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Abstract

Modern multi-modal generative models exhibit remarkable out-of-distribution gen-1

eralization capabilities, combining concepts in ways not observed in the training2

data. While a rich body of literature theoretically studies learning dynamics in3

in-distribution generalization settings, the dynamics of out-of-distribution genera-4

tion remain underexplored. In this work, we introduce and analyze the Structured5

Identity Mapping task, demonstrating how this simple model yields rich learn-6

ing dynamics. Specifically, we analyze a one-hidden-layer network learning the7

identity map, using a training set composed of Gaussian point clouds structurally8

positioned at nodes of concept graphs. Our analysis of this model yields solutions9

that explain various empirical observations previously reported in text-conditioned10

diffusion models, including: (i) wave-like progression of compositional generaliza-11

tion dynamics, respecting hierarchical compositional structures; (ii) the impact of12

concept-centric data structures on concept learning speed; and (iii) non-monotonic13

progress of out-of-distribution generalization. In conclusion, our analytical model14

of concept learning establishes a theoretical foundation for investigating the dy-15

namics of concept acquisition and combination in generative models.16

1 Introduction17

Concept learning and compositional generalization are essential features of modern generative models18

[1, 2, 3, 4, 5, 6]. These models can learn abstract concepts like shape, size and color from a limited set19

of training data and use them to generate images with novel combinations of concepts. In this paper,20

we focus on prompt conditioned image generative models, where the model is trained to generate21

images given a conditioning, e.g. a text prompt. Many papers have shown that this kind of model,22

especially ones based on diffusion models, often show some extent of concept learning [7, 8, 9].23

One natural question which arises is: How do these capabilities emerges from training? It is generally24

hard to track the model behavior in terms of concept learning throughout training. Park et al. [6]25

proposed a principled way of studying it: instead of considering learning dynamics in parameter26

space as most previous work do, the authors study the learning dynamics in “concept space”. Briefly27

speaking, concept space is vector space that serves as an abstraction of real concepts. For each28

concept (e.g. color), a binary number can be used to represent its value (e.g. 0 for red and 1 for blue).29

In this way, a binary string can be mapped to a text condition (e.g. (1, 0, 1) might represent “big blue30

triangle”) and then be fed into the generative model as a conditioning vector. After that, a pre-trained31

classifier is used to check whether the model has indeed generated the specified combination of32

concepts. The idea of concept space is illustrated in Figure 1 as well as the middle figure in Figure 2.33

Park et al. [6] found some interesting phenomena from the training dynamics in the concept space,34

such as control variables for concept learning and non monotonic trajectories. However, they only35

gave a description of these phenomena and thus the underlying causal mechanisms are still unclear. In36

this paper, we make a first step of establishing a theoretical framework that explains those phenomena.37
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Figure 1: An schematic de-
scription of Concept Space.

Figure 2: The abstraction process. Left: Actual Tasks (images from
[10]) Middle: Concept Space considered in [6]; Right: SIM task
considered in this work.

We would like to argue that the concept space framework established a very important idea: In38

concept space, generation is essentially identity mapping, as the final classifier output should39

match the input concept space specification. To this end, we make a further abstraction of the concept40

learning process: learning identity mapping in Euclidean space. Each concept is represented as a41

Gaussian cluster centered on an axes and the test point is a combination of several clusters means42

(see the right figure in Figure 2). We call this task the Structured Identity Mapping learning (SIM)43

task. As an analogue of concept learning, we claim that the seemingly simple SIM task has those key44

features:45

1. It is an out-of-distribution task, and theoretically non-generalizing solutions exists, so it is46

non-trivial that a model solves this task;47

2. As we will show later, this task captures many phenomena observed on real datasets;48

3. This task masks out distracting terms and is simple enough that we can elaborate the49

behaviour of the model on it.50

In this work, we give a detailed description of how the model behaves throughout training on the51

SIM task and how those behaviors corresponds to the behavior of actual diffusion models. After that,52

we study the learning dynamics of a specific model on this task, and give a rigorous proof of the53

existence of the phenomena. More specifically, we make two major contributions:54

1. In Section 3, we train MLP regression models on the SIM task and empirically reveal some55

key features of the training dynamics, including: 1) how the order of concepts learning56

is controlled by the signal strength and diversity of the dataset; 2) the deceleration of57

concept learning with training progress and 3) a “Transient Memorization” phenomena58

where the model shows a trend of generalization at the beginning of the training soon59

followed by memorization before heading back to generalization again. The last phenomena60

leads to a double descent-like loss curve with respect to optimization steps even in an61

under-parameterized setting.62

2. In Appendix A, we explain the empirical phenomena by a detailed analysis of two simplified63

models. Interestingly, we show that Transient Memorization is a phenomenon only observed64

in multi-layer models, which reveals a key difference between one-layer model and deep65

models. Our novel analysis of dynamics reveals a multi-stage evolution process of the66

Jacobian of a two layer symmetric linear model (f(x;U) = UU⊤x), and we show that67

each stage of the Jacobian evolution precisely corresponds to the stages of the Transient68

Memorization.69

2 Preliminaries and Problem Setting70

Throughout the paper, we use bold lowercase letters (e.g. x) to represent vectors, and bold uppercase71

letters (e.g. A) for matrices. Non-bold versions with subscripts represent corresponding entries of the72

vectors or matrices, e.g. xi represent the i-th entry of x and ai,j represent the (i, j)-th entry of A.73

[a] represents the set of all natural numbers that is smaller or equal to a, i.e. [a] = {1, 2, · · · , a}.74

1k represents a one-hot vector which is 0 at every entry except the k-th entry being 1. The dimen-75

sionality of the vector is determined by the context if not specified. I:k represents a diagonal matrix76

whose first k diagonal entries are 1 and others are 0.77
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(a) (b) (c)

Figure 3: The two dimensional (s = 2) output dynamics under different settings, evaluated for the test
point, (1, 1). We only show the center of the training classes as a circle, but the actual training set can
have varied shapes based on the configuration of σ. (a) one layer linear model with σ:2 = (.05, .05)
and varying µ; (b) one layer linear model with µ:2 = (1, 2) and varying σ; (c) 4 layer linear models
for different model dimensions. high dim: d = 64, low dim: d = 2. Note that (a) and (b) are both in
high dimensional model setting.

