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Abstract
Question Answering (QA) is a longstanding001
challenge in natural language processing. Ex-002
isting QA works mostly focus on specific ques-003
tion types, knowledge domains, or reasoning004
skills. The specialty in QA research hinders sys-005
tems from modeling commonalities between006
tasks and generalization for wider applications.007
To address this issue, we present ProQA, a008
unified QA paradigm that solves various tasks009
through a single model. ProQA takes a unified010
structural prompt as the bridge and improves011
the QA-centric ability by structural prompt-012
based pre-training. Through a structurally de-013
signed prompt-based input schema, ProQA014
concurrently models the knowledge generaliza-015
tion for all QA tasks while keeping the knowl-016
edge customization for every specific QA task.017
Furthermore, ProQA is pre-trained with struc-018
tural prompt-formatted large-scale synthesized019
corpus, which empowers the model with the020
commonly-required QA ability. Experimen-021
tal results on 11 QA benchmarks demonstrate022
that ProQA consistently boosts performance023
on both full data fine-tuning, few-shot learning,024
and zero-shot testing scenarios. Furthermore,025
ProQA exhibits strong ability in both contin-026
ual learning and transfer learning by taking the027
advantages of the structural prompt.1028

1 Introduction029

Question Answering has long been an inspirational030

challenge in NLP research, and is viewed as the031

next-generation search engine and an essential tool032

for human beings to obtain knowledge (Etzioni,033

2011). Many distinct datasets (Rajpurkar et al.,034

2016; Lai et al., 2017; Kwiatkowski et al., 2019)035

have been proposed along with the research trend036

on QA, involving very diverse question types (e.g.,037

extractive QA, abstractive QA, multiple-choice038

QA), domains (e.g., finance, daily events), and an-039

swer types (e.g., free-formed text, selected option).040

1We will release the code, pre-training corpus and pre-
trained models to facilitate future research along this line.

The majority of previous works focus on tasks with 041

specific question types (Lai et al., 2017; Yang et al., 042

2018) or specific domains (Trischler et al., 2017; 043

Kwiatkowski et al., 2019). Recent research on large 044

pre-trained language models (Brown et al., 2020; 045

Bommasani et al., 2021) indicates that there may 046

be tight connections among various tasks, which 047

sheds light on a unified paradigm that can be poten- 048

tially applied to solve various QA tasks to model 049

their commonality. 050

This observation motivates us to develop a 051

unified QA model, which can model both the 052

commonly-required QA ability and the difference 053

between various QA tasks within a same paradigm. 054

To achieve this goal, there are several key chal- 055

lenges needed to be addressed: (1) How to model 056

commonalities and enhance transferability among 057

different QA tasks in various domains/formats 058

while reducing the conflict between them? (2) 059

How to construct large-scale QA corpus as the high- 060

quality QA-centric data is scarce for pre-training? 061

In light of this, we conceive ProQA, a unified 062

QA paradigm, which builds up a general model 063

to solve different QA tasks utilizing a structural 064

prompt and improves commonly-required QA abil- 065

ity via structural prompt-based pre-training. 066

Firstly, to model the commonalities and dis- 067

tinguish task differences, we adopt a structural 068

prompt to organize the inputs with a unified struc- 069

turally designed input schema. As illustrated in 070

Fig. 1, given the complex components (e.g., “Do- 071

main", “Format", “Task", “Question", “Passage") 072

as inputs, ProQA divides components into multi- 073

ple key-value pairs, in which a specific component 074

like “Question" denotes a key, and the specific in- 075

stance in this component is taken as the value. In 076

this way, the model can discriminate different input 077

components by key indicators and model the spe- 078

ciality of each task via task-specific values (learn- 079

able prompts). 080

Secondly, to alleviate data sparsity problem and 081
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[Task]: <SQuAD>
[Domain]: <Wikipedia>

[Format]: <Extractive QA>

[Question]: In what Country is 
Normandy located?

[Passage]: The Normans, were the 
people who in the 10th and 11th 
centuries gave their name to 
Normandy, a region in France.

[Task]: <Social IQA>
[Format]: <MultiChoice QA>

[Question]: How would Others 
feel as a result?
[Passage]: Cameron decided to 
have a barbecue and gathered her 
friends together.

[Task]: <NarrativeQA>
[Format]: <Abstractive  QA>

[Question]: How is Oscar related 
to Dana?
[Passage]: Dana continues digging 
in her purse while Frank makes 
funny faces at the baby Oscar, a 
very cute nine-month-old boy. 
Frank: That's a good-looking kid 
you got here, Dana.

