

000 001 002 003 004 005 SELF-IMPROVING SKILL LEARNING FOR ROBUST 006 SKILL-BASED META-REINFORCEMENT LEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023

ABSTRACT

024 Meta-reinforcement learning (Meta-RL) facilitates rapid adaptation to unseen
025 tasks but faces challenges in long-horizon environments. Skill-based approaches
026 tackle this by decomposing state-action sequences into reusable skills and employing
027 hierarchical decision-making. However, these methods are highly susceptible
028 to noisy offline demonstrations, leading to unstable skill learning and degraded
029 performance. To address this, we propose Self-Improving Skill Learning (SISL),
030 which performs self-guided skill refinement using decoupled high-level and skill
031 improvement policies, while applying skill prioritization via maximum return re-
032 labeling to focus updates on task-relevant trajectories, resulting in robust and sta-
033 ble adaptation even under noisy and suboptimal data. By mitigating the effect
034 of noise, SISL achieves reliable skill learning and consistently outperforms other
035 skill-based meta-RL methods on diverse long-horizon tasks.
036

1 INTRODUCTION

037 Reinforcement Learning (RL) has achieved significant success in domains such as game environ-
038 ments and robotic control (Mnih et al., 2015; Andrychowicz et al., 2020). However, it struggles
039 to adapt quickly to new tasks. Meta-RL addresses this limitation by enabling rapid adaptation to
040 unseen tasks through meta-learning how policies solve problems (Duan et al., 2016; Finn et al.,
041 2017). Among various approaches, context-based meta-RL stands out for its ability to represent
042 similar tasks with analogous contexts and leverage this information in the policy, facilitating quick
043 adaptation to new tasks (Rakelly et al., 2019; Zintgraf et al., 2019). Notably, PEARL (Rakelly et al.,
044 2019) has been widely studied for its high sample efficiency, achieved through off-policy learning,
045 which allows for the reuse of previous samples. Despite these strengths, existing meta-RL meth-
046 ods face challenges in long-horizon environments, where extracting meaningful context information
047 becomes difficult, hindering effective learning.
048

049 Skill-based approaches address these challenges by breaking down long state-action sequences into
050 reusable skills, facilitating hierarchical decision-making and enhancing efficiency in complex tasks
051 (Pertsch et al., 2021; 2022; Shi et al., 2023). Among these, SPiRL (Pertsch et al., 2021) defines
052 skills as temporal abstractions of actions, employing them as low-level policies within a hierarchi-
053 cal framework to achieve success in long-horizon tasks. SiMPL (Nam et al., 2022) builds on this
054 by extending skill learning to meta-RL, using offline expert data to train skills and a context-based
055 high-level policy for task-specific skill selection. Despite these advancements, such methods are
056 highly susceptible to noisy offline demonstrations, which can destabilize skill learning and reduce
057 reliability. In real-world settings, noise often stems from factors like infrastructure aging or environ-
058 mental perturbations, making it crucial to design methods that remain robust under such conditions
059 (Brys et al., 2015; Chae et al., 2022; Yu et al., 2024a).
060

061 While noisy demonstration handling has been explored in other RL settings (Sasaki & Yamashina,
062 2020; Mandlekar et al., 2022), skill-based meta-RL has largely overlooked this challenge. We iden-
063 tify a critical failure mode: when offline data are suboptimal, the skill library becomes corrupted,
064 and this degradation propagates to the high-level policy, ultimately harming adaptation performance.
065 To address this, we propose Self-Improving Skill Learning (SISL), a robust skill-based meta-RL
066 framework with two key contributions: (1) Decoupled skill self-improvement, achieved through a
067 dedicated improvement policy that perturbs trajectories near the offline data distribution, discovers
068 higher-quality rollouts, and supervises its own updates via a prioritized online buffer. This process
069

Figure 1: Sample trajectories in the Maze2D environment: (a) Noisy demonstrations from the offline dataset, (b) Trajectories explored by the exploration policy near the noisy dataset to uncover useful skills, and (c) Trajectories utilizing refined skills to solve unseen test tasks

progressively denoises the skill library while preserving stability. (2) Skill prioritization via maximum return relabeling, which evaluates offline trajectories with a learned reward model, assigns task-relevant hypothetical returns, and reweights them through a softmax prioritization scheme. This suppresses noisy or irrelevant samples and focuses skill updates on the most beneficial trajectories for downstream adaptation. Together, these components dynamically balance offline and online data contributions, yielding a progressively cleaner skill library and accelerating meta-RL convergence. To our knowledge, SISL is the first framework to explicitly address suboptimal demonstrations in skill-based meta-RL through both exploration-guided refinement and principled relabeling, significantly improving robustness and generalization of skill-learning in real-world noisy scenarios.

Fig. 1 illustrates how the proposed algorithm learns effective skills from noisy demonstrations in the Maze2D environment, where the agent starts at a designated point and must reach an endpoint for each task. Fig. 1(a) shows noisy offline trajectories, which fail to produce effective skills when used directly. In contrast, Fig. 1(b) demonstrates how the prioritized refinement framework uses the improvement policy to navigate near noisy trajectories, identifying paths critical for solving long-horizon tasks and refining useful skills through prioritization. Finally, Fig. 1(c) shows how the high-level policy applies these refined skills to successfully solve unseen tasks. These results highlight the method’s ability to refine and prioritize skills from noisy datasets, ensuring stable learning and enabling the resolution of long-horizon tasks in unseen environments. This paper is organized as follows: Section 3 provides an overview of meta-RL and skill learning, Section 4 details the proposed framework, and Section 5 presents experimental results showcasing the framework’s robustness and effectiveness, along with an ablation study of key components.

2 RELATED WORKS

Skill-based Reinforcement Learning: Skill-based RL has gained traction for tackling complex tasks by leveraging temporally extended actions. Researchers have proposed information-theoretic approaches to discover diverse and predictable skills (Gregor et al., 2016; Eysenbach et al., 2018; Achiam et al., 2018; Sharma et al., 2019), with recent work improving skill quality through additional constraints and objectives (Strouse et al., 2022; Park et al., 2022; 2023; Hu et al., 2024). In offline scenarios, approaches focus on learning transferable behavior priors and hierarchical skills from demonstration data (Pertsch et al., 2021; 2022; Shi et al., 2023; Xu et al., 2022; Kipf et al., 2019; Rana et al., 2023). Building upon these foundations, various skill-based meta-RL approaches have been developed, from hierarchical and embedding-based methods (Nam et al., 2022; Chien & Lai, 2023; Cho & Sun, 2024) to task decomposition strategies (Yoo et al., 2022; He et al., 2024) and unsupervised frameworks (Gupta et al., 2018; Jabri et al., 2019; Shin et al., 2024). For clarity, we use skill in the canonical skill-based RL sense: a latent over fixed-length action sequences. Therefore, studies (Yu et al., 2024b; Wu et al.) that lack explicit skill learning are not categorized here.

Relabeling Techniques for Meta-RL: Recent developments in meta-RL have introduced various relabeling techniques to enhance sample efficiency and task generalization (Pong et al., 2022; Jiang

108 et al., 2023). Goal relabeling approaches have extended hindsight experience replay to meta-learning
 109 contexts (Packer et al., 2021; Wan et al., 2021), enabling agents to learn from failed attempts. For re-
 110 ward relabeling, model-based approaches have been proposed to relabel experiences across different
 111 tasks (Mendonca et al., 2020), improving adaptation to out-of-distribution scenarios. Beyond these
 112 categories, some methods have introduced innovative relabeling strategies using contrastive learning
 113 (Yuan & Lu, 2022; Zhou et al., 2024) and metric-based approaches (Li et al., 2020) to create robust
 114 task representations in offline settings.

115 **Hierarchical Frameworks:** Hierarchical approaches in RL have been pivotal for solving long-
 116 horizon tasks, where various methods have been proposed including goal-conditioned learning
 117 (Levy et al., 2019; Li et al., 2019; Gehring et al., 2021), and option-based frameworks (Bacon
 118 et al., 2017; Riemer et al., 2018; Barreto et al., 2019; Araki et al., 2021). The integration of hi-
 119 erarchical frameworks with meta-RL has shown significant potential for rapid task adaptation and
 120 complexity handling (Frans et al., 2018; Fu et al., 2020a; 2023). Recent work has demonstrated
 121 that hierarchical architectures in meta-RL can provide theoretical guarantees for learning optimal
 122 policies (Chua et al., 2023) and achieve efficient learning through transformer-based architectures
 123 (Shala et al., 2024). Recent advances in goal-conditioned RL have focused on improving sample ef-
 124 ficiency (Robert et al., 2024), state representation (Yin et al., 2024), and offline-to-online RL (Park
 125 et al., 2024; Schmidt et al., 2025). Offline-to-online RL assumes reward-annotated offline datasets
 126 to pretrain the policy based on RL before online fine-tuning. In contrast, our setting provides only
 127 reward-free offline data for skill learning, making direct application of offline-to-online RL infeasi-
 128 ble and clearly distinguishing our approach.

129 3 BACKGROUND

131 **Meta-Reinforcement Learning Setup:** In meta-RL, each task \mathcal{T} is sampled from a distribution
 132 $p(\mathcal{T})$ and defined as an MDP environment $\mathcal{M}^{\mathcal{T}} = (\mathcal{S}, \mathcal{A}, R^{\mathcal{T}}, P^{\mathcal{T}}, \gamma)$, where $\mathcal{S} \times \mathcal{A}$ represents the
 133 state-action space, $R^{\mathcal{T}}$ is the reward function, $P^{\mathcal{T}}$ denotes the state transition probability, and γ is
 134 the discount factor. At each step t , the agent selects an action a_t via the policy π , receives a reward
 135 $r_t := R^{\mathcal{T}}(s_t, a_t)$, and transitions to $s_{t+1} \sim P^{\mathcal{T}}(\cdot | s_t, a_t)$. The goal of meta-RL is to train π to
 136 maximize the return $G = \sum_t \gamma^t r_t$ on the training task set $\mathcal{M}_{\text{train}}$ while enabling rapid adaptation
 137 to unseen test tasks in $\mathcal{M}_{\text{test}}$, where $\mathcal{M}_{\text{train}} \cap \mathcal{M}_{\text{test}} = \emptyset$.

138 **Offline Dataset and Skill Learning:** To address long-horizon tasks, skill learning from an
 139 offline dataset $\mathcal{B}_{\text{off}} := \{\tilde{\tau}_{0:H}\}$ is considered, which comprises sample trajectories $\tilde{\tau}_{t:t+k} :=$
 140 $(s_t, a_t, \dots, s_{t+k})$ without reward information, where H is the episode length. The dataset \mathcal{B}_{off}
 141 is typically collected through human interactions or pretrained policies. Among various skill learn-
 142 ing methods, SPiRL (Pertsch et al., 2021) focuses on learning a reusable low-level policy π_l , using
 143 $q(\cdot | \tilde{\tau}_{t:t+H_s})$ as a skill encoder to extract the skill latent z by minimizing the following loss function:

$$\mathbb{E}_{\substack{\tilde{\tau}_{t:t+H_s} \sim \mathcal{B}_{\text{off},} \\ z \sim q(\cdot | \tilde{\tau}_{t:t+H_s})}} [\mathcal{L}(\pi_l, q, p, z)], \quad (1)$$

144 where $\mathcal{L}(\pi_l, q, p, z) := -\sum_{k=t}^{t+H_s-1} \log \pi_l(a_k | s_k, z) + \lambda_l^{\text{kld}} \mathcal{D}_{\text{KL}}(q || \mathcal{N}(\mathbf{0}, \mathbf{I})) + \mathcal{D}_{\text{KL}}(\lfloor q \rfloor || p)$, H_s is
 145 the skill length, λ_l^{kld} is the coefficient for KL divergence (KLD) \mathcal{D}_{KL} , $\lfloor \cdot \rfloor$ is the stop gradient operator,
 146 and $\mathcal{N}(\mu, \Sigma)$ represents a Normal distribution with mean μ and covariance matrix Σ . Here, $p(z | s_t)$
 147 is the skill prior to obtain the skill distribution z for a given state s_t directly. Using the learned skill
 148 policy π_l , the high-level policy π_h is trained within a hierarchical framework using RL methods. In
 149 our paper, the skill refinement procedure builds on Eq. 1 and is applied not only during the initial
 150 skill learning phase but also throughout subsequent refinement. A more detailed description of this
 151 process is provided in Appendix B.1.

152 **Skill-based Meta-Reinforcement Learning:** SiMPL (Nam et al., 2022) integrates skill learning
 153 into meta-RL by utilizing an offline dataset of expert demonstrations across various tasks. The skill
 154 policy π_l is trained via SPiRL, while a task encoder q_e extracts the task latent $e^{\mathcal{T}} \sim q_e$ using the
 155 PEARL (Rakelly et al., 2019) framework, a widely-used meta-RL method. During meta-training,
 156 the high-level policy $\pi_h(z | s, e^{\mathcal{T}})$ selects a skill latent z and executes the skill policy $\pi_l(a | s, z)$ for
 157 H_s time steps, optimizing π_h to maximize the return for each task \mathcal{T} as:

$$\min_{\pi_h} \mathbb{E}_{\substack{\tau_h^{\mathcal{T}} \sim \mathcal{B}_h^{\mathcal{T},} \\ e^{\mathcal{T}} \sim q_e(\cdot | c^{\mathcal{T}})}} [\mathcal{L}_h^{\text{RL}}(\pi_h) + \lambda_h^{\text{kld}} \mathcal{D}_{\text{KL}}(\pi_h || p)], \quad (2)$$

162 where λ_h^{kld} is the KL divergence coefficient, $c^{\mathcal{T}}$ represents the contexts of high-level trajectories
 163 $\tau_h^{\mathcal{T}} := (s_0, z_0, \sum_{t=0}^{H_s-1} r_t, s_{H_s}, z_{H_s}, \sum_{t=H_s}^{2H_s-1} r_t, \dots)$ for task \mathcal{T} , $\mathcal{L}_h^{\text{RL}}$ denotes the RL loss for π_h ,
 164 and $\mathcal{B}_h^{\mathcal{T}} = \{\tau_h^{\mathcal{T}}\}$ is the high-level buffer that stores $\tau_h^{\mathcal{T}}$ for each $\mathcal{T} \in \mathcal{M}_{\text{train}}$. Here, the reward
 165 sums $\sum_{t=kH_s}^{(k+1)H_s-1} r_t$ are obtained via environment interactions of $a_t \sim \pi_l(\cdot|s_t, z_{kH_s})$ for $t = kH_s, \dots, (k+1)H_s - 1$ with $k = 0, \dots$. During meta-test, the high-level policy is adapted using
 166 a limited number of samples, showing good performance on long-horizon tasks.
 167
 168

4 METHODOLOGY

4.1 MOTIVATION: TOWARD ROBUST SKILL LEARNING UNDER NOISY DEMONSTRATIONS

183 Figure 2: Comparison of prior skill learning method in microwave-opening task: (a) Learned skills
 184 with expert and noisy demonstrations. (b) Meta-RL performance with learned skills. **Low-level**
 185 **skills are learned using the SPIRL framework (Pertsch et al., 2021), while the meta-learning com-**
 186 **ponent follows the structure and evaluation protocol of SiMPL (Nam et al., 2022).**

187 Most existing skill-based meta-RL approaches discussed in Section 3 assume clean offline demon-
 188 strations, but real-world datasets are often corrupted by noise from aging hardware, disturbances,
 189 or sensor drift. Unlike online training that can adapt through continuous re-training, static offline
 190 datasets are particularly susceptible to such noise. This issue becomes critical in long-horizon tasks,
 191 where errors accumulate, and in precise manipulation tasks that require reliable execution. Fig. 2(a)
 192 illustrates this problem: in the Kitchen microwave-opening task, skills learned from expert demon-
 193 strations complete the task successfully, whereas skills learned from noisy data fail even to grasp
 194 the handle. This results in a significant downstream performance drop, as shown in Fig. 2(b), where
 195 noisy skills lead to poor task success rates and unstable training curves, with each iteration denoting
 196 a training loop consisting of policy rollout and update. The root cause is that existing methods treat
 197 all trajectories equally, allowing low-quality samples to dominate skill learning.