2.1 Problem Setting78

Data. The SIM dataset is composed of several Gaussian clusters, each occupying a coordinate79

direction. Figure 2 (right) illustrates the SIM dataset.80

Let d ∈ N be the dimensionality of the input space, s ∈ [d] be the number of clusters, and n ∈ N be81

the number of samples from each cluster. The training set D =
⋃

p∈[s]

{
x
(p)
k

}n

k=1
is generated by82

the following process: for each p ∈ [s], the data sample is sampled i.i.d. from a Gaussian distribution83

x
(p)
k ∼ N

[
µp1p,diag (σ)

2
]
, where µp ≥ 0 is the distance of the p-th cluster center from the origin,84

and σ is a vector with only the first s entries being non-zero, where σi represents the variance on the85

i-th direction. Notice that we allow µp = 0 for a specific p to create a cluster that centers at 0 while86

keeping the terminology as simple as possible.87

Loss function. The training problem is to learn identity mapping on Rd. For a model f : Rm×Rd →88

Rd and a parameter vector θ ∈ Rm, we train the model parameter θ with the mean square error loss.89

L(θ) = 1

2sn

s∑
p=1

n∑
k=1

∥∥∥f (θ;x(s)
k

)
− x

(s)
k

∥∥∥2 . (2.1)

Evaluation. In the main paper, we focus on a single test point x̂ =
∑s

p=1 µp1p. Notice that this90

point is outside of the training distribution. In Appendix B, we report additional results for the case91

of multiple test points.92

3 Observations on the SIM Task93

In this section, we summarize some of the interesting empirical findings of the model behavior94

when we conduct experiments on the SIM. We note that these findings reported in this section are in95

one-to-one correspondence with results with diffusion models.96

In all experiments, we use MLP models. We perform experiments with both linear activations and97

non-linear ReLU activations, as well as model with different number of layers. Due to the limited98

space, we only show the results of some settings here but the phenomena reported are consistent with99

different hyperparameters.100

3.1 Generalization Order is Controlled by Signal Strength and Diversity101

One interesting findings from previous work is that if we alter the strength of one signal from small102

to large, the concur of the learning dynamics would dramatically change [6]. Moreover, it is also103

commonly hypothesised that with more diverse data, the model should also generalize better [11, 12].104
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In the SIM task the distance µk of each cluster can be viewed as the corresponding signal strength,105

and the covariance σk can be viewed as the data diversity. In Figure 3, we train models with s = 2106

allowing us to directly plot the trajectory of the model output at each timestep. In this case, there are107

two components, x and y, to be learned and the order of learning can be seen from the trajectory.108

In Figure 3 (a)1, σ is fixed, and we can see when µ1 < µ2, the dynamics shows an upward bulging,109

showing a preference for the direction of stronger signal. As we gradually increase µ1, this trajectory110

gradually transitions from an upward bulge to downward one, consistent with the stronger signal111

strength.112

In Figure 3 (b), the µ is fixed to have one signal stronger than the other, and the model, as expected,113

prefers the direction with stronger signal when the data diversity is balanced. However, if we tune114

the data diversity of one side from weak to strong while keeping the other side unchanged, we can115

override the preference coming from the mean signal.116

The results in Figure 3 (a) and (b) gives us a very concrete conclusion: The learning direction is a117

competition driven by signal strength and diversity, and the model prefers direction that has stronger118

signal and more diversity.119

3.2 Transient Memorization120

The results in Figure 3 (a) and (b) are both performed with one layer models and under a high121

dimensional setting (d = 64). Despite the overall trend is similar in other settings, it is worth122

exploring the change of trajectory as we increase the number of layers, and / or reduce the dimension.123

Figure 4: The loss function of multi layer
models.

124

In Figure 3 (c), we perform experiments with deeper mod-125

els, and optionally with a lower dimension. Under these126

changes, we find that the model shows an interesting ir-127

regular behavior, where it initially heads towards the right128

direction, but soon turns toward the training set cluster129

with the strongest signal, exhibiting distributional memo-130

rization the training set. However, with enough training,131

the model correctly moves towards the intended target132

and thus generalizes. We call this behavior Transient133

Memorization.134

This trajectory could be suggestive of a non-monotonic135

generalization. We track the value of the loss function during training in Figure 4, demonstrating136

a double descent-like curve. We note that the Transient Memorization phenomena seems to be137

strongest when the dimensionality is low, and is rather modest with high dimensional settings. In138

the high dimensional setting the loss descent slows down at some point but doesn’t actually exhibit139

non-monotonic behavior.. This low dimensional preference can also be explained perfectly by our140

theory, further described in Appendix A.141

3.3 Convergence Rate Slow Down In Terminal Phase142

In Figure 3, the markers on the curve corresponds to equal time intervals. One can observe that the143

model’s generation’s evolution in concept space slows down as training progresses. This phenomena144

is observed in diffusion models as well [6].145

Figure 5: Diffusion Model Results a) Concept signal controls learning order and speed b) Transient
Memorization observed in vector space diffusion models c) Deceleration of concept learning with
time

1In Figure 3 (a) some training set centroids are overlapping and we perturb them a little for visibility.
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A Theoretical Explanation190

In this section, we study the training dynamics of a specific type of linear models which is tractable191

on the SIM task, and we provide explanations of the behaviors on the SIM task. We first consider a192

linear model and show that despite it can explain some of the phenomena, the linear model can not193

actually reproduce every phenomenon, which suggests that some phenomena are intrinsic for deep194

models, which highlights the difference of shallow and deep models.195

Throughout this section, we assume f(θ;x) is a linear operator of x. In this case the Jacobian of f196

w.r.t. x is a matrix that is completely determined by θ, which we denote by Wθ = ∂f(θ;x)
∂x . It’s easy197

to see that we have f(θ;x) = Wθx. Through the trace trick, it’s easy to show that the overall loss198

function is equal to199

L(θ) = 1

2

∥∥∥(Wθ − I)A1/2
∥∥∥2
F
, (A.1)

where A = 1
sn

∑s
p=1

∑n
k=1 x

(p)
k x

(p)⊤
k is the empirical covariance. When n is large, A converges200

to the true covariance of the dataset A → Ex∼Dxx
⊤. To avoid extra distractions, through out this201

section we assume A equals the the true covariance, which is a diagonal matrix A = diag(a) defined202

by ap =

{
σ2
p +

µ2
p

s p ≤ s

0 p > s
, for any p ∈ [s]. For completeness, we write the full derivation of203

eq. (A.1) and A in Appendix C.1.204

Remark. Notice that in the linear setting we might not directly train Wθ, instead we train its205

components. For example we might have θ = (W1,W2) and have Wθ = W1W2. What we actually206

train is W1 and W2 instead of Wθ . As many previous work have emphasized [13, 14, 15], although207

the deep linear model has the same capacity as a one-layer linear model, their dynamics can be vastly208

different and the loss landscape of deep linear models can be non-convex.209

A.1 The Failure of One Layer Model Theory210

As a warm-up, we first study the dynamics of one layer linear models, i.e. f(W ;x) = Wx, in which211

case the Jacobian Wθ is simply W . We will show that it can explain some of the phenomenons but212

fail to capture other interesting behaviours.213

Theorem A.1. Let W (t) ∈ Rd×d be initialized as W (0) = W (0), and updated by214

dW (t)

dt
= −∇L(W ), (A.2)

with L be defined by eq. (A.1) with f(W , z) = Wz, then we have for any z ∈ Rd,215

f(W (t), z)k = 1{k≤s} [1− exp (−akt)] zk︸ ︷︷ ︸
G̃k(t)

