
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELF-IMPROVING SKILL LEARNING FOR ROBUST
SKILL-BASED META-REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Meta-reinforcement learning (Meta-RL) facilitates rapid adaptation to unseen
tasks but faces challenges in long-horizon environments. Skill-based approaches
tackle this by decomposing state-action sequences into reusable skills and employ-
ing hierarchical decision-making. However, these methods are highly susceptible
to noisy offline demonstrations, leading to unstable skill learning and degraded
performance. To address this, we propose Self-Improving Skill Learning (SISL),
which performs self-guided skill refinement using decoupled high-level and skill
improvement policies, while applying skill prioritization via maximum return re-
labeling to focus updates on task-relevant trajectories, resulting in robust and sta-
ble adaptation even under noisy and suboptimal data. By mitigating the effect
of noise, SISL achieves reliable skill learning and consistently outperforms other
skill-based meta-RL methods on diverse long-horizon tasks.

1 INTRODUCTION

Reinforcement Learning (RL) has achieved significant success in domains such as game environ-
ments and robotic control (Mnih et al., 2015; Andrychowicz et al., 2020). However, it struggles
to adapt quickly to new tasks. Meta-RL addresses this limitation by enabling rapid adaptation to
unseen tasks through meta-learning how policies solve problems (Duan et al., 2016; Finn et al.,
2017). Among various approaches, context-based meta-RL stands out for its ability to represent
similar tasks with analogous contexts and leverage this information in the policy, facilitating quick
adaptation to new tasks (Rakelly et al., 2019; Zintgraf et al., 2019). Notably, PEARL (Rakelly et al.,
2019) has been widely studied for its high sample efficiency, achieved through off-policy learning,
which allows for the reuse of previous samples. Despite these strengths, existing meta-RL meth-
ods face challenges in long-horizon environments, where extracting meaningful context information
becomes difficult, hindering effective learning.

Skill-based approaches address these challenges by breaking down long state-action sequences into
reusable skills, facilitating hierarchical decision-making and enhancing efficiency in complex tasks
(Pertsch et al., 2021; 2022; Shi et al., 2023). Among these, SPiRL (Pertsch et al., 2021) defines
skills as temporal abstractions of actions, employing them as low-level policies within a hierarchi-
cal framework to achieve success in long-horizon tasks. SiMPL (Nam et al., 2022) builds on this
by extending skill learning to meta-RL, using offline expert data to train skills and a context-based
high-level policy for task-specific skill selection. Despite these advancements, such methods are
highly susceptible to noisy offline demonstrations, which can destabilize skill learning and reduce
reliability. In real-world settings, noise often stems from factors like infrastructure aging or environ-
mental perturbations, making it crucial to design methods that remain robust under such conditions
(Brys et al., 2015; Chae et al., 2022; Yu et al., 2024a).

While noisy demonstration handling has been explored in other RL settings (Sasaki & Yamashina,
2020; Mandlekar et al., 2022), skill-based meta-RL has largely overlooked this challenge. We iden-
tify a critical failure mode: when offline data are suboptimal, the skill library becomes corrupted,
and this degradation propagates to the high-level policy, ultimately harming adaptation performance.
To address this, we propose Self-Improving Skill Learning (SISL), a robust skill-based meta-RL
framework with two key contributions: (1) Decoupled skill self-improvement, achieved through a
dedicated improvement policy that perturbs trajectories near the offline data distribution, discovers
higher-quality rollouts, and supervises its own updates via a prioritized online buffer. This process

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) (b) (c)

Starting point End pointTest TaskTrain Task Starting point End point ExplorationPath Skill

Figure 1: Sample trajectories in the Maze2D environment: (a) Noisy demonstrations from the offline
dataset, (b) Trajectories explored by the exploration policy near the noisy dataset to uncover useful
skills, and (c) Trajectories utilizing refined skills to solve unseen test tasks

progressively denoises the skill library while preserving stability. (2) Skill prioritization via max-
imum return relabeling, which evaluates offline trajectories with a learned reward model, assigns
task-relevant hypothetical returns, and reweights them through a softmax prioritization scheme. This
suppresses noisy or irrelevant samples and focuses skill updates on the most beneficial trajectories
for downstream adaptation. Together, these components dynamically balance offline and online data
contributions, yielding a progressively cleaner skill library and accelerating meta-RL convergence.
To our knowledge, SISL is the first framework to explicitly address suboptimal demonstrations in
skill-based meta-RL through both exploration-guided refinement and principled relabeling, signifi-
cantly improving robustness and generalization of skill-learning in real-world noisy scenarios.

Fig. 1 illustrates how the proposed algorithm learns effective skills from noisy demonstrations in
the Maze2D environment, where the agent starts at a designated point and must reach an endpoint
for each task. Fig. 1(a) shows noisy offline trajectories, which fail to produce effective skills when
used directly. In contrast, Fig. 1(b) demonstrates how the prioritized refinement framework uses
the improvement policy to navigate near noisy trajectories, identifying paths critical for solving
long-horizon tasks and refining useful skills through prioritization. Finally, Fig. 1(c) shows how
the high-level policy applies these refined skills to successfully solve unseen tasks. These results
highlight the method’s ability to refine and prioritize skills from noisy datasets, ensuring stable
learning and enabling the resolution of long-horizon tasks in unseen environments. This paper is
organized as follows: Section 3 provides an overview of meta-RL and skill learning, Section 4 details
the proposed framework, and Section 5 presents experimental results showcasing the framework’s
robustness and effectiveness, along with an ablation study of key components.

2 RELATED WORKS

Skill-based Reinforcement Learning: Skill-based RL has gained traction for tackling complex
tasks by leveraging temporally extended actions. Researchers have proposed information-theoretic
approaches to discover diverse and predictable skills (Gregor et al., 2016; Eysenbach et al., 2018;
Achiam et al., 2018; Sharma et al., 2019), with recent work improving skill quality through addi-
tional constraints and objectives (Strouse et al., 2022; Park et al., 2022; 2023; Hu et al., 2024). In
offline scenarios, approaches focus on learning transferable behavior priors and hierarchical skills
from demonstration data (Pertsch et al., 2021; 2022; Shi et al., 2023; Xu et al., 2022; Kipf et al.,
2019; Rana et al., 2023). Building upon these foundations, various skill-based meta-RL approaches
have been developed, from hierarchical and embedding-based methods (Nam et al., 2022; Chien &
Lai, 2023; Cho & Sun, 2024) to task decomposition strategies (Yoo et al., 2022; He et al., 2024) and
unsupervised frameworks (Gupta et al., 2018; Jabri et al., 2019; Shin et al., 2024). For clarity, we use
skill in the canonical skill-based RL sense: a latent over fixed-length action sequences. Therefore,
studies (Yu et al., 2024b; Wu et al.) that lack explicit skill learning are not categorized here.

Relabeling Techniques for Meta-RL: Recent developments in meta-RL have introduced various
relabeling techniques to enhance sample efficiency and task generalization (Pong et al., 2022; Jiang

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2023). Goal relabeling approaches have extended hindsight experience replay to meta-learning
contexts (Packer et al., 2021; Wan et al., 2021), enabling agents to learn from failed attempts. For re-
ward relabeling, model-based approaches have been proposed to relabel experiences across different
tasks (Mendonca et al., 2020), improving adaptation to out-of-distribution scenarios. Beyond these
categories, some methods have introduced innovative relabeling strategies using contrastive learning
(Yuan & Lu, 2022; Zhou et al., 2024) and metric-based approaches (Li et al., 2020) to create robust
task representations in offline settings.

Hierarchical Frameworks: Hierarchical approaches in RL have been pivotal for solving long-
horizon tasks, where various methods have been proposed including goal-conditioned learning
(Levy et al., 2019; Li et al., 2019; Gehring et al., 2021), and option-based frameworks (Bacon
et al., 2017; Riemer et al., 2018; Barreto et al., 2019; Araki et al., 2021). The integration of hi-
erarchical frameworks with meta-RL has shown significant potential for rapid task adaptation and
complexity handling (Frans et al., 2018; Fu et al., 2020a; 2023). Recent work has demonstrated
that hierarchical architectures in meta-RL can provide theoretical guarantees for learning optimal
policies (Chua et al., 2023) and achieve efficient learning through transformer-based architectures
(Shala et al., 2024). Recent advances in goal-conditioned RL have focused on improving sample ef-
ficiency (Robert et al., 2024), state representation (Yin et al., 2024), and offline-to-online RL (Park
et al., 2024; Schmidt et al., 2025). Offline-to-online RL assumes reward-annotated offline datasets
to pretrain the policy based on RL before online fine-tuning. In contrast, our setting provides only
reward-free offline data for skill learning, making direct application of offline-to-online RL infeasi-
ble and clearly distinguishing our approach.

3 BACKGROUND

Meta-Reinforcement Learning Setup: In meta-RL, each task T is sampled from a distribution
p(T) and defined as an MDP environmentMT =

(
S,A, RT , P T , γ

)
, where S ×A represents the

state-action space, RT is the reward function, P T denotes the state transition probability, and γ is
the discount factor. At each step t, the agent selects an action at via the policy π, receives a reward
rt := RT (st, at), and transitions to st+1 ∼ P T (·|st, at). The goal of meta-RL is to train π to
maximize the return G =

∑
t γ

trt on the training task setMtrain while enabling rapid adaptation
to unseen test tasks inMtest, whereMtrain ∩Mtest = ∅.
Offline Dataset and Skill Learning: To address long-horizon tasks, skill learning from an
offline dataset Boff := {τ̃0:H} is considered, which comprises sample trajectories τ̃t:t+k :=
(st, at, · · · , st+k) without reward information, where H is the episode length. The dataset Boff
is typically collected through human interactions or pretrained policies. Among various skill learn-
ing methods, SPiRL (Pertsch et al., 2021) focuses on learning a reusable low-level policy πl, using
q(·|τ̃t:t+Hs) as a skill encoder to extract the skill latent z by minimizing the following loss function:

E τ̃t:t+Hs∼Boff,
z∼q(·|τ̃t:t+Hs)

[L(πl, q, p, z)] , (1)

where L(πl, q, p, z) := −
∑t+Hs−1
k=t log πl(ak|sk, z) + λkld

l DKL (q||N (0, I)) +DKL(⌊q⌋||p), Hs is
the skill length, λkld

l is the coefficient for KL divergence (KLD)DKL, ⌊·⌋ is the stop gradient operator,
and N (µ,Σ) represents a Normal distribution with mean µ and covariance matrix I. Here, p(z|st)
is the skill prior to obtain the skill distribution z for a given state st directly. Using the learned skill
policy πl, the high-level policy πh is trained within a hierarchical framework using RL methods. In
our paper, the skill refinement procedure builds on Eq. 1 and is applied not only during the initial
skill learning phase but also throughout subsequent refinement. A more detailed description of this
process is provided in Appendix B.1.