198 To address this, we propose the Self-Improving Skill Learning (SISL) framework, which enhances
 199 meta-RL by introducing a decoupled skill improvement policy. The high-level policy maximizes
 200 returns using the current skill library, while the improvement policy independently perturbs trajec-
 201 tories near the offline data distribution to discover higher-quality variants. The resulting trajectories
 202 are selectively stored and prioritized, then used to refine the skill encoder and low-level policy.
 203 Through this iterative refinement, SISL progressively denoises the skill library and improves gener-
 204 alization. We further incorporate prioritized buffering and maximum return relabeling as auxiliary
 205 mechanisms that enhance sample efficiency and accelerate convergence.

4.2 SELF-IMPROVING SKILL REFINEMENT WITH DECOUPLED POLICIES

208 We now describe the proposed Self-Improving Skill Learning (SISL) framework, which formal-
 209 izes the iterative refinement process motivated in Section 4.1. We adopt the standard skill-based
 210 meta-RL setup where the skill encoder $q(z|\tilde{r}_{t:t+H_s})$ extracts a latent skill z from trajectory seg-
 211 ments, the high-level policy $\pi_h(z|s, e^{\mathcal{T}})$ selects z every H_s steps, and the low-level skill policy
 212 $\pi_l(a|s, z)$ executes the chosen skill for H_s steps. Building on this setup, SISL decouples training
 213 into two complementary components: *a high-level policy* π_h that exploits the current skill library
 214 to maximize return, and *a skill-improvement policy* $\pi_{\text{imp}}(a_t|s_t, i)$, defined for each training task
 215 \mathcal{T}_i ($i = 1, \dots, N_{\mathcal{T}, \text{train}}$), that deliberately perturbs trajectories near the offline data distribution to
 discover improved behaviors. This decoupling enables simultaneous exploitation and targeted skill

improvement. Perturbations are guided by intrinsic motivation signals (Burda et al., 2018) to encourage coverage of diverse trajectories, although any novelty-driven exploration mechanism could be used. Importantly, unlike generic novelty-driven exploration, π_{imp} restricts perturbations to remain close to the offline data manifold, producing realistic trajectories that can be effectively used to refine π_l . However, when the offline dataset contains noise, training π_{imp} near this distribution in the early stages may be hindered by low-quality samples, reducing the effectiveness of skill improvement.

To overcome this issue, SISL employs a self-supervised guidance mechanism using two additional buffers: The improvement buffer $\mathcal{B}_{\text{imp}}^i = \{\tau_{\text{imp}}^i\}$ stores all trajectories generated by π_{imp} , where each trajectory is $\tau_{\text{imp}}^i = (s_0^i, a_0^i, r_0^i, \dots, s_H^i)$ with $a_t^i \sim \pi_{\text{imp}}(\cdot | s_t, i)$, and is directly used to update π_{imp} itself, and the prioritized online buffer $\mathcal{B}_{\text{on}}^i = \{\tau_{\text{high}}^i\}$ selectively retains the highest-return trajectories, where each τ_{high}^i is chosen based on its return $G(\tau^i) = \sum_{t=0}^{H-1} \gamma^t r_t^i$. This buffer is initialized with the offline dataset \mathcal{B}_{off} and gradually becomes dominated by improved trajectories generated by both π_{imp} and π_h . This buffer serves two purposes: (1) it provides a cleaner, progressively improving dataset that supervises π_{imp} in a self-supervised manner, guiding it toward regions that have empirically led to success, and (2) it supplies high-quality samples for refining the skill encoder q , skill prior p , and low-level policy π_l .

The skill-improvement policy is then trained so that its trajectory distribution increasingly matches the successful samples in $\mathcal{B}_{\text{on}}^i$ while still exploring variations through controlled perturbations:

$$\sum_i \mathbb{E}_{\tau^i \sim \mathcal{B}_{\text{imp}}^i \cup \mathcal{B}_{\text{on}}^i} [\mathcal{L}_{\text{imp}}^{\text{RL}}(\pi_{\text{imp}})] + \lambda_{\text{imp}}^{\text{kld}} \mathbb{E}_{\tau^i \sim \mathcal{B}_{\text{on}}^i} \mathcal{D}_{\text{KL}}(\hat{\pi}_d^i \| \pi_{\text{imp}}), \quad (3)$$

where $\lambda_{\text{imp}}^{\text{kld}}$ is the KLD coefficient and $\hat{\pi}_d^i$ denotes the empirical action distribution derived from $\mathcal{B}_{\text{on}}^i$. $\mathcal{L}_{\text{imp}}^{\text{RL}}$ consists of the standard RL loss combined with intrinsic reward terms for perturbation, with details provided in Appendix B. This loss encourages π_{imp} to iteratively focus on more promising state-action regions discovered so far, effectively turning $\mathcal{B}_{\text{on}}^i$ into a self-improving curriculum that steers exploration away from noisy or uninformative samples.

Building on the improved trajectory distribution obtained from this update, SISL performs skill refinement in dedicated phases every K_{iter} iterations rather than after every update step. At the end of each phase, the skill encoder q , skill prior p , and low-level policy π_l are re-trained on both \mathcal{B}_{off} and $\mathcal{B}_{\text{on}}^i$ using the SPiRL objective in Eq. 1, and the high-level policy π_h is reinitialized to fully benefit from the updated skill library. This periodic refinement mitigates bias from outdated skill embeddings and accelerates adaptation, as shown in our ablation study in Appendix G.4. These phases yield progressively denoised skills and a stable training signal, enabling π_h to solve tasks more efficiently as training progresses. The overall SISL structure is illustrated in Fig. 3. However, the large number of noisy trajectories in \mathcal{B}_{off} can still reduce skill learning efficiency. The next section introduces a maximum return relabeling mechanism that prioritizes the most relevant offline trajectories so that only high-value samples significantly influence skill refinement.

4.3 SKILL PRIORITIZATION VIA MAXIMUM RETURN RELABELING

The proposed SISL refines the low-level skills by leveraging both the offline dataset \mathcal{B}_{off} and the prioritized online buffers $\mathcal{B}_{\text{on}}^i$ for each training task \mathcal{T}_i . While $\mathcal{B}_{\text{on}}^i$ provides high-quality trajectories collected from the skill-improvement policy π_{imp} and successful rollouts from π_h , relying solely on it risks overfitting to a narrow distribution and limiting generalization. Conversely, \mathcal{B}_{off} provides diverse trajectories that are beneficial for generalization but also contains many noisy or suboptimal rollouts, which can degrade skill quality if sampled uniformly. To address this trade-off, we introduce skill prioritization via a *maximum return relabeling* mechanism that assigns hypothetical returns to offline trajectories and reweights samples in both \mathcal{B}_{off} and $\mathcal{B}_{\text{on}}^i$ according to their estimated task relevance. Specifically, maximum return relabeling assigns each trajectory $\tilde{\tau} \in \mathcal{B}_{\text{off}}$ a hypothetical return that reflects its potential contribution to task success. To compute this return, SISL trains a reward model $\hat{R}(s_t, a_t, i)$ for each task \mathcal{T}_i , optimized with the regression loss

$$\mathbb{E}_{(s_t^i, a_t^i, r_t^i) \sim \mathcal{B}_{\text{imp}}^i \cup \mathcal{B}_{\text{on}}^i} [(\hat{R}(s_t^i, a_t^i, i) - r_t^i)^2], \quad (4)$$

where the targets r_t^i come from improved trajectories generated by π_{imp} and stored in $\mathcal{B}_{\text{on}}^i$. Since this regression is performed online using actual environment rewards, it remains stable throughout

Figure 3: Proposed SISL framework. On the left, the decoupled policy learning stage uses π_h and π_{exp} to solve tasks and discover improved behaviors. On the right, the skill learning phase periodically updates the skill components (π_l, p, q) to refine the skill library.

Figure 4: Maximum return relabeling. After applying the proposed maximum return relabeling to the task-specific online buffers $\mathcal{B}_{\text{on}}^i$ and the offline buffer \mathcal{B}_{off} using the learned reward model, SISL performs prioritized skill refinement by mixing the two buffers according to the coefficient β .

training. Using the trained reward model, SISL computes for each $\tilde{\pi}$ the maximum return

$$\hat{G}(\tilde{\tau}) := \max_i \left\{ \sum_t \gamma^t \hat{R}(s_t, a_t, i) \right\}, \quad (5)$$

which represents the highest predicted cumulative reward across all training tasks. The offline trajectories are then sampled according to a softmax distribution $P_{\mathcal{B}_{\text{off}}}(\tilde{\tau}) = \text{Softmax}(\hat{G}(\tilde{\tau})/T)$, where $T > 0$ is a temperature parameter controlling prioritization sharpness. This procedure biases sampling toward promising trajectories while suppressing noisy or irrelevant ones, resulting in a cleaner training signal for skill learning. The resulting skill learning objective becomes

$$\mathcal{L}_{\text{skill}}(\pi_t, q, p) := (1 - \beta) \mathbb{E}_{\substack{\bar{\tau} \sim P_{\text{B}} \\ z \sim q(\cdot | \bar{\tau})}} [\mathcal{L}(\pi_t, q, p, z)] + \frac{\beta}{N_{\mathcal{T}, \text{train}}} \sum_i \mathbb{E}_{\substack{z^i \sim B_{\text{on}}^i \\ z \sim q(\cdot | z^i)}} [\mathcal{L}(\pi_t, q, p, z)], \quad (6)$$

where $\mathcal{L}(\pi_t, q, p, z)$ is the SPiRL skill loss defined in Eq. 1. Since \mathcal{B}_{on} already contains high-return trajectories, samples are drawn uniformly from this buffer. In **addition**, the mixing coefficient β is computed dynamically from the offline and online datasets based on their average returns, adaptively balancing their contributions during training as

$$\beta = \frac{\exp(\bar{G}_{\text{on}}/T)}{\exp(\bar{G}_{\text{on}}/T) + \exp(\bar{G}_{\text{off}}/T)}, \quad (7)$$

where \bar{G}_{off} is the mean \hat{G} across \mathcal{B}_{off} and \bar{G}_{on} is the mean return in $\mathcal{B}_{\text{on}}^i$. Fig. 4 illustrates the prioritization process, showing how β dynamically balances contributions from offline and online datasets. This mechanism ensures the selection of task-relevant trajectories from both datasets, facilitating efficient training of the low-level policy. As a result, meta-training yields a refined low-level policy π_l and a high-level policy π_h optimized over progressively cleaner data. During meta-test, π_l is frozen and π_h is adapted to unseen tasks using a small number of interaction trajectories, following the other skill-based meta-RL methods. Additional implementation details for the meta-train and meta-test phases, along with the algorithm table, are provided in Appendix B.

5 EXPERIMENT

In this section, we evaluate the robustness of the SISL framework to noisy demonstrations in long-horizon environments and analyze how self-improving skill learning enhance performance.

5.1 EXPERIMENTAL SETUP

We compare the proposed SISL with 3 non-meta RL baselines: **SAC**, which trains test tasks directly without using the offline dataset; **SAC+RND**, which incorporates RND-based intrinsic noise for enhanced exploration; and **SPiRL**, which learns skills from the offline dataset using Eq. (1)

and trains high-level policies for individual tasks. Also, we include 4 meta-RL baselines: **PEARL**, a widely used context-based meta-RL algorithm without skill learning; **PEARL+RND**, which integrates RND-based exploration into PEARL; **SiMPL**, which applies skill-based meta-RL using Eq. (2); and our **SISL**. SISL’s hyperparameters primarily follow Nam et al. (2022), with additional parameters (e.g., temperature T) tuned via hyperparameter search, while other baselines use author-provided code. Although SISL introduces an additional improvement policy π_{imp} , we ensured a fair comparison by keeping the total amount of training and interaction the same. Specifically, in each iteration only half of the sampled meta-train tasks use π_h and the other half use π_{imp} , so the total number of samples and policy updates does not exceed that of SiMPL. Results are averaged over 5 random seeds, with standard deviations represented as shaded areas in graphs and \pm values in tables.

Figure 5: Considered long-horizon environments

5.2 ENVIRONMENTAL SETUP

We evaluate SISL across four long-horizon, multi-task environments: Kitchen and Maze2D from Nam et al. (2022), and Office and AntMaze, newly introduced in this work, as illustrated in Fig. 5. Offline datasets \mathcal{B}_{off} are generated by perturbing expert policies with varying levels of Gaussian action noise, tailored to each environment. In the Kitchen environment, based on the Franka Kitchen from the D4RL benchmark (Fu et al., 2020b) and proposed by Gupta et al. (2020), a robotic arm completes a sequence of subtasks, with noise levels ranging from expert to $\sigma = 0.1, 0.2$, and 0.3 . The Office environment, adapted from Pertsch et al. (2022), involves picking and placing randomly selected objects into containers, with Gaussian noise applied at the same levels as Kitchen. Maze2D, based on D4RL (Fu et al., 2020b), requires a point-mass agent to navigate a large 20×20 maze, while AntMaze features a more complex ant agent maneuvering through a 10×10 maze. In both Maze2D and AntMaze, Gaussian noise is introduced at higher levels of $\sigma = 0.5, 1.0$, and 1.5 . Each environment is structured with distinct meta-train and meta-test tasks, ensuring that test tasks involve different goals from those seen during training. Further experimental details, including descriptions of other baselines, environment configurations (number of tasks, state representations, and reward setups), initial data collection processes, and hyperparameter settings, are provided in Appendix C.

5.3 PERFORMANCE COMPARISON

We compare the proposed SISL with various baseline algorithms. Non-meta RL algorithms are trained directly on each test task for 0.5K iterations due to the absence of a meta-train phase. Meta-RL algorithms undergo meta-training for 10K iterations in Kitchen and Office, and 4K in Maze2D and AntMaze, followed by fine-tuning on test tasks for an additional 0.5K iterations. For SISL, the skill refinement interval K_{iter} is set to 2K for Kitchen, Office, and AntMaze; 1K for Maze2D. To ensure a fair comparison, SISL counts each update process from its skill-improvement policy and high-level policy as one iteration. Table 1 presents the final average return across test tasks after the specified test iterations. In these environments, Kitchen and Office assign a reward of 1 for each successfully completed subtask, while Maze2D and AntMaze give a reward of 1 upon reaching the goal, meaning the return directly corresponds to the success rate. The corresponding learning curves are provided in Appendix D.1 for a more detailed comparison. From the result, SAC and PEARL baselines, which do not utilize skills or offline datasets, perform poorly on long-horizon tasks, yielding a single result across all noise levels. In contrast, SPiRL, SiMPL, and SISL, which leverage skills, achieve better performance.