+

s∑
i=1

exp (−ait)wk,i(0)zi︸ ︷︷ ︸
Ñk(t)

. (A.3)

See Appendix C.2 for a proof of Theorem A.1.216

The output of the one-layer model f(θ(t); z) can be decomposed into two terms: the growth term217

G̃k(t; z) = 1{k≤s} [1− exp (−akt)] zk and the noise term Ñk(t; z) =
∑s

i=1 exp (−ait)wk,i(0)zi.218

By observing these two terms we can find the following properties: 1) the growth term converges to219

xk when k ≤ s and 0 when k > s, and the noise term always converges to 0; 2) both terms converges220

in an exponential rate; 3) the noise term is upper bounded by
∑s

i=1 wk,i(0)xi.221

If the model is initialized small, specifically wk,i(0) ≪ 1
smaxi∈[s]{xi} , then the Ñk(t) will always be222

small, and thus can be omitted. With this assumption in effect, the model output is dominated by the223

growth term. A closer look at the growth term reveals the origin of some of the phenomena observed224

before.225
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Generalization Order. In eq. (A.3) we can see that the growth term G̃k(t; z) converges in an226

exponential speed, with the exponential term controlled by ak, which is ak =
sσ2

k+µ2
k

s . Therefore, the227

direction with larger ak, i.e. larger µk and / or σk, converges faster. The equation also reveals the228

proportional relationship of µk and σk.229

Terminal Phase Slowing Down. By taking derivative of the growth term G̃k(t; z) with k ≤ s,230

we have231

˙̃
Gk(t; z) = akzk exp (−akt) , (A.4)

which monotonically decays w.r.t. t, and reveals an (exponentially) slowing down of the convergence232

rate when t becomes large.233

The Failure of One Layer Model Theory. We have shown that Theorem A.1 can explain many234

observations. However, in eq. (A.3) the growth term G̃k(t; z) is independent and monotonic for each235

layer, which only produces monotonic and rather regular traces (this is verified by the experiments in236

Section 3.1. However, as the experiments in Section 3.2 show, when the number of layer becomes237

larger, the model actually shows a non-monotonic trace that can have detours. The theory based on238

one layer model fails in capturing that phenomenon. In the subsequent section, we introduce a more239

complex theory by considering a deeper model, and we will show that this theory explains all the240

phenomena observed in Section 3.241

A.2 A Symmetric Two Layer Model Theory242

In this subsection, we introduce a two layer model with symmetric weights. Despite its simplicity,243

we show that it perfectly captures every observations presented in Section 3. More importantly, the244

theory derived from this model draws a clear picture of the evolution of the evolution of the model245

Jacobian and provides us with a clear and understandable explanation of the origin of the seemingly246

irregular behaviours of the model.247

Due to the space limitation, in this subsection we focus on providing an intuitive explanation of the248

model behaviour and delay the formal proof to later sections.249

Formally, in this subsection, we consider a linear model that has two layers with shared weights,250

namely251

f(U ;x) = UU⊤x, (A.5)

where U ∈ Rd×d′
and d′ > d. Notice that this is a model commonly studied in theory [16, 17], and252

our analysis goes beyond the existing ones by providing an analysis for the early stage phenomenon,253

Transient Memorization. For simplicity, in this subsection we denote the Jacobian of f at time point t254

by W (t) = WU(t), then the update of the i, j-th entry of W is given by255

ẇi,j =wi,j(ai + aj)︸ ︷︷ ︸
Gi,j(t)

− 1

2
wi,j

[
wi,i(3ai + aj) + 1{i ̸=j}wj,j(3aj + ai)

]
︸ ︷︷ ︸

Si,j(t)

− 1

2

∑
k ̸=i
k ̸=j

wk,iwk,j(ai + aj + 2ak)

︸ ︷︷ ︸
Ni,j(t)

.

(A.6)

Figure 6: An illustration of the entries of
the Jacobian.

As noted in eq. (A.6), we decompose the256

update of wi,j into three terms. We call257

Gi,j(t) = wi,j(t)(ai + aj) the growth term, Si,j(t) =258
1
2wi,j

[
wi,i(3ai + aj) + 1{i ̸=j}wj,j(3aj + ai)

]
the sup-259

pression term, and Ni,j(t) =
1
2

∑
k ̸=i
k ̸=j

wk,i(t)wk,j(t)(ai+260

aj + 2ak) the noise term. The name of the three terms261

suggests their role in the evolution of the Jacobian: the262

growth term Gi,j always has the same sign as wi,j , and263

has a positive contribution to the update, so it always leads264

to the direction that enlarges the absolute value of wi,j ;265

the suppression term Si,j also has the same sign2 as wi,j ,266

2Notice that since W = UU⊤ is a PSD matrix, the diagonal entries are always non-negative
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but has a negative contribution in the update function of267

wi,j , so it always leads to the direction that shrinks the268

absolute value of wi,j ; the effect of noise term is random269

since it depends on the sign of wi,j and other terms. It is270

proved in Lemma D.8 that under specific assumptions, the271

noise term will never be too large so for the sake of brevity, we ignore it in the following discussion272

and delay the treatment of it to the rigorous proofs in later sections.273

A.2.1 The Evolution of Entries of Jacobian274

In order to better present the evolution of the Jacobian, we divide the entries of the Jacobian into three275

types: the major entries are the first s diagonal entries, and the minor entries are the off-diagonal276

entries who are in the first s rows or first s columns, and other entries are irrelevant entries. Notice277

that the irrelevant entries doesn’t contributes to the output of the test points so we ignore them.278

Moreover, we also divide minor entries to groups. The minor entry in the p-th row or column belongs279

to the p-th group (each entry can belong to at most two groups). See Figure 6 for an illustration of the280

division of the entries.281

Initial Growth. In this section, we assume wi,i-s are initialized around a very small value ω such282

that ω ≪ 1
dmaxi∈[s] ai

(See Appendix D.1 for specific assumptions). One can easily notice that when283

all wi,j-s are around ω, the growth term is o(ω) and the suppression term and the noise term are both284

o(ω2). This indicates when all entries are closed to initialization, the suppression term is negligible285

and the evolution of wi,j is dominated by the growth term. Therefore, in this stage, every value in the286

Jacobian grows towards the direction of enlarging its absolute value, with the speed determined by287

ai + aj . Since we assumed that a is ordered in a descending order, it’s not hard to see that each entry288

grows faster than all entries below or on the right of it. The initial growth stage is characterized by289