Skill-based Meta-Reinforcement Learning: SiMPL (Nam et al., 2022) integrates skill learning
into meta-RL by utilizing an offline dataset of expert demonstrations across various tasks. The skill
policy πl is trained via SPiRL, while a task encoder qe extracts the task latent eT ∼ qe using the
PEARL (Rakelly et al., 2019) framework, a widely-used meta-RL method. During meta-training,
the high-level policy πh(z|s, eT) selects a skill latent z and executes the skill policy πl(a|s, z) for
Hs time steps, optimizing πh to maximize the return for each task T as:

min
πh

EτT
h ∼BT

h ,e
T ∼qe(·|cT)

[
LRL
h (πh) + λkld

h DKL
(
πh || p

)]
, (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where λkld
h is the KL divergence coefficient, cT represents the contexts of high-level trajectories

τTh := (s0, z0,
∑Hs−1
t=0 rt, sHs , zHs ,

∑2Hs−1
t=Hs

rt, · · ·) for task T , LRL
h denotes the RL loss for πh,

and BTh = {τTh } is the high-level buffer that stores τTh for each T ∈ Mtrain. Here, the reward
sums

∑(k+1)Hs−1
t=kHs

rt are obtained via environment interactions of at ∼ πl(·|st, zkHs) for t =

kHs, · · · , (k + 1)Hs − 1 with k = 0, · · · . During meta-test, the high-level policy is adapted using
a limited number of samples, showing good performance on long-horizon tasks.

4 METHODOLOGY

4.1 MOTIVATION: TOWARD ROBUST SKILL LEARNING UNDER NOISY DEMONSTRATIONS

Initial State
Noisy Skill Expert Skill

𝒕𝒕 = 𝟎𝟎 𝒕𝒕 = 𝟏𝟏𝟏𝟏 𝒕𝒕 = 𝟏𝟏𝟏𝟏
Fail Success

(a)

0 0.1K 0.2K 0.3K 0.4K 0.5K
Iteration

0

1

2

3

4

Nu
m

. o
f t

as
k

su
cc

es
s

Expert
Noisy

(b)

Figure 2: Comparison of prior skill learning method in microwave-opening task: (a) Learned skills
with expert and noisy demonstrations. (b) Meta-RL performance with learned skills. Low-level
skills are learned using the SPiRL framework (Pertsch et al., 2021), while the meta-learning compo-
nent follows the structure and evaluation protocol of SiMPL (Nam et al., 2022).

Most existing skill-based meta-RL approaches discussed in Section 3 assume clean offline demon-
strations, but real-world datasets are often corrupted by noise from aging hardware, disturbances,
or sensor drift. Unlike online training that can adapt through continuous re-training, static offline
datasets are particularly susceptible to such noise. This issue becomes critical in long-horizon tasks,
where errors accumulate, and in precise manipulation tasks that require reliable execution. Fig. 2(a)
illustrates this problem: in the Kitchen microwave-opening task, skills learned from expert demon-
strations complete the task successfully, whereas skills learned from noisy data fail even to grasp
the handle. This results in a significant downstream performance drop, as shown in Fig. 2(b), where
noisy skills lead to poor task success rates and unstable training curves, with each iteration denoting
a training loop consisting of policy rollout and update. The root cause is that existing methods treat
all trajectories equally, allowing low-quality samples to dominate skill learning.

To address this, we propose the Self-Improving Skill Learning (SISL) framework, which enhances
meta-RL by introducing a decoupled skill improvement policy. The high-level policy maximizes
returns using the current skill library, while the improvement policy independently perturbs trajec-
tories near the offline data distribution to discover higher-quality variants. The resulting trajectories
are selectively stored and prioritized, then used to refine the skill encoder and low-level policy.
Through this iterative refinement, SISL progressively denoises the skill library and improves gener-
alization. We further incorporate prioritized buffering and maximum return relabeling as auxiliary
mechanisms that enhance sample efficiency and accelerate convergence.

4.2 SELF-IMPROVING SKILL REFINEMENT WITH DECOUPLED POLICIES

We now describe the proposed Self-Improving Skill Learning (SISL) framework, which formal-
izes the iterative refinement process motivated in Section 4.1. We adopt the standard skill-based
meta-RL setup where the skill encoder q(z|τ̃t:t+Hs) extracts a latent skill z from trajectory seg-
ments, the high-level policy πh(z|s, eT) selects z every Hs steps, and the low-level skill policy
πl(a|s, z) executes the chosen skill for Hs steps. Building on this setup, SISL decouples training
into two complementary components: a high-level policy πh that exploits the current skill library
to maximize return, and a skill-improvement policy πimp(at|st, i), defined for each training task
Ti (i = 1, . . . , NT ,train), that deliberately perturbs trajectories near the offline data distribution to
discover improved behaviors. This decoupling enables simultaneous exploitation and targeted skill

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

improvement. Perturbations are guided by intrinsic motivation signals (Burda et al., 2018) to encour-
age coverage of diverse trajectories, although any novelty-driven exploration mechanism could be
used. Importantly, unlike generic novelty-driven exploration, πimp restricts perturbations to remain
close to the offline data manifold, producing realistic trajectories that can be effectively used to refine
πl. However, when the offline dataset contains noise, training πimp near this distribution in the early
stages may be hindered by low-quality samples, reducing the effectiveness of skill improvement.

To overcome this issue, SISL employs a self-supervised guidance mechanism using two additional
buffers: The improvement buffer Biimp = {τ iimp} stores all trajectories generated by πimp, where
each trajectory is τ iimp = (si0, a

i
0, r

i
0, . . . , s

i
H) with ait ∼ πimp(·|st, i), and is directly used to update

πimp itself, and the prioritized online buffer Bion = {τ ihigh} selectively retains the highest-return
trajectories, where each τ ihigh is chosen based on its return G(τ i) =

∑H−1
t=0 γtrit. This buffer is

initialized with the offline dataset Boff and gradually becomes dominated by improved trajectories
generated by both πimp and πh. This buffer serves two purposes: (1) it provides a cleaner, progres-
sively improving dataset that supervises πimp in a self-supervised manner, guiding it toward regions
that have empirically led to success, and (2) it supplies high-quality samples for refining the skill
encoder q, skill prior p, and low-level policy πl.

The skill-improvement policy is then trained so that its trajectory distribution increasingly matches
the successful samples in Bion while still exploring variations through controlled perturbations:∑

i

Eτ i∼Biimp∪Bion

[
LRL
imp(πimp)

]
+ λkldimpEτ i∼BionDKL(π̂

i
d∥πimp), (3)

where λkldimp is the KLD coefficient and π̂id denotes the empirical action distribution derived fromBion.
LRL
imp consists of the standard RL loss combined with intrinsic reward terms for perturbation, with

details provided in Appendix B. This loss encourages πimp to iteratively focus on more promising
state-action regions discovered so far, effectively turning Bion into a self-improving curriculum that
steers exploration away from noisy or uninformative samples.

Building on the improved trajectory distribution obtained from this update, SISL performs skill
refinement in dedicated phases every Kiter iterations rather than after every update step. At the end
of each phase, the skill encoder q, skill prior p, and low-level policy πl are re-trained on both Boff
and Bion using the SPiRL objective in Eq. 1, and the high-level policy πh is reinitialized to fully
benefit from the updated skill library. This periodic refinement mitigates bias from outdated skill
embeddings and accelerates adaptation, as shown in our ablation study in Appendix G.4. These
phases yield progressively denoised skills and a stable training signal, enabling πh to solve tasks
more efficiently as training progresses. The overall SISL structure is illustrated in Fig. 3. However,
the large number of noisy trajectories in Boff can still reduce skill learning efficiency. The next
section introduces a maximum return relabeling mechanism that prioritizes the most relevant offline
trajectories so that only high-value samples significantly influence skill refinement.