SPiRL and SiMPL, however, show sharp performance declines as dataset noise increases. While both perform well with expert data, SiMPL struggles under noisy conditions due to instability in its task encoder q_e , sometimes performing worse than SPiRL. Here, the baseline results for Maze2D (Expert) are somewhat lower than those reported in the SiMPL paper. This discrepancy likely arises

378 Table 1: Performance comparison: Final test average return for all considered environments
379

Environment(Noise)	SAC	SAC+RND	PEARL	PEARL+RND	SPiRL	SiMPL	SISL
Kitchen(Expert)					3.11 \pm 0.33	3.40 \pm 0.18	3.97 \pm 0.09
Kitchen($\sigma = 0.1$)	0.01 \pm 0.01	0.02 \pm 0.05	0.23 \pm 0.14	0.42 \pm 0.16	3.37 \pm 0.31	3.76 \pm 0.14	3.91 \pm 0.12
Kitchen($\sigma = 0.2$)					2.06 \pm 0.43	2.18 \pm 0.33	3.73 \pm 0.16
Kitchen($\sigma = 0.3$)					0.83 \pm 0.17	0.81 \pm 0.25	3.48 \pm 0.07
Office(Expert)					0.65 \pm 0.24	2.50 \pm 0.26	2.86 \pm 0.35
Office($\sigma = 0.1$)	0.00 \pm 0.00	0.00 \pm 0.00	0.01 \pm 0.01	0.01 \pm 0.01	0.91 \pm 0.31	3.33 \pm 0.39	3.40 \pm 0.38
Office($\sigma = 0.2$)					0.49 \pm 0.22	1.20 \pm 0.24	2.01 \pm 0.24
Office($\sigma = 0.3$)					0.42 \pm 0.14	0.11 \pm 0.04	1.68 \pm 0.15
Maze2D(Expert)					0.77 \pm 0.06	0.80 \pm 0.04	0.87 \pm 0.05
Maze2D($\sigma = 0.5$)	0.20 \pm 0.06	0.35 \pm 0.07	0.10 \pm 0.01	0.11 \pm 0.08	0.89 \pm 0.03	0.87 \pm 0.05	0.89 \pm 0.03
Maze2D($\sigma = 1.0$)					0.80 \pm 0.01	0.87 \pm 0.05	0.93 \pm 0.05
Maze2D($\sigma = 1.5$)					0.81 \pm 0.05	0.68 \pm 0.06	0.99 \pm 0.02
AntMaze(Expert)					0.64 \pm 0.09	0.67 \pm 0.07	0.81 \pm 0.08
AntMaze($\sigma = 0.5$)	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.76 \pm 0.10	0.77 \pm 0.05	0.82 \pm 0.05
AntMaze($\sigma = 1.0$)					0.50 \pm 0.06	0.33 \pm 0.09	0.60 \pm 0.02
AntMaze($\sigma = 1.5$)					0.30 \pm 0.01	0.27 \pm 0.05	0.41 \pm 0.01

393 because, in constructing the offline dataset, we considered fewer tasks compared to SiMPL, resulting
394 in trajectories that do not fully cover the map. Interestingly, minor noise occasionally boosts
395 performance by introducing diverse trajectories that improve skill learning, a detailed analysis of
396 changes in state coverage is provided in Appendix D.1. In contrast, SISL demonstrates superior
397 robustness across all evaluated environments, consistently outperforming baselines at varying noise
398 levels. For example, in the Kitchen environment, SISL maintains strong performance under significant
399 noise by effectively refining useful skills, while in Maze2D, higher noise levels lead to the
400 improvement of diverse skills, achieving perfect task completion when $\sigma = 1.5$. These results highlight
401 SISL’s ability to discover improved behavior and refine robust skills, significantly enhancing
402 meta-RL performance. Moreover, SISL excels with both noisy and expert data, achieving superior
403 test performance by learning more effective skills.

404 Fig. 6 shows the learning progress during the meta-train/test phases for Kitchen ($\sigma = 0.3$) and
405 Maze2D ($\sigma = 1.5$), highlighting the performance gap between SISL and other methods. The peri-
406 odic drops in SISL’s high-level performance correspond to the reinitialization of π_h every K_{iter} . Non-
407 meta RL algorithms, including those with RND-based exploration, struggle with long-horizon tasks,
408 while SPiRL and SiMPL show limited improvement due to their reliance on noisy offline datasets.
409 In contrast, SISL’s self-improving skill refinement supports continuous skill improvement, resulting
410 in superior meta-test performance. To further assess SISL’s robustness, we perform experiments
411 with limited offline data, random noise injection, and diverse sub-optimal datasets in Appendix D,
412 reflecting real-world challenges such as costly data collection and unstructured anomalies. Even under
413 these conditions, SISL consistently outperforms the baselines, demonstrating strong robustness.
414 Furthermore, we provide a computational complexity comparison of SISL, its ablation variants, and
415 baseline methods in Appendix E. The results show that SISL requires only about 16% more compu-
416 tation time per iteration during meta-training, while the meta-test cost remains unchanged compared
417 to SiMPL. Although SISL introduces the improvement policy π_{imp} , the overall training cost remains
418 similar because the total number of samples and updates matches SiMPL by splitting training tasks
419 evenly between π_{imp} and π_h for fair comparison, as described in Section 5.1. The remaining 16%
420 overhead comes primarily from the skill refinement and reward model training. Notably, even with
421 extended training, SiMPL fails to achieve further performance gains, highlighting SISL’s advantage.

422 5.4 IN-DEPTH ANALYSIS OF THE PROPOSED SKILL REFINEMENT PROCESS

423 To analyze skill refinement and prioritization in more detail, Fig. 7 illustrates the evolution of the
424 buffer mixing coefficient β and skill refinement in Kitchen ($\sigma = 0.3$) and Maze2D ($\sigma = 1.5$).
425 For Kitchen, the microwave-opening subtask is evaluated, while Maze2D focuses on navigation
426 improvements. In the early stages (1K iterations for Kitchen, 0.5K for Maze2D), pretrained skills
427 from the offline dataset are used without updates, resulting in poor performance, with the agent
428 failing to grasp the handle in Kitchen and producing noisy trajectories in Maze2D. As training
429 progresses, β increases to shift contribution from offline data to newly collected high-quality data,
430 providing task-relevant refinement. By design, the increase of β tracks task-return improvement
431 and serves as a soft curriculum that prevents abrupt distribution shift. At the same time, prioritized
432 offline samples keep β below 1, thereby ensuring generalization.

Figure 6: Learning curves of the meta-train and meta-test phases on Kitchen ($\sigma = 0.3$) and Maze2D ($\sigma = 1.5$). SISL (π_{imp}) and SISL (π_h) denote the performance of the skill-improvement policy π_{imp} and high-level policy π_h during meta-training.

Figure 7: Visualization of buffer mixing coefficient β dynamics and refined skill evolution in Kitchen ($\sigma = 0.3$) and Maze2D ($\sigma = 1.5$). In Kitchen, the refined skills at $t = 15$ and $t = 30$ during the microwave-opening task are depicted, while in Maze2D, trajectories using refined skills illustrate the process of progressively expanding to broader areas to solve tasks.

As a result, by iteration 5K in Kitchen, the agent learns to open the microwave, refining this skill to complete the task more efficiently by iteration 10K. In Maze2D, the agent explores more diverse trajectories over iterations, ultimately solving all training tasks by iteration 4K. These results highlight how SISL refines skills iteratively by leveraging prioritized data from offline and online buffers. As shown in Table 1, the learned skills generalize effectively to unseen test tasks, demonstrating SISL’s robustness and efficacy. While variations in return scales across tasks can introduce bias in reward model training, our experimental environments adopt a simple reward structure based on subtask completion, under which the reward model remains stable, as shown in Appendix F.4. For environments with more complex reward functions, per-task reward standardization can be considered. **In skill-based settings, both the offline trajectories and the online training tasks share similar underlying subtasks**, such as region-to-region transitions in Ant/Point environments or object-centric subtasks in Kitchen/Office domains. Because these subtasks define reward semantics consistently across training tasks and offline dataset, this relabeling process does not introduce additional instability. In addition, our softmax-based prioritization forms a distribution rather than relying on a single trajectory, which further mitigates the impact of any minor estimation error. We provide β trends, compare refined skills via skill trajectory visualization, task-representation improvements, and policy skill composition in Appendix F. These analyses provide insights into SISL’s effectiveness in optimizing skill execution and enhancing task representation.

5.5 ABLATION STUDIES

We evaluate the impact of SISL’s components and key hyperparameters in Kitchen ($\sigma = 0.3$) and Maze2D ($\sigma = 1.5$), focusing on the effect of the prioritization temperature T .

Component Evaluation: To evaluate the importance of SISL’s components, we compare the meta-test performance of SISL with all components included against the following variations: (1) Without \mathcal{B}_{off} , relying solely on $\mathcal{B}_{\text{on}}^i$, to evaluate the influence of offline data in skill refinement; (2) Without

Figure 8: Component evaluation

Figure 9: Impact of prioritization temperature T

$P_{\mathcal{B}_{\text{off}}}$, applying uniform sampling in \mathcal{B}_{off} instead of maximum return relabeling, to evaluate the effect of prioritization; (3) Without \mathcal{B}_{on} , using only \mathcal{B}_{off} , to evaluate the contribution of high-quality samples obtained by π_{imp} and π_h ; and (4) Without π_{imp} , removing the skill-improvement policy, to evaluate whether exploration near the skill distribution discovers improved behaviors. Fig. 8 presents the comparison results, demonstrating significant performance drops when either buffer is removed, highlighting their critical role in effective skill discovery. Uniform sampling in \mathcal{B}_{off} also reduces performance, underlining the importance of maximum return relabeling. Lastly, excluding π_{imp} notably degrades performance, emphasizing the critical role of discovering improved behavior.

Prioritization Temperature T : The prioritization temperature T adjusts the prioritization between online and offline buffers. Specifically, lower T biases sampling toward high-return buffers, while higher T results in uniform sampling. Fig. 9 illustrates the performance variations with different prioritization temperatures T . When $T = 0.1$, performance degrades due to excessive focus on a single buffer, aligning with the trends observed in the component evaluation. Conversely, high $T = 2.0$ also degrades performance by eliminating prioritization. These results highlight the importance of proper tuning: $T = 1.0$ for Kitchen and $T = 0.5$ for Maze2D achieve the best performance. Based on the result, we set T approximately proportional to the high-return range of each environment, which consistently yielded the best performance while avoiding extensive tuning.

To provide a clearer understanding of SISL’s components, we include several additional ablations in the Appendix. First, we analyze the temperature T for all environments and noise levels in Appendix G.2, showing that its optimal value depends mainly on the return scale of each environment. Second, we study the KLD coefficient $\lambda_{\text{imp}}^{\text{kld}}$ in Appendix G.3 and find that performance is stable across a wide range of values, but drops sharply when the coefficient is zero because the guiding effect of the KL term disappears. Third, we examine the reinitialization interval K_{iter} in Appendix G.5, confirming that the high-level policy needs a minimum amount of adaptation time after each refinement step, while larger intervals produce similar outcomes as long as skills are updated a few times during training. Together, these results highlight the role and influence of each component in SISL.

6 LIMITATION

Although SISL demonstrates strong performance, it has several limitations. First, although SISL achieves notable performance gains, its computation time per iteration increases by 16% over the baseline. This overhead mainly comes from training the skill model without freezing it during meta-training, but the performance table and ablation study confirm that this component is essential. (See Appendix E for details) Second, SISL requires fine-tuning during the meta-test phase for optimal performance, which introduces additional computational overhead. Addressing this through zero-shot skill adaptation could enhance its practicality, enabling transfer to new tasks without retraining. Future work in this direction could significantly improve SISL’s applicability in real-world scenarios.

7 CONCLUSION

In this paper, we propose SISL, a robust skill-based meta-RL framework designed to address noisy offline demonstrations in long-horizon tasks. Through self-improving skill refinement and prioritization via maximum return relabeling, SISL effectively prioritizes task-relevant trajectories for skill learning and enabling efficient exploration and targeted skill optimization. Experimental results highlight its robustness to noise and superior performance across various environments, demonstrating its potential for scalable meta-RL in real-world applications where data quality is critical.

540 ETHICS STATEMENT
541

542 By introducing self-improving skill refinement and skill prioritization via maximum return relabeling, SISL improves the stability and generalizability of skill learning, allowing agents to adapt
543 rapidly to new tasks even when data quality is imperfect. This advancement has the potential to
544 make reinforcement learning more practical and reliable in real-world settings where collecting
545 high-quality data is difficult or expensive. While this framework may have potential societal im-
546 plications by enhancing reinforcement learning’s real-world applicability, we believe it is primarily
547 foundational in nature and does not introduce any new risks of malicious use.

549
550 REPRODUCIBILITY STATEMENT
551

552 To reproduce SISL, we provide the loss function redefined as neural network parameters, along with
553 the meta-train and meta-test algorithm tables in Appendix B. For the algorithm implementation, we
554 provide the system specifications used for experiments, the source of the baseline algorithm, envi-
555 ronment details, the offline dataset construction method, and the hyperparameter setup in Appendix
556 C. Additionally, we provide the anonymized code for SISL in the supplementary material, enabling
557 the reproduction of the proposed algorithm and experiment results.

558
559 REFERENCES
560

561 Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
562 algorithms. *arXiv preprint arXiv:1807.10299*, 2018.

563 Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
564 McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
565 play. *Advances in neural information processing systems*, 30, 2017.

566 OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
567 Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
568 dexterous in-hand manipulation. *The International Journal of Robotics Research*, 39:3–20, 2020.

569 Brandon Araki, Xiao Li, Kiran Vodrahalli, Jonathan DeCastro, Micah Fry, and Daniela Rus. The
570 logical options framework. In *International Conference on Machine Learning*, pp. 307–317.
571 PMLR, 2021.

572 Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In *Proceedings of
573 the AAAI conference on artificial intelligence*, volume 31, 2017.

574 André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel, Daniel
575 Toyama, Shiblet Mourad, David Silver, Doina Precup, et al. The option keyboard: Combining skills
576 in reinforcement learning. *Advances in Neural Information Processing Systems*, 32, 2019.

577 Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E Taylor, and Ann
578 Nowé. Reinforcement learning from demonstration through shaping. In *Twenty-fourth interna-
579 tional joint conference on artificial intelligence*, 2015.

580 Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
581 distillation. In *International Conference on Learning Representations*, 2018.

582 Jongseong Chae, Seungyul Han, Whiyoung Jung, Myungsik Cho, Sungho Choi, and Youngchul
583 Sung. Robust imitation learning against variations in environment dynamics. In *International
584 Conference on Machine Learning*, pp. 2828–2852. PMLR, 2022.

585 Jen-Tzung Chien and Weiwei Lai. Variational skill embeddings for meta reinforcement learning. In
586 *2023 International Joint Conference on Neural Networks (IJCNN)*, pp. 1–8. IEEE, 2023.

587 Minjae Cho and Chuangchuang Sun. Hierarchical meta-reinforcement learning via automated
588 macro-action discovery. *arXiv preprint arXiv:2412.11930*, 2024.

594 Kurtland Chua, Qi Lei, and Jason Lee. Provable hierarchy-based meta-reinforcement learning. In
 595 *International Conference on Artificial Intelligence and Statistics*, pp. 10918–10967. PMLR, 2023.
 596

597 Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl²: Fast
 598 reinforcement learning via slow reinforcement learning. *arXiv preprint arXiv:1611.02779*, 2016.

599 Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
 600 Learning skills without a reward function. In *International Conference on Learning Representa-*
 601 *tions*, 2018.

602

603 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
 604 of deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.

605 Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
 606 hierarchies. In *International Conference on Learning Representations*, 2018.

607

608 Haotian Fu, Hongyao Tang, Jianye Hao, Wulong Liu, and Chen Chen. Mghrl: Meta goal-generation
 609 for hierarchical reinforcement learning. In *Distributed Artificial Intelligence: Second Interna-*
 610 *tional Conference, DAI 2020, Nanjing, China, October 24–27, 2020, Proceedings 2*, pp. 29–39.
 611 Springer, 2020a.

612

613 Haotian Fu, Shangqun Yu, Saket Tiwari, Michael Littman, and George Konidaris. Meta-learning
 614 parameterized skills. In *Proceedings of the 40th International Conference on Machine Learning*,
 615 pp. 10461–10481, 2023.

616

617 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
 618 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020b.

619

620 Jonas Gehring, Gabriel Synnaeve, Andreas Krause, and Nicolas Usunier. Hierarchical skills for ef-
 621 ficient exploration. *Advances in Neural Information Processing Systems*, 34:11553–11564, 2021.

622

623 Alex Graves and Alex Graves. Long short-term memory. *Supervised sequence labelling with recur-*
 624 *rent neural networks*, pp. 37–45, 2012.