Lemmas D.1 to D.3.290

First Suppression. We say an entry that is close to its initialization is in the “initial phase”. In the291

Initial Growth stage, the first major entry will be the one that grows exponentially faster than all other292

entries, thus it will be the first one that leaves the initial phase. Once the first major entry becomes293

significant and non-negligible, it will effect on the suppression term of all minor entries in the first294

group. When the difference between a1 and a2 is large enough, the first major entry is able to change295

the growth direction of the first group of minor entries and push their value to 0. The suppression296

stages are characterized by Lemma D.7297

Second Growth and Cycle. Once the suppression of the first group of minor entries takes into298

effect, the second major entry becomes the one that grows fastest. Thus, the second major entry will299

be the second one that leaves the initial stage. When the second major entry becomes large enough,300

again it will suppress the second group of minor entries and push their value to 0. The process301

continues like this: A major entry growth is followed by the suppression of the corresponding group302

of minor entries, and the suppression leaves space for the growth of the next major entry. The general303

growth stages are characterized by Lemma D.4 and the fate of off-diagonal entries are characterized304

by Lemma D.8.305

Growth Slow Down and Stop. Notice that the suppression term of a major entry is also determined306

by itself. Thus when a major entries becomes significantly large, it also suppresses itself, and causes307

the slow down of growth. Note that this won’t reverse its growth direction since the suppression term308

is always smaller than the growth term, until wi,i becomes one where the growth and suppression309

equal and the evolution stops. The terminal stage of the growth of major entries are characterized by310

Lemma D.5.311

A.2.2 Explaining Model Behavior312

Recall that we have f (U(t); x̂)k =
∑s

p=1 wk,p(t)vpµp. In this subsection we explain how the313

Jacobian evolution predicted in Appendix A.2.1 are reflected in the model output evolution.314

Learning Order and Terminal Slowing Down. From the discussions in Appendix A.2.1, we see315

that at the end of the learning, all the major entries converges to 1 and all minor entries converges to316
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Figure 7: The learning dynamics of a two layer symmetric linear mode. Left: The change of the loss
and the Jacobian entries with time predicted by the theory; Right: the corresponding model output
curve. The figures are plotted under s = 2 and all entries of W are initialized positive.

0, and the major entries grows in the order of corresponding ap, which depends on the µp and σp,317

and slows down when approaching the terminal. This explains our observation that directions with318

larger µp and / or σp is learned first, as well as the terminal phase slowing down of the learning.319

Transient Memorization. We argue that, the Transient Memorization is caused by the initial320

growth. Notice that in the initial stage f (U(t); x̂)k is dominated by wk,1(t)v1µ1, since wk,1 grows321

fastest among all the entries. If wk,1 happens to be initialized positive, it growth towards the positive322

direction. When s is small, this is actually easy to satisfy3. This causes an illusion that the model is323

going towards the right direction, because the target point has all positive coordinates.324

Figure 7 shows the loss curve and Jacobian entry evolution predicted by the theory with all entries of325

W initialized positive. Notice that how the first and second descending of loss accurately corresponds326

to the initial and second growth of the major entries, and the ascending of the loss corresponds to the327

suppression of the minor entries.328

Remark. We note that, for a major entry wi,i in the Jacobian W , Lemma D.4 proves that when329

wi,i = λ, the growth rate of wi,i is λai exp(−2λakt), which although not exactly the same, also330

suggests an exponential growth and slow down rate, and thus coincides with the theory prediction in331

the one-layer model discussed in Appendix A.1. Thus, we prefer to view the theory in this subsection332

as a refinement of the theory derived by one layer model, instead of a refutation. If we take into333

account more layer and non-linearities, we might be able to find more refinements but the predictions334

should follow the same trend as described in this subsection, since all the predicted behaviours of the335

theory presented in this subsection are experimentally verified with more complex models.336

B Model Compositionally Generalize in Topologically Constrained Order337

In this section, we introduce another phenomenon observed on SIM task learning that we don’t put338

in the main paper: the order of compositional generalization happens in a topologically constrained339

order.340

In this section, instead of the single test point x̂, we introduce a hierarchy of test points. Specifically,341

let I = {0, 1}s be the index set of test points. For each v ∈ I, we define a test point342

x̂(v) =

s∑
p=1

vpµp1p, (B.1)

3And in opposite, when s is large it’s unlikely that all entries are initialized positive, thus the Transient
Memorization happens rarer.
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Figure 8: The loss at each test point in different timepoints during training for a 2-layer MLP with
ReLU activation. Each graph represents a timepoint. Each node in the graph represents a test point,
with index printed on it, and edges connecting nodes with Hamming distance 1. The color of the
graph represents the loss of corresponding test point. Notice that we truncate the loss at 1 in order to
unify the scale. From lest to right: epoch = 1, 3, 5.

and call x̂(v) the test point with the index v. Intuitively, the index v describes which training sets are343

combined into the current test point. If ∥v∥ = 1 then x̂(v) is the center of one of the training clusters.344

We assign the component-wise ordering ⪯ to the index set I, i.e. for u,v ∈ I, we say u ⪯ v if and345

only if ∀i ∈ [n], ui ≤ vi. It’s easy to see that ⪯ is a partial-ordering.346

Interestingly, in the SIM experiment, the order of the generalization in different test points strictly347

follow the component-wise order. This finding can be described formally in the following way: the348

loss function is an order homomorphism between ⪯ on the index set, and ≤ on the real number. Let349

ℓ(z) be the loss function of the test point z, then we have the following empirical observation:350

∀u,v ∈ I,u ⪯ v =⇒ ℓ
(
x̃(u)

)
≤ ℓ

(
x̃(v)

)
. (B.2)

In Figure 8 we show the loss of each test point in several timepoints, with µ = (1, 2, 3, 4), σ =
{

1
2

}4
.351

There is a clear trend that the test points that are on the right of the graph (larger in the component-352

wise order) will only be learned after all of its predecessors are all learned. We call this phenomenon353

the topological constraint since the constraint is based on the topology of the graph in Figure 8.354

C Proofs and Calculations355

In the main text we have omitted some critical proofs and calculations due to space limitation. In this356

section we provide the complete derivations. Notice that we delay the calculations of Appendix A.2357

to Appendix D due to its length.358
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C.1 The Loss Function with Linear Model and Infinite Data Limit359

In this subsection we derive the transformed loss function eq. (A.1), as well as the expression of the360

data matrix A. For convenience we denote Wθ by W . We have361

L(θ) = 1

2ns

s∑
p=1

n∑
k=1

∥∥∥(W − I)x
(p)
k

∥∥∥2 (C.1)

=
1

2ns
Tr
[
x
(p)⊤
k (W − I)⊤(W − I)x

(p)
k

]
(C.2)