[Candidates]: (A) like staying 
home (B) like attending (C) a good 
friend to have

Format

Task

Domain Wikipedia Medical Social Event Literature

SQuADBoolQ

Extractive QA MultiChoice QA Abstractive QA

BiologyChemistry

Social IQA Narrative QARACE DROP

Instance 1 Instance 2 Instance 3

[Domain]: <Social Event> [Domain]: <Literature>

Pro QA

Answer: France Answer: like attending Answer: her son

Figure 1: Approach overview of ProQA. Each box represents a specific instance formulated with the structural
prompt, and ProQA is pre-trained with structural prompt-based pre-training. [ ] indicates special key indicator,
< > denotes hard prompt, and colored squares denote continuous learnable soft prompts.

empower the model with transferability to the adap-082

tation of new tasks, we conduct structural prompt-083

based pre-training. We first build a large-scale084

synthetic QA corpus automatically from Wikipedia,085

utilizing only a few seed datasets as the prior su-086

pervisions for pre-training corpus construction and087

finally covering primary QA formats. Then we088

format the pre-training data with the structural089

prompt, and teach the model to learn the general090

purpose QA-centric ability and the functionality091

of each component in the structural prompt via092

pre-training.093

We evaluate the effectiveness of ProQA on094

11 downstream QA benchmarks, and the results095

show that our system achieves consistent perfor-096

mance boost in full data fine-tuning, few-shot learn-097

ing, and zero-shot learning settings. Experiments098

demonstrate that ProQA can better mitigate the099

catastrophic forgetting issue during continual learn-100

ing by restoring the task-specific soft prompts re-101

siding in the structural prompt. Further analyses102

illustrate that our model has better transferability103

as it can be more quickly adapted to a newly in-104

volved task. Ablation studies verify the effective-105

ness of both the soft prompt and prompt-based 106

pre-training. 107

The contributions are summarized as follows: 108

• We propose ProQA, a unified QA frame- 109

work for solving various tasks within a single 110

paradigm, taking an extensible and learnable 111

structural prompt as the bridge. 112

• We enhance general QA-centric capabilities via 113

structural prompt-based pre-training. 114

• Comprehensive experiments show that our 115

model consistently improves the performance 116

on 11 QA tasks especially in low-resource set- 117

tings and exhibits better effectiveness in contin- 118

ual learning and few-shot transfer learning. 119

2 Related Work 120

Unifying QA formats. Despite vast diversity of 121

current QA tasks in question type, answer type, an- 122

swer source, and data domain (Zeng et al., 2020), 123

there have been efforts in exploring a unified format 124

for various QA tasks. Some pioneered to demon- 125

strate the generalization and transferability among 126

different QA tasks (Talmor and Berant, 2019; Dua 127

et al., 2019a; Fisch et al., 2019). Another line of 128
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works investigate multi-task learning for QA (Mc-129

Cann et al., 2018; Shen et al., 2019; Deng et al.,130

2019) by jointly training a single encoder to pro-131

mote knowledge sharing. However, these meth-132

ods typically require deploying distinct prediction133

heads for different tasks, which lead to poor scala-134

bility and flexibility when confronted with emerg-135

ing QA tasks of new types.136

To this end, inspired by the success of cast-137

ing multiple tasks into the same text-to-text for-138

mat (Lewis et al., 2020; Raffel et al., 2020), re-139

searchers propose to learn a single model to unify140

various QA formats, alleviating the labor of task-141

specific designs (Khashabi et al., 2020b; Tafjord142

and Clark, 2021). However, these models (1) do143

not explicitly model the task or component char-144

acteristics, thus failing to properly disentangle the145

difference among QA tasks; and (2) overly rely on146

supervised data from specific tasks, which may not147

be available under data-scarce scenarios.148

QA-centric pre-training. Numerous efforts149

have been spent on improving PLMs’ reasoning150

abilities with an intermediate pre-training stage be-151

fore fine-tuning on target QA tasks, including (1)152

language modeling adaptation with salient span153

masking, which trains PLMs to recover randomly154

chosen (Guu et al., 2020; Wang et al., 2021) or155

machine-generated (Kang et al., 2020) masked156

named entities in the raw corpus; (2) training157

data augmentation with synthetic question-answer-158

context triples, such as generating (a) pseudo ques-159

tions through adversarial training (Hosking and160

Riedel, 2019), knowledge bases (Hu et al., 2021)161

or machine translation (Lewis et al., 2019), (b)162

pseudo answers exploiting recurring spans (Ram163

et al., 2021) or rules based on heuristics (Bian et al.,164

2021) and (c) pseudo contexts via information re-165

trieval (Glass et al., 2019). Nevertheless, these166

works largely target at improving a certain reason-167

ing ability for PLMs, and thus cannot be easily168

generalized to other QA tasks.169

Prompts for PLMs. To effectively stimulate the170

knowledge acquired through pre-training, prompt-171

oriented fine-tuning is receiving increasing atten-172

tion (Liu et al., 2021; Ding et al., 2021), which173

re-formulates the objective of downstream tasks174

similar to that of pre-training by inserting manually175

designed (Schick and Schütze, 2021a,b) or automat-176

ically searched (Jiang et al., 2020; Shin et al., 2020)177

hard prompt tokens into the input text. Consider-178

[Task]: <Task Prompt>

[Domain]: <Domain Prompt>

[Format]: <Format Prompt>

[Question]: Question Text

[Passage]: Passage Text

[Key ]: Valuei i
…

[Key ]: Valuek k

[Task]: <Task Prompt>

[Domain]: <Domain Prompt>

[Format]: <Format Prompt>

[Question]: Question Text

[Passage]: Passage Text

[Key ]: Valuei i
…

[Key ]: Valuek k

Figure 2: An illustration of the structural prompt. [ ]
indicates special key indicator, < > denotes hard
prompt, and grey squares indicate continuous soft
prompts.