625

626 Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. *arXiv*
 627 *preprint arXiv:1611.07507*, 2016.

628

629 Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. Unsupervised meta-
 630 learning for reinforcement learning. *arXiv preprint arXiv:1806.04640*, 2018.

631

632 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 633 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer-*
 634 *ence on machine learning*, pp. 1861–1870. PMLR, 2018.

635

636 Hongcai He, Anjie Zhu, Shuang Liang, Feiyu Chen, and Jie Shao. Decoupling meta-reinforcement
 637 learning with gaussian task contexts and skills. In *Proceedings of the AAAI Conference on Artifi-*
 638 *cial Intelligence*, volume 38, pp. 12358–12366, 2024.

639

640 Jiaheng Hu, Zizhao Wang, Peter Stone, and Roberto Martín-Martín. Disentangled unsupervised
 641 skill discovery for efficient hierarchical reinforcement learning. In *The Thirty-eighth Annual*
642 Conference on Neural Information Processing Systems, 2024.

643

644 Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, and Chelsea Finn. Un-
 645 supervised curricula for visual meta-reinforcement learning. *Advances in Neural Information*
646 Processing Systems, 32, 2019.

647

648 Yuankun Jiang, Nuowen Kan, Chenglin Li, Wenrui Dai, Junni Zou, and Hongkai Xiong. Dou-
 649 bly robust augmented transfer for meta-reinforcement learning. *Advances in Neural Information*
650 Processing Systems, 36:77002–77012, 2023.

648 Woojun Kim, Yongjae Shin, Jongeui Park, and Youngchul Sung. Sample-efficient and safe deep re-
 649 enforcement learning via reset deep ensemble agents. *Advances in neural information processing*
 650 *systems*, 36:53239–53260, 2023.

651

652 Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro Sanchez-Gonzalez, Edward Grefen-
 653 stette, Pushmeet Kohli, and Peter Battaglia. Compile: Compositional imitation learning and
 654 execution. In *International Conference on Machine Learning*, pp. 3418–3428. PMLR, 2019.

655

656 Rui Kong, Chenyang Wu, Chen-Xiao Gao, Zongzhang Zhang, and Ming Li. Efficient and stable
 657 offline-to-online reinforcement learning via continual policy revitalization. In *Proceedings of the*
 658 *Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24*, pp. 4317–4325,
 2024.

659

660 Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
 661 transformer: A framework for attention-based permutation-invariant neural networks. In *Interna-*
 662 *tional conference on machine learning*, pp. 3744–3753. PMLR, 2019.

663

664 Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
 665 with hindsight. In *Proceedings of International Conference on Learning Representations*, 2019.

666

667 Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Henrik Christensen, and Hao
 668 Su. Multi-task batch reinforcement learning with metric learning. *Advances in neural information*
 669 *processing systems*, 33:6197–6210, 2020.

670

671 Siyuan Li, Rui Wang, Minxue Tang, and Chongjie Zhang. Hierarchical reinforcement learning
 672 with advantage-based auxiliary rewards. *Advances in Neural Information Processing Systems*,
 32, 2019.

673

674 Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
 675 Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline
 676 human demonstrations for robot manipulation. In *Conference on Robot Learning*, pp. 1678–1690.
 PMLR, 2022.

677

678 Russell Mendonca, Xinyang Geng, Chelsea Finn, and Sergey Levine. Meta-reinforcement learning
 679 robust to distributional shift via model identification and experience relabeling. *arXiv preprint*
arXiv:2006.07178, 2020.

680

681 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
 682 mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
 683 control through deep reinforcement learning. *nature*, 518:529–533, 2015.

684

685 Taewook Nam, Shao-Hua Sun, Karl Pertsch, Sung Ju Hwang, and Joseph J. Lim. Skill-based meta-
 686 reinforcement learning. In *International Conference on Learning Representations (ICLR)*, 2022.

687

688 Charles Packer, Pieter Abbeel, and Joseph E Gonzalez. Hindsight task relabelling: Experience
 689 replay for sparse reward meta-rl. *Advances in neural information processing systems*, 34:2466–
 2477, 2021.

690

691 Seohong Park, Jongwook Choi, Jaekyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-
 692 constrained unsupervised skill discovery. In *International Conference on Learning Represen-*
 693 *tations*, 2022.

694

695 Seohong Park, Kimin Lee, Youngwoon Lee, and Pieter Abbeel. Controllability-aware unsupervised
 696 skill discovery. In *International Conference on Machine Learning*, pp. 27225–27245. PMLR,
 2023.

697

698 Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-
 699 conditioned rl with latent states as actions. *Advances in Neural Information Processing Systems*,
 36, 2024.

700

701 Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
 skill priors. In *Conference on robot learning*, pp. 188–204. PMLR, 2021.

702 Karl Pertsch, Youngwoon Lee, Yue Wu, and Joseph J Lim. Guided reinforcement learning with
 703 learned skills. In *Conference on Robot Learning*, pp. 729–739. PMLR, 2022.

704

705 Vitchyr H Pong, Ashvin V Nair, Laura M Smith, Catherine Huang, and Sergey Levine. Offline meta-
 706 reinforcement learning with online self-supervision. In *International Conference on Machine
 707 Learning*, pp. 17811–17829. PMLR, 2022.

708

709 Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
 710 meta-reinforcement learning via probabilistic context variables. In *International conference on
 711 machine learning*, pp. 5331–5340. PMLR, 2019.

712

713 Krishan Rana, Ming Xu, Brendan Tidd, Michael Milford, and Niko Sünderhauf. Residual skill
 714 policies: Learning an adaptable skill-based action space for reinforcement learning for robotics.
 In *Conference on Robot Learning*, pp. 2095–2104. PMLR, 2023.

715

716 Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning abstract options. *Advances in neural
 717 information processing systems*, 31, 2018.

718

719 Arnaud Robert, Ciara Pike-Burke, and Aldo A Faisal. Sample complexity of goal-conditioned hier-
 720 archical reinforcement learning. *Advances in Neural Information Processing Systems*, 36, 2024.

721

722 Fumihiro Sasaki and Ryota Yamashina. Behavioral cloning from noisy demonstrations. In *Interna-
 723 tional Conference on Learning Representations*, 2020.

724

725 Carolin Schmidt, Daniele Gammelli, James Harrison, Marco Pavone, and Filipe Rodrigues. Offline
 hierarchical reinforcement learning via inverse optimization. In *The Thirteenth International
 Conference on Learning Representations*, 2025.

726

727 Gresa Shala, André Biedenkapp, and Josif Grabocka. Hierarchical transformers are efficient meta-
 728 reinforcement learners. *arXiv preprint arXiv:2402.06402*, 2024.

729

730 Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
 731 unsupervised discovery of skills. In *International Conference on Learning Representations*, 2019.

732

733 Lucy Xiaoyang Shi, Joseph J Lim, and Youngwoon Lee. Skill-based model-based reinforcement
 734 learning. In *Conference on Robot Learning*, pp. 2262–2272. PMLR, 2023.

735

736 Sangwoo Shin, Minjong Yoo, Jeongwoo Lee, and Honguk Woo. Semtra: A semantic skill translator
 737 for cross-domain zero-shot policy adaptation. In *Proceedings of the AAAI Conference on Artificial
 738 Intelligence*, volume 38, pp. 15000–15008, 2024.

739

740 DJ Strouse, Kate Baumli, David Warde-Farley, Volodymyr Mnih, and Steven Stenberg Hansen.
 741 Learning more skills through optimistic exploration. In *International Conference on Learning
 742 Representations*, 2022.

743

744 Michael Wan, Jian Peng, and Tanmay Gangwani. Hindsight foresight relabeling for meta-
 745 reinforcement learning. In *International Conference on Learning Representations*, 2021.

746

747 Te-Lin Wu, Jaedong Hwang, Jingyun Yang, Shaofan Lai, Carl Vondrick, and Joseph J Lim. Learning
 748 from noisy demonstration sets via meta-learned suitability assessor.

749

750 Mengda Xu, Manuela Veloso, and Shuran Song. Aspire: Adaptive skill priors for reinforcement
 751 learning. *Advances in Neural Information Processing Systems*, 35:38600–38613, 2022.

752

753 Xiangyu Yin, Sihao Wu, Jiaxu Liu, Meng Fang, Xingyu Zhao, Xiaowei Huang, and Wenjie Ruan.
 754 Representation-based robustness in goal-conditioned reinforcement learning. In *Proceedings of
 755 the AAAI Conference on Artificial Intelligence*, volume 38, pp. 21761–21769, 2024.

756

757 Minjong Yoo, Sangwoo Cho, and Honguk Woo. Skills regularized task decomposition for multi-
 758 task offline reinforcement learning. *Advances in Neural Information Processing Systems*, 35:
 759 37432–37444, 2022.

760

761 Xingrui Yu, Bo Han, and Ivor W Tsang. Usn: A robust imitation learning method against diverse
 762 action noise. *Journal of Artificial Intelligence Research*, 79:1237–1280, 2024a.

756 Xuehui Yu, Mhairi Dunion, Xin Li, and Stefano V Albrecht. Skill-aware mutual information opti-
757 misation for zero-shot generalisation in reinforcement learning. *Advances in Neural Information*
758 *Processing Systems*, 37:110573–110612, 2024b.

759

760 Haoqi Yuan and Zongqing Lu. Robust task representations for offline meta-reinforcement learning
761 via contrastive learning. In *International Conference on Machine Learning*, pp. 25747–25759.
762 PMLR, 2022.

763

764 Renzhe Zhou, Chen-Xiao Gao, Zongzhang Zhang, and Yang Yu. Generalizable task representation
765 learning for offline meta-reinforcement learning with data limitations. In *Proceedings of the AAAI*
766 *Conference on Artificial Intelligence*, volume 38, pp. 17132–17140, 2024.

767

768 Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
769 and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-
770 learning. In *International Conference on Learning Representations*, 2019.

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
811

812 We wrote the entire manuscript ourselves, including the main text and the appendix. We used
813 large language models only for copy editing to improve spelling and readability, and we verified all
814 suggested revisions before incorporation. LLMs were not used to generate ideas, methods, analyses,
815 results, code, figures, or citations beyond minor edits. All technical content and experiments were
816 conceived, implemented, and validated by the authors. We manually audited every citation and
817 numerical claim and accept full responsibility for the manuscript.

818
819 B IMPLEMENTATION DETAILS ON SISL
820

821 This section provides a detailed implementation of the proposed SISL framework. As outlined in
822 Section 4, SISL begins with an initial skill learning phase (pre-train) to train the low-level skill
823 policy, skill encoder, and skill prior. It then progresses to the meta-train phase, where **decoupled**
824 **policy learning** is performed using high-level policy, task encoder, and skill-improvement policy.
825 Also, **self-improvement skill learning** is executed via maximum return relabeling using reward
826 model, low-level skill policy, skill encoder, and skill prior. Finally, in the meta-test phase, rapid
827 adaptation to the target task is achieved via fine-tuning based on the trained high-level policy and
828 task encoder. Section B.1 details the initial skill learning phase, Section B.2 elaborates on the meta-
829 train phase, and Section B.3 explains the meta-test phase. All loss functions in SISL are redefined in
830 terms of the neural network parameters of its policies and models. Additionally, the overall structure
831 for the meta-train and meta-test phases is provided in Algorithms 1 and 2.

832 B.1 INITIAL SKILL LEARNING PHASE
833

834 Following SPiRL (Pertsch et al., 2021), introduced in Section 3, we train initial skills using the
835 offline dataset \mathcal{B}_{off} . The low-level skill policy $\pi_{l,\phi}$, skill encoder q_ϕ , and skill prior p_ϕ are parame-
836 terized by ϕ and trained using the following loss function (modified from Eq. (1)):

$$\begin{aligned}
 \mathcal{L}_{\text{spirl}}(\phi) &:= \mathbb{E}_{\substack{(s_{t:t+H_s}, a_{t:t+H_s}) \sim \mathcal{B}_{\text{off}} \\ z \sim q_\phi(\cdot | s_{t:t+H_s}, a_{t:t+H_s})}} \left[\mathcal{L}(\pi_{l,\phi}, q_\phi, p_\phi, z) \right] \\
 &= \mathbb{E}_{\substack{(s_{t:t+H_s}, a_{t:t+H_s}) \sim \mathcal{B}_{\text{off}} \\ z \sim q_\phi(\cdot | s_{t:t+H_s}, a_{t:t+H_s})}} \left[- \sum_{k=t}^{t+H_s-1} \log \pi_{l,\phi}(a_k | s_k, z) + \lambda_l^{\text{kld}} \mathcal{D}_{\text{KL}} \left(q_\phi(\cdot | s_{t:t+H_s}, a_{t:t+H_s}) \middle\| \mathcal{N}(\mathbf{0}, \mathbf{I}) \right) \right. \\
 &\quad \left. + \mathcal{D}_{\text{KL}} \left(\lfloor q_\phi(\cdot | s_{t:t+H_s}, a_{t:t+H_s}) \rfloor \middle\| p_\phi(\cdot | s_t) \right) \right], \tag{B.1}
 \end{aligned}$$

847 where $\lfloor \cdot \rfloor$ represents the stop gradient operator, which prevents the KL term for skill prior learning
848 from influencing the skill encoder. Using the pre-trained $\pi_{l,\phi}$, q_ϕ , and p_ϕ , SISL refines skills during
849 the meta-train phase to further enhance task-solving capabilities.

850 B.2 META-TRAIN PHASE
851

852 As described in Section 4, SISL comprises two main processes: **Decoupled Policy Learning**,
853 which explores task-relevant behavior near skill distribution using skill-improvement policy, and
854 trains the high-level policy, task encoder to effectively utilize learned skills for solving tasks; and
855 **Self-Improvement Skill Learning**, which improves skills using prioritization via maximum return
856 relabeling. Detailed explanations for each process are provided below.

857
858 **Decoupled Policy Learning**

859 As described in Section 4.2, the skill-improvement policy $\pi_{\text{imp},\psi}$, parameterized by ψ , is designed
860 to expand the skill distribution and discover task-relevant behaviors near trajectories stored in the
861 prioritized on-policy buffer $\mathcal{B}_{\text{on}}^i$ for each training task \mathcal{T}^i . This buffer prioritizes trajectories that
862 best solve the tasks. Additionally, the state-action value function $Q_{\text{imp},\psi}$, also parameterized by ψ , is
863 defined to train the skill-improvement policy using soft actor-critic (SAC). To enhance exploration,
864 both extrinsic reward r_t^i and intrinsic reward $r_{\text{int},t}^i$ are employed. The intrinsic reward, based on

random network distillation (RND), is computed as the L2 loss between a randomly initialized target network $\hat{f}_{\bar{\eta}}^i$ and a prediction network f_{η}^i , parameterized by η and $\bar{\eta}$, respectively, and is expressed as:

$$r_{\text{int},t}^i := \left\| f_{\eta}^i(s_{t+1}) - \hat{f}_{\bar{\eta}}^i(s_{t+1}) \right\|_2^2, \quad (\text{B.2})$$

where i is the task index, and f_{η} is updated to minimize this loss. A dropout layer is applied to f_{η} to prevent over-sensitivity to state s . The RL loss functions of SAC for training the skill-improvement policy $\pi_{\text{imp},\psi}$ and the state-action value function $Q_{\text{imp},\psi}$ using the intrinsic reward $r_{\text{int},t}$ are defined as follows:

$$\begin{aligned} \mathcal{L}_{\text{imp}}^{\text{critic}}(\psi) &:= \sum_i \mathbb{E}_{\substack{(s_t, a_t, r_t^i, s_{t+1}) \sim \mathcal{B}_{\text{imp}}^i \cup \mathcal{B}_{\text{on}}^i \\ a_{t+1} \sim \pi_{\text{imp},\psi}(\cdot | s_t, i)}} \left[\frac{1}{2} \left(Q_{\text{imp},\psi}(s_t, a_t, i) - \left(\delta_{\text{ext}} r_t^i + \delta_{\text{int}} r_{\text{int},t}^i + \gamma_{\text{imp}} (Q_{\text{imp},\psi}(s_{t+1}, a_{t+1}, i) \right. \right. \right. \right. \\ &\quad \left. \left. \left. \left. + \lambda_{\text{imp}}^{\text{ent}} \log \pi_{\text{imp},\psi}(a_{t+1} | s_{t+1}, i) \right) \right) \right)^2 \Big] \\ \mathcal{L}_{\text{imp}}^{\text{actor}}(\psi) &:= \sum_i \mathbb{E}_{\substack{s_t \sim \mathcal{B}_{\text{imp}}^i \cup \mathcal{B}_{\text{on}}^i \\ a_t \sim \pi_{\text{imp},\psi}(\cdot | s_t, i)}} \left[\lambda_{\text{imp}}^{\text{ent}} \log \pi_{\text{imp},\psi}(a_t | s_t, i) - Q_{\text{imp},\psi}(s_t, a_t, i) \right] - \lambda_{\text{imp}}^{\text{kld}} \sum_i \mathbb{E}_{(s_t, a_t) \sim \mathcal{B}_{\text{on}}^i} \left[\log \pi_{\text{imp},\psi}(a_t | s_t, i) \right]. \end{aligned} \quad (\text{B.3})$$

Here, δ_{ext} and δ_{int} are extrinsic and intrinsic reward ratios, γ_{imp} is the discount factor, $\lambda_{\text{imp}}^{\text{ent}}$ is the exploration entropy coefficient adjusted automatically by SAC, and $\lambda_{\text{imp}}^{\text{kld}}$ is the KLD coefficient. Also, note that Eq. (B.3) provides a parameterized and detailed reformulation of Eq. (3) from Section 4.2, explicitly incorporating parameterization and loss scaling details.