=
1

2ns
Tr
[
(W − I)⊤(W − I)x

(p)
k x

(p)⊤
k

]
(C.3)

=
1

2
Tr

[
(W − I)⊤(W − I)

1

ns
x
(p)
k x

(p)⊤
k

]
(C.4)

=
1

2
Tr
[
A1/2(W − I)⊤(W − I)A1/2

]
(C.5)

=
1

2

∥∥∥(W − I)A1/2
∥∥∥2
F
. (C.6)

Let G be the data generating process. It can be viewed as two components: first assign one of the s362

clusters, and then draw a Gaussian vector from a Gaussian distribution in that cluster. Specifically, let363

x be an arbitrary sample from the traning set, then the distribuition of x is equal to364

x ≃ µ(η) + diag(σ)ξ, (C.7)

where η is a uniform random variable taking values in [s] and ξ ∼ N (0, I) is a random Gaussian365

vector that is independent from η. Here ≃ represents having the same distribution.366

When n → ∞, the data matrix A converges to the true covariance, which is is367

A → E
(
xx⊤) (C.8)

= E
[(

µ(η) + diag(σ)ξ
)(

µ(η) + diag(σ)ξ
)⊤]

(C.9)

= E
(
µ(η)µ(η)⊤

)
+ Ediag(σ)ξξ⊤ diag(σ) (C.10)

=
1

s

s∑
p=1

µ(p)µ(p)⊤ + diag(σ)2 (C.11)

=
1

s

s∑
p=1

µ2
p1p1

⊤
p + diag(σ)2 (C.12)

=
1

s
diag (µ)

2
+ diag(σ)2. (C.13)

C.2 Proof of Theorem A.1368

In this subsection for the notation-wise convenience we denote W = θ. Since the model is one layer,369

the loss function eq. (A.1) becomes370

L(W ) =
1

2

∥∥∥(W − I)A1/2
∥∥∥2
F
, (C.14)

and the gradient is371

∇L(W ) = (W − I)A = WA−A. (C.15)

We denote the k-th row of W and A by wk and Ak respectively. Then we have372

ẇk = −Awk + ak. (C.16)

The solution of this differential equation is373

wk(t) = exp (−At)
[
wk(0)−A−1ak

]
+A−1ak, (C.17)
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where we use the convention 0×
(
0−1
)
= 0 to avoid the non-invertible case of A.374

Thus for any z ∈ Rd we have375

f(W (t); z)k = ⟨wk(t), z⟩ (C.18)

=
〈(
I − e−At

)
A−1ak, z

〉
+
〈
e−Atwk(0), z

〉
(C.19)

=

n∑
p=1

1− e−apt

ap
1{k=p}apzp +

n∑
i=1

e−aitwk,i(0)zi (C.20)

= 1{k≤s}
(
1− e−akt

)
zk +

n∑
i=1

e−aitwk,i(0)zi, (C.21)

and this proves the claim.376

D Theoretical Analysis of the Two Layer Model377

In this section we provide a detailed analysis of the symmetric two layer model described in Ap-378

pendix A.2.379

In the theory part we frequently consider functions of a variable t which is explained as time. If380

a function g(t) is a function of time t, we denote the derivative of g w.r.t. t by ġ(t) = dg
dt

∣∣∣
t=t

.381

Moreover, we sometimes omit the argument t, i.e. g means g(t) for any time t.382

For a statement ϕ, we define 1{ϕ} =

{
1 ϕ is true
0 ϕ is false

that indicates the Boolean value of ϕ.383

In this section we assume a finite step size, i.e. W : N → Rd×d is initialized by W (0) and updated384

by385

W (t+ 1)−W (t)

η
= −U(t)∇L(U(t))⊤ −∇L(U(t))U(t)⊤ (D.1)

= W (t)A+AW (t)− 1

2

[
AW (t)2 +W (t)2A+ 2W (t)AW (t)

]
. (D.2)

The update of each entry wi,j(t) can be decomposed into three terms, as we described in the main386

text:387

wi,j(t+ 1)− wi,j(t)

η
=wi,j(t)(ai + aj)−

1

2

d∑
k=1

wk,iwk,j(ai + aj + 2ak) (D.3)

=wi,j(t)(ai + aj)︸ ︷︷ ︸
Gi,j(t)

(D.4)

− 1

2
wi,j

[
wi,i(3ai + aj) + 1{i ̸=j}wj,j(3aj + ai)

]
︸ ︷︷ ︸

Si,j(t)

(D.5)

− 1

2

∑
k ̸=i
k ̸=j

wk,i(t)wk,j(t)(ai + aj + 2ak)

︸ ︷︷ ︸
Ni,j(t)

. (D.6)

D.1 Assumptions388

We need make several assumptions to prove the results. Below we make several assumptions that389

all commonly hold in the practice. The first assumption to make is that both the value of ak and the390

initialization of W is bounded.391
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Assumption D.1 (Bounded Initialization and Signal Strength). There exists α > 0, γ > 1, β > 1392

such that393

∀k, α ≤ ak ≤ γα, (D.7)
∀i, j, ω ≤ |wi,j(0)| ≤ βω. (D.8)

The second assumption is that the step size is small enough.394

Assumption D.2 (Small Step Size). There exists a constant K ≥ 20, such that η ≤ 1
9Kγα .395

Next, we define a concept called initial phase. The definition of initial phase is related to a constant396

P > 0.397

Definition D.1. Assume there is a constant P > 0. For an entry (i, j) and time t, if |wi,j(t)| ≤ Pβω,398

we say this entry is in initial phase.399

The next assumption to make the that the boundary of the initial phase should not be too large.400

Assumption D.3 (Small Initial Phase). Pωβ ≤ 0.4.401

The next assumption to make are that the intialization value (ω) should not be too large.402

Assumption D.4 (Small Initialization).

ω ≤ min

{
min{κ− 1, 1− κ−1/2}

PKγdβ2
,

1√
2β

}
(D.9)

and κ > 1.1, and κ ≤ 1 + 1
2KC−1, P ≥ 2.403

Finally, we also assume that the signal strength difference is significant enough.404

Assumption D.5 (Significant Signal Strength Difference). For any i > j, we have405

ai + ai
2ai

≤ logP

10κ2 log 1
Pβω + logPβ

. (D.10)

and there exists a constant C > 1 such that ai − 3aj ≥ C−1α.406

D.2 The Characterization of the Evolution of the Jacobian407

In this subsection, we provide a series of lemmas that characterize each stage the evolution of the408

Jacobian matrix W .409

The whole proof is based on induction, and in order to avoid a too complicated induction, we make410

the following assertion, which obviously holds at initialization.411

Assertion D.1. For all t ∈ N, if i ̸= j, then the entry (i, j) stays in the initial phase for all time.412

We will use Assertion D.1 as an assumption throughout the proves and prove it at the end. This is413

essentially another way of writing inductions.414

We have the following corollary that directly followed by Assertion D.1.415

Corollary D.1. For all t ∈ N and all i, j, |Ni,j(t)| ≤ 2Pγαdβ2ω2.416

Now, we are ready to present and prove the major lemmas. The first lemma is to post a (rather loose)417

upper bound of the value of the entries.418

Lemma D.1 (Upper Bounded Growth). Consider entry (i, j). We have for all t ∈ N, at timepoint t419

the absolute value of the (i, j)-th entry satisfies420

|wi,j(t)| ≤ |wi,j(0)| exp [ηt(ai + aj)κ] . (D.11)

Proof. Since of the Ni,j term we only use its absolute value, the positive case and negative case are421

symmetric. WLOG we only consider the case where wi,j(0) > 0 here.422

The claim is obviously satisfied at initialization. We use it as the inductive hypothesis. Suppose at423

timepoint t ≤ T − 1 the claim is satisfied, we consider the time step t+ 1.424
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Since Assertion D.1 guaranteed that every non-diagonal entry is in the initial phase, and the Si,j term425

has different symbol with wi,j(0), we have426

Si,j(t) +Ni,j(t) ≤ 2Pγαdβ2ω2. (D.12)

We have427

wi,j(t+ 1)− wi,j(t) ≤ ηwi,j(t)(ai + aj) + 4ηγαdβ0ω
2 (D.13)

≤ η(ai + aj)wi,j(0) exp [ηt(ai + aj)κ] + 2Pηγαdβ2ω2 (D.14)

= wi,j(0) exp [ηt(ai + aj)κ]

[
η(ai + aj) +

2Pγαdβ2ω2

wi,j(0) exp [ηt(ai + aj)κ]

]
(D.15)

From Assumption D.4, we have428

η(ai + aj) +
2Pγαdβ2ω2

wi,j(0) exp [ηt(ai + aj)κ]
≤ η(ai + aj) + 2Pγαdβ2ω (D.16)

≤ η(ai + aj) + 2(κ− 1)ηα (D.17)
≤ κη(ai + aj) (D.18)
≤ exp(κη[ai + aj ])− 1, (D.19)

thus we have429

wi,j(t+ 1) ≤wi,j(t) + [exp(κη[ai + aj ])− 1]wi,j(t) (D.20)
≤ wi,j(0) exp [η(t+ 1)(ai + aj)κ] . (D.21)

Finally, notice that since T1 = κ logP
2ηγα ≤ κ log 2

η(ai+aj)
, we have430

exp
[
ηT (ai + aj)κ

−1
]
≤ P. (D.22)

431

Next, we prove that Lemma D.1 is tight in the initial stage of the training, up to a constant κ in the432

exponential term.433

Lemma D.2 (Lower Bounded Initial Growth). Let T1 = logP
2ηγακ . We have for all t ∈ [T1], at timepoint434

t every entry (i, j) is in the initial phase, and the absolute value of the (i, j)-th entry satisfies435

|wi,j(t)| ≥ |wi,j(0)| exp
[
ηt(ai + aj)κ

−1
]

(D.23)

and wi,j(t)wi,j(0) > 0.436

Proof. Similar to the proof of Lemma D.1, we may just assume wi,j(0) > 0.437

Moreover, we also use the claim as an inductive hypothesis and prove it by induction. Since here the438

inductive hypothesis states that every entry is in the initial phase, we have439

|Si,j(t) +Ni,j(t)| ≤ 4γαdβ2ω2. (D.24)

We have440

wi,j(t+ 1)− wi,j(t) ≥ η(ai + aj)wi,j(0) exp
[
ηt(ai + aj)κ

−1
]
− 2Pηγαdβ2ω2 (D.25)

= wi,j(0) exp
[
ηt(ai + aj)κ

−1
] [

η(ai + aj)−
2Pηγαdβ2ω2

wi,j(0) exp [ηt(ai + aj)κ−1]

]
(D.26)

From Assumption D.4, we have441

2Pηγαdβ2ω2

wi,j(0) exp [ηt(ai + aj)κ−1]
≤ 2Pηγαdβ2ω (D.27)

≤
(
1− κ−1/2

)
η(ai + aj). (D.28)
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Moreover, notice that when κ > 1.1, for any x < 0.1, we have κ−1/2x + 1 ≥ eκ
−1x. Since442

Assumption D.2 ensured that η ≤ 1
10(ai+aj)

, we have443

wi,j(t+ 1) ≥ wi,j(t) + wi,j(t)
[
κ−1/2η(ai + aj)

]
(D.29)

≥ wi,j(t) exp
(
η(ai + aj)κ

−1
)

(D.30)

≥ wi,j(0) exp
[
η(t+ 1)(ai + aj)κ

−1
]
. (D.31)

Finally, from lemma D.1, we have when444

wi,j(t) ≤ |wi,j(0)| exp (ηt(ai + aj)κ) (D.32)
≤ βω exp (2ηT1γακ) (D.33)
≤ Pβω, (D.34)

which confirms that every entry (i, j) stays in the initial phase before time T1.445

446

Notice that the time bound in Lemma D.2 is a uniform one which applies to all entries. For the major447

entries, we might want to consider a finer bound of the time that it leaves the initial phase. This can448

be proved by essentially repeating the same proof idea of Lemma D.2.449

Lemma D.3 (Lower Bounded Initial Growth for Diagonal Entries). Consider an diagonal entry (i, i).450

Let T (i)
1 =

log Pβω
wi,i(0)

2ηaiκ
. We have for all t ∈

[
T

(i)
1

]
, at timepoint t the entry (i, i) is in the initial phase,451

and the absolute value of the (i, i)-th entry satisfies452

wi,i(t) ≥ wi,i(0) exp
[
2ηtaiκ

−1
]
. (D.35)

We omit the proof of Lemma D.3 since it is almost identical to the proof of Lemma D.2, only with453

replacing γα by ai and βω by wi,i(0).454

Next, we characterize the behavior of one diagonal entry after it leaves the initial phase.455

Lemma D.4 (Lower Bounded After-Initial Growth for Diagonal Entries). Consider a diagonal entry456

(i, i). If at time t0 we have |wi,i(t0)| ≥ Pβω, and for a λ ∈ (Pβω, 1−K−1), before time T (λ) we457

have wi,i(t+ t0) < λ for all t ∈ [T (λ)], then we have458

wi,i(t+ t0) ≥ wi,i(t0) exp
[
2ηtai(1− λ)κ−1

]
. (D.36)

Moreover, wi,i(0), wi,i(t0), wi,i(t0 + t) ≥ 0.459

Proof. Notice that since W = UU⊤ is a PSD matrix, its diagonal entries are always non-negative,460

this ensures that wi,i(0), wi,i(t0), wi,i(t0 + t) ≥ 0.461

For the time after t0 and before t0 + T (λ), we use an induction to prove the claim, with the claim462

itself as the inductive hypothesis. It clearly holds when t = 1.463

Notice that when wi,j(t
′) < λ, we have464

Gi,j(t
′)− Si,j(t

′) = 2aiwi,i(t
′) [1− wi,i(t

′)] ≥ 2aiwi,i(t
′)(1− λ). (D.37)

Thus we have465

wi,i(t0 + t+ 1)− wi,i(t0 + t) (D.38)

≥ 2ηai(1− λ)wi(t0) exp
[
ηt(ai + aj)(1− λ)κ−1

]
− 2Pηγαdβ2ω2 (D.39)

= wi,i(t0) exp
[
2ηtai(1− λ)κ−1

] [
2ηai(1− λ)− 2Pηγαdβ2ω2

wi,i(t0) exp [2ηtai(1− λ)κ−1]

]
(D.40)

Since λ < 1−K−1, and wi,i(t0) ≥ 2βω ≥ ω, from Assumption D.4, we have466

2Pηγαdβ2ω2

wi,i(t0) exp [2ηtai(1− λ)κ−1]
≤ 2Pηγαdβ2ω (D.41)

≤ 2K−1
(
1− κ−1/2

)
ηα (D.42)

≤ 2
(
1− κ−1/2

)
ηai(1− λ). (D.43)
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Moreover, since Assumption D.2 ensured that η ≤ 1
2Kai(1−λ) ≤ 1

20ai(1−λ) , using the fact that if467

κ > 1.1 then κ−1/2x+ 1 ≥ eκ
−1x for any x < 0.1, we can get468

wi,i(t+ 1) ≥ wi,i(t) + wi,i(t)
[
κ−1/22ηai(1− λ)

]
(D.44)

≥ wi,i(t) exp
(
2ηaiκ

−1(1− λ)
)

(D.45)

≥ wi,i(t0) exp
[
2η(t+ 1)κ−1(1− λ)

]
. (D.46)

469

Next, we provide an uniform upper bound (over time) of the diagonal entries. Remember that we470

mentioned in the gradient flow case, the diagonal term stops evolving when it reaches 1. In the471

discrete case, since the step size is not infinitesimal, Lemma D.5 shows that it can actually exceed 1 a472

little bit but not too much since the step size is small.473

Lemma D.5 (Upper Bounded Diagonal Entry). For any diagonal entry (i, i) and any time t, 0 ≤474

wi,i(t) ≤ 1 + 2K−1.475

Proof. First notice that since W (t) is PSD, its diagonal entry wi,i(t) should always be non-negative,476

thus wi,i(t) ≥ 0 is always satisfied. In the following we prove wi,i(t) ≤ 1 + 2K−1.477

We use induction to prove this claim. The inductive hypothesis is the claim it self. It is obviously478

satisfied at initialization. In the following we assume the claim is satisfied at timepoint t and prove it479

for timepoint t+ 1. Notice that since K ≤ 10, we have 1 +K−1 ≤ 2.480

Notice that by Assertion D.1 and Assumption D.4,481

|Ni,i(t)| ≤ 2Pγαdβ2ω2 ≤ (κ− 1)2

K2γdβ2
α ≤ K−1ai. (D.47)

If wi,i(t) ≥ 1 +K−1, we have482

Gi,i(t)− Si,i(t) = 2aiwi,i(1− wi,i) ≤ −4aiK
−1. (D.48)

Therefore,483

wi,i(t+ 1) = wi,i(t) + η [Gi,i(t)− Si,i(t)−Ni,i(t)] (D.49)

≤ wi,i(t)− 3aiK
−1η (D.50)

≤ wi,i(t) (D.51)

≤ 1 + 2K−1. (D.52)

Moreover, since wi,i(t) ≤ 1 + 2K−1 ≤ 2, we have484

|Gi,i(t)|+ |Si,i(t)|+ |Ni,i(t)| ≤ 4ai + 4ai +K−1ai ≤ 9γα ≤ 1

Kη
. (D.53)

When wi,i(t) ≤ 1 +K−1, we have485

wi,i(t+ 1) ≤ wi,i(t) + η (|Gi,i(t)|+ |Si,i(t)|+ |Ni,i(t)|) ≤ 1 + 2K−1. (D.54)

The above results together shows that wi,i(t+ 1) ≤ 1 + 2K−1.486

487

Corollary D.2 (Upper Bounded Diagonal Update). For any diagonal entry (i, i) and any time t,488

|wi,i(t+ 1)− wi,i(t)| ≤ K−1.489

Corollary D.2 is a direct consequence of Lemma D.5 (and we actually proved Corollary D.2 in the490

proof of Lemma D.5).491

The next lemma lower bounds the final value of diagonal entries. Together with Lemma D.5 we492

show that in the terminal stage of training the diagonal entries oscillate around 1 by the amplitude not493

exceeding 2K−1.494
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Lemma D.6. Consider a diagonal entry (i, i). If at time t0 we have wi,i(t0) ≥ 1− 2K−1, then for495

all t′ ≥ t0 we have wi,i(t
′) ≥ 1− 2K−1.496

Proof. we use an induction. The inductive hypothesis the claim itself. This obviously holds when497

t′ = t0. We assume wi,i(t
′) ≥ 1− 2K−1 at timepoint t′ and prove the claim for t′ + 1.498

If wi,i(t
′) < 1−K−1, then from Lemma D.4 we know499

wi,i(t
′ + 1) ≥ wi,i(t

′) ≥ 1− 2K−1. (D.55)

If wi,i(t
′) > 1−K−1, then from Corollary D.2 we have500

wi,i(t
′ + 1) ≥ wi,i(t

′)−K−1 ≥ 1− 2K−1. (D.56)
501

Now, we are ready to prove Assertion D.1 by considering the suppression. We first prove a lemma502

that upper bounds the absolute value of the minor entries after its corresponding major entry becomes503

significant.504

Lemma D.7 (Suppression). Consider an off-diagonal entry (i, j) where i > j. If there exists a time505

t0 such that wi,i(t0) > 0.8, then for any t′ ≥ t0 we have506

|wi,j(t
′)| ≤ max {|wi,j(t0)| , ω} . (D.57)

Proof. Since K > 10, from Lemma D.6 and Lemma D.4 we know wi,i(t
′) > 0.8 for all t′ ≥ t0.507

In this proof, we use an induction with the inductive hypothesis being the claim itself, i.e. we assume508

the claim is true at timepoint t′ and prove it for t′ + 1. The claim obviously holds for t′ = t0.509

Since in this proof we only use the absolute value of Ni,j , WLOG we may assume that wi,j(t
′) > 0.510

If wi,j(t
′) < ω then we have proved the claim. In the following we may assume wi,j(t

′) ≥ ω.511

We have512

Gi,j(t
′)− Si,j(t

′) ≤ wi,j(t
′)(ai + aj)−

1

2
wi,j(t

′)wi,i(3ai + aj) (D.58)

≤ wi,j(t
′)(ai + aj)− wi,j(t

′) [0.4(3ai + aj)] (D.59)

= −1

5
wi,j(t

′)ai +
3

5
wi,j(t

′)aj (D.60)

(i)
≤ −C−1ωα, (D.61)

where in (i) we use Assumption D.5.513

Thus we have514

Gi,j(t
′)− Si,j(t

′)−Ni,j(t
′) ≤ Gi,j(t

′)− Si,j(t
′) + |Ni,j(t

′)| (D.62)

≤ −C−1ωα+ 2Pγαdβ2ω2 (D.63)
(i)
< 0, (D.64)

where (i) is from Assumption D.4 and Assumption D.5. This confirms that wi,j(t
′ + 1) < wi,j(t

′) ≤515

max {|wi,j(t0), ω}.516

Next, we prove wi,j(t
′ + 1) ≥ −max {|wi,j(t0)|, ω}. Notice that Lemma D.5 stated that |wi,i| ≤ 2.517

Notice that we also have wi,j(t
′) ≤ K−1, thus518

|Gi,j(t
′)|+ |Si,j(t

′)|+ |Ni,j(t
′)| ≤ 10γα|wi,j(t

′)|+ 2Pγαdβ2ω2 (D.65)

≤ 10|wi,j(t
′)|+ 2Pdβ2ω2

9Kη
(D.66)

≤ 10|wi,j(t
′)|+ 2ω

9Kη
(D.67)

≤ |wi,j(t
′)|+ ω

2η
. (D.68)
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We have519

wi,j(t
′ + 1) ≥ wi,j(t

′)− η(|Gi,j(t
′)|+ |Si,j(t

′)|+ |Ni,j(t)
′|) (D.69)

≥ −η(|Gi,j(t
′)|+ |Si,j(t

′)|+ |Ni,j(t
′)|) (D.70)

≥ −1

2
(|wi,j(t

′)|+ ω) (D.71)

≥ −max{|wi,j(t
′)|, ω}. (D.72)

520

With all the lemmas proved above, we are now ready to prove Assertion D.1.521

Lemma D.8 (Assertion D.1). For all t ∈ N, if i ̸= j, then the entry (i, j) stays in the initial phase522

for all time.523

Proof. Notice that since W is symmetric, we only need to prove the claim for i > j. Moreover,524

From Lemma D.7, we only need to prove that there exists a timepoint t∗, such that wi,i(t
∗) ≥ 0.8,525

and |wi,j(t
∗)| ≤ Pβω.526

Let t0 =
log Pβω

wi,i(0)

2ηaiκ
, by Lemma D.3, we have wi,i(t0) ≥ Pβω. By Lemma D.3 and Lemma D.4, we527

have for any t ≥ t0 such that wi,i(t) ≤ λ, where λ = 0.85,528

wi,i(t) ≥ wi,i(t0) exp
[
0.3η(t− t0)aiκ

−1
]

(D.73)

≥ Pβω exp
[
0.3η(t− t0)aiκ

−1
]

(D.74)

Let t′ be the first time that wi,i(t
′) arrives above 0.8. Let t∗ = min

{
κ log 0.8

Pβω

0.3ηai
+ t0, t

′
}

≥ t0. If529

t∗ = t′, we have wi,i(t
∗) ≥ 0.8. If t∗ =

log Pβω
wi,i(0)

2ηaiκ
+ t0, we have530

wi,i(t
∗) ≥ wi,i(0) exp

(
0.3ηt∗aiκ

−1
)

(D.75)

≥ Pβω exp

(
log

0.8

Pβω

)
(D.76)

≥ 0.8. (D.77)

Moreover, from Lemma D.1 and Assumption D.5, we have531

|wi,j |(t∗) ≤ |wi,j(0)| exp [ηt∗κ(ai + aj)] (D.78)

≤ βω exp

[(
κ2 log 0.8

Pβω

0.15
+ log

Pβω

wi,i(0)

)
× ai + aj

2ai

]
(D.79)

≤ βω exp

[(
10κ2 log

1

Pβω
+ logPβ

)
× ai + aj

2ai

]
(D.80)

≤ βω exp [log(P )] (D.81)
≤ Pωβ. (D.82)

The claim is thus proved by combining the above bounds on |wi,j(t
∗)| and wi,i(t

∗) with Lemma D.7.532

533
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E Debunking Challenge Submission534

E.1 What commonly-held position or belief are you challenging?535

Provide a short summary of the body of work challenged by your results. Good summaries should536

outline the state of the literature and be reasonable, e.g. the people working in this area will agree537

with your overview. You can cite sources beside published work (e.g., blogs, talks, etc).538

People generally believe that double descent with respect to training time (or “epochwise double539

descent”) only happens either 1) with large step size or noisy training process; or 2) under over-540

parameterized settings.541

E.2 How are your results in tension with this commonly-held position?542

Detail how your submission challenges the belief described in (1). You may cite or synthesize results543

(e.g. figures, derivations, etc) from the main body of your submission and/or the literature.544

In Section 3.2, we show a epochwise double descent phenomenon that happens when using large545

training set and small step size. Our theoretical analysis in Appendix A.2 shows that even in gradient546

flow (infinitesimal stepsize) and infinite data limit, this epochwise double descent still exists (see547

Figure 7). This suggests that the epochwise double descent found in our setting is not introduced by548

noise in the training or overfitting the data but an inherent property of the task itself.549

We note that this contradictory comes from the out-of-distribution nature of the SIM task we consider:550

when training is noiseless and model is under-parameterized, generally there will not be in-distribution551

epochwise double descent, but once we consider an out-of-distribution task, even if it is as simple as552

learning identity mapping, there can still be epochwise double descent.553

E.3 How do you expect your submission to affect future work?554

Perhaps the new understanding you are proposing calls for new experiments or theory in the area, or555

maybe it casts doubt on a line of research.556

We would like to call for the awareness of this kind of epochwise double descent that is intrinsic to557

certain OOD tasks. Since SIM is a very simple toy task but still show epochwise double descent, we558

hypothesize that this kind of epochwise double descent might presence across many tasks. It is also559

an important direction for future work that to (either empirically or theoretically) fully characterize560

the scenarios that has this kind of epochwise double descent. Specifically, since it is not caused by561

training or (in-distribution) generalization issues, it is likely caused by the structure of the input data.562

Therefore, to determine what kind of input data structure will / will not cause this kind of epochwise563

double descent is a very interesting direction to explore.564
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