ing that discrete prompts may not be an optimal 179

solution in the continuous embedding space, re- 180

cent works (Li and Liang, 2021; Hambardzumyan 181

et al., 2021) proposed tunable soft prompts. It 182

achieves satisfying performance especially when 183

the model size grows extremely large (Lester et al., 184

2021). Compared with the cumbersome parameters 185

in PLMs, soft prompts are lightweight and plug- 186

gable, which paves the way for our goal of flexible 187

adaptation to a new QA task. 188

3 ProQA 189

In this section, we detailedly describe the whole 190

framework of ProQA for general purpose QA, 191

which solves various QA tasks within the same 192

paradigm. 193

3.1 Overview 194

As shown in Fig. 2, we first organize the inputs of 195

various QA tasks with a unified structural prompt 196

(§ 3.2), and adopt a unified text-to-text model for 197

question answering. Then, to enhance the model in 198

learning the general QA-centric ability and the se- 199

mantics of the structural prompt, we conduct struc- 200

tural prompt-based pre-training with synthetic 201

pre-training corpus formatted with the structural 202

prompt (§ 3.3). 203

Inspired by Khashabi et al. (2020b) and T5 (Raf- 204

fel et al., 2020), we solve all downstream QA tasks 205

with a unified text-to-text model. In this work, we 206

mainly adopt T5 as the model backbone. Taking the 207

structural prompt-based model input, the unified 208

model generates the answer of the question. 209
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3.2 Structural Prompt210

Here we detailedly illustrate the design of the struc-211

tural prompt and its formatted input to the model.212

Definition. We organize complex QA task in-213

puts with the structural prompt. As shown in214

Fig. 2, the structural prompt consists of multi-215

ple {key : value} pairs, where the key repre-216

sents a specific component2 (e.g., “Task", “Format",217

“Question", etc.), and the value has two possible218

types: (1) textual content (e.g., question, passage,219

options) of the data instance; (2) task attributes220

(e.g., format, domain) represented as the combi-221

nation of a discrete hard prompt and continuous222

soft prompts. The hard prompt is a predefined dis-223

crete description (we adopt a special token here),224

and the soft prompts are lightweight learnable and225

pluggable continuous embeddings that are proven226

to be parameter-effective in task adaptation (Lester227

et al., 2021). The structural prompt-formatted ex-228

amples are illustrated in Fig. 1. In the case of229

the SQuAD dataset, “⟨Format Prompt⟩”, “⟨Task230

Prompt⟩”, “⟨Domain Prompt⟩” will be “⟨Extractive231

QA⟩”, “⟨SQuAD⟩”, “⟨Wikipedia⟩”, respectively.232

To enhance the model in discriminating the func-233

tional difference between components, we adopt a234

special key indicator with learnable representation235

to represent each key. Furthermore, to model the236

difference between several tasks/domains/formats,237

we also adopt learnable and storable specific soft238

prompts as the value to represent their customized239

characteristics, which makes the model more flexi-240

ble for task adaptation.241

As a result, the structural prompt can empower242

the model in the following aspects: (1) modeling243

knowledge generalization of various tasks utilizing244

a unified input schema; (2) discriminating different245

components with the special key indicator; (3) cus-246

tomizing the speciality of each task/format/domain247

with learnable and storable soft prompts as the248

value under corresponding keys.249

Input Representation. Specifically, given a250

structural prompt-formatted instance, we describe251

the specific representation of the model input. We252

firstly translate kth key to a key indicator Dk (a spe-253

cial token), which is attached by the tokens Vk of254

the specific value to form a token sequence. It is fur-255

ther represented as Ek = Embedding([Dk;Vk]).256

2It is worth noting that “Format" key denotes the format
type (e.g., “MultiChoice QA") of the task while the “Task" key
denotes a specific dataset (e.g., “SQuAD").

The representation of Dk is initialized and up- 257

dated during training. Since we use soft prompts 258

Ptask/Pformat/Pdomain as the value of the correspond- 259

ing key and they are commonly required for all the 260

tasks, we prepend them to the input for convenience 261

and concatenate all the Ek to form the final model 262

input X: 263

X = [Pdomain;Pformat;Ptask;E1; ...;Ek] (1) 264

It is also worth noting that the representations D 265

of key indicators and the soft prompts P are jointly 266

trained with the main model parameters during pre- 267

training for learning the semantics of the structural 268

prompt. Moreover, after being tuned by various 269

tasks, the soft prompts P can be stored to record 270

the customized task-specific characteristics. 271

3.3 Structural Prompt-based Pre-training 272

In this part, we introduce how we conduct struc- 273

tural prompt-based pre-training to help the model in 274

learning commonly-required QA ability and the se- 275

mantics of the structural prompt during pre-training 276

to facilitate the adaption of the structural prompt to 277

downstream tasks. 278

Task Formulation. Along with the structural 279

prompt-based paradigm, we manifest various exem- 280

plary QA format types (i.e., Extractive QA, Abstrac- 281

tive QA, Multiple-choice QA and Yes/No QA) for 282

pre-training to inject the general QA-centric abil- 283

ity. Given the multi-format QA pre-training corpus, 284

we transform all QA formats according to the pro- 285

posed structural prompt, which enables joint pre- 286

training while keeping the differences among vari- 287

ous formats. Taking a structural prompt-formatted 288

instance as the input and a free-form answer as the 289

output, the task is further tailored to a QA task with 290

the encoder-decoder model. 291

Pre-training Corpus Construction. When we 292

prepare the QA pre-training corpus, data sparsity 293

problem is extremely severe because (1) it is im- 294

practical and laborious to obtain a large-scale high- 295

quality annotated data for pre-training and (2) it is 296

hard to generate QA-centric self-supervised data 297

using rule-based methods (e.g., token masking 298

or sentence reordering). In this work, inspired 299

by Lewis et al. (2021), we adopt a generation- 300

filtering based corpus construction method to 301

synthesize a large-scale pre-training corpus, based 302

on a large-scale unlabeled Wikipedia corpus with 303

almost 6 million passages. 304
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Typically, the general generation-filtering pro-305