4.3 SKILL PRIORITIZATION VIA MAXIMUM RETURN RELABELING

The proposed SISL refines the low-level skills by leveraging both the offline dataset Boff and the
prioritized online buffers Bion for each training task Ti. While Bion provides high-quality trajectories
collected from the skill-improvement policy πimp and successful rollouts from πh, relying solely
on it risks overfitting to a narrow distribution and limiting generalization. Conversely, Boff provides
diverse trajectories that are beneficial for generalization but also contains many noisy or subopti-
mal rollouts, which can degrade skill quality if sampled uniformly. To address this trade-off, we
introduce skill prioritization via a maximum return relabeling mechanism that assigns hypothetical
returns to offline trajectories and reweights samples in both Boff and Bion according to their estimated
task relevance. Specifically, maximum return relabeling assigns each trajectory τ̃ ∈ Boff a hypothet-
ical return that reflects its potential contribution to task success. To compute this return, SISL trains
a reward model R̂(st, at, i) for each task Ti, optimized with the regression loss

E(sit,a
i
t,r

i
t)∼Biimp∪Bion

[
(R̂(sit, a

i
t, i)− rit)2

]
, (4)

where the targets rit come from improved trajectories generated by πimp and stored in Bion. Since
this regression is performed online using actual environment rewards, it remains stable throughout

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

𝝅𝝅𝒍𝒍
Low-level(Skill)

𝑩𝑩𝐢𝐢𝐢𝐢𝐢𝐢 𝑩𝑩𝐨𝐨𝐨𝐨𝐨𝐨𝑩𝑩𝐨𝐨𝐨𝐨

𝝅𝝅𝒉𝒉

𝑫𝑫𝑲𝑲𝑲𝑲 |𝝅𝝅𝒉𝒉 |𝒑𝒑

𝑫𝑫𝑲𝑲𝑲𝑲 �𝝅𝝅𝐢𝐢𝐢𝐢𝐢𝐢 ��𝝅𝝅𝒅𝒅

𝒛𝒛
High-level

𝒑𝒑
Skill Prior

𝒒𝒒
Skill EncoderSkill-Improvement

𝝅𝝅𝐢𝐢𝐢𝐢𝐢𝐢

𝑩𝑩𝒉𝒉

High Return

Train Rollout Prioritization by Filtering

𝒒𝒒𝒆𝒆
Task Encoder

𝒆𝒆𝓣𝓣

Decoupled Policy Learning Self-Improvement
Skill Learning

Figure 3: Proposed SISL framework. On the
left, the decoupled policy learning stage uses
πh and πexp to solve tasks and discover im-
proved behaviors. On the right, the skill learn-
ing phase periodically updates the skill compo-
nents (πl, p, q) to refine the skill library.

ℒ𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬

Maximum
Return Relabeling

�𝑮𝑮 �𝝉𝝉𝟏𝟏

Task 1 Task 2 Task 3

4.3

2.4
1.2

Re
la

be
le

d
Re

tu
rn

𝑝𝑝ℬoff

3.5

3.1

3.4
𝝉𝝉𝟏𝟏𝒊𝒊 𝝉𝝉𝟐𝟐𝒊𝒊

𝝉𝝉𝟏𝟏𝒊𝒊

…

𝝉𝝉𝟐𝟐𝒊𝒊

𝝉𝝉𝟑𝟑𝒊𝒊

2.9

3.3

1.9

𝒊𝒊

…

�𝝉𝝉𝟏𝟏

�𝝉𝝉𝟐𝟐

�𝝉𝝉𝟑𝟑

4.3
2.4

1.2

1.3
1.9

2.9

2.4
3.4

2.3

�𝑮𝑮 �𝝉𝝉𝟏𝟏

…

𝟏𝟏 − 𝜷𝜷

𝜷𝜷

�𝑮𝑮 �𝝉𝝉𝟐𝟐

�𝑮𝑮 �𝝉𝝉𝟑𝟑

𝑩𝑩
𝐨𝐨𝐨𝐨𝒊𝒊

𝑩𝑩
𝐨𝐨𝐨𝐨
𝐨𝐨

Prioritized
Sampling

Figure 4: Maximum return relabeling. After ap-
plying the proposed maximum return relabeling
to the task-specific online buffers Bion and the of-
fline buffer Boff using the learned reward model,
SISL performs prioritized skill refinement by mix-
ing the two buffers according to the coefficient β.

training. Using the trained reward model, SISL computes for each τ̃ the maximum return

Ĝ(τ̃) := max
i

{∑
t

γtR̂(st, at, i)

}
, (5)

which represents the highest predicted cumulative reward across all training tasks. The offline tra-
jectories are then sampled according to a softmax distribution PBoff(τ̃) = Softmax

(
Ĝ(τ̃)/T

)
,where

T > 0 is a temperature parameter controlling prioritization sharpness. This procedure biases sam-
pling toward promising trajectories while suppressing noisy or irrelevant ones, resulting in a cleaner
training signal for skill learning. The resulting skill learning objective becomes

Lskill(πl, q, p) := (1− β)Eτ̃∼PBoff
,

z∼q(·|τ̃)
[L(πl, q, p, z)] +

β

NT ,train

∑
i

E τi∼Bion,

z∼q(·|τi)

[L(πl, q, p, z)] , (6)

where L(πl, q, p, z) is the SPiRL skill loss defined in Eq. 1. Since Bon already contains high-return
trajectories, samples are drawn uniformly from this buffer. In addition, the mixing coefficient β is
computed dynamically from the offline and online datasets based on their average returns, adaptively
balancing their contributions during training as

β =
exp(Ḡon/T)

exp(Ḡon/T) + exp(Ḡoff/T)
, (7)

where Ḡoff is the mean Ĝ across Boff and Ḡon is the mean return in Bion. Fig. 4 illustrates the
prioritization process, showing how β dynamically balances contributions from offline and online
datasets. This mechanism ensures the selection of task-relevant trajectories from both datasets,
facilitating efficient training of the low-level policy. As a result, meta-training yields a refined low-
level policy πl and a high-level policy πh optimized over progressively cleaner data. During meta-
test, πl is frozen and πh is adapted to unseen tasks using a small number of interaction trajectories,
following the other skill-based meta-RL methods. Additional implementation details for the meta-
train and meta-test phases, along with the algorithm table, are provided in Appendix B.

5 EXPERIMENT

In this section, we evaluate the robustness of the SISL framework to noisy demonstrations in long-
horizon environments and analyze how self-improving skill learning enhance performance.

5.1 EXPERIMENTAL SETUP

We compare the proposed SISL with 3 non-meta RL baselines: SAC, which trains test tasks di-
rectly without using the offline dataset; SAC+RND, which incorporates RND-based intrinsic noise
for enhanced exploration; and SPiRL, which learns skills from the offline dataset using Eq. (1)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

and trains high-level policies for individual tasks. Also, we include 4 meta-RL baselines: PEARL,
a widely used context-based meta-RL algorithm without skill learning; PEARL+RND, which in-
tegrates RND-based exploration into PEARL; SiMPL, which applies skill-based meta-RL using
Eq. (2); and our SISL. SISL’s hyperparameters primarily follow Nam et al. (2022), with additional
parameters (e.g., temperature T) tuned via hyperparameter search, while other baselines use author-
provided code. Although SISL introduces an additional improvement policy πimp, we ensured a fair
comparison by keeping the total amount of training and interaction the same. Specifically, in each
iteration only half of the sampled meta-train tasks use πh and the other half use πimp, so the total
number of samples and policy updates does not exceed that of SiMPL. Results are averaged over 5
random seeds, with standard deviations represented as shaded areas in graphs and± values in tables.

(a) Kitchen (b) Office (c) Maze2D (d) AntMaze

Figure 5: Considered long-horizon environments

5.2 ENVIRONMENTAL SETUP

We evaluate SISL across four long-horizon, multi-task environments: Kitchen and Maze2D from
Nam et al. (2022), and Office and AntMaze, newly introduced in this work, as illustrated in Fig. 5.
Offline datasets Boff are generated by perturbing expert policies with varying levels of Gaussian
action noise, tailored to each environment. In the Kitchen environment, based on the Franka Kitchen
from the D4RL benchmark (Fu et al., 2020b) and proposed by Gupta et al. (2020), a robotic arm
completes a sequence of subtasks, with noise levels ranging from expert to σ = 0.1, 0.2, and 0.3.
The Office environment, adapted from Pertsch et al. (2022), involves picking and placing randomly
selected objects into containers, with Gaussian noise applied at the same levels as Kitchen. Maze2D,
based on D4RL (Fu et al., 2020b), requires a point-mass agent to navigate a large 20x20 maze,
while AntMaze features a more complex ant agent maneuvering through a 10x10 maze. In both
Maze2D and AntMaze, Gaussian noise is introduced at higher levels of σ = 0.5, 1.0, and 1.5. Each
environment is structured with distinct meta-train and meta-test tasks, ensuring that test tasks involve
different goals from those seen during training. Further experimental details, including descriptions
of other baselines, environment configurations (number of tasks, state representations, and reward
setups), initial data collection processes, and hyperparameter settings, are provided in Appendix C.

5.3 PERFORMANCE COMPARISON

We compare the proposed SISL with various baseline algorithms. Non-meta RL algorithms are
trained directly on each test task for 0.5K iterations due to the absence of a meta-train phase. Meta-
RL algorithms undergo meta-training for 10K iterations in Kitchen and Office, and 4K in Maze2D
and AntMaze, followed by fine-tuning on test tasks for an additional 0.5K iterations. For SISL, the
skill refinement interval Kiter is set to 2K for Kitchen, Office, and AntMaze; 1K for Maze2D. To
ensure a fair comparison, SISL counts each update process from its skill-improvement policy and
high-level policy as one iteration. Table 1 presents the final average return across test tasks after
the specified test iterations. In these environments, Kitchen and Office assign a reward of 1 for
each successfully completed subtask, while Maze2D and AntMaze give a reward of 1 upon reaching
the goal, meaning the return directly corresponds to the success rate. The corresponding learning
curves are provided in Appendix D.1 for a more detailed comparison. From the result, SAC and
PEARL baselines, which do not utilize skills or offline datasets, perform poorly on long-horizon
tasks, yielding a single result across all noise levels. In contrast, SPiRL, SiMPL, and SISL, which
leverage skills, achieve better performance.

SPiRL and SiMPL, however, show sharp performance declines as dataset noise increases. While
both perform well with expert data, SiMPL struggles under noisy conditions due to instability in its
task encoder qe, sometimes performing worse than SPiRL. Here, the baseline results for Maze2D
(Expert) are somewhat lower than those reported in the SiMPL paper. This discrepancy likely arises

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison: Final test average return for all considered environments

Environment(Noise) SAC SAC+RND PEARL PEARL+RND SPiRL SiMPL SISL

Kitchen(Expert)

0.01±0.01 0.02 ±0.05 0.23 ±0.14 0.42±0.16

3.11±0.33 3.40±0.18 3.97±0.09

Kitchen(σ = 0.1) 3.37±0.31 3.76±0.14 3.91±0.12

Kitchen(σ = 0.2) 2.06±0.43 2.18±0.33 3.73±0.16

Kitchen(σ = 0.3) 0.83±0.17 0.81±0.25 3.48±0.07

Office(Expert)

0.00±0.00 0.00±0.00 0.01±0.01 0.01±0.01

0.65±0.24 2.50±0.26 2.86±0.35

Office(σ = 0.1) 0.91±0.31 3.33±0.39 3.40±0.38

Office(σ = 0.2) 0.49±0.22 1.20±0.24 2.01±0.24

Office(σ = 0.3) 0.42±0.14 0.11±0.04 1.68±0.15

Maze2D(Expert)

0.20±0.06 0.35±0.07 0.10±0.01 0.11±0.08

0.77±0.06 0.80±0.04 0.87±0.05

Maze2D(σ = 0.5) 0.89±0.03 0.87±0.05 0.89±0.03

Maze2D(σ = 1.0) 0.80±0.01 0.87±0.05 0.93±0.05

Maze2D(σ = 1.5) 0.81±0.05 0.68±0.06 0.99±0.02

AntMaze(Expert)

0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

0.64±0.09 0.67±0.07 0.81±0.08

AntMaze(σ = 0.5) 0.76±0.10 0.77±0.05 0.82±0.05

AntMaze(σ = 1.0) 0.50±0.06 0.33±0.09 0.60±0.02

AntMaze(σ = 1.5) 0.30±0.01 0.27±0.05 0.41±0.01

because, in constructing the offline dataset, we considered fewer tasks compared to SiMPL, result-
ing in trajectories that do not fully cover the map. Interestingly, minor noise occasionally boosts
performance by introducing diverse trajectories that improve skill learning, a deteailed analysis of
changes in state coverage is provided in Appendix D.1. In contrast, SISL demonstrates superior
robustness across all evaluated environments, consistently outperforming baselines at varying noise
levels. For example, in the Kitchen environment, SISL maintains strong performance under signif-
icant noise by effectively refining useful skills, while in Maze2D, higher noise levels lead to the
improvement of diverse skills, achieving perfect task completion when σ = 1.5. These results high-
light SISL’s ability to discover improved behavior and refine robust skills, significantly enhancing
meta-RL performance. Moreover, SISL excels with both noisy and expert data, achieving superior
test performance by learning more effective skills.

Fig. 6 shows the learning progress during the meta-train/test phases for Kitchen (σ = 0.3) and
Maze2D (σ = 1.5), highlighting the performance gap between SISL and other methods. The peri-
odic drops in SISL’s high-level performance correspond to the reinitialization of πh everyKiter. Non-
meta RL algorithms, including those with RND-based exploration, struggle with long-horizon tasks,
while SPiRL and SiMPL show limited improvement due to their reliance on noisy offline datasets.
In contrast, SISL’s self-improving skill refinement supports continuous skill improvement, resulting
in superior meta-test performance. To further assess SISL’s robustness, we perform experiments
with limited offline data, random noise injection, and diverse sub-optimal datasets in Appendix D,
reflecting real-world challenges such as costly data collection and unstructured anomalies. Even un-
der these conditions, SISL consistently outperforms the baselines, demonstrating strong robustness.
Furthermore, we provide a computational complexity comparison of SISL, its ablation variants, and
baseline methods in Appendix E. The results show that SISL requires only about 16% more compu-
tation time per iteration during meta-training, while the meta-test cost remains unchanged compared
to SiMPL. Although SISL introduces the improvement policy πimp, the overall training cost remains
similar because the total number of samples and updates matches SiMPL by splitting training tasks
evenly between πimp and πh for fair comparison, as described in Section 5.1. The remaining 16%
overhead comes primarily from the skill refinement and reward model training. Notably, even with
extended training, SiMPL fails to achieve further performance gains, highlighting SISL’s advantage.

5.4 IN-DEPTH ANALYSIS OF THE PROPOSED SKILL REFINEMENT PROCESS

To analyze skill refinement and prioritization in more detail, Fig. 7 illustrates the evolution of the
buffer mixing coefficient β and skill refinement in Kitchen (σ = 0.3) and Maze2D (σ = 1.5).
For Kitchen, the microwave-opening subtask is evaluated, while Maze2D focuses on navigation
improvements. In the early stages (1K iterations for Kitchen, 0.5K for Maze2D), pretrained skills
from the offline dataset are used without updates, resulting in poor performance, with the agent
failing to grasp the handle in Kitchen and producing noisy trajectories in Maze2D. As training
progresses, β increases to shift contribution from offline data to newly collected high-quality data,
providing task-relevant refinement. By design, the increase of β tracks task-return improvement
and serves as a soft curriculum that prevents abrupt distribution shift. At the same time, prioritized
offline samples keep β below 1, thereby ensuring generalization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2K 4K 6K 8K 10K
Iteration

0

1

2

3

4

Av
er

ag
e

Re
tu

rn

Meta-Train

0 0.1K 0.2K 0.3K 0.4K 0.5K
Iteration

0

1

2

3

4 Meta-Test

0 1K 2K 3K 4K
Iteration

0
0.2
0.4
0.6
0.8
1.0 Meta-Train

0 0.1K 0.2K 0.3K 0.4K 0.5K
Iteration

0
0.2
0.4
0.6
0.8
1.0 Meta-Test

(a) Kitchen(= 0.3) (b) Maze2D(= 1.5)
SISL(imp) SISL(h) SiMPL SPiRL PEARL+RND PEARL SAC+RND SAC

Figure 6: Learning curves of the meta-train and meta-test phases on Kitchen (σ = 0.3) and Maze2D
(σ = 1.5). SISL (πimp) and SISL (πh) denote the performance of the skill-improvement policy πimp
and high-level policy πh during meta-training.

Kitchen

Maze2D

Initial State

Mixing Coeff. (𝜷𝜷)
Kitchen (𝝈𝝈 = 𝟎𝟎.𝟑𝟑)

1.0

0.8

0.6

0.4

0.2

1k 5k 10k 0.5k < 𝑲𝑲𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢 2k 4k

1k < 𝑲𝑲𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢

𝒕𝒕 = 𝟏𝟏𝟏𝟏 𝒕𝒕 = 𝟑𝟑𝟑𝟑

5k

𝒕𝒕 = 𝟏𝟏𝟏𝟏 𝒕𝒕 = 𝟑𝟑𝟑𝟑

10k

𝒕𝒕 = 𝟏𝟏𝟏𝟏 𝒕𝒕 = 𝟑𝟑𝟑𝟑
𝒕𝒕 = 𝟎𝟎

1.0

0.8

0.6

0.4

0.2

0.5k 2k 4k

𝜷𝜷

𝜷𝜷

iteration

Starting Point

Train Task
Starting Point
Trajectory

Maze2D (𝝈𝝈 = 𝟏𝟏.𝟓𝟓)

(𝝈𝝈 = 𝟏𝟏.𝟓𝟓)

(𝝈𝝈 = 𝟎𝟎.𝟑𝟑)

iteration

Figure 7: Visualization of buffer mixing coefficient β dynamics and refined skill evolution in Kitchen
(σ = 0.3) and Maze2D (σ = 1.5). In Kitchen, the refined skills at t = 15 and t = 30 during the
microwave-opening task are depicted, while in Maze2D, trajectories using refined skills illustrate
the process of progressively expanding to broader areas to solve tasks.

As a result, by iteration 5K in Kitchen, the agent learns to open the microwave, refining this skill to
complete the task more efficiently by iteration 10K. In Maze2D, the agent explores more diverse tra-
jectories over iterations, ultimately solving all training tasks by iteration 4K. These results highlight
how SISL refines skills iteratively by leveraging prioritized data from offline and online buffers. As
shown in Table 1, the learned skills generalize effectively to unseen test tasks, demonstrating SISL’s
robustness and efficacy. While variations in return scales across tasks can introduce bias in reward
model training, our experimental environments adopt a simple reward structure based on subtask
completion, under which the reward model remains stable, as shown in Appendix F.4. For envi-
ronments with more complex reward functions, per-task reward standardization can be considered.
In skill-based settings, both the offline trajectories and the online training tasks share similar un-
derlying subtasks, such as region-to-region transitions in Ant/Point environments or object-centric
subtasks in Kitchen/Office domains. Because these subtasks define reward semantics consistently
across training tasks and offline dataset, this relabeling process does not introduce additional in-
stability. In addition, our softmax-based prioritization forms a distribution rather than relying on a
single trajectory, which further mitigates the impact of any minor estimation error. We provide β
trends, compare refined skills via skill trajectory visualization, task-representation improvements,
and policy skill composition in Appendix F. These analyses provide insights into SISL’s effective-
ness in optimizing skill execution and enhancing task representation.

5.5 ABLATION STUDIES

We evaluate the impact of SISL’s components and key hyperparameters in Kitchen (σ = 0.3) and
Maze2D (σ = 1.5), focusing on the effect of the prioritization temperature T .

Component Evaluation: To evaluate the importance of SISL’s components, we compare the meta-
test performance of SISL with all components included against the following variations: (1) Without
Boff, relying solely on Bion, to evaluate the influence of offline data in skill refinement; (2) Without

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0

1

2

3

4

Te
st

 A
ve

ra
ge

 R
et

ur
n

0.6

0.7

0.8

0.9

1.0

(a) Kitchen(= 0.3) (b)Maze2D(= 1.5)
Ours
Ours w/o off

Ours w/o P off

Ours w/o on

Ours w/o imp

Figure 8: Component evaluation

0 0.1K 0.2K 0.3K 0.4K 0.5K
Iteration

2.5

3.0

3.5

Te
st

 A
ve

ra
ge

 R
et

ur
n

0 0.1K 0.2K 0.3K 0.4K 0.5K
Iteration

0.2

0.4

0.6

0.8

1.0

(a) Kitchen(=0.3) (b) Maze2D(=1.5)
T = 0.1 T = 0.5 T = 1.0 T = 2.0

Figure 9: Impact of prioritization temperature T

PBoff , applying uniform sampling in Boff instead of maximum return relabeling, to evaluate the ef-
fect of prioritization; (3) Without Bon, using only Boff, to evaluate the contribution of high-quality
samples obtained by πimp and πh; and (4) Without πimp, removing the skill-improvement policy,
to evaluate whether exploration near the skill distribution discovers improved behaviors. Fig. 8
presents the comparison results, demonstrating significant performance drops when either buffer is
removed, highlighting their critical role in effective skill discovery. Uniform sampling in Boff also
reduces performance, underlining the importance of maximum return relabeling. Lastly, excluding
πimp notably degrades performance, emphasizing the critical role of discovering improved behavior.

Prioritization Temperature T : The prioritization temperature T adjusts the prioritization between
online and offline buffers. Specifically, lower T biases sampling toward high-return buffers, while
higher T results in uniform sampling. Fig. 9 illustrates the performance variations with different pri-
oritization temperatures T . When T = 0.1, performance degrades due to excessive focus on a single
buffer, aligning with the trends observed in the component evaluation. Conversely, high T = 2.0
also degrades performance by eliminating prioritization. These results highlight the importance of
proper tuning: T = 1.0 for Kitchen and T = 0.5 for Maze2D achieve the best performance. Based
on the result, we set T approximately proportional to the high-return range of each environment,
which consistently yielded the best performance while avoiding extensive tuning.

To provide a clearer understanding of SISL’s components, we include several additional ablations
in the Appendix. First, we analyze the temperature T for all environments and noise levels in Ap-
pendix G.2, showing that its optimal value depends mainly on the return scale of each environment.
Second, we study the KLD coefficient λkld

imp in Appendix G.3 and find that performance is stable
across a wide range of values, but drops sharply when the coefficient is zero because the guiding ef-
fect of the KL term disappears. Third, we examine the reinitialization intervalKiter in Appendix G.5,
confirming that the high-level policy needs a minimum amount of adaptation time after each refine-
ment step, while larger intervals produce similar outcomes as long as skills are updated a few times
during training. Together, these results highlight the role and influence of each component in SISL.

6 LIMITATION

Although SISL demonstrates strong performance, it has several limitations. First, although SISL
achieves notable performance gains, its computation time per iteration increases by 16% over the
baseline. This overhead mainly comes from training the skill model without freezing it during meta-
training, but the performance table and ablation study confirm that this component is essential. (See
Appendix E for details) Second, SISL requires fine-tuning during the meta-test phase for optimal
performance, which introduces additional computational overhead. Addressing this through zero-
shot skill adaptation could enhance its practicality, enabling transfer to new tasks without retraining.
Future work in this direction could significantly improve SISL’s applicability in real-world scenarios.

7 CONCLUSION

In this paper, we propose SISL, a robust skill-based meta-RL framework designed to address noisy
offline demonstrations in long-horizon tasks. Through self-improving skill refinement and prioriti-
zation via maximum return relabeling, SISL effectively prioritizes task-relevant trajectories for skill
learning and enabling efficient exploration and targeted skill optimization. Experimental results
highlight its robustness to noise and superior performance across various environments, demonstrat-
ing its potential for scalable meta-RL in real-world applications where data quality is critical.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

By introducing self-improving skill refinement and skill prioritization via maximum return rela-
beling, SISL improves the stability and generalizability of skill learning, allowing agents to adapt
rapidly to new tasks even when data quality is imperfect. This advancement has the potential to
make reinforcement learning more practical and reliable in real-world settings where collecting
high-quality data is difficult or expensive. While this framework may have potential societal im-
plications by enhancing reinforcement learning’s real-world applicability, we believe it is primarily
foundational in nature and does not introduce any new risks of malicious use.

REPRODUCIBILITY STATEMENT

To reproduce SISL, we provide the loss function redefined as neural network parameters, along with
the meta-train and meta-test algorithm tables in Appendix B. For the algorithm implementation, we
provide the system specifications used for experiments, the source of the baseline algorithm, envi-
ronment details, the offline dataset construction method, and the hyperparameter setup in Appendix
C. Additionally, we provide the anonymized code for SISL in the supplementary material, enabling
the reproduction of the proposed algorithm and experiment results.

REFERENCES

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. arXiv preprint arXiv:1807.10299, 2018.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39:3–20, 2020.

Brandon Araki, Xiao Li, Kiran Vodrahalli, Jonathan DeCastro, Micah Fry, and Daniela Rus. The
logical options framework. In International Conference on Machine Learning, pp. 307–317.
PMLR, 2021.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel, Daniel
Toyama, Shibl Mourad, David Silver, Doina Precup, et al. The option keyboard: Combining skills
in reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.

Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E Taylor, and Ann
Nowé. Reinforcement learning from demonstration through shaping. In Twenty-fourth interna-
tional joint conference on artificial intelligence, 2015.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2018.

Jongseong Chae, Seungyul Han, Whiyoung Jung, Myungsik Cho, Sungho Choi, and Youngchul
Sung. Robust imitation learning against variations in environment dynamics. In International
Conference on Machine Learning, pp. 2828–2852. PMLR, 2022.

Jen-Tzung Chien and Weiwei Lai. Variational skill embeddings for meta reinforcement learning. In
2023 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2023.

Minjae Cho and Chuangchuang Sun. Hierarchical meta-reinforcement learning via automated
macro-action discovery. arXiv preprint arXiv:2412.11930, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kurtland Chua, Qi Lei, and Jason Lee. Provable hierarchy-based meta-reinforcement learning. In
International Conference on Artificial Intelligence and Statistics, pp. 10918–10967. PMLR, 2023.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
hierarchies. In International Conference on Learning Representations, 2018.

Haotian Fu, Hongyao Tang, Jianye Hao, Wulong Liu, and Chen Chen. Mghrl: Meta goal-generation
for hierarchical reinforcement learning. In Distributed Artificial Intelligence: Second Interna-
tional Conference, DAI 2020, Nanjing, China, October 24–27, 2020, Proceedings 2, pp. 29–39.
Springer, 2020a.

Haotian Fu, Shangqun Yu, Saket Tiwari, Michael Littman, and George Konidaris. Meta-learning
parameterized skills. In Proceedings of the 40th International Conference on Machine Learning,
pp. 10461–10481, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020b.

Jonas Gehring, Gabriel Synnaeve, Andreas Krause, and Nicolas Usunier. Hierarchical skills for ef-
ficient exploration. Advances in Neural Information Processing Systems, 34:11553–11564, 2021.

Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling with recur-
rent neural networks, pp. 37–45, 2012.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. Unsupervised meta-
learning for reinforcement learning. arXiv preprint arXiv:1806.04640, 2018.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. In Conference on
Robot Learning, pp. 1025–1037. PMLR, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Hongcai He, Anjie Zhu, Shuang Liang, Feiyu Chen, and Jie Shao. Decoupling meta-reinforcement
learning with gaussian task contexts and skills. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 38, pp. 12358–12366, 2024.

Jiaheng Hu, Zizhao Wang, Peter Stone, and Roberto Martı́n-Martı́n. Disentangled unsupervised
skill discovery for efficient hierarchical reinforcement learning. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, and Chelsea Finn. Un-
supervised curricula for visual meta-reinforcement learning. Advances in Neural Information
Processing Systems, 32, 2019.

Yuankun Jiang, Nuowen Kan, Chenglin Li, Wenrui Dai, Junni Zou, and Hongkai Xiong. Dou-
bly robust augmented transfer for meta-reinforcement learning. Advances in Neural Information
Processing Systems, 36:77002–77012, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Woojun Kim, Yongjae Shin, Jongeui Park, and Youngchul Sung. Sample-efficient and safe deep re-
inforcement learning via reset deep ensemble agents. Advances in neural information processing
systems, 36:53239–53260, 2023.

Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro Sanchez-Gonzalez, Edward Grefen-
stette, Pushmeet Kohli, and Peter Battaglia. Compile: Compositional imitation learning and
execution. In International Conference on Machine Learning, pp. 3418–3428. PMLR, 2019.

Rui Kong, Chenyang Wu, Chen-Xiao Gao, Zongzhang Zhang, and Ming Li. Efficient and stable
offline-to-online reinforcement learning via continual policy revitalization. In Proceedings of the
Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24, pp. 4317–4325,
2024.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional conference on machine learning, pp. 3744–3753. PMLR, 2019.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. In Proceedings of International Conference on Learning Representations, 2019.

Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Henrik Christensen, and Hao
Su. Multi-task batch reinforcement learning with metric learning. Advances in neural information
processing systems, 33:6197–6210, 2020.

Siyuan Li, Rui Wang, Minxue Tang, and Chongjie Zhang. Hierarchical reinforcement learning
with advantage-based auxiliary rewards. Advances in Neural Information Processing Systems,
32, 2019.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. In Conference on Robot Learning, pp. 1678–1690.
PMLR, 2022.

Russell Mendonca, Xinyang Geng, Chelsea Finn, and Sergey Levine. Meta-reinforcement learning
robust to distributional shift via model identification and experience relabeling. arXiv preprint
arXiv:2006.07178, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518:529–533, 2015.

Taewook Nam, Shao-Hua Sun, Karl Pertsch, Sung Ju Hwang, and Joseph J. Lim. Skill-based meta-
reinforcement learning. In International Conference on Learning Representations (ICLR), 2022.

Charles Packer, Pieter Abbeel, and Joseph E Gonzalez. Hindsight task relabelling: Experience
replay for sparse reward meta-rl. Advances in neural information processing systems, 34:2466–
2477, 2021.

Seohong Park, Jongwook Choi, Jaekyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-
constrained unsupervised skill discovery. In International Conference on Learning Represen-
tations, 2022.

Seohong Park, Kimin Lee, Youngwoon Lee, and Pieter Abbeel. Controllability-aware unsupervised
skill discovery. In International Conference on Machine Learning, pp. 27225–27245. PMLR,
2023.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-
conditioned rl with latent states as actions. Advances in Neural Information Processing Systems,
36, 2024.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pp. 188–204. PMLR, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Karl Pertsch, Youngwoon Lee, Yue Wu, and Joseph J Lim. Guided reinforcement learning with
learned skills. In Conference on Robot Learning, pp. 729–739. PMLR, 2022.

Vitchyr H Pong, Ashvin V Nair, Laura M Smith, Catherine Huang, and Sergey Levine. Offline meta-
reinforcement learning with online self-supervision. In International Conference on Machine
Learning, pp. 17811–17829. PMLR, 2022.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Krishan Rana, Ming Xu, Brendan Tidd, Michael Milford, and Niko Sünderhauf. Residual skill
policies: Learning an adaptable skill-based action space for reinforcement learning for robotics.
In Conference on Robot Learning, pp. 2095–2104. PMLR, 2023.

Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning abstract options. Advances in neural
information processing systems, 31, 2018.

Arnaud Robert, Ciara Pike-Burke, and Aldo A Faisal. Sample complexity of goal-conditioned hier-
archical reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Fumihiro Sasaki and Ryota Yamashina. Behavioral cloning from noisy demonstrations. In Interna-
tional Conference on Learning Representations, 2020.

Carolin Schmidt, Daniele Gammelli, James Harrison, Marco Pavone, and Filipe Rodrigues. Offline
hierarchical reinforcement learning via inverse optimization. In The Thirteenth International
Conference on Learning Representations, 2025.

Gresa Shala, André Biedenkapp, and Josif Grabocka. Hierarchical transformers are efficient meta-
reinforcement learners. arXiv preprint arXiv:2402.06402, 2024.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. In International Conference on Learning Representations, 2019.

Lucy Xiaoyang Shi, Joseph J Lim, and Youngwoon Lee. Skill-based model-based reinforcement
learning. In Conference on Robot Learning, pp. 2262–2272. PMLR, 2023.

Sangwoo Shin, Minjong Yoo, Jeongwoo Lee, and Honguk Woo. Semtra: A semantic skill translator
for cross-domain zero-shot policy adaptation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 15000–15008, 2024.

DJ Strouse, Kate Baumli, David Warde-Farley, Volodymyr Mnih, and Steven Stenberg Hansen.
Learning more skills through optimistic exploration. In International Conference on Learning
Representations, 2022.

Michael Wan, Jian Peng, and Tanmay Gangwani. Hindsight foresight relabeling for meta-
reinforcement learning. In International Conference on Learning Representations, 2021.

Te-Lin Wu, Jaedong Hwang, Jingyun Yang, Shaofan Lai, Carl Vondrick, and Joseph J Lim. Learning
from noisy demonstration sets via meta-learned suitability assessor.

Mengda Xu, Manuela Veloso, and Shuran Song. Aspire: Adaptive skill priors for reinforcement
learning. Advances in Neural Information Processing Systems, 35:38600–38613, 2022.

Xiangyu Yin, Sihao Wu, Jiaxu Liu, Meng Fang, Xingyu Zhao, Xiaowei Huang, and Wenjie Ruan.
Representation-based robustness in goal-conditioned reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 21761–21769, 2024.

Minjong Yoo, Sangwoo Cho, and Honguk Woo. Skills regularized task decomposition for multi-
task offline reinforcement learning. Advances in Neural Information Processing Systems, 35:
37432–37444, 2022.

Xingrui Yu, Bo Han, and Ivor W Tsang. Usn: A robust imitation learning method against diverse
action noise. Journal of Artificial Intelligence Research, 79:1237–1280, 2024a.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xuehui Yu, Mhairi Dunion, Xin Li, and Stefano V Albrecht. Skill-aware mutual information opti-
misation for zero-shot generalisation in reinforcement learning. Advances in Neural Information
Processing Systems, 37:110573–110612, 2024b.

Haoqi Yuan and Zongqing Lu. Robust task representations for offline meta-reinforcement learning
via contrastive learning. In International Conference on Machine Learning, pp. 25747–25759.
PMLR, 2022.

Renzhe Zhou, Chen-Xiao Gao, Zongzhang Zhang, and Yang Yu. Generalizable task representation
learning for offline meta-reinforcement learning with data limitations. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17132–17140, 2024.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-
learning. In International Conference on Learning Representations, 2019.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We wrote the entire manuscript ourselves, including the main text and the appendix. We used
large language models only for copy editing to improve spelling and readability, and we verified all
suggested revisions before incorporation. LLMs were not used to generate ideas, methods, analyses,
results, code, figures, or citations beyond minor edits. All technical content and experiments were
conceived, implemented, and validated by the authors. We manually audited every citation and
numerical claim and accept full responsibility for the manuscript.

B IMPLEMENTATION DETAILS ON SISL

This section provides a detailed implementation of the proposed SISL framework. As outlined in
Section 4, SISL begins with an initial skill learning phase (pre-train) to train the low-level skill
policy, skill encoder, and skill prior. It then progresses to the meta-train phase, where decoupled
policy learning is performed using high-level policy, task encoder, and skill-improvement policy.
Also, self-improvement skill learning is executed via maximum return relabeling using reward
model, low-level skill policy, skill encoder, and skill prior. Finally, in the meta-test phase, rapid
adaptation to the target task is achieved via fine-tuning based on the trained high-level policy and
task encoder. Section B.1 details the initial skill learning phase, Section B.2 elaborates on the meta-
train phase, and Section B.3 explains the meta-test phase. All loss functions in SISL are redefined in
terms of the neural network parameters of its policies and models. Additionally, the overall structure
for the meta-train and meta-test phases is provided in Algorithms 1 and 2.

B.1 INITIAL SKILL LEARNING PHASE

Following SPiRL (Pertsch et al., 2021), introduced in Section 3, we train initial skills using the
offline dataset Boff. The low-level skill policy πl,ϕ, skill encoder qϕ, and skill prior pϕ are parame-
terized by ϕ and trained using the following loss function (modified from Eq. (1)):

Lspirl(ϕ)

:= E (st:t+Hs ,at:t+Hs)∼Boff
z∼qϕ(·|st:t+Hs ,at:t+Hs)

[
L(πl,ϕ, qϕ, pϕ, z)

]
= E (st:t+Hs ,at:t+Hs)∼Boff

z∼qϕ(·|st:t+Hs ,at:t+Hs)

[
−
t+Hs−1∑
k=t

log πl,ϕ(ak|sk, z) + λkld
l DKL

(
qϕ(·|st:t+Hs , at:t+Hs)

∣∣∣∣∣∣N (0, I)
)

+DKL

(
⌊qϕ(·|st:t+Hs , at:t+Hs)⌋

∣∣∣∣∣∣ pϕ(·|st))],
(B.1)

where ⌊·⌋ represents the stop gradient operator, which prevents the KL term for skill prior learning
from influencing the skill encoder. Using the pre-trained πl,ϕ, qϕ, and pϕ, SISL refines skills during
the meta-train phase to further enhance task-solving capabilities.

B.2 META-TRAIN PHASE

As described in Section 4, SISL comprises two main processes: Decoupled Policy Learning,
which explores task-relevant behavior near skill distribution using skill-improvement policy, and
trains the high-level policy, task encoder to effectively utilize learned skills for solving tasks; and
Self-Improvement Skill Learning, which improves skills using prioritization via maximum return
relabeling. Detailed explanations for each process are provided below.

Decoupled Policy Learning

As described in Section 4.2, the skill-improvement policy πimp,ψ , parameterized by ψ, is designed
to expand the skill distribution and discover task-relevant behaviors near trajectories stored in the
prioritized on-policy buffer Bion for each training task T i. This buffer prioritizes trajectories that
best solve the tasks. Additionally, the state-action value functionQimp,ψ , also parameterized by ψ, is
defined to train the skill-improvement policy using soft actor-critic (SAC). To enhance exploration,
both extrinsic reward rit and intrinsic reward riint,t are employed. The intrinsic reward, based on

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

random network distillation (RND), is computed as the L2 loss between a randomly initialized target
network f̂ iη̄ and a prediction network f iη , parameterized by η and η̄, respectively, and is expressed
as:

riint,t :=
∥∥∥f iη(st+1)− f̂ iη̄(st+1)

∥∥∥2
2
, (B.2)

where i is the task index, and fη is updated to minimize this loss. A dropout layer is applied to fη to
prevent over-sensitivity to state s. The RL loss functions of SAC for training the skill-improvement
policy πimp,ψ and the state-action value function Qimp,ψ using the intrinsic reward rint,t are defined
as follows:

Lcritic
imp (ψ) :=

∑
i

E(st,at,r
i
t,st+1)∼Biimp∪Bion

at+1∼πimp,ψ(·|st,i)

[
1

2

(
Qimp,ψ(st, at, i)−

(
δextr

i
t+δintr

i
int,t + γimp

(
Qimp,ψ(st+1, at+1, i)

+ λent
imp log πimp,ψ(at+1|st+1, i)

)))2]
Lactor

imp (ψ) :=
∑
i

E st∼Biimp∪Bion
at∼πimp,ψ(·|st,i)

[
λent

imp log πimp,ψ(at|st, i)−Qimp,ψ(st, at, i)

]
− λkld

imp

∑
i

E(st,at)∼Bion

[
log πimp,ψ(at|st, i)

]
.

(B.3)

Here, δext and δint are extrinsic and intrinsic reward ratios, γimp is the discount factor, λent
imp is the

exploration entropy coefficient adjusted automatically by SAC, and λkld
imp is the KLD coefficient.

Also, note that Eq. (B.3) provides a parameterized and detailed reformulation of Eq. (3) from
Section 4.2, explicitly incorporating parameterization and loss scaling details.

To mutually update skill selection based on the refined skills, the updated and fixed low-level skill
policy π̄l,ϕ and skill prior q̄ϕ are utilized to train the high-level policy following the SiMPL frame-
work introduced in Section 3. The objective is to select skill representations z that maximize task
returns while ensuring the high-level policy remains close to the skill prior for stable and efficient
learning. The high-level policy πh,θ and value function Qh,θ are parameterized by θ and trained
using the soft actor-critic (SAC) framework, with the RL loss functions defined as:

Lcritic
h (θ) := E(st,zt,r

h
t ,st+Hs−1)∼BT

h ,e
T ∼qe,θ(·|cT)

zt+1∼πh,θ(·|st+Hs−1,e
T)

[
1

2

(
Qh,θ(st, zt, e

T)−
(
rht + γh

(
Qh,θ(st+Hs−1, zt+1, e

T)

− λkld
h DKL

(
πh,θ(·|st+Hs−1, e

T)
∣∣∣∣ p̄ϕ(·|st+Hs−1)

))))2]
Lactor
h (θ) := Est∼BT

h ,e
T ∼qe,θ(·|cT)

zt∼πh,θ(·|st,eT)

[
λkld
h DKL

(
πh,θ(·|st, eT)

∣∣∣∣∣∣ p̄ϕ(·|st))−Qh,θ(st, zt, eT)],
(B.4)

where qe,θ is the parameterized task encoder with parameter θ, γh is the high-level discount factor,
and λkld

h is the high-level KLD coefficient. The term rht =
∑t+Hs−1
k=t rk represents the cumulative

rewards, with states and rewards obtained by executing the low-level skill policy π̄l,ϕ using zt ∼
πh,θ(·|st) over Hs timesteps. The context cT = (sk, zk, r

h
k , sk+Hs−1)

Nprior

k=1 , where Nprior is the
number of context transitions, denotes the high-level transition set of task T . This context is used
to select the task representation eT from the task encoder qe,θ. Also, note that Eq. (B.4) is a
parameterized modification of Eq. (2) from Section 3.

Self-Improvement Skill Learning

To extract better trajectories and learn skills that effectively solve tasks, the online buffer Bion selec-
tively stores high-return trajectories collected during the meta-training phase through the execution
of the low-level policy πl,ϕ and the skill-improvement policy πimp,ψ . A trajectory τ i is added to
Bion if its return G(τ i) exceeds the minimum return in the buffer, minτ ′∈Bion

G(τ ′). To refine skills,
maximum return relabeling is applied using the parameterized reward model R̂ζ with parameter ζ.
The reward model is trained by minimizing the following MSE loss:

Lreward(ζ) := E(sit,a
i
t,r

i
t)∼Biimp∪Bion

[(
R̂ζ(s

i
t, a

i
t, i)− rit

)2]
. (B.5)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

This assigns priorities to offline trajectories τ̃ ∈ Boff (Eq. (5)), updated for Npriority samples per
iteration.

For skill learning, the low-level skill policy πl,ϕ, skill encoder qϕ, and skill prior pϕ are optimized
using the following loss function. This incorporates both high-return trajectories from the online
buffer Bion and trajectories from the offline buffer Boff, weighted by their importance:

Lskill(ϕ) := (1− β)E(st:t+Hs ,at:t+Hs)∼PBoff
z∼qϕ(·|st:t+Hs ,at:t+Hs)

[
L(πl,ϕ, qϕ, pϕ, z)

]
+

β

NT ,train

∑
i

E (st:t+Hs ,at:t+Hs)∼Bion
z∼qϕ(·|st:t+Hs ,at:t+Hs)

[
L(πl,ϕ, qϕ, pϕ, z)

]
,

(B.6)

where β is the mixing coefficient defined in Eq. (7), and L(πl,ϕ, qϕ, pϕ, z) is the skill learning
objective defined in Eq. (B.1) for optimizing πl,ϕ, qϕ, and pϕ. During training, we update the low-
level policy π̄l,ϕ, skill encoder q̄ϕ, and skill prior p̄ϕ used for the skill-based meta-RL every Kiter
iterations. Specifically, the updates are performed as follows: π̄l,ϕ ← πl,ϕ, q̄ϕ ← qϕ, and p̄ϕ ← pϕ.

After the meta-train phase is completed, the final meta-train phase parameter is stored as θfinal ← θ
and is subsequently used during the meta-test phase.

B.3 META-TEST PHASE

After completing the meta-train phase of SISL, the meta-test phase is performed on the test task
setMtest. In this phase, previously learned components, including the low-level skill policy π̄l,ϕ,
skill prior p̄ϕ, and task encoder qe,θfinal , are kept fixed and are no longer updated. Only the high-level
policy πh,θ and high-level value functionQh,θ are trained for each test task using the soft actor-critic
(SAC) framework.

During meta-testing, for each test task T , the task representation eT is inferred from the fixed task
encoder qe,θfinal . The SAC algorithm is then applied to optimize the high-level policy and value
function for the specific test task, following the same loss functions as defined in Eq. (B.4) from the
meta-training phase. This approach ensures efficient adaptation to unseen tasks by leveraging the
fixed, pre-trained low-level skills and task representations.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1: SISL: Meta-Train Phase
Require: Training tasksMtrain, offline dataset Boff, low-level policy πl,ϕ, skill encoder qϕ, and

skill prior pϕ.
Initialize: High-level policy πh,θ, skill-improvement policy πimp,ψ , task encoder qe,θ, reward

model R̂ζ , and value functions Qh,θ, Qimp,ψ .
(Initial Skill Learning)

1 Update πl,ϕ, qϕ, pϕ using Eq. (B.1) with ϕ← ϕ− λlr
l · ∇ϕLspirl(ϕ).

2 Fix π̄l,ϕ ← πl,ϕ, q̄ϕ ← qϕ, and p̄ϕ ← pϕ.
3 for iteration k = 1, 2, · · · do
4 for task i = 1 to NT ,train do
5 Collect high-level trajectories τ ih and low-level trajectories τ il using πh,θ with π̄l,ϕ, qe,θ.
6 Collect skill-improvement trajectories τ iimp using πimp,ψ .
7 Filter high-return trajectories τ ihigh from τ il and τ iimp s.t. G > minτ ′∈Bion

G(τ ′).
8 Store τ ih, τ iimp, and τ ihigh into Bih, Biimp, and Bion.

9 Compute prioritization factors: PBoff and β.
10 for gradient step do

(Decoupled Policy Learning)
11 Update πimp,ψ , Qimp,ψ using Eq. (B.3) with ψ ← ψ − λlr

imp · ∇ψ(Lcritic
imp (ψ) + Lactor

imp (ψ)).
12 Update πh,θ, Qh,θ, qe,θ using Eq. (B.4) with θ ← θ − λlr

h · ∇θ(Lcritic
h (θ) + Lactor

h (θ)).
(Self-Improvement Skill Learning)

13 Update reward model R̂ζ using Eq. (B.5) with ζ ← ζ − λlr
reward · ∇ζLreward(ζ).

14 Update πl,ϕ, qϕ, pϕ using Eq. (B.6) with ϕ← ϕ− λlr
l · ∇ϕLskill(ϕ).

15 if k mod Kiter = 0 then
16 Update π̄l,ϕ ← πl,ϕ, q̄ϕ ← qϕ, and p̄ϕ ← pϕ.
17 Reinitialize πh,θ.

18 Save the final meta-train phase parameter θfinal ← θ.

Algorithm 2: SISL: Meta-test phase
Require: Target task T , high-level policy πh,θ, value function Qh,θ, task encoder qe,θfinal ,

low-level policy π̄l,ϕ , and skill prior p̄ϕ.
1 Collect context cT using πh,θ with π̄l,ϕ, e ∼ N (0, I).
2 Compute task representation eT ∼ qe,θfinal(·|cT).
3 for iteration k = 1, 2, . . . do
4 Collect high-level trajectory τTh using πh,θ with π̄l,ϕ, eT .
5 Store τTh into BTh .
6 for gradient step do
7 Update πh,θ, Qh,θ using Eq. (B.4) with θ ← θ − λlr

h · ∇θ(Lcritic
h (θ) + Lactor

h (θ))

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C DETAILED EXPERIMENTAL SETUP
In this section, we provide a detailed description of our experimental setup. The implementation
is built on PyTorch with CUDA 11.7, running on an AMD EPYC 7313 CPU with an NVIDIA
GeForce RTX 3090 GPU. SISL is implemented based on the official open-source code of SiMPL,
available at https://github.com/namsan96/SiMPL. For the environment implementations, we used
SiMPL’s code for the Kitchen and Maze2D environments, SkiLD’s open-source code for the Of-
fice environment at https://github.com/clvrai/skild, and D4RL’s open-source code for AntMaze at
https://github.com/Farama-Foundation/D4RL/tree/master.

The hyperparameters for low-level policy training were referenced from SPiRL (Pertsch et al., 2021).
Additional details about the baseline algorithms are provided in Section C.1, while Section C.2
elaborates on the environments used for evaluation. Section C.3 explains the construction of offline
datasets for varying noise levels, and Section C.4 details the network architectures and hyperparam-
eter configurations for policies, value functions, and other models.

C.1 OTHER BASELINES

Here are the detailed descriptions and implementation details of the algorithms used for performance
comparison:

SAC
SAC (Haarnoja et al., 2018) is a reinforcement learning algorithm that incorporates entropy to
improve exploration. Instead of a standard value function, SAC uses a soft value function that
combines entropy, with the entropy coefficient adjusted automatically to maintain the target en-
tropy. To enhance value function estimation, SAC employs double Q learning, using two inde-
pendent value functions. SAC learns tasks from scratch without utilizing meta-train tasks or of-
fline datasets. For the Kitchen and Office environments, the discount factor γ is set to 0.95, while
γ = 0.99 is used for Maze2D and AntMaze environments. We utilize the open-source code of SAC
at https://github.com/denisyarats/pytorch sac.

SAC+RND
SAC+RND combines SAC with random network distillation (RND) (Burda et al., 2018), an intrin-
sic motivation technique, to enhance exploration. Like SAC, it learns tasks from scratch without
meta-train tasks or offline datasets. RL hyperparameters are shared with SAC, and RND-specific
hyperparameters are set to match those in SISL. Additionally, for fair comparison, the ratio of
extrinsic to intrinsic rewards is aligned with SISL. We utilize the open-source code of RND at
https://github.com/openai/random-network-distillation.

PEARL
PEARL (Rakelly et al., 2019) is a context-based meta-RL algorithm that leverages a task encoder
qe to derive task representations, which are then used to train a meta-policy. PEARL adapts
its learned policy quickly to unseen tasks without utilizing skills or offline datasets. Unlike the
original PEARL, which does not fine-tune during the meta-test phase, we modified it to include
fine-tuning on target tasks for a fair comparison. We utilize the open-source code of PEARL at
https://github.com/katerakelly/oyster.

PEARL+RND
PEARL+RND extends PEARL by incorporating RND to enhance exploration. Like SAC+RND, the
ratio of extrinsic to intrinsic rewards is set to match SISL for fair comparison.

SPiRL
SPiRL (Pertsch et al., 2021) is a skill-based RL algorithm that first learns a fixed low-level policy
from an offline dataset and then trains a high-level policy for specific tasks. SPiRL’s loss function
is detailed in Section 3, and for fair comparison, loss scaling is aligned with SISL. We utilize the
open-source code of SPiRL at https://github.com/clvrai/spirl.

SiMPL
SiMPL (Nam et al., 2022) is a skill-based meta-RL algorithm that uses both offline datasets and
meta-train tasks. While it shares SISL’s approach of extracting reusable skills and performing meta-
train and meta-test phases, SiMPL fixes the skill model without further updates during meta-training.
SiMPL’s loss function is also detailed in Section 3, and SiMPL’s implementation uses the same
hyperparameters as SISL to ensure a fair comparison. We utilize the open-source code of SiMPL at
https://github.com/namsan96/SiMPL.

20

https://github.com/namsan96/SiMPL
https://github.com/clvrai/skild
https://github.com/Farama-Foundation/D4RL/tree/master
https://github.com/denisyarats/pytorch_sac
https://github.com/openai/random-network-distillation
https://github.com/katerakelly/oyster
https://github.com/clvrai/spirl
https://github.com/namsan96/SiMPL

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.2 ENVIRONMENTAL DETAILS

Kitchen

Figure C.1: Kitchen: An example of task (microwave→kettle→bottom burner→slide cabinet)

The Franka Kitchen environment is a robotic manipulation setup based on the 7-DoF Franka robot.
It is introduced by Gupta et al. (2020) and later adapted by Nam et al. (2022) to exclude task in-
formation from the observation space, making it more suitable for meta-learning. The environment
features seven manipulatable objects: bottom burner, top burner, light switch, slide cabinet, hinge
cabinet, microwave, and kettle.

Each subtask involves manipulating one object to its target state, while a full task requires sequen-
tially completing four subtasks. The agent earns a reward of 1 for each completed subtask, with
a maximum score of 4 achievable within a 280-timestep horizon. For instance, an example task,
illustrated in Fig. C.1, requires the agent to complete the sequence: microwave→ kettle→ bottom
burner→ slide cabinet. The observation space is a 60-dimensional continuous vector representing
object positions and robot state information, while the action space is a 9-dimensional continuous
vector. Based on the task setup from Nam et al. (2022), we expanded the meta-train task set by
adding two additional tasks, resulting in a total of 25 meta-train tasks and 10 meta-test tasks. De-
tailed task configurations are provided in Table C.1.

Table C.1: List of meta-train tasks and meta-test tasks in Kitchen environment
Meta-train task Meta-test task

Subtask1 Subtask2 Subtask3 Subtask4 # Subtask1 Subtask2 Subtask3 Subtask4
1 microwave kettle bottom burner slide cabinet 1 microwave bottom burner light switch top burner
2 microwave bottom burner top burner slide cabinet 2 microwave bottom burner top burner light switch
3 microwave top burner light switch hinge cabinet 3 kettle bottom burner light switch slide cabinet
4 kettle bottom burner light switch hinge cabinet 4 microwave kettle top burner hinge cabinet
5 microwave bottom burner hinge cabinet top burner 5 kettle bottom burner slide cabinet top burner
6 kettle top burner light switch slide cabinet 6 kettle light switch slide cabinet hinge cabinet
7 microwave kettle slide cabinet bottom burner 7 kettle bottom burner top burner slide cabinet
8 kettle light switch slide cabinet bottom burner 8 microwave bottom burner slide cabinet hinge cabinet
9 microwave kettle bottom burner top burner 9 bottom burner top burner slide cabinet hinge cabinet

10 microwave kettle slide cabinet hinge cabinet 10 microwave kettle bottom burner hinge cabinet
11 microwave bottom burner slide cabinet top burner
12 kettle bottom burner light switch top burner
13 microwave kettle top burner light switch
14 microwave kettle light switch hinge cabinet
15 microwave bottom burner light switch slide cabinet
16 kettle bottom burner top burner light switch
17 microwave light switch slide cabinet hinge cabinet
18 microwave bottom burner top burner hinge cabinet
19 kettle bottom burner slide cabinet hinge cabinet
20 bottom burner top burner slide cabinet light switch
21 microwave kettle light switch slide cabinet
22 kettle bottom burner top burner hinge cabinet
23 bottom burner top burner light switch slide cabinet
24 top burner hinge cabinet microwave slide cabinet
25 bottom burner hinge cabinet light switch kettle

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Office

Figure C.2: Office: An example of task ((shed2, drawer)→(eraser1, container)→(pepsi2, tray))

The Office environment is a robotic manipulation setup featuring a 5-DoF robotic arm. Originally
proposed by Pertsch et al. (2022), it has been modified to accommodate meta-learning tasks. The en-
vironment simulates an office cleaning scenario with seven objects (eraser1, shed1, pepsi1, gatorade,
eraser2, shed2, pepsi2) and three organizers (tray, container, drawer).

The goal is to move objects to their designated organizers, with each object-to-organizer transfer
constituting a subtask. A full task involves completing three sequential subtasks, where a subtask is
defined as an (object, organizer) pair. For tasks involving a tray or container, the agent earns a reward
of 1 for both picking and placing the object. For tasks involving the drawer, the agent receives 1
reward point for each of the following actions: opening the drawer, picking, placing, and closing the
drawer. This scoring setup allows for a maximum score of 8 within a 300-timestep horizon.

An example task, depicted in Fig. C.2, requires the agent to sequentially complete: (shed2 →
drawer), (eraser1 → container), and (pepsi2 → tray). The observation space is a 76-dimensional
continuous vector, including object positions and robot state information, while the action space
is an 8-dimensional continuous vector. The meta-train and meta-test sets include 25 and 10 tasks,
respectively, similar to the configuration in the Kitchen environment. A detailed task list is provided
in Table C.2.

Table C.2: List of meta-train tasks and meta-test tasks in Office environment
Meta-train task Meta-test task

Subtask1 Subtask2 Subtask3 # Subtask1 Subtask2 Subtask3
1 (shed2, drawer) (eraser1, container) (pepsi2, tray) 1 (gatorade, drawer) (eraser1, tray) (pepsi2, container)
2 (shed2, container) (eraser1, drawer) (pepsi1, tray) 2 (eraser1, drawer) (eraser2, container) (pepsi1, tray)
3 (eraser1, tray) (shed2, drawer) (gatorade, container) 3 (eraser2, drawer) (pepsi1, tray) (gatorade, container)
4 (pepsi1, tray) (eraser1, container) (eraser2, drawer) 4 (shed2, drawer) (pepsi2, tray) (pepsi1, container)
5 (shed1, tray) (shed2, drawer) (pepsi2, container) 5 (shed2, container) (gatorade, tray) (eraser1, drawer)
6 (pepsi1, container) (shed1, tray) (eraser2, drawer) 6 (gatorade, container) (eraser2, drawer) (pepsi2, tray)
7 (gatorade, tray) (eraser2, container) (eraser1, drawer) 7 (gatorade, tray) (shed1, container) (eraser1, drawer)
8 (pepsi2, container) (shed2, drawer) (eraser1, tray) 8 (pepsi2, drawer) (shed1, tray) (pepsi1, container)
9 (shed2, drawer) (gatorade, container) (pepsi2, tray) 9 (pepsi1, tray) (pepsi2, container) (shed2, drawer)

10 (eraser1, container) (pepsi2, drawer) (shed1, tray) 10 (gatorade, drawer) (pepsi1, container) (eraser2, tray)
11 (eraser2, drawer) (shed2, tray) (pepsi2, container)
12 (pepsi2, container) (shed2, drawer) (shed1, tray)
13 (shed2, tray) (pepsi1, container) (eraser1, drawer)
14 (gatorade, tray) (eraser1, drawer) (pepsi1, container)
15 (eraser1, tray) (shed1, drawer) (gatorade, container)
16 (eraser2, drawer) (gatorade, container) (shed2, tray)
17 (shed2, tray) (pepsi2, drawer) (shed1, container)
18 (pepsi1, container) (pepsi2, tray) (eraser1, drawer)
19 (shed2, tray) (gatorade, drawer) (shed1, container)
20 (gatorade, tray) (pepsi1, container) (pepsi2, drawer)
21 (eraser1, tray) (shed2, drawer) (pepsi2, container)
22 (eraser1, tray) (gatorade, drawer) (shed2, container)
23 (pepsi1, container) (shed2, drawer) (eraser2, tray)
24 (gatorade, drawer) (shed1, tray) (pepsi2, container)
25 (eraser2, container) (pepsi1, drawer) (eraser1, tray)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Maze2D

(a) Simulation (b) Training and test tasks

Figure C.3: Maze2D: Visualization of simulation and meta-train/test tasks in Maