgger (Ross et al., 2011) or should we bias towards high-quality off-policy data.

There are three key aspects: (a) use multi-turn rollout data for fine-tuning, (b) use weighted supervised fine-tuning compared
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to naı̈ve supervised learning, which only utilizes successful rollouts for fine-tuning; and (c) use on-policy rollouts and
self-generated or oracle data. We will study these aspects one by one.

(a) Data composition for fine-tuning. We first study the necessity of using the interaction of error correction history for
training RISE in Figure 6 (Left). We compare two approaches: model trained with oracle answers shown right after the
first turn and oracle answers shown after intermediate failed attempts in Figure 6 (Left). Even though the latter trains on
intermediate responses that may not always be correct, it attains a higher performance than simply training on the correct
response for a given prompt. This highlights the importance of training on contexts that include a multi-turn interaction
history depicting mistakes from the learner to improve self-improvement capabilities.

(b) Weighted supervised learning vs unweighted supervised learning. Next, we investigate the effect of reward-weighted
RL on multi-turn data in RISE as opposed to simply imitating filtered successful data. We find that using all the data leads
to improved performance over simply filtering good datain Figure 6 (Right), which reduces sample size. In Figure 6 (Left),
we find that reward-weighted training improves performance, allowing us to better leverage all the sub-optimal data.

Figure 6: Left: The importance of multi-turn interaction history and unweighted objectives for training RISE. Note that training with
multi-turn data leads to better self-improvement performance at the end of 5 turns, than one-turn data obtained from the original dataset
with human answers or with oracle answers from another model; also observe that using a weighted objective performs better. Right: The
importance of using all rollouts for learning, instead of only successful rollouts or only successful responses in the data. Using all data
performs best.

(c) On-policy vs off-policy data; self-generated vs expert data. RISE runs on-policy rollouts and seeks improvements
on responses that the learner produces. As shown in Figure 7 (Left), a “DAgger (Ross et al., 2011)”-style approach that
seeks improvements on responses appearing in on-policy rollouts improves performance (orange) compared to using the
expert data alone (blue/pink). Conceptually, this addresses the train-test mismatch between the distribution of context
tokens, enabling imitation learning methods to now target the correct distribution. In addition, recent work (Kang et al.,
2024) has shown that LLMs often memorize “unfamiliar” examples generated by oracle models; by training on on-policy
rollouts, we are able to eliminate such cases. Thus, while the model trained via offline imitation is able to reduce loss, these
improvements do not generalize to new problems. In addition, we find in Figure 7 (Left) that while utilizing oracle responses
from an expert is the most effective, training on self-generated data (“best-of-n”) is also effective. Even with N = 16, we
are able to improve multi-turn performance of the learner.

B.4. Iterative Training with RISE Fits the Training Distribution Flexibly

In this section, we elaborate a hypothesis posed in in Section 4 that RISE perhaps more effective because it is able to
represent more flexible distributions, as it models conditionals π(yi|x,y0:i−1) instead of attempting to model the target
distribution p(y∗|x) directly. To verify if this hypothesis is true, we track the training un-weighted, negative log likelihood
loss over the course of training on multi-turn data and compare it against the negative log likelihood loss attained by directly
attempting to predict the final response in Figure 8. We find that for any given number of epochs (including fractional number
of epochs on the x-axis), the training loss is lower when training on multi-turn data that RISE generates in comparison with
oracle responses to the prompts obtained from an expert. This suggests that indeed the learning problem posed by RISE is
easier.
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Figure 7: Left: The importance of the data sources used for training. We study the performance of the iteration 1 of RISE on GSM8K
with different data sources. “Expert” refers to the use of an oracle model, “On-policy” corresponds to sampling from the learner, and
“Best-of-N” means using the best sample out of N from the learner (here N = 16). Right: Comparing RISE with oracle error feedback
(pass@1 @ turn k; solid lines) to parallel sampling of 5 responses at turn 1 (pass@k @ turn 1; dashed lines) over number of turns k on
the x-axis on GSM8K. Observe that sequential sampling with Iteration 1 and Iteration 2 RISE models consistently outperforms parallel
sampling for all values of turn k; and the gap grows as the number of iterations increases. In contrast, this trend is absent for base and SFT
models.

Figure 8: The training perplexity (loss) of fitting only the oracle answer or a sequence of answers. Observe that fitting a sequence of
answers (orange) reduces the loss more than fitting only the oracle answer (green).
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C. Qualitative Examples from RISE
In this section, we provide some qualitative examples showing the nature of edits made by RISE on various datasets that we
train on. We utilize the model from iteration 2 of RISE.

RISE Example (Small Edits)

Query: Mike plays ping pong for 40 minutes. In the first 20 minutes, he scores 4 points. In the second 20 minutes, he
scores 25% more points. How many total points did he score?
Turn-1 Response:
Step 1: In the first 20 minutes, Mike scores 4 points.
Step 2: In the second 20 minutes, Mike scores 25% more points than he did in the first 20 minutes. So, Mike scores 4
+ 4 = 8 points in the second 20 minutes.
Step 3: To find the total points, we need to add the points scored in the first and second 20 minutes. total points = 4 +
8 = 12.
Answer: 12 ✗
Turn-2 Response:
I apologize for the mistake. Let’s solve the problem step by step.
Step 1: In the first 20 minutes, Mike scores 4 points.
Step 2: In the second 20 minutes, Mike scores 25% more points than he did in the first 20 minutes. This means he
scores 4 + 4 * 25% = 4 + 1 = 5 points in the second 20 minutes.
Step 3: To find the total points, we add the points scored in the first and second 20 minutes: 4 + 5 = 9 points.
Answer: 9 ✓

RISE Example (Big Edits)

Query: In a candy machine, there are 22 more than four times the number of pink gumballs as there are blue gumballs.
If there are 12 blue gumballs how many pink ones are there?
Turn-1 Response:
Step 1: Let’s assume the number of blue gumballs as x. Step 2: According to the given information, there are 22 more
than four times the number of pink gumballs as there are blue gumballs. So, the number of pink gumballs can be
expressed as 4x + 22. Step 3: We are given that there are 12 blue gumballs, so let’s substitute x with 12 in the equation.
Answer: 54 ✗
Turn-2 Response:
Let’s solve the problem step by step: Step 1: Let’s denote the number of blue gumballs as x. Step 2: We are given
that the number of pink gumballs is 22 more than four times the number of blue gumballs. So, the number of pink
gumballs can be expressed as 4x + 22. Step 3: We are also given that there are 12 blue gumballs, so we can substitute
x = 12 into the expression for the number of pink gumballs: 4 * 12 + 22 = 48 + 22 = 70 Therefore, there are
boxed70 pink gumballs.
Answer: 70 ✓

Figure 9: Examples of RISE correct its previous behavior in different modes. Some only make changes to a small part (small edits),
some may directly rewrite most of its previous answers (big edits) because the first step in the previous answer is wrong. The mistaken
steps of different turns are highlighted in red, and the correct are highlighted in green. This demonstrates shows how RISE can correct its
previous answers and finally get to a correct answer.
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RISE Example (Noise Tolerance)

Query: Ryan plants 2 flowers a day in his garden. After 15 days, how many flowers does he have if 5 did not grow?

Turn-1 Response:
Step 1: Ryan plants 2 flowers a day for 15 days, so he plants a total of 2 flowers/day * 15 days = 30 flowers in his
garden. Step 2: However, 5 flowers did not grow, so we need to subtract these non-growing flowers from the total
count. Step 3: Calculate the number of flowers that actually grew in Ryan’s garden. flowers grew = 30 flowers - 5
flowers = 25 flowers.
Answer: 25 ✓

Turn-2 Response:
Apologies for the mistake. Let’s correct the solution. Step 1: In 15 days, Ryan plants 2 flowers a day, so he plants a
total of 2 flowers/day * 15 days = 30 flowers in his garden. Step 2: Since 5 flowers did not grow, we need to subtract
these non-growing flowers from the total count. Step 3: Calculate the number of flowers that actually grew in Ryan’s
garden. flowers grew = 30 flowers - 5 flowers = 25 flowers.
Answer: 25 ✓

Turn-3 Response:
Let’s reevaluate the solution. Step 1: Ryan plants 2 flowers a day for 15 days, so he plants a total of 2 flowers/day *
15 days = 30 flowers in his garden. Step 2: However, 5 flowers did not grow, so we need to add these flowers to the
total count, as they were planted but did not grow. Step 3: Calculate the total number of flowers in Ryan’s garden.
total flowers = 30 flowers + 5 flowers = 35 flowers.
Answer: 35 ✗

Turn-4 Response
Let’s correct the solution. Step 1: In 15 days, Ryan plants 2 flowers a day, so he plants a total of 2 flowers/day * 15
days = 30 flowers in his garden. Step 2: Since 5 flowers did not grow, we need to subtract these non-growing flowers
from the total count. Step 3: Calculate the total number of flowers in Ryan’s garden after subtracting the non-growing
flowers. total flowers = total planted flowers - non growing flowers = 30 flowers - 5 flowers=
boxed25 flowers.
Answer: 25 ✓

Turn-5 Response
Let’s reevaluate the solution. Step 1: In 15 days, Ryan plants 2 flowers a day, which is 2 flowers/day * 15 days = 30
flowers in total. Step 2: However, 5 flowers did not grow, so we have to subtract these 5 flowers from the total. Step 3:
Therefore, the total number of flowers Ryan has is 30 flowers (total planted) - 5 flowers (did not grow) =
boxed25 flowers.
Answer: 25 ✓

Figure 10: Examples of RISE’s tolerance of noisy feedback. In the evaluation where there is no oracle, we use a verifier that always
tells the model, ”The answer is incorrect. Please try again. Here’s the question: <Query>”. We observe that from turn 2 to turn 5, the
model is still able to output the correct answer in 3 out of 4 turns. In the response at turn 4, the model performs half of the solution
correctly, and only the last step is wrong. In addition, in the turns where the model still outputs the correct answer, it doesn’t directly copy
the answer from the previous turn but instead comes up with a new paraphrase. This demonstrates that RISE provides the model with
tolerance to noisy feedback and does not randomly change its behavior upon receiving a revisiting request. The mistaken steps of different
turns are highlighted in red
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RISE Example (Error Localization)

Query: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This
increased the value of the house by 150%. How much profit did he make?
Turn-1 Response:
Step 1: Josh buys a house for $80,000. Step 2: He puts in $50,000 in repairs, which increases the value of the house
by 150%. Step 3: To calculate the increase in value, we multiply the cost of the house by 150% and add it to the cost
of the house. increase in value = $80,000 * 150% = $120,000. Step 4: To calculate the profit, we subtract the cost of
the house from its new value. profit = increase in value - $80,000 = $120,000 - $80,000 = $40,000.
Answer: 40, 000 ✗

Turn-2 Response:
Let’s solve the problem step-by-step: Step 1: Josh buys a house for $80,000. Step 2: He puts in $50,000 in repairs, and
this increases the value of the house by 150%. Step 3: The percentage increase in value is 150% of $80,000, which is
$120,000 (80,000 * 1.5 = $120,000). Step 4: To find the actual amount that would be added to the house’s value after
repairs, we need to subtract the amount he spent on repairs from the increased value, which is $120,000 - $50,000 =
$70,000. Step 5: The profit Josh would make is the difference between the cost of buying the house and the increased
value after repairs, which is $70,000 - $80,000 = -$10,000 ($10,000 less than the initial cost).
Answer: 0 ✗

Turn-3 Response: Let’s solve the problem step-by-step: Step 1: Josh buys a house for $80,000. Step 2: He puts in
$50,000 in repairs. Step 3: This increases the value of the house by 150%. Step 4: To find the increase in value, we
calculate 150% of the original price of the house: 150% of $80,000 = $120,000. Step 5: The increase in value after
repairs is the original price plus 150% of the original price: $80,000 + $120,000 = $200,000. Step 6: Josh sells the
house for $200,000 and made a profit of $200,000 - $80,000 = $120,000.
Answer: 120, 000 ✗

Turn-4 Response: Let’s solve the problem step-by-step: Step 1: Josh buys a house for $80,000. Step 2: He puts in
$50,000 in repairs, increasing the value of the house by 150%. Step 3: The increase in value is 150% of $80,000,
which is $120,000 (80,000 * 1.5 = $120,000). Step 4: The total amount spent, including the purchase of the house and
the repairs, is $80,000 + $50,000 = $130,000. Step 5: The profit Josh made is the increase in value after repairs minus
the total amount spent, which is $120,000 - $130,000 = -$10,000. Therefore, Josh made a
boxed0 profit.
Answer: 0 ✗

Turn-5 Response: Let’s solve the problem step-by-step: Step 1: Josh buys a house for $80,000. Step 2: He puts in
$50,000 in repairs. Step 3: The repairs increase the value of the house by 150%. Step 4: The increase in value is
$50,000, which is 150% of $33,333 (50,000 / 1.5 = $33,333). Step 5: The repairs cost $50,000, and the increase in
value is $33,333. Step 6: Therefore, Josh’s profit is $33,333 - $50,000 = -$16,667. Therefore, Josh made a 16676
profit.
Answer: 16676 ✗

Figure 11: Examples of RISE not being able to correct its error within 5 steps but demonstrating meaningful error localization behavior.
Even in turn 2, it has already solved the problem at step 4 but mistakenly takes another step and reaches the wrong answer. The following
turns are unable to correct this small error. Though this problem remains unsolved, we observe that (1) the model is able to stick to the
correct steps, where all responses reach an intermediate step of 12000 correctly, except for the last response, where the model tries to
modify the answer from one step ahead; (2) the model doesn’t repeat its responses, which is a behavior we notice when evaluating some
off-the-shelf models; and (3) the model is making meaningful changes to the incorrect steps. In summary, although the final answer is still
incorrect, we observe that through RISE, the model is able to locate the error and perform local computation correctly. The mistaken steps
of different turns are highlighted in red, and the correct steps in turn 2 is highlighted in green.
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D. Experimental Details
D.1. Practical Algorithm and Implementation Details
We trained 7B models via RISE and found that these models often could not adhere to response style and instructions for
improving their responses when generating on-policy data. As a result, before running on-policy data collection, we find it
often useful to run an initial phase of supervised fine-tuning on in-domain, multi-turn rollouts generated from a capable
model to provide style and instruction-following information to the learner. We call this the “knowledge boosting” stage.
We then run on-policy rollouts starting from a boosted model. In each iteration, we generate 1 trajectory for each unique
problem. We then run fine-tuning, with hyperparameters and details in Appendix D. We adopt the scheme of Zelikman et al.
(2022) and iteratively fine-tune starting from the base model.

D.2. Hyperparameters for Fine-Tuning with RISE

For finetuning, we utilize the FastChat codebase, but we customize the loss function to be weighted by reward. The base
models are directly loaded from Hugging Face: hrefhttps://huggingface.co/meta-llama/Llama-2-7b-hfLlama-2-7b-chat-hf
and Mistral-7B-Instruct-v0.2. The hyperparameters used for finetuning are specified in Table 4.

Table 4: Hyperparameters used for RISE

Hyperparameter Values
bf16 True
epochs 2
per device train batch size 1
gpus 4xA40
gradient accumulation steps 16
learning rate 1e-5
weighted decay 0
warmup ratio 0.04
learning rate scheduler trype cosince
tf32 True
model max length 2048

D.3. Inference Hyperparameters

For API-based models, such as GPT-3.5, we directly query the official web API provided by OpenAI. In the case of
open-source models, we utilize FastChat to serve the model as a web API and interact with the environment through API
calls. Serving a 7B model requires a single A100 or A40 GPU. To control the randomness and length of answers generated
by the LLMs, we employ the hyperparameters specified in Table 5.

Table 5: The hyperparameter settings used for generating responses from open-source and the GPT models.

Hyperparameters/Description Open-source GPT
temperature 1.0 0.7
top p 1.0 1
max new tokens 1000 512

D.4. Datasets

The GSM8K dataset consists of 7,473 problems in the training portion and 1,319 problems in the testing portion. Similarly,
the MATH dataset is divided into 7,500 problems for training and 1,000 problems for testing. The training portions of both
datasets are used to generate trajectories in each iteration of the RISE method, while the testing portions are held out for
evaluating the performance of the models. Additionally, the SVAMP dataset, containing 1,000 problems, is used solely for
evaluation purposes to demonstrate the generalizability of our method.

For generating training trajectories, at iteration i, the current model is rolled out for a maximum of i steps. Subsequently, an
expert model, such as GPT-3.5, is employed to take the conversation history between the current model and the environment
and sample 5 responses. Among these responses, the one with the highest reward is chosen, with arbitrary tie-breaking in
case of multiple responses with the same highest reward.
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E. Prompts used for seeding RISE on the GSM8K and MATH tasks
Here we show the prompt we used for data generation and model evaluation:

RISE

System: You are an AI language model designed to assist with math problem-solving. In this task, I will provide you
with math problems. Your goal is to solve the problem step-by-step, showing your reasoning at each step. After you
have finished solving the problem, present your final answer as \boxed{Your Answer}.

<One-shot Example 13>

User: <Query>

Agent: <Answer>

User: The answer is incorrect. Please try again. Here’s the question: <Query>

Agent: <Answer>

· · ·

Figure 12: Prompt for RISE: We follow the standard pipeline of math problem solving, prompt the LLM to solve the
problem and retry untill exceeds the maximum number of turns

E.1. One-shot Example

RISE One-shot example

User: Of the 60 students in the drama club, 36 take mathematics, 27 take physics and 20 students take both
mathematics and physics. How many drama club students take neither mathematics nor physics?

Agent: Step 1: To find the number of drama club students who take neither mathematics nor physics, we first need to
determine the number of students taking only math, only physics, and both math and physics.
Step 2: Out of the 60 students in the drama club, 36 take mathematics and 27 take physics, and 20 students take both
mathematics and physics.
Step 3: To calculate the number of students taking only math, we subtract the number of students taking both from the
total taking math: $36 - 20 = 16$.
Step 4: Similarly, to calculate the number of students taking only physics, we subtract the number of students taking
both from the total taking physics: $27 - 20 = 7$.
Step 5: Now, to find the number of students taking neither math nor physics, we subtract the total number of students
taking only math, only physics, and both from the total number of students in the drama club. This gives us $60 - 16 -
7 - 20 = \boxed{17}$ students taking neither.
Answer: \boxed{17}

Figure 13: One-shot Example: Demonstrates how to solve a math problem step-by-step and the expected answer format.
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Self-Refine One-shot example

User: Of the 60 students in the drama club, 36 take mathematics, 27 take physics and 20 students take both
mathematics and physics. How many drama club students take neither mathematics nor physics?

Agent: Step 1: To find the number of drama club students who take neither mathematics nor physics, we first need to
determine the number of students taking only math, only physics, and both math and physics.
Step 2: Out of the 60 students in the drama club, 36 take mathematics and 27 take physics, and 20 students take both
mathematics and physics.
Step 3: To calculate the number of students taking only math, we subtract the number of students taking both from the
total taking math: $36 - 20 = 16$.
Step 4: Similarly, to calculate the number of students taking only physics, we subtract the number of students taking
both from the total taking physics: $27 - 20 = 7$.
Step 5: Now, to find the number of students taking neither math nor physics, we add the number of students taking
only math and only physics, then subtract this sum from the total number of students in the drama club. This gives us
$60 - (16 + 7) = \boxed{37}$ students taking neither.
Answer: \boxed{37}

User: There is an error in the solution above because of lack of understanding of the question. What is the error? To
find the error, go through each step of the solution, and check if everything looks good.

Agent: Step 1: Correct. We need to find the number of students taking neither math nor physics.
Step 2: Correct. The given information is accurately stated.
Step 3: Correct. The calculation of students taking only math is correct.
Step 4: Correct. The calculation of students taking only physics is correct.
Step 5: Incorrect. The solution adds the number of students taking only math and only physics, but this does not
account for the students taking both subjects. By subtracting this sum from the total number of students, the solution
double-counts the students who take both math and physics.

User: Now, rewrite the solution in the required format:

Agent: <Same as 13>

Figure 14: One-shot Example: Demonstrates the process of self-critique and error correction based on the self-critique.
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