cess consists of the following components:306

1. A QA-pair generation model gqa(q, a|c): Given307

a passage c as input, gqa(q, a|c) generates308

q [SEP] a as the output sequence including309

a pair of question q and its answer a.310

2. A filtering QA language model f(a|q, c) for311

filtering the generated QA-pairs to ensure the312

quality and consistency of the question and the313

answer. f(a|q, c) is a conditional-probability-314

based approach to filter out QA pairs softly. It315

scores a QA pair (q, a) with the likelihood of316

the answer a conditioned on the passage c and317

question q. The QA-pairs with scores higher318

than a threshold will be kept for pre-training.319

We adopt the same text-to-text pre-trained model320

T5 described in § 3.1 as the model backbone of321

both the generation and filtering model.322

To ensure the reliability of the generation and323

filtering models, we inevitably select a few seed324

datasets (typically one for each QA format type)325

as the prior supervisions to train these models. It326

is worth mentioning that, we avoid using more su-327

pervised data for corpus construction, because we328

expect the whole paradigm to have better expand-329

ability. In other words, if we want to extend the330

paradigm for a newly-involved QA format type but331

with limited supervised data, we can utilize these332

data to automatically create a synthetic large-scale333

pre-training corpus.334

More specifically, the construction method has335

little variance for different formats according to336

their input components. For Extractive QA and337

Abstractive QA, we adopt the aforementioned gen-338

eral method to synthesize QA-pairs. We also tried339

to first extract answers using rule-based method340

(extracted named-entities or key phrases), and only341

generate questions. We empirically find that this342

method performs much worse as it involves sim-343

ple bias of the rule-based method. As the inputs344

for Multiple-Choice QA involve a new component345

“Candidate Answers", we adopt a distractor (neg-346

ative options) generation model gneg(o|c, q, a) to347

generate three negative options o. For Yes/No QA,348

we simply generate questions by taking True/False349

as the corresponding answers. Further details are350

described in Appendix A.351

Format Dataset #Train #Dev QA Skills

Extractive QA

SQuAD∗ 87k 10k Word Matching
Quoref 22k 2k Coreference Reasoning

NewsQA 76k 4k Word Matching

Abstractive QA

NarQA∗ 65k 21k Story Understanding
DROP 77k 9k Discrete Reasoning

NQOpen 79k 3.6k Multi-passage Understanding

MultiChoice QA

RACE∗ 87k 4k Multi-sentence Reasoning
DREAM 6k 2k Dialog Reasoning
MCTest 1.4k 320 Multi-sentence Reasoning
OBQA 4k 501 Common Knowledge
SIQA 33.4k 2.2k Commonsense Reasoning

Table 1: Dataset statistics and required language under-
standing skills. Datasets with * denote seed datasets for
preparing pretraining data.

4 Experimental Setup 352

4.1 Datasets and Evaluation Metrics 353

We consider three formats of QA datasets in our 354

experiments: Extractive QA, Abstractive QA and 355

Multiple-Choice QA3. For each QA format, we se- 356

lect one seed dataset for preparing the large-scale 357

pre-training data. The seed dataset is used to train 358

the question-answer generation and filtering mod- 359

els in the process of pre-training corpus construc- 360

tion. In total, the experiments are conducted on 11 361

QA datasets with three different formats and vari- 362

ous language understanding abilities. An overview 363

of datasets used in the experiments and their re- 364

quired QA skills are summarized in Table 1. 365

Extractive QA. We take SQuAD 1.1 (Rajpurkar 366

et al., 2016) as the seed dataset for extractive style 367

QA. In addition, we consider NewsQA (Trischler 368

et al., 2017) and Quoref (Dasigi et al., 2019) to eval- 369

uate the generalization ability of models. The EM 370

(Exact Match) score between the extracted span 371

and the gold answer span is used as the evaluation 372

metric for extractive QA. 373

Abstractive QA. Narrative QA (NarQA) 374

(Kočiský et al., 2018) is taken as the seed dataset 375

for Abstractive QA. DROP (Dua et al., 2019b) 376

and the open-domain version of NaturalQuestions 377

(NQOpen) (Kwiatkowski et al., 2019) are also con- 378

sidered. Passages for each question in NQOpen are 379

retrieved by the dense passage retriever (Karpukhin 380

et al., 2020) and are concatenated into a sequence. 381

We use ROUGE-L (Lin, 2004) metric for NarQA 382

and F1 score for DROP and NQOpen. 383

3We also include Yes/No QA in our pilot study. We do
not consider it in our main experiments because datasets in
this format are extremely rare. Results on this QA formats are
shown in Appendix B.
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Setting Dataset
ExtractiveQA AbstractiveQA MultiChoiceQA

AvgSQuAD Quoref NewsQA NarQA DROP NQOpen RACE DREAM MCTest OBQA SIQA

Full-Data

T5 83.4 64.9 45.2 49.3 45.0 42.3 67.9 54.8 44.4 49.6 64.1 55.5
UnifiedQA 84.4 74.8 45.3 49.6 45.1 42.5 71.6 67.6 83.1 57.6 64.9 62.4
ProQA (qapair) 84.9 76.6 50.8 49.8 55.0 43.2 73.6 72.9 85.0 61.6 67.5 64.9
ProQA (paq) 85.3 76.8 50.4 50.1 52.5 43.9 73.2 73.3 85.9 61.4 67.2 65.0

Few-Shot

T5 6.7 14.6 20.5 3.4 5.8 11.9 26.2 34.7 38.1 29.0 32.4 20.3
UnifiedQA 82.0 38.2 34.2 49.1 22.2 31.6 53.0 57.4 73.8 41.2 42.8 48.1
ProQA (qapair) 82.9 44.2 41.1 49.1 24.9 33.3 63.4 64.5 82.5 46.2 49.1 52.8
ProQA (paq) 84.4 52.2 42.1 49.2 27.1 36.0 66.5 66.0 84.1 44.8 49.4 54.7

Zero-Shot

T5 0.0 0.0 0.0 3.5 2.0 1.5 24.1 34.2 27.5 21.9 33.2 13.5
UnifiedQA 80.7 27.9 31.4 48.3 18.0 30.9 53.0 57.0 73.4 35.9 40.3 45.2
ProQA (qapair) 80.4 30.5 30.7 48.1 17.0 33.0 62.6 64.3 81.3 36.0 47.2 48.3
ProQA (paq) 81.3 42.1 31.8 48.4 19.7 36.0 65.9 65.2 81.3 38.6 46.7 50.6

Table 2: Main results on 11 downstream QA datasets under full-data fine-tuning, few-show learning, and zero-shot
learning settings. Since the supervisions of seeds datasets are used in the pre-training corpus construction which
may introduce bias in few-shot and zero-shot settings, results on these corresponding entries are underlined.

Multiple-Choice QA. For multiple choice QA,384

the following datasets are considered: RACE (Lai385

et al., 2017) (seed dataset), DREAM (Sun et al.,386

2019), MCTest (Richardson et al., 2013), Open-387

BookQA (OBQA) (Mihaylov et al., 2018), Social388

IQa (SIQA) (Sap et al., 2019). OBQA does not389

have contexts (reading comprehension passages).390

The context for DREAM is in the dialogue style391

and we concatenate them into a sequence as the392

passage input. We select the option with the high-393

est textual similarity with the generated answer as394

the final answer. We compute the accuracy of the395

correct options for all multiple choice QA datasets.396

4.2 Approaches397

T5 (Raffel et al., 2020) is a unified text-398

to-text pre-training framework that covers399

all text-based language problems. We use400

google/t5-v1_1-base from HuggingFace401

Transformers (Wolf et al., 2020) that is only402

pre-trained on C4 excluding any supervised403

training dataset (e.g., QA datasets).404

UnifiedQA (Khashabi et al., 2020b) crosses the405

format boundaries of different QA tasks by for-406

mulating them into text-to-text tasks under T5. It407

directly concatenates all inputs via \n into a se-408

quence and feeds it into T5 for predicting the an-409

swer. We train our own UnifiedQA model on the410

combination of three aforementioned seed datasets,411

namely SQuAD, NarQA, and RACE.412

ProQA is our proposed structural prompt-based413

pre-training approach. ProQA is pre-trained414

jointly on three formats of pre-training corpus: Ex-415

tractive QA, Abstractive QA, and Multiple-Choice416

QA. This approach using corpus prepared from417

QA-pair generation-filtering model described in 418

§ 3.3 is named as ProQA (qapair). Additionally, 419

we leverage the off-the-shelf large-scale QA pairs 420

from Probably-Asked Questions/PAQ (Lewis et al., 421

2021), and replace our extractive QA pre-training 422

corpus by a subset of PAQ (abstractive QA and 423

multiple-choice QA corpus remains unchanged). 424

PAQ provides a refined pipeline that introduces 425

learned models on every step of QA pair genera- 426

tion, i.e., passage selection, answer identification, 427

question generation, and filtering. We name this 428

variant as ProQA (paq). 429

For every downstream QA dataset, we start from 430

the above pre-trained models and conduct experi- 431

ments under full-data fine-tuning, few-shot learn- 432

ing, and zero-shot learning settings. For few-shot 433

learning, we randomly sample 32 instances from 434

the training set. 435

5 Results and Analyses 436

5.1 Main Results 437

Main results are shown in Table 2, and we have the 438

following observations: 439

• QA-centric pre-trained models, namely Uni- 440

fiedQA and ProQA, outperform T5 by a large 441

margin on both seed datasets and non-seed 442

datasets. This is because there is some trans- 443

ferable knowledge across different QA tasks. 444

Once the model is pre-trained by any QA task, 445

the learned knowledge can be generalized to 446

any other datasets. 447

• ProQA demonstrates better knowledge cus- 448

tomization ability than UnifiedQA – ProQA 449

beats UnifiedQA by a large margin in few-shot 450

and zero-shot settings. This is because (1) the 451
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Methods
Task A→Task B