To mutually update skill selection based on the refined skills, the updated and fixed low-level skill policy $\bar{\pi}_{l,\phi}$ and skill prior \bar{q}_{ϕ} are utilized to train the high-level policy following the SiMPL framework introduced in Section 3. The objective is to select skill representations z that maximize task returns while ensuring the high-level policy remains close to the skill prior for stable and efficient learning. The high-level policy $\pi_{h,\theta}$ and value function $Q_{h,\theta}$ are parameterized by θ and trained using the soft actor-critic (SAC) framework, with the RL loss functions defined as:

$$\begin{aligned} \mathcal{L}_h^{\text{critic}}(\theta) &:= \mathbb{E}_{\substack{(s_t, z_t, r_t^h, s_{t+H_s-1}) \sim \mathcal{B}_h^{\mathcal{T}}, e^{\mathcal{T}} \sim q_{e,\theta}(\cdot | c^{\mathcal{T}}) \\ z_{t+1} \sim \pi_{h,\theta}(\cdot | s_{t+H_s-1}, e^{\mathcal{T}})}} \left[\frac{1}{2} \left(Q_{h,\theta}(s_t, z_t, e^{\mathcal{T}}) - \left(r_t^h + \gamma_h (Q_{h,\theta}(s_{t+H_s-1}, z_{t+1}, e^{\mathcal{T}}) \right. \right. \right. \right. \\ &\quad \left. \left. \left. \left. - \lambda_h^{\text{kld}} \mathcal{D}_{\text{KL}}(\pi_{h,\theta}(\cdot | s_{t+H_s-1}, e^{\mathcal{T}}) \parallel \bar{p}_{\phi}(\cdot | s_{t+H_s-1})) \right) \right) \right)^2 \Big] \\ \mathcal{L}_h^{\text{actor}}(\theta) &:= \mathbb{E}_{\substack{s_t \sim \mathcal{B}_h^{\mathcal{T}}, e^{\mathcal{T}} \sim q_{e,\theta}(\cdot | c^{\mathcal{T}}) \\ z_t \sim \pi_{h,\theta}(\cdot | s_t, e^{\mathcal{T}})}} \left[\lambda_h^{\text{kld}} \mathcal{D}_{\text{KL}} \left(\pi_{h,\theta}(\cdot | s_t, e^{\mathcal{T}}) \parallel \bar{p}_{\phi}(\cdot | s_t) \right) - Q_{h,\theta}(s_t, z_t, e^{\mathcal{T}}) \right], \end{aligned} \quad (\text{B.4})$$

where $q_{e,\theta}$ is the parameterized task encoder with parameter θ , γ_h is the high-level discount factor, and λ_h^{kld} is the high-level KLD coefficient. The term $r_t^h = \sum_{k=t}^{t+H_s-1} r_k$ represents the cumulative rewards, with states and rewards obtained by executing the low-level skill policy $\bar{\pi}_{l,\phi}$ using $z_t \sim \pi_{h,\theta}(\cdot | s_t)$ over H_s timesteps. The context $e^{\mathcal{T}} = (s_k, z_k, r_k^h, s_{k+H_s-1})_{k=1}^{N_{\text{prior}}}$, where N_{prior} is the number of context transitions, denotes the high-level transition set of task \mathcal{T} . This context is used to select the task representation $e^{\mathcal{T}}$ from the task encoder $q_{e,\theta}$. Also, note that Eq. (B.4) is a parameterized modification of Eq. (2) from Section 3.

Self-Improvement Skill Learning

To extract better trajectories and learn skills that effectively solve tasks, the online buffer $\mathcal{B}_{\text{on}}^i$ selectively stores high-return trajectories collected during the meta-training phase through the execution of the low-level policy $\pi_{l,\phi}$ and the skill-improvement policy $\pi_{\text{imp},\psi}$. A trajectory τ^i is added to $\mathcal{B}_{\text{on}}^i$ if its return $G(\tau^i)$ exceeds the minimum return in the buffer, $\min_{\tau' \in \mathcal{B}_{\text{on}}^i} G(\tau')$. To refine skills, maximum return relabeling is applied using the parameterized reward model \hat{R}_{ζ} with parameter ζ . The reward model is trained by minimizing the following MSE loss:

$$\mathcal{L}_{\text{reward}}(\zeta) := \mathbb{E}_{(s_t^i, a_t^i, r_t^i) \sim \mathcal{B}_{\text{imp}}^i \cup \mathcal{B}_{\text{on}}^i} \left[\left(\hat{R}_{\zeta}(s_t^i, a_t^i, i) - r_t^i \right)^2 \right]. \quad (\text{B.5})$$

918 This assigns priorities to offline trajectories $\tilde{\tau} \in \mathcal{B}_{\text{off}}$ (Eq. (5)), updated for N_{priority} samples per
 919 iteration.

920 For skill learning, the low-level skill policy $\pi_{l,\phi}$, skill encoder q_ϕ , and skill prior p_ϕ are optimized
 921 using the following loss function. This incorporates both high-return trajectories from the online
 922 buffer $\mathcal{B}_{\text{on}}^i$ and trajectories from the offline buffer \mathcal{B}_{off} , weighted by their importance:

$$\begin{aligned} 924 \quad \mathcal{L}_{\text{skill}}(\phi) := & (1 - \beta) \mathbb{E}_{(s_{t:t+H_s}, a_{t:t+H_s}) \sim P_{\mathcal{B}_{\text{off}}}} \left[\mathcal{L}(\pi_{l,\phi}, q_\phi, p_\phi, z) \right] \\ 925 \quad & z \sim q_\phi(\cdot | s_{t:t+H_s}, a_{t:t+H_s}) \\ 926 \quad & + \frac{\beta}{N_{\mathcal{T}, \text{train}}} \sum_i \mathbb{E}_{(s_{t:t+H_s}, a_{t:t+H_s}) \sim \mathcal{B}_{\text{on}}^i} \left[\mathcal{L}(\pi_{l,\phi}, q_\phi, p_\phi, z) \right], \\ 927 \quad & z \sim q_\phi(\cdot | s_{t:t+H_s}, a_{t:t+H_s}) \end{aligned} \quad (\text{B.6})$$

928 where β is the mixing coefficient defined in Eq. (7), and $\mathcal{L}(\pi_{l,\phi}, q_\phi, p_\phi, z)$ is the skill learning
 929 objective defined in Eq. (B.1) for optimizing $\pi_{l,\phi}$, q_ϕ , and p_ϕ . During training, we update the low-
 930 level policy $\bar{\pi}_{l,\phi}$, skill encoder \bar{q}_ϕ , and skill prior \bar{p}_ϕ used for the skill-based meta-RL every K_{iter}
 931 iterations. Specifically, the updates are performed as follows: $\bar{\pi}_{l,\phi} \leftarrow \pi_{l,\phi}$, $\bar{q}_\phi \leftarrow q_\phi$, and $\bar{p}_\phi \leftarrow p_\phi$.

932 After the meta-train phase is completed, the final meta-train phase parameter is stored as $\theta_{\text{final}} \leftarrow \theta$
 933 and is subsequently used during the meta-test phase.

936 B.3 META-TEST PHASE

937 After completing the meta-train phase of SISL, the meta-test phase is performed on the test task
 938 set $\mathcal{M}_{\text{test}}$. In this phase, previously learned components, including the low-level skill policy $\bar{\pi}_{l,\phi}$,
 939 skill prior \bar{p}_ϕ , and task encoder $q_{e,\theta_{\text{final}}}$, are kept fixed and are no longer updated. Only the high-level
 940 policy $\pi_{h,\theta}$ and high-level value function $Q_{h,\theta}$ are trained for each test task using the soft actor-critic
 941 (SAC) framework.

942 During meta-testing, for each test task \mathcal{T} , the task representation $e^{\mathcal{T}}$ is inferred from the fixed task
 943 encoder $q_{e,\theta_{\text{final}}}$. The SAC algorithm is then applied to optimize the high-level policy and value
 944 function for the specific test task, following the same loss functions as defined in Eq. (B.4) from the
 945 meta-training phase. This approach ensures efficient adaptation to unseen tasks by leveraging the
 946 fixed, pre-trained low-level skills and task representations.

947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 **Algorithm 1:** SISL: Meta-Train Phase
973 **Require:** Training tasks $\mathcal{M}_{\text{train}}$, offline dataset \mathcal{B}_{off} , low-level policy $\pi_{l,\phi}$, skill encoder q_ϕ , and
974 skill prior p_ϕ .
975 **Initialize:** High-level policy $\pi_{h,\theta}$, skill-improvement policy $\pi_{\text{imp},\psi}$, task encoder $q_{e,\theta}$, reward
976 model \hat{R}_ζ , and value functions $Q_{h,\theta}, Q_{\text{imp},\psi}$.
977 (Initial Skill Learning)
978 1 Update $\pi_{l,\phi}, q_\phi, p_\phi$ using Eq. (B.1) with $\phi \leftarrow \phi - \lambda_l^{\text{lr}} \cdot \nabla_\phi \mathcal{L}_{\text{spirl}}(\phi)$.
979 2 Fix $\bar{\pi}_{l,\phi} \leftarrow \pi_{l,\phi}$, $\bar{q}_\phi \leftarrow q_\phi$, and $\bar{p}_\phi \leftarrow p_\phi$.
980 3 **for** iteration $k = 1, 2, \dots$ **do**
981 4 **for** task $i = 1$ to $N_{\mathcal{T},\text{train}}$ **do**
982 5 Collect high-level trajectories τ_h^i and low-level trajectories τ_l^i using $\pi_{h,\theta}$ with $\bar{\pi}_{l,\phi}, q_{e,\theta}$.
983 6 Collect skill-improvement trajectories τ_{imp}^i using $\pi_{\text{imp},\psi}$.
984 7 Filter high-return trajectories τ_{high}^i from τ_l^i and τ_{imp}^i s.t. $G > \min_{\tau' \in \mathcal{B}_{\text{on}}^i} G(\tau')$.
985 8 Store $\tau_h^i, \tau_{\text{imp}}^i$, and τ_{high}^i into $\mathcal{B}_h^i, \mathcal{B}_{\text{imp}}^i$, and $\mathcal{B}_{\text{on}}^i$.
986 9 Compute prioritization factors: $P_{\mathcal{B}_{\text{off}}}$ and β .
987 10 **for** gradient step **do**
988 (Decoupled Policy Learning)
989 11 Update $\pi_{\text{imp},\psi}, Q_{\text{imp},\psi}$ using Eq. (B.3) with $\psi \leftarrow \psi - \lambda_{\text{imp}}^{\text{lr}} \cdot \nabla_\psi (\mathcal{L}_{\text{imp}}^{\text{critic}}(\psi) + \mathcal{L}_{\text{imp}}^{\text{actor}}(\psi))$.
990 12 Update $\pi_{h,\theta}, Q_{h,\theta}, q_{e,\theta}$ using Eq. (B.4) with $\theta \leftarrow \theta - \lambda_h^{\text{lr}} \cdot \nabla_\theta (\mathcal{L}_h^{\text{critic}}(\theta) + \mathcal{L}_h^{\text{actor}}(\theta))$.
991 (Self-Improvement Skill Learning)
992 13 Update reward model \hat{R}_ζ using Eq. (B.5) with $\zeta \leftarrow \zeta - \lambda_{\text{reward}}^{\text{lr}} \cdot \nabla_\zeta \mathcal{L}_{\text{reward}}(\zeta)$.
993 14 Update $\pi_{l,\phi}, q_\phi, p_\phi$ using Eq. (B.6) with $\phi \leftarrow \phi - \lambda_l^{\text{lr}} \cdot \nabla_\phi \mathcal{L}_{\text{skill}}(\phi)$.
994 15 **if** $k \bmod K_{\text{iter}} = 0$ **then**
995 16 Update $\bar{\pi}_{l,\phi} \leftarrow \pi_{l,\phi}$, $\bar{q}_\phi \leftarrow q_\phi$, and $\bar{p}_\phi \leftarrow p_\phi$.
996 17 Reinitialize $\pi_{h,\theta}$.
997 18 Save the final meta-train phase parameter $\theta_{\text{final}} \leftarrow \theta$.
998

999

1000
1001
1002 **Algorithm 2:** SISL: Meta-test phase
1003 **Require:** Target task \mathcal{T} , high-level policy $\pi_{h,\theta}$, value function $Q_{h,\theta}$, task encoder $q_{e,\theta_{\text{final}}}$,
1004 low-level policy $\bar{\pi}_{l,\phi}$, and skill prior \bar{p}_ϕ .
1005 1 Collect context $c^{\mathcal{T}}$ using $\pi_{h,\theta}$ with $\bar{\pi}_{l,\phi}$, $e \sim \mathcal{N}(0, \mathbf{I})$.
1006 2 Compute task representation $e^{\mathcal{T}} \sim q_{e,\theta_{\text{final}}}(\cdot | c^{\mathcal{T}})$.
1007 3 **for** iteration $k = 1, 2, \dots$ **do**
1008 4 **Collect** high-level trajectory $\tau_h^{\mathcal{T}}$ using $\pi_{h,\theta}$ with $\bar{\pi}_{l,\phi}, e^{\mathcal{T}}$.
1009 5 Store $\tau_h^{\mathcal{T}}$ into $\mathcal{B}_h^{\mathcal{T}}$.
1010 6 **for** gradient step **do**
1011 7 Update $\pi_{h,\theta}, Q_{h,\theta}$ using Eq. (B.4) with $\theta \leftarrow \theta - \lambda_h^{\text{lr}} \cdot \nabla_\theta (\mathcal{L}_h^{\text{critic}}(\theta) + \mathcal{L}_h^{\text{actor}}(\theta))$
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **C DETAILED EXPERIMENTAL SETUP**

1027 In this section, we provide a detailed description of our experimental setup. The implementation
 1028 is built on PyTorch with CUDA 11.7, running on an AMD EPYC 7313 CPU with an NVIDIA
 1029 GeForce RTX 3090 GPU. SISL is implemented based on the official open-source code of SiMPL,
 1030 available at <https://github.com/namsan96/SiMPL>. For the environment implementations, we used
 1031 SiMPL’s code for the Kitchen and Maze2D environments, SkILD’s open-source code for the Of-
 1032 fice environment at <https://github.com/clvrai/skild>, and D4RL’s open-source code for AntMaze at
 1033 <https://github.com/Farama-Foundation/D4RL/tree/master>.

1034 The hyperparameters for low-level policy training were referenced from SPiRL (Pertsch et al., 2021).
 1035 Additional details about the baseline algorithms are provided in Section C.1, while Section C.2
 1036 elaborates on the environments used for evaluation. Section C.3 explains the construction of offline
 1037 datasets for varying noise levels, and Section C.4 details the network architectures and hyperparam-
 1038 eter configurations for policies, value functions, and other models.

1039 **C.1 OTHER BASELINES**

1040 Here are the detailed descriptions and implementation details of the algorithms used for performance
 1041 comparison:

1042 **SAC**

1043 SAC (Haarnoja et al., 2018) is a reinforcement learning algorithm that incorporates entropy to
 1044 improve exploration. Instead of a standard value function, SAC uses a soft value function that
 1045 combines entropy, with the entropy coefficient adjusted automatically to maintain the target ent-
 1046 tropy. To enhance value function estimation, SAC employs double Q learning, using two inde-
 1047 pendent value functions. SAC learns tasks from scratch without utilizing meta-train tasks or of-
 1048 fline datasets. For the Kitchen and Office environments, the discount factor γ is set to 0.95, while
 1049 $\gamma = 0.99$ is used for Maze2D and AntMaze environments. We utilize the open-source code of SAC
 1050 at https://github.com/denisyarats/pytorch_sac.

1051 **SAC+RND**

1052 SAC+RND combines SAC with random network distillation (RND) (Burda et al., 2018), an in-
 1053 trinsic motivation technique, to enhance exploration. Like SAC, it learns tasks from scratch without
 1054 meta-train tasks or offline datasets. RL hyperparameters are shared with SAC, and RND-specific
 1055 hyperparameters are set to match those in SISL. Additionally, for fair comparison, the ratio of
 1056 extrinsic to intrinsic rewards is aligned with SISL. We utilize the open-source code of RND at
 1057 <https://github.com/openai/random-network-distillation>.

1058 **PEARL**

1059 PEARL (Rakelly et al., 2019) is a context-based meta-RL algorithm that leverages a task encoder
 1060 q_e to derive task representations, which are then used to train a meta-policy. PEARL adapts
 1061 its learned policy quickly to unseen tasks without utilizing skills or offline datasets. Unlike the
 1062 original PEARL, which does not fine-tune during the meta-test phase, we modified it to include
 1063 fine-tuning on target tasks for a fair comparison. We utilize the open-source code of PEARL at
 1064 <https://github.com/katerakelly/oyster>.

1065 **PEARL+RND**

1066 PEARL+RND extends PEARL by incorporating RND to enhance exploration. Like SAC+RND, the
 1067 ratio of extrinsic to intrinsic rewards is set to match SISL for fair comparison.

1068 **SPiRL**

1069 SPiRL (Pertsch et al., 2021) is a skill-based RL algorithm that first learns a fixed low-level policy
 1070 from an offline dataset and then trains a high-level policy for specific tasks. SPiRL’s loss function
 1071 is detailed in Section 3, and for fair comparison, loss scaling is aligned with SISL. We utilize the
 1072 open-source code of SPiRL at <https://github.com/clvrai/spirl>.

1073 **SiMPL**

1074 SiMPL (Nam et al., 2022) is a skill-based meta-RL algorithm that uses both offline datasets and
 1075 meta-train tasks. While it shares SISL’s approach of extracting reusable skills and performing meta-
 1076 train and meta-test phases, SiMPL fixes the skill model without further updates during meta-training.
 1077 SiMPL’s loss function is also detailed in Section 3, and SiMPL’s implementation uses the same
 1078 hyperparameters as SISL to ensure a fair comparison. We utilize the open-source code of SiMPL at
 1079 <https://github.com/namsan96/SiMPL>.

1080

C.2 ENVIRONMENTAL DETAILS

1081

Kitchen

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

Figure C.1: Kitchen: An example of task (microwave→kettle→bottom burner→slide cabinet)

1097

The Franka Kitchen environment is a robotic manipulation setup based on the 7-DoF Franka robot. It is introduced by Gupta et al. (2020) and later adapted by Nam et al. (2022) to exclude task information from the observation space, making it more suitable for meta-learning. The environment features seven manipulatable objects: bottom burner, top burner, light switch, slide cabinet, hinge cabinet, microwave, and kettle.

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

Table C.1: List of meta-train tasks and meta-test tasks in Kitchen environment

Meta-train task				Meta-test task					
#	Subtask1	Subtask2	Subtask3	Subtask4	#	Subtask1	Subtask2	Subtask3	Subtask4
1	microwave	kettle	bottom burner	slide cabinet	1	microwave	bottom burner	light switch	top burner
2	microwave	bottom burner	top burner	slide cabinet	2	microwave	bottom burner	top burner	light switch
3	microwave	top burner	light switch	hinge cabinet	3	kettle	bottom burner	light switch	slide cabinet
4	kettle	bottom burner	light switch	hinge cabinet	4	microwave	kettle	top burner	hinge cabinet
5	microwave	bottom burner	hinge cabinet	top burner	5	kettle	bottom burner	slide cabinet	top burner
6	kettle	top burner	light switch	slide cabinet	6	kettle	light switch	slide cabinet	hinge cabinet
7	microwave	kettle	slide cabinet	bottom burner	7	kettle	bottom burner	top burner	slide cabinet
8	kettle	light switch	slide cabinet	bottom burner	8	microwave	bottom burner	slide cabinet	hinge cabinet
9	microwave	kettle	bottom burner	top burner	9	bottom burner	top burner	slide cabinet	hinge cabinet
10	microwave	kettle	slide cabinet	hinge cabinet	10	microwave	kettle	bottom burner	hinge cabinet
11	microwave	bottom burner	slide cabinet	top burner					
12	kettle	bottom burner	light switch	top burner					
13	microwave	kettle	top burner	light switch					
14	microwave	kettle	light switch	hinge cabinet					
15	microwave	bottom burner	light switch	slide cabinet					
16	kettle	bottom burner	top burner	light switch					
17	microwave	light switch	slide cabinet	hinge cabinet					
18	microwave	bottom burner	top burner	hinge cabinet					
19	kettle	bottom burner	slide cabinet	hinge cabinet					
20	bottom burner	top burner	slide cabinet	light switch					
21	microwave	kettle	light switch	slide cabinet					
22	kettle	bottom burner	top burner	hinge cabinet					
23	bottom burner	top burner	light switch	slide cabinet					
24	top burner	hinge cabinet	microwave	slide cabinet					
25	bottom burner	hinge cabinet	light switch	kettle					

1130

1131

1132

1133

1134 **Office**

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148 Figure C.2: Office: An example of task ((shed2, drawer)→(eraser1, container)→(pepsi2, tray))
1149

1150 The Office environment is a robotic manipulation setup featuring a 5-DoF robotic arm. Originally
1151 proposed by Pertsch et al. (2022), it has been modified to accommodate meta-learning tasks. The en-
1152 vironment simulates an office cleaning scenario with seven objects (eraser1, shed1, pepsi1, gatorade,
1153 eraser2, shed2, pepsi2) and three organizers (tray, container, drawer).

1154 The goal is to move objects to their designated organizers, with each object-to-organizer transfer
1155 constituting a subtask. A full task involves completing three sequential subtasks, where a subtask is
1156 defined as an (object, organizer) pair. For tasks involving a tray or container, the agent earns a reward
1157 of 1 for both picking and placing the object. For tasks involving the drawer, the agent receives 1
1158 reward point for each of the following actions: opening the drawer, picking, placing, and closing the
1159 drawer. This scoring setup allows for a maximum score of 8 within a 300-timestep horizon.

1160 An example task, depicted in Fig. C.2, requires the agent to sequentially complete: (shed2 →
1161 drawer), (eraser1 → container), and (pepsi2 → tray). The observation space is a 76-dimensional
1162 continuous vector, including object positions and robot state information, while the action space
1163 is an 8-dimensional continuous vector. The meta-train and meta-test sets include 25 and 10 tasks,
1164 respectively, similar to the configuration in the Kitchen environment. A detailed task list is provided
1165 in Table C.2.

1166

1167

1168 Table C.2: List of meta-train tasks and meta-test tasks in Office environment

#	Meta-train task			Meta-test task			
	Subtask1	Subtask2	Subtask3	#	Subtask1	Subtask2	Subtask3
1	(shed2, drawer)	(eraser1, container)	(pepsi2, tray)	1	(gatorade, drawer)	(eraser1, tray)	(pepsi2, container)
2	(shed2, container)	(eraser1, drawer)	(pepsi1, tray)	2	(eraser1, drawer)	(eraser2, container)	(pepsi1, tray)
3	(eraser1, tray)	(shed2, drawer)	(gatorade, container)	3	(eraser2, drawer)	(pepsi1, tray)	(gatorade, container)
4	(pepsi1, tray)	(eraser1, container)	(eraser2, drawer)	4	(shed2, drawer)	(pepsi2, tray)	(pepsi1, container)
5	(shed1, tray)	(shed2, drawer)	(pepsi2, container)	5	(shed2, container)	(gatorade, tray)	(eraser1, drawer)
6	(pepsi1, container)	(shed1, tray)	(eraser2, drawer)	6	(gatorade, container)	(eraser2, drawer)	(pepsi2, tray)
7	(gatorade, tray)	(eraser2, container)	(eraser1, drawer)	7	(gatorade, tray)	(shed1, container)	(eraser1, drawer)
8	(pepsi2, container)	(shed2, drawer)	(eraser1, tray)	8	(pepsi2, drawer)	(shed1, tray)	(pepsi1, container)
9	(shed2, drawer)	(gatorade, container)	(pepsi2, tray)	9	(pepsi1, tray)	(pepsi2, container)	(shed2, drawer)
10	(eraser1, container)	(pepsi2, drawer)	(shed1, tray)	10	(gatorade, drawer)	(pepsi1, container)	(eraser2, tray)
11	(eraser2, drawer)	(shed2, tray)	(pepsi2, container)				
12	(pepsi2, container)	(shed2, drawer)	(shed1, tray)				
13	(shed2, tray)	(pepsi1, container)	(eraser1, drawer)				
14	(gatorade, tray)	(eraser1, drawer)	(pepsi1, container)				
15	(eraser1, tray)	(shed1, drawer)	(gatorade, container)				
16	(eraser2, drawer)	(gatorade, container)	(shed2, tray)				
17	(shed2, tray)	(pepsi2, drawer)	(shed1, container)				
18	(pepsi1, container)	(pepsi2, tray)	(eraser1, drawer)				
19	(shed2, tray)	(gatorade, drawer)	(shed1, container)				
20	(gatorade, tray)	(pepsi1, container)	(pepsi2, drawer)				
21	(eraser1, tray)	(shed2, drawer)	(pepsi2, container)				
22	(eraser1, tray)	(gatorade, drawer)	(shed2, container)				
23	(pepsi1, container)	(shed2, drawer)	(eraser2, tray)				
24	(gatorade, drawer)	(shed1, tray)	(pepsi2, container)				
25	(eraser2, container)	(pepsi1, drawer)	(eraser1, tray)				

1184

1185

1186

1187

1188
1189**Maze2D**1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
12011202
1203

Figure C.3: Maze2D: Visualization of simulation and meta-train/test tasks in Maze2D

1204
1205
1206
1207
1208

The Maze2D environment is a navigation setup where a 2-DoF ball agent moves toward a goal point. Initially introduced by Fu et al. (2020b) and later adapted by Nam et al. (2022) for meta-learning tasks, the environment is defined on a 20x20 grid. The agent receives a reward of 1 upon reaching the goal point within a horizon of 2000 timesteps.

1209
1210
1211
1212
1213
1214
1215

Fig. C.3 (a) provides a visualization of the Maze2D environment, while Fig. C.3 (b) illustrates the meta-train and meta-test tasks. In Fig. C.3 (b), green squares indicate the goal points for 40 meta-train tasks, and red squares represent the goal points for 10 meta-test tasks. All tasks share the same starting point at (10, 10), marked by a blue cross. The observation space is a 4-dimensional continuous vector containing the ball's position and velocity, while the action space is a 2-dimensional continuous vector.

1216

AntMaze1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
12281229
1230

Figure C.4: AntMaze: Visualization of simulation and meta-train/test tasks in AntMaze

1231
1232
1233
1234
1235
1236

The AntMaze environment combines navigation and locomotion, replacing the 2-DoF ball from the Maze2D environment with a more complex 8-DoF quadruped Ant robot. Initially proposed by Fu et al. (2020b) and later adapted for meta-learning setups, the environment is defined on a 10x10 grid. The agent receives a reward of 1 upon reaching the goal point within a horizon of 1000 timesteps.

1237
1238
1239
1240
1241

Fig. C.4 (a) shows a simulation image of the AntMaze environment, and Fig. C.4 (b) depicts the meta-train and meta-test tasks. In Fig. C.4 (b), green squares mark the goal points for 20 meta-train tasks, while red squares denote the goal points for 10 meta-test tasks. All tasks share a common starting point at (5, 5), indicated by a blue cross. The observation space is a 29-dimensional continuous vector that includes the Ant's state and its (x, y) coordinates, while the action space is an 8-dimensional continuous vector.

1242 C.3 CONSTRUCTION OF OFFLINE DATASET
12431244 In this section, we detail the offline datasets used in our experiments. For the Office,
1245 Maze2D, and AntMaze environments, we employ rule-based oracle controllers provided by
1246 each environment. The Office oracle controller is available at <https://github.com/clvrai/skild>,
1247 while the Maze2D and AntMaze oracle controllers can be found in <https://github.com/Farama->
1248 Foundation/D4RL/tree/master. For the Kitchen environment, which only provides human demon-
1249 strations, we train a policy using behavior cloning to serve as the oracle controller.
12501251 For the Kitchen environment, 1M transitions are collected using 25 tasks that are not part of the
1252 training or test task sets $\mathcal{M}_{\text{train}} \cup \mathcal{M}_{\text{test}}$. Similarly, the Office environment collects 1M transitions
1253 using 80 tasks. The Maze2D and AntMaze environments follow the same approach, collecting
1254 0.5M transitions using 40 and 50 tasks respectively, with randomly sampled initial and goal points.
1255 Unlike SiMPL, which randomly samples initial and goal points for each trajectory in the Maze2D
1256 environment, we limit our data collection to 40 distinct tasks, resulting in trajectories that do not
1257 fully cover the map. To introduce noise in the demonstrations, Gaussian noise with various standard
1258 deviations σ is added to the oracle controller’s actions. For the Kitchen and Office environments,
1259 noise levels of $\sigma = 0.1, 0.2$, and 0.3 are used, while for Maze2D and AntMaze, $\sigma = 0.5, 1.0$, and
1260 1.5 are applied.
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296
1297

C.4 HYPERPARAMETER SETUP

1298
1299
1300
1301

In this section, we outline the hyperparameter setup for the proposed SISL framework. For high-level policy training, we adopt the hyperparameters from SiMPL for the Kitchen and Maze2D environments. For the Office and AntMaze environments, we conduct hyperparameter sweeps using the Kitchen and Maze2D configurations as baselines.

1302
1303
1304
1305
1306
1307
1308

To ensure a fair comparison, we inherit from SiMPL all hyperparameters that are shared with SISL, given its multiple loss functions, and we perform parameter sweeps only over SISL specific components, namely self-improving skill refinement and skill prioritization via maximum return relabeling. We explore prioritization temperature values $T \in [0.1, 0.5, 1.0, 2.0]$ and KLD coefficients $\lambda_{\text{imp}}^{\text{kld}} \in [0, 0.001, 0.002, 0.005]$ for skill exploration, selecting the best-performing configurations as defaults. Additionally, the ratio of intrinsic to extrinsic rewards is fixed at levels that show optimal performance in single-task SAC experiments.

1309
1310
1311
1312
1313
1314
1315
1316

For implementing the skill models (π_l, q, p) , we follow SPiRL by utilizing LSTM (Graves & Graves, 2012) for the skill encoder and MLP structures for the low-level skill policy and skill prior. For implementing the high-level models (π_h, Q_h, q_e) , we follow SiMPL by utilizing Set Transformer (Lee et al., 2019) for the task encoder and MLP structures for the high-level policy and value function. Additionally, for implementing the SISL, we utilize MLP structures for π_{imp} , Q_{imp} , and \hat{R} . The detailed hidden network sizes are presented in Table C.3 and Table C.4. Table C.3 presents the network architectures (the number of nodes in fully connected layers) and the hyperparameters shared across all environments, while Table C.4 details the environment-specific hyperparameter setups.

1317

Table C.3: Network Architecture and Shared Hyperparameters

	Group	Name	Environments			
			Kitchen	Office	Maze2D	AntMaze
Shared Hyperparameters	High-level	Discount Factor γ_h		0.99		
		Learning rate λ_h^{lr}		0.0003		
		Network size π_h, Q_h	[128]×6	[256]×4	[128]×6	
	Low-level	Buffer size B_{on}^i		10K		
		KLD coefficient λ_i^{kld}		0.0005		
		Skill length H_s		10		
		Skill dimension dim(z)		10		
		# of priority update trajectory N_{priority}		200		
		Learning rate $\lambda_{\text{skill}}^{\text{lr}}$		0.001		
		Learning rate $\lambda_{\text{reward}}^{\text{lr}}$		0.0003		
	Skill-Improvement	Network size \hat{R}		[128]×3		
		Network size π_l		[128]×6		
		Network size p		[128]×7		
		Network size q		LSTM[128]		
		RND state dropout ratio		0.7		
		RND output dimension		10		
		Learning rate $\lambda_{\text{imp}}^{\text{lr}}$		0.0003		
		Network size $\pi_{\text{imp}}, Q_{\text{imp}}$		[256]×4		
		Network size f, \hat{f}		[128]×4		

1334

Table C.4: Environmental Hyperparameters

	Group	Name	Environments			
			Kitchen	Office	Maze2D	AntMaze
Environmental Hyperparameters	High-level	Buffer size B_h^i	3000	3000	20000	20000
		KLD coefficient λ_h^{kld}	0.03	0.03	0.001	0.0003
		Task latent dimension dim(e)	5	5	6	6
	Low-level	Batch size (RL, per task)	256	256	1024	512
		Batch size (context, per task)	1024	1024	8192	4096
	Skill-Improvement	Skill refinement K_{iter}	2000	2000	1000	2000
		Prioritization temperature T	1.0	1.0	0.5	0.5
		Buffer size B_{imp}^i	100K	200K	100K	300K
		Discount factor γ_{imp}	0.95	0.95	0.99	0.99
		RND extrinsic ratio δ_{ext}	5	2	10	10
		RND intrinsic ratio δ_{in}	0.1	0.1	0.01	0.01
		Entropy coefficient $\lambda_{\text{imp}}^{\text{ent}}$	0.2	0.2	0.1	0.1
		0.005 (Expert)				
		0.005 ($\sigma = 0.1$)				
		0.002 ($\sigma = 0.2$)	0.001	0.001	0.001	
		0.001 ($\sigma = 0.3$)				

1350 D ADDITIONAL COMPARISON RESULTS

1351 In this section, we provide additional comparison results against baseline algorithms. Following
 1352 Fig. 6, additional performance comparisons across all environments and noise levels are presented
 1353 in Section D.1, limited offline dataset size in Section D.2, random noise injection in Section D.3,
 1354 and diverse sub-optimal offline datasets in Section D.4.

1355 D.1 PERFORMANCE COMPARISON

1357 Fig. D.1 presents the learning curves of average returns for the algorithms on test tasks, corre-
 1358 sponding to the experiments summarized in Table 1. Rows represent evaluation environments,
 1359 and columns denote noise levels. SISL consistently demonstrated superior robustness, outper-
 1360 forming all baselines across various environments and noise levels. At higher noise levels such
 1361 as $\text{Noise}(\sigma = 0.2)$, $\text{Noise}(\sigma = 0.3)$ for Kitchen and Office, and $\text{Noise}(\sigma = 1.0)$, $\text{Noise}(\sigma = 1.5)$ for
 1362 Maze2D and AntMaze, significant performance improvements highlight the effectiveness of skill
 1363 refinement in addressing noisy demonstrations. Even with high-quality offline datasets like Expert
 1364 and $\text{Noise}(\sigma = 0.1)$ for Kitchen and Office, and $\text{Noise}(\sigma = 0.5)$ for Maze2D and AntMaze, SISL
 1365 further improved performance by learning task-relevant skills. These learning curves align with the
 1366 trends observed in the main experiments, confirming that skill refinement enhances performance
 1367 across various dataset qualities and effectively adapts to the task distribution.

1368 Interestingly, SPiRL and SiMPL sometimes perform better with mild Gaussian noise than with ex-
 1369 pert data, especially in Maze2D and AntMaze. Our analysis suggests that mild noise increases the
 1370 diversity of behaviors in the dataset without significantly reducing success rates, allowing agents to
 1371 reach goals via more diverse paths. This expands state-action coverage (by about 7.3% in Maze2D
 1372 and 5.2% in AntMaze), helping skill-based methods learn more flexible and reusable skills. How-
 1373 ever, as the noise level increases further, a significant portion of trajectories fail to reach the goal,
 1374 leading to low quality skill learning and degraded downstream performance.

1402 1403 Figure D.1: Learning curves across considered environments and noise levels

1404
1405 D.2 LIMITED OFFLINE DATASET SIZE

1406 To further investigate the robustness of SISL, we conducted additional experiments to assess the im-
 1407 pact of dataset size on skill learning and downstream performance. While SISL primarily addresses
 1408 the challenge of refining corrupted skills from noisy demonstrations through online interaction, the
 1409 size of the offline dataset remain important factors, especially in practical scenarios. To assess
 1410 the impact of dataset size, we conducted additional experiments on the Kitchen environment using
 1411 the same expert dataset but reduced to 50% (0.5M), 25% (0.25M), and 10% (0.1M) of its origi-
 1412 nal dataset size (1M). As shown in Table D.1, SISL consistently outperforms baselines even under
 1413 limited expert data, and its performance degrades more gracefully compared to baselines. These
 1414 results confirm SISL’s ability to refine skills even from limited data, which is particularly valuable
 1415 in real-world scenarios where collecting high-quality demonstrations is costly or infeasible.
 1416

1417 Table D.1: Final performance on the Kitchen environment with varying sizes of expert datasets.

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 Dataset Size	1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 SPiRL	1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 SiMPL	1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 SISL
Expert(100%)	3.11 \pm 0.33	3.40 \pm 0.18	3.97 \pm 0.09
Expert(50%)	3.11 \pm 0.30	3.29 \pm 0.18	3.65 \pm 0.06
Expert(25%)	2.91 \pm 0.29	2.99 \pm 0.13	3.60 \pm 0.14
Expert(10%)	2.37 \pm 0.28	2.56 \pm 0.09	3.28 \pm 0.15

1425
1426 D.3 RANDOM NOISE INJECTION

1427 While Gaussian noise is a widely used approach for degrading demonstration quality in offline RL
 1428 studies, it does not fully capture the diverse and unstructured nature of real-world noise such as
 1429 sensor failures, occlusions, or actuator malfunctions. In our main experiments, we adopted multi-
 1430 level Gaussian noise for two reasons: (1) it is a standard and accepted method for systematically
 1431 degrading demonstration quality, and (2) it enables controlled analysis of robustness under varying
 1432 degrees of skill degradation. Notably, in domains such as Kitchen and Office, sufficiently high
 1433 levels of Gaussian noise render learned skills nearly unusable, effectively mimicking real-world
 1434 failure scenarios in precision control tasks and providing a highly challenging regime for evaluating
 1435 robustness.

1436 To further assess the generality of our robustness claims and address concerns about the limitations
 1437 of Gaussian noise, we conducted an additional experiment using random action injection in the
 1438 Kitchen environment. This approach better simulates real-world anomalies such as actuator faults
 1439 or sensor failures. Specifically, at each timestep, the oracle action was replaced with a randomly
 1440 sampled action with a probability of 25%, 50%, or 100% (resulting in a uniformly random dataset
 1441 at the highest level). This method introduces severe, unstructured corruption into the offline dataset,
 1442 representing worst-case real-world failures beyond the smooth degradations induced by Gaussian
 1443 noise. As shown in Table D.2, SISL consistently outperformed baseline methods, confirming its
 1444 robustness even under extreme, non-gaussian corruption. These results demonstrate SISL’s ability to
 1445 refine useful behaviors and maintain strong performance in the presence of severe dataset corruption,
 1446 further validating the generality of our robustness claims.

1447 Table D.2: Final performance on the Kitchen environment with the random noise injection.

1449 1450 1451 1452 1453 1454 1455 1456 1457 Noise Type	1449 1450 1451 1452 1453 1454 1455 1456 1457 SPiRL	1449 1450 1451 1452 1453 1454 1455 1456 1457 SiMPL	1449 1450 1451 1452 1453 1454 1455 1456 1457 SISL
Expert	3.11 \pm 0.33	3.40 \pm 0.18	3.97 \pm 0.09
Injection(25%)	0.80 \pm 0.15	0.77 \pm 0.12	3.42 \pm 0.11
Injection(50%)	0.14 \pm 0.10	0.04 \pm 0.05	3.26 \pm 0.15
Injection(100%)	0.07 \pm 0.08	0.02 \pm 0.05	1.68 \pm 0.18

1458
1459

D.4 DIVERSE SUB-OPTIMAL DATASET

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

Beyond injecting noise into expert demonstrations, we also considered datasets of diverse quality sub-optimal demonstration. Our decision to focus on noisy expert trajectories stems from the specific challenge we aim to address. Unlike offline-RL, which typically assumes access to reward-labeled trajectories and aims to improve performance from sub-optimal data, our setup considers reward-free offline data where noise degrades originally near-optimal demonstrations. This setting better reflects our goal of studying how exploration can help enhance skill learning when clean supervision is unavailable. To test whether robustness hold across different data qualities, we conducted additional experiments in the Kitchen domain using three dataset types: expert (return = 4), medium (return ≈ 2), and random (collected from a uniformly random policy). As summarized in Table D.3, SISL consistently outperforms other methods across all dataset types, further validating its robustness to data sub-optimality.

1471
1472

Table D.3: Final performance on the Kitchen environment with diverse quality of offline datasets.

1473
1474
1475
1476
1477

Dataset	SPiRL	SiMPL	SISL
Expert	3.11 ± 0.33	3.40 ± 0.18	3.97 ± 0.09
Medium	2.62 ± 0.27	3.17 ± 0.26	3.77 ± 0.21
Random	0.07 ± 0.08	0.02 ± 0.05	1.68 ± 0.18

1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512 **E COMPUTATIONAL COMPLEXITY**
15131514 Table E.1 summarizes SISL’s computational complexity, showing that the meta-train time increases
1515 by about 16% relative to SiMPL, which we view as a modest overhead given the performance gains.
1516 For a fair comparison, we keep the amount of training and interaction identical to SiMPL as de-
1517 scribed in Section 5.1, so the number of samples and policy updates does not exceed that of SiMPL.1518 Table E.2 summarizes the complexity of SISL ablations. “SISL w/o $P_{\mathcal{B}_{\text{off}}}$ ” and “SISL w/o \mathcal{B}_{off} ” do
1519 not perform reward model training and only add skill refinement compared to SiMPL, increasing
1520 computation time by about 10%. In contrast, “SISL w/o π_{imp} ”, “SISL w/o \mathcal{B}_{on} ”, and full SISL addi-
1521 tionally perform reward model training, incurring an additional increase of about 3% in computation
1522 time. In particular, “SISL w/o π_{imp} ” differs from full SISL by only 2.3% in training time, indicating
1523 that introducing π_{imp} does not lead to a substantial increase in computation cost.1524 Thus, the 16% overhead mainly arises from skill refinement and reward model training rather than
1525 additional policy learning. This overhead is modest in light of the performance gains: as shown
1526 in Fig. 6, SiMPL does not improve under high-noise settings even with extended training, whereas
1527 SISL continues to improve, justifying this computational overhead. Importantly, considering that the
1528 main goal of meta-RL is adaptation to unseen tasks, SISL does not require additional computational
1529 cost during the fine-tuning phase and maintains similar computation time as SiMPL in the meta-test
1530 phase while still achieving superior performance compared to baseline algorithms.1531
1532 **Table E.1: Comparison of total training time for SiMPL and SISL in Kitchen(Expert).**1533
1534

Algorithm	Training time (h)	Δ time vs. SiMPL (%)
SiMPL	42.16	-
SISL	48.96	+16.1

1535
1536 **Table E.2: Comparison of total training time for SISL ablation variants in Kitchen(Expert).**1537
1538

Algorithm	Training time (h)	Δ time vs. SiMPL (%)
SISL w/o \mathcal{B}_{off}	46.23	+9.6
SISL w/o $P_{\mathcal{B}_{\text{off}}}$	46.71	+10.7
SISL w/o π_{imp}	47.98	+13.8
SISL w/o \mathcal{B}_{on}	48.81	+15.7

1566 F FURTHER ANALYSIS RESULTS FOR THE SISL FRAMEWORK

1567 In this section, we provide a more detailed analysis and visualization results of the skill refinement
 1568 process in the SISL. The analysis performed includes the evolution of the mixing coefficient β in
 1569 Section F.1, visualization of the refined skills and the corresponding skill sequence visualization
 1570 in Section F.2, task representation in Section F.3, learning stability of the reward model during
 1571 the meta-train phase in Section F.4, and **comparison of skill trajectory with baseline algorithms in**
 1572 **Section F.5**.

1573 F.1 EVOLUTION OF THE MIXING COEFFICIENT β

1575 Fig. F.1 illustrates the evolution of the mixing coefficient β during the meta-train phase across all
 1576 environments and noise levels. Initially, low β values reflect reliance on offline datasets for skill
 1577 learning, particularly in high-return environments like Kitchen and Office, where training starts with
 1578 β values close to zero. This approach prevents performance degradation by avoiding early depen-
 1579 dence on lower-quality online samples, while ensuring gradual and stable changes in the skill distri-
 1580 bution. As training progresses, the quality of online samples improves, leading to a gradual increase
 1581 in β , which facilitates greater utilization of online data for skill refinement. For offline datasets with
 1582 higher noise levels, β converges to higher values. Consequently, SISL learns increasingly effective
 1583 skills as training proceeds, achieving superior performance on unseen tasks, underscoring the im-
 1584 portance of SISL’s ability to dynamically balance the use of offline and online data based on dataset
 1585 quality.

1596 Figure F.1: The evolution of the mixing coefficient β during the meta-train phase

1597 F.2 ADDITIONAL VISUALIZATIONS OF REFINED SKILLS

1599 Here, we present additional visualization results for SISL in the Kitchen and Maze2D environments.
 1600 Fig. F.2 illustrates the results in the Kitchen environment ($\sigma = 0.3$) after training is completed. On
 1601 the left, the t-SNE visualization shows the skill representation $z \sim \pi_{h,\theta}$, while the right side high-
 1602 lights the distribution of skills corresponding to each subtask in the t-SNE map and how these skills
 1603 solve subtasks over time in the Kitchen environment. In the t-SNE map, clusters of markers with
 1604 the same shape but different colors indicate that identical subtasks share skills across different tasks.
 1605 From the results, it is evident that the skills learned using the proposed SISL framework are well-
 1606 structured, with representations accurately divided according to subtasks. This enables the high-level
 1607 policy to select appropriate skills for each subtask, effectively solving the tasks. Furthermore, while
 1608 SiMPL trained on noisy data often succeeds in only one or two subtasks, SISL progressively refines
 1609 skills even in noisy environments, successfully solving most given subtasks.

1610 Fig. F.3 illustrates how the high-level policy utilizes refined skills obtained at different meta-train
 1611 iterations (0.5K, 2K, and 4K) during the meta-test phase to solve a task in Maze2D ($\sigma = 1.5$).
 1612 When using skills trained solely on the offline dataset (meta-train iteration 0.5K), the agent failed to
 1613 perform adequate exploration at meta-test iteration 0K. Even at meta-test iteration 0.5K, the noise
 1614 within the skills hindered the agent’s ability to converge to the target task. In contrast, after refining
 1615 the skills at meta-train iteration 2K, the agent successfully explored most of the maze during explo-
 1616 ration, except for certain tasks in the upper-left region, and achieved all meta-test tasks by iteration
 1617 0.5K. Finally, using skills refined at meta-train iteration 4K, the agent not only explored almost
 1618 the entire maze at meta-test iteration 0K but also completed all meta-test tasks by iteration 0.5K.
 1619 Additionally, trajectories generated with refined skills showed significantly reduced deviations and
 1620 shorter paths compared to those using noisy skills. Overall, the results in Fig. F.3 highlight the
 1621 importance of SISL’s skill refinement process in ensuring robust and efficient performance.

Figure F.2: t-SNE visualization of skill representations (left) and refined skill trajectories for various subtasks (right) in Kitchen ($\sigma = 0.3$). In the skill representation, marker colors denote tasks, while marker shapes indicate subtasks.

Figure F.3: Illustration of trajectories of refined skills during the meta-test phase in Maze2D ($\sigma = 1.5$), across various training and test iterations.

1674
1675

F.3 IMPROVEMENT IN TASK REPRESENTATION THROUGH SKILL REFINEMENT

1676
1677
1678
1679
1680
1681
1682

Fig. F.4 illustrates the effect of skill refinement on task representation through t-SNE visualizations of task embeddings $e^T \sim q_e$ in the Kitchen environment ($\sigma = 0.3$), with different tasks represented by distinct colors. In Fig. F.4 (a), the task encoder is trained using fixed skills directly derived from noisy demonstrations. The noisy skills obstruct the encoder’s ability to form clear task representations, making task differentiation challenging. This limitation highlights why, in SiMPL, relying on skills learned from noisy datasets can sometimes result in poorer performance compared to SPiRL, which focuses on task-specific skill learning.

1683
1684
1685
1686
1687
1688
1689

Conversely, Fig. F.4 (b) presents the t-SNE visualization when the task encoder is trained during the meta-train phase with refined skills. The improved skills enable the encoder to form more distinct and task-specific representations, facilitating better task discrimination. This improvement allows the high-level policy to differentiate tasks more effectively and select optimal skills for each, thereby enhancing meta-RL performance. These findings demonstrate that the proposed skill refinement not only improves the low-level policy but also significantly enhances the task encoder’s ability to represent and distinguish tasks, contributing to overall performance improvements.

1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
17021703
1704
1705
1706
1707

Figure F.4: t-SNE visualization of task representations in the Kitchen environment ($\sigma = 0.3$): (a) Using only the noisy offline dataset, (b) Proposed SISL trained with refined skills

1710

F.4 STABILITY OF REWARD MODEL LEARNING

1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722

Unlike offline-RL, which typically relies on reward-labeled datasets, skill-based RL operates on reward-free offline data. In SISL, only the skills are learned from the noisy offline trajectories, while the reward model and the high-level policy are trained online using clean, noise-free training tasks, as in SiMPL. As shown in Eq. (4), the reward model is trained using transitions sampled from $\mathcal{B}_{\text{imp}}^i$ and $\mathcal{B}_{\text{on}}^i$, which contain only online trajectories collected by interacting with training task i . Since these buffers contain no offline data, the reward model is unaffected by offline noise. To further support this point, we present Table F.1, which shows the MSE of the reward model remains consistently low across different offline noise settings in the Kitchen environment. These results indicate that the reward model maintains high accuracy and continues to support effective relabeling even when offline skill pretraining is noisy.

1723
1724
1725
1726
1727

Table F.1: MSE of reward model under different noise levels in the Kitchen environment.

	Kitchen(Expert)	Kitchen($\sigma=0.1$)	Kitchen($\sigma=0.2$)	Kitchen($\sigma=0.3$)
MSE	0.005 ± 0.001	0.005 ± 0.001	0.004 ± 0.001	0.005 ± 0.001

1728 F.5 COMPARISON OF SKILL TRAJECTORY VISUALIZATIONS
1729

1730 To visually demonstrate the skill difference between the baseline algorithm and SISL, we have added
1731 a visualization comparison of the skill trajectories for SPiRL, SiMPL, and SISL. Specifically, Fig.
1732 F.5 and F.6 present the skill trajectory visualizations of the microwave-opening and bottom-burner
1733 control subtasks in the Kitchen($\sigma = 0.3$). The SPiRL and SiMPL fail to complete these subtasks due
1734 to noise in the learned skills, either do not succeed in opening the microwave door or fail to properly
1735 reach the bottom-burner switch. In contrast, SISL successfully grasps and opens the microwave door
1736 and correctly manipulates the bottom-burner. These results highlight the substantial impact of noise
1737 in offline demonstrations on subtask performance, and demonstrate that SISL progressively refines
1738 skills even in noisy environments, successfully solving most given subtasks.

1758 Figure F.5: Comparison of skill trajectory visualizations for the microwave-opening subtask in
1759 Kitchen($\sigma = 0.3$) across algorithms.

1780 Figure F.6: Comparison of skill trajectory visualizations for the bottom-burner control subtask in
1781 Kitchen($\sigma = 0.3$) across algorithms.

1782 G ADDITIONAL ABLATION STUDIES 1783

1784 In this section, we conduct additional ablation studies for Kitchen and Maze2D environments across
1785 all noise levels. These studies include component evaluation and SISL’s skill refinement-related
1786 hyperparameters discussed in Section G.1, prioritization temperature T in Section G.2, the KLD
1787 coefficient $\lambda_{\text{imp}}^{\text{kld}}$ for the skill-improvement policy in Section G.3, additional component evaluation
1788 on RND and re-initialization in Section G.4 skill refinement interval K_{iter} in Section G.5, and com-
1789 parison with Goal-Conditioned RL in Section G.6.

1790 1791 G.1 COMPONENT EVALUATION 1792

1793 Fig. G.1 presents comprehensive results across all noise levels from the component evaluation in
1794 Section 5.5. While improvements are modest under conditions with high-quality offline datasets,
1795 such as Expert and Noise ($\sigma = 0.1$) for Kitchen, and Expert and Noise ($\sigma = 0.5$) for Maze2D,
1796 notable performance gains are still observed. The significant degradation observed in the absence
1797 of the skill-improvement policy π_{imp} highlights its crucial role in mitigating minor noise and dis-
1798 covering improved paths. For higher noise levels, such as Noise ($\sigma = 0.2$), Noise ($\sigma = 0.3$) for
1799 Kitchen, and Noise ($\sigma = 1.0$), Noise ($\sigma = 1.5$) for Maze2D, excluding the online buffer or skill
1800 prioritization via maximum return relabeling (\mathcal{B}_{on} or $P_{\mathcal{B}_{\text{off}}}$) caused significant performance drops,
1801 emphasizing the importance of maximum return relabeling in SISL. Additionally, relying solely on
1802 the online buffer without utilizing the offline dataset led to performance deterioration, demon-
1803 strating the offline dataset’s value in addressing meta-test tasks involving behaviors not available during
1804 meta-train. Beyond these specific findings, most trends align with the results discussed in the main
1805 text, further validating the effectiveness of SISL’s components across different noise levels.

1821 1822 Figure G.1: Component evaluation across all noise levels in Kitchen and Maze2D

1823 1824 G.2 PRIORITIZATION TEMPERATURE T

1825 The prioritization temperature T regulates the balance between sampling from online and offline
1826 buffers. Fig. G.2 shows performance across different noise levels in Kitchen and Maze2D envi-
1827 ronments as T varies. Low T values lead to excessive sampling from high-return buffers, while
1828 high T approximates uniform sampling, diminishing the prioritization effect. Both environments
1829 experienced degraded performance at $T = 0.1$ and $T = 2.0$, highlighting the importance of proper
1830 tuning. In the Kitchen environment (maximum return = 4), $T = 1.0$ achieved the best performance
1831 across all noise levels, whereas in the Maze2D environment (maximum return = 1), $T = 0.5$ was
1832 optimal. This difference occurs because environments with lower max returns exhibit smaller gaps
1833 between low- and high-return buffers, reducing the effect of prioritization. Based on these findings,
1834 we suggest a practical guideline: select T roughly in proportion to the environment’s maximum
1835 achievable return. This approach offers a principled starting point for tuning T without requiring an
1836 extensive hyperparameter sweep, thereby improving usability and reproducibility. Accordingly, we
1837 set the best-performing hyperparameter values as defaults for each environment.

1836 G.3 KLD COEFFICIENT $\lambda_{\text{imp}}^{\text{kld}}$
1837

1838 The KLD coefficient $\lambda_{\text{imp}}^{\text{kld}}$ regulates the strength of the KLD term between the skill-improvement
1839 policy and the action distribution induced by the prioritized online buffer $\mathcal{B}_{\text{on}}^i$ for each task \mathcal{T}^i . Fig.
1840 G.3 illustrates performance variations with $\lambda_{\text{imp}}^{\text{kld}} \in [0, 0.001, 0.002, 0.005]$.
1841

1842 In the Kitchen environment, $\lambda_{\text{imp}}^{\text{kld}} = 0.005$ performed best for Expert and Noise ($\sigma = 0.1$), while
1843 $\lambda_{\text{imp}}^{\text{kld}} = 0.002$ and $\lambda_{\text{imp}}^{\text{kld}} = 0.001$ were optimal for Noise ($\sigma = 0.2$) and Noise ($\sigma = 0.3$), respectively.
1844 At lower noise levels, the high-level policy benefits from quickly following high-return samples,
1845 whereas at higher noise levels, focusing on exploration to discover shorter paths becomes more ad-
1846 vantageous. For the Maze2D environment, performance was consistent across $\lambda_{\text{imp}}^{\text{kld}} = 0.001, 0.002$,
1847 and 0.005, with only minor variations observed. However, when $\lambda_{\text{imp}}^{\text{kld}} = 0$, removing the KLD term
1848 resulted in significant performance degradation across all noise levels in both Kitchen and Maze2D
1849 environments. This highlights the necessity of guidance from high-return samples for effectively
1850 solving long-horizon tasks. Based on these results, we selected the best-performing hyperparameter
1851 values as defaults for each environment.
1852

1868 Figure G.2: Impact of the prioritization temperature T across all noise levels in Kitchen and Maze2D
1869

1888 Figure G.3: Impact of the KLD coefficient $\lambda_{\text{imp}}^{\text{kld}}$ across all noise levels in Kitchen and Maze2D
1889

1890
1891

G.4 ADDITIONAL COMPONENT EVALUATION

1892
1893
1894
1895

Following the ablation of SISL’s core components in Section G.1, we performed additional ablations on the remaining components that could affect performance. These evaluations are conducted in the Kitchen environment using both a Expert and a high-noise condition Noise($\sigma = 0.3$), and the results are shown in Table G.1.

1896
1897
1898
1899
1900

The SISL w/o RND is a variant that excludes RND from skill-improvement policy π_{imp} training and relies solely on SAC. The results show performance degradation compared to full SISL, with especially large drops under high-noise conditions where exploration capability is critical. This suggests that RND encourages exploration toward rare or less frequently visited states, enabling the discovery of more diverse and useful trajectories.

1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912

The SISL w/o Re-Initialize refers to a variant that continues training the high-level policy π_h without re-initializing it at each K_{iter} during the meta-training process. In SISL, the skill model is periodically updated every K_{iter} steps, which effectively changes the environment dynamics observed by the high-level policy. Continuing to train the same high-level policy across different skill sets introduces non-stationarity, leading to instability. To address this, we reset both the policy parameters and the buffer at each skill update so that the high-level policy can re-learn from scratch under a new, stable MDP defined by the updated skills. This technique is consistent with practices in continual and safe reinforcement learning, where re-initialization is often used to manage sudden changes in task dynamics (Kim et al., 2023; Kong et al., 2024). To empirically validate this decision, we conducted ablation experiments on high-level policy re-initialization. The results show that removing re-initialization leads to a substantial performance drop, supporting the necessity of this design choice.

1913
1914
1915
1916
1917

Table G.1: Comparison of SISL with/without RND and re-initialization.

Dataset	SISL	SISL w/o RND	SISL w/o Re-Initialize
Kitchen(Expert)	3.97 ± 0.09	3.90 ± 0.14	3.11 ± 0.22
Kitchen($\sigma = 0.3$)	3.48 ± 0.07	3.14 ± 0.10	0.41 ± 0.11

1918

G.5 SKILL REFINEMENT INTERVAL K_{iter} 1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930

As shown in Fig. 6, the high-level policy π_h in the Kitchen environment typically requires at least 1K iterations within each interval to improve and converge, implying that if K_{iter} is too small, skill refinement is triggered before π_h has sufficiently adapted to the current skill library. Based on this observation, we used $K_{\text{iter}} = 2000$ as the default setting in the Kitchen environment. To validate this intuition more rigorously, we conducted hyperparameter search over $K_{\text{iter}} \in \{100, 500, 1000, 2000, 5000\}$ in the Kitchen ($\sigma = 0.3$) setting. The results confirm our hypothesis: with $K_{\text{iter}} = 100$, π_h is updated before it can meaningfully exploit the skills, leading to a substantial performance drop. Conversely, when $K_{\text{iter}} = 5000$, π_h converges well but skill refinement happens too infrequently, reducing the overall performance gain. These findings support the reasoning behind our chosen interval.

1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943Figure G.4: Impact of the skill refinement interval K_{iter} in Kitchen($\sigma = 0.3$)

1944
1945

G.6 COMPARISON WITH GOAL-CONDITIONED RL

1946
1947
1948
1949
1950
1951
1952
1953
1954

We first note that standard goal-conditioned RL (GCRL) assumes explicit, environment-provided goals and single-task learning, whereas in our meta-RL setting no goals are given and the agent must infer task while learning a policy that generalizes across many tasks. Despite these differences, to provide an empirical reference point, we modify our environments to explicitly provide goals and evaluate a representative GCRL method, HER (Andrychowicz et al., 2017) with SAC, trained directly on the test tasks without offline data. As presented in Table G.2, HER achieves notably lower performance than SISL in Maze2D and fails to make progress in AntMaze, where the success rate remains at zero. Even with explicit goals, these sparse-reward long-horizon tasks appear difficult to solve without pretrained skills, which helps contextualize the advantages of our framework.

1955

1956

Table G.2: Final performance of goal-conditioned RL (HER) given a target goal.

1957
1958
1959
1960
1961
1962
1963
1964
1965
1966

Environment	SAC+HER	SISL
Maze2D(Expert)		0.87 \pm 0.05
Maze2D($\sigma = 0.5$)	0.37 \pm 0.09	0.89 \pm 0.03
Maze2D($\sigma = 1.0$)		0.93 \pm 0.05
Maze2D($\sigma = 1.5$)		0.99 \pm 0.02
AntMaze(Expert)		0.81 \pm 0.08
AntMaze($\sigma = 0.5$)	0.00 \pm 0.00	0.82 \pm 0.05
AntMaze($\sigma = 1.0$)		0.60 \pm 0.02
AntMaze($\sigma = 1.5$)		0.41 \pm 0.01

1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997