EX→EX EX→AB EX→MC AB→EX AB→AB AB→MC MC→EX MC→AB MC→MC Avg

Task B Model 20.5% 26.2% 13.0% 8.9% 6.3% 6.5% 4.6% 4.9% 0.9% 9.9%
Task B Model (w/ Task A Prompt) 17.1% 10.6% 6.7% 3.1% 3.1% 2.2% 0.4% 0.7% -0.5% 4.3%

Table 3: Continual learning results for averaged performance drops compared with the original task A results under
different task learning orders (lower is better). Negative number means the performance improves compared with
the original task A results. EX: Extractive QA; AB: Abstractive QA; MC: Multiple-chioce QA.

hard and soft prompts in the structural prompt452

enable better knowledge customization for ev-453

ery QA task, especially the “Task” key-value454

pair that is different for every QA task; (2)455

structural prompt-based pretraining empowers456

ProQA to adapt faster (§ 5.3) and better (Ta-457

ble 2) to these non-seed datasets.458

• Comparing ProQA (qapair) and ProQA (paq),459

we find that ProQA (paq) performs better in460

most scenarios. Presumably, PAQ provides high461

quality pre-training corpus through its pipelined462

approach – there are in total four BERT-sized463

models to be prepared for generating PAQ cor-464

pus. Instead, our proposed QA pair generation465

approach is simple and can be applied to not466

only Extractive QA but also Abstractive QA and467

Multiple-choice QA in the pre-training corpus468

construction process.469

5.2 Continual Learning via Soft Prompt470

One benefit of introducing soft prompt in ProQA471

is that it can potentially mitigate the catastrophic472

forgetting issue when adapting to a new task. If473

ProQA is sequentially fine-tuned on task A and474

task B under few-shot setting, it can load task A475

soft prompt back when it is evaluated again on the476

task A. The plug-in flexibility of ProQA brings477

huge improvements compared with its counterpart478

that keeps the task B soft prompt.479

We conduct continual learning by setting task480

A and B as different combinations among datasets481

with formats4: Extractive QA (EX), Abstractive482

QA (AB), and Multiple-choice QA (MC). Formally,483

we first adapt ProQA to task A by few-shot learn-484

ing to obtain the model A: fA
θ with performance sA.485

Then we sequentially adapt fA
θ to task B and re-486

ceive task B model fAB
θ . We evaluate performance487

of the model fAB
θ on task A under two settings: (1)488

direct testing (task-B prompt) (2) first restoring the489

learned task-A prompt from fA
θ to the model fAB

θ490

4Note that we consider two tasks in continual learning
because we also want to directly investigate the task adaptation
to-and-fro the same format (e.g., MC → MC) or different
formats (e.g., AB → EX).

EM

Step
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0 100 200 300 400 500 600 700 800

T5 UnifiedQA Pro QA

Figure 3: The few-shot learning curves of EM scores on
the validation set of the NewsQA task.

and then testing. Performance of the two settings 491

are denoted as sAB and sAB′
, respectively. We 492

evaluate the continual learning performance under 493

these two settings with the percentage of the per- 494

formance drop on the task A: “Task B Model”= 495
sA−sAB

sA
, and “Task B Model (w/ Task A Prompt)” 496

= sA−sAB′

sA
. 497

As shown in Table 3, the catastrophic forget- 498

ting issue does exist when evaluating task A with 499

task B model (“Task B Model”) directly. The per- 500

formance drops as large as 26.2% for EX→AB. 501

However, restoring task A prompt brings huge im- 502

provements across all task combinations (“Task B 503

Model w/ Task A Prompt”). It is surprising to see 504

that restoring task A prompt could sometimes even 505

improve task A performance (MC→MC = −0.5%). 506

Presumably, sequential learning two tasks under 507

the same question format (MC) makes the model 508

learn the transferable knowledge while restoring 509

task A prompt brings task-specific knowledge. De- 510

tailed experimental results on the 33 combinations 511

of datasets can be found in Appendix C. 512

5.3 Convergence Analysis 513

We investigate the effectiveness of pre-training by 514

compare the step-wise performance under few-shot 515

learning setting. The learning curves of EM scores 516

on the validation set of the NewsQA task is shown 517

in Figure 3. Out of the three models, T5 con- 518

vergences slowest because it does not have any 519

QA-centric knowledge while our proposed ProQA 520

7



Model NewsQA NQOpen DREAM

ProQA 42.1 36.0 66.0
w/o soft prompt 38.5 32.9 64.5

w/o pretraining 20.5 10.7 35.1
UnifiedQA + Pre-train Corpus 37.3 32.4 59.6

Table 4: Ablation study results on three non-seed
datasets under different QA formats (extractive, abstrac-
tive, multiple-choice).

adapts fastest and best. Moreover, we find that Uni-521

fiedQA EM score rapidly saturates and eventually522

degrades slightly, suggesting that the model overfits523

under the few-shot setting. On the counterpart, our524

ProQA continues to improve and never degrades525

because the hard and soft prompt inside the struc-526

tural prompt balance the knowledge generalization527

and knowledge customization well.528

5.4 Ablation Study529

An ablation study is conducted to unveil the effec-530

tiveness of every component in ProQA. We con-531

sider three variants of ProQA: (1) ProQA without532

the soft prompt in its structural prompt; (2) ProQA533

further without prompt-based pre-training. (3) Uni-534

fiedQA + Pre-train Corpus is the UnifiedQA model535

pre-trained on our prepared large-scale synthetic536

QA corpus. Few-shot learning results on three537

non-seed datasets under different QA formats are538

shown in Table 4. We find that removing the soft539

prompt from the model disables the task-specific540

knowledge learned during pre-training. Moreover,541

removing the prompt-based pretraining drastically542

hurts the performance as the equivalent model (T5543

+ hard structural prompt) does not have any QA544

knowledge. Finally, UnifiedQA + Pre-train Cor-545

pus could not compete with ProQA, showing that546

our proposed structural prompt earns better balance547

between knowledge generalization and knowledge548

customization than UnifiedQA.549

6 Discussion550

In this section, we discuss on how to extend the551

ProQA to a new task even with a new schema, and552

sheds light on potential future directions.553

1) Task Adaptation with Structural Prompt: The554

design of structural prompt empowers ProQA with555

better expandability. In our main experiments, we556

adopt 3 format types and 11 QA tasks. In the557

future, we can adapt ProQA to more tasks, for-558

mats, domains, and new input schema. Intuitively,559

when being adapted to a new task with unseen for-560

mat/domain, ProQA can initialize the specific soft 561

prompts and learn the characteristic of the new do- 562

main/task through model training. Moreover, if 563

we encounter a new input schema that involves 564

new keys (e.g., “extracted entities or commonsense 565

knowledge"), we can add a new key-value pair in 566

the input schema and learns the functionality of the 567

new key indicator through training. 568

2) Unified QA Systems: We think further studies 569

on unified QA systems could target on a better 570

pre-training schema for general purpose QA, or 571

optimizing the modeling strategy for the structural 572

prompt to process more complex input, or output 573

formats (e.g., adding extracted entities or retrieved 574

knowledge). 575

3) Unification with Structural Prompt: The appli- 576

cation of the structural prompt is not limited only 577

on the QA task. Intuitively, task inputs/outputs 578

with various formats or components can also be 579

organized with the structural prompt, like dialog 580

or aspect-based sentiment analysis. In this way, 581

we can integrate multiple tasks with carefully orga- 582

nized structural input, and improve the uniformity 583

and expandability of the whole paradigm. 584

7 Conclusion 585

We introduce ProQA, a unified QA paradigm that 586

adopts a single model for solving various QA tasks 587

with the bridge of a structural prompt. Structural 588

prompt simultaneously models the common ability 589

required for various tasks and keeps the speciality 590

of each task, through a structurally designed learn- 591

able input schema. We further conduct structural 592

prompt-based pre-training, seeking to empower the 593

model with general QA-centric ability and injects 594

the semantic knowledge of the structural prompt 595

into the pre-training model. Experimental results 596

on 11 QA benchmarks demonstrate that ProQA 597

can significantly boost performance on all settings. 598

Further analyses show that our method can better 599

mitigate the catastrophic forgetting issue during 600

continual learning, and our method can be adapted 601

to a newly involved task more quickly, by taking 602

the advantages of the structural prompt. In the 603

future, we hope our analysis could inspire more 604

explorations on the unified QA methods, or the 605

unification of distinct tasks with complex inputs 606

modeling by the structural prompt. We also hope 607

structural prompt can be further utilized into the 608

unification of more tasks with complex inputs. 609
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A Implementation Details906

A.1 Corpus Preparation907

In this part, we describe the details of corpus con-908

struction.909

The current pre-training corpus contains almost910

4 million pre-training instances formulated with911

the structural prompt, including 1 million Multiple-912

choice QA instances, 2 million Extractive QA in-913

stances, and 2 million Abstractive QA instances.914

When generating questions and answers, we take915

the context as the input, and the sequence “question916

[SEP] answer" as the output. In order to train the917

filtering model, we take the context and question918

as the inputs, and the answer as the output. During919

the inference process of QA-pairs filtering, we take920

the context and the generated question as the model921

input of the QA model and set generated answer922

as the label. Then we compute the final soft score923

with the cross-entropy loss between the label and924

the answer generated by the QA model, Next, we925

rerank all the generated QA-pairs according to the926

soft scores in an ascending order to select the most927

consistent QA-pairs as the pre-training instances.928

Specifically, we employ AdamW as the opti-929

mizer for model training. We adopt T5-Large as930

the model backbone and the seed datasets as su-931

pervisions for training both the question-answer932

pairs generation, and the filtering QA model. We933

set learning rate as 1e-5, warmup step as 0, batch934

size as 2 per GPU, and training epochs as 10.935

A.2 Details on Pre-training and Task936

Adaptation.937

Pre-training. During pre-training, we jointly938

train the main model parameters with the repre-939

sentations of the special key indicators and the940

task/format-specific soft prompts.941

Initially, we don’t have any specific tasks dur-942

ing pre-training, so we take the three pre-training943

corpus (i.e., “MultiChoiceQA, Extractive QA, and944

Abstractive QA" ) as the three initial tasks, and ran-945

domly initialize the task and format specific soft946

prompts.947

Specifically, we use T5-Base as the model back-948

bone, and set learning rate as 1e-4, batch size as949

8 per GPU and gradient accumulation steps as 10.950

We adopt 8 V100 GPUs for pre-training.951

Fine-tuning. During fine-tuning, we need to ini-952

tialize the task/format-specific soft prompts for a953

specific downstream task. If the task corresponds954

Setting Dataset BoolQ

Full-Data
T5 62.2
Pro QA 80.6

Few-Shot
T5 0.0
Pro QA 55.4

Zero-Shot
T5 0.0
Pro QA 62.1

Table 5: Result on two Yes/No QA tasks under full-data
fine-tuning, few-shot learning, and zero-shot learning
settings.

to a specific format participating in the pre-training 955

stage, we use the corresponding soft prompts of 956

this format type to initialize the soft prompts for 957

the current tasks to transfer the learned knowledge. 958

If the task corresponds to a new format, we can 959

randomly initialize the task/format prompts. 960

Specifically, we use T5-Base as the model back- 961

bone, and set learning rate as 1e-4, batch size as 962

2 per GPU, gradient accumulation steps as 2, and 963

training epochs as 5. We adopt 8 V100 GPUs for 964

fine-tuning. 965

Few-shot Learning. We adopt a similar way to 966

initialize the task-specific soft prompts for few- 967

shot learning. We use the standard setting which 968

utilizes 32 randomly selected instances for few- 969

shot learning. Specifically, we adopt T5-Base as 970

the model backbone, and set learning rate as 1e-5, 971

batch size as 1 per GPU, gradient accumulation 972

steps as 1, and training steps as 800 for few-shot 973

learning. 974

Zero-shot Learning Since zero-shot learning 975

does not involve training stage, we just need to 976

initialize the task-specific prompt for inference. 977

Therefore, we initialize the task-specific prompt 978

with the pre-trained task prompts of its correspond- 979

ing format type. 980

B Results on Yes/No Pre-training 981

During our pilot study, we take the BoolQ (Clark 982

et al., 2019) as the seed dataset to construct a large- 983

scale pre-training corpus, and test the full-data, few- 984

shot, zero-shot on top of the pre-trained ProQA. 985

We also take the naturally-perturbed version of this 986

dataset BoolQ-NP (Khashabi et al., 2020a) into 987

account for evaluation. Results are shown in Ta- 988

ble 5. We find that the ProQA significantly out- 989

performs T5 baseline on all settings. Note that we 990

take a strict evaluation towards the model’s output. 991
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Task A Task A Model
(Few-Shot Results)

Task B Task B Model
(Evaluation on Task A)

Task B Model (w/ Task A Prompt)
(Evaluation on Task A)

EX/NewsQA (EM) 42.1

EX/Quoref (EM) 33.7 35.3
AB/DROP (F1) 31.3 33.7

AB/NQOpen (F1) 27.6 34.2
MC/DREAM (Acc) 35.2 37.9
MC/MCTest (Acc) 34.5 36.8
MC/OBQA (Acc) 34.4 35.9

EX/Quoref (EM) 52.2

EX/NewsQA (EM) 41.1 42.8
AB/DROP (F1) 43.0 51.4

AB/NQOpen (F1) 38.0 51.0
MC/DREAM (Acc) 47.2 51.3
MC/MCTest (Acc) 47.8 52.0
MC/OBQA (Acc) 48.5 51.6

AB/NQOpen (F1) 36.0

EX/NewsQA (EM) 32.8 33.9
EX/Quoref (EM) 36.2 35.4
AB/DROP (F1) 34.3 35.8

AB/DROP (F1) 27.1

EX/NewsQA (EM) 22.8 26.3
EX/Quoref (EM) 24.0 26.6
AB/NQOpen (F1) 25.0 25.6

MC/DREAM (Acc) 25.1 26.2
MC/MCTest (Acc) 25.4 26.7
MC/OBQA (Acc) 25.6 26.7

MC/MCTest (Acc) 84.1

EX/NewsQA (EM) 81.6 83.1
AB/DROP (F1) 82.8 83.8

MC/DREAM (Acc) 83.2 83.8
MC/OBQA (Acc) 82.2 82.5

MC/DREAM (Acc) 66.0

EX/NewsQA (EM) 64.0 65.4
AB/DROP (F1) 63.5 65.7

MC/MCTest (Acc) 65.5 65.8
MC/OBQA (Acc) 65.2 65.5

MC/OBQA (Acc) 44.8

EX/NewsQA (EM) 41.4 45.2
AB/DROP (F1) 40.6 44.2

MC/MCTest (Acc) 44.8 45.8
MC/DREAM (Acc) 44.2 46.8

Table 6: Full results on continual learning. For each task, we provide the task format (EX, AB, MC) and its
evaluation metrics (EM, F1, Acc). EX: Extractive QA; AB: Abstractive QA; MC: Multiple-Choice QA.

In other words, if the output is not any format of992

“yes”, “no”, “true”, “false”, that prediction will be993

classified as wrong.994

C Details on Continual Learning995

Table 6 provides the full results for the continual996

learning experiment. The model is firstly trained on997

task A under few-shot setting, and then fine-tuned998

on task B. Afterwards, we evaluate the trained999

“Task B Model” and “Task B Model (w/ Task A1000

Prompt)” on task A to test its continual learning1001

capability. Detailed results on every Task A/Task B1002

combination (33 reported in total) are shown in Ta-1003

ble 6. Note that we consider two tasks in continual1004

learning because we also want to investigate the1005

task adaptation to-and-fro the same format (e.g.,1006

MC → MC) or different formats (e.g., AB → EX).1007

The results shed light on how could we arrange the1008

order of training on tasks to achieve the best overall1009

performance when a bunch of tasks arrive. 1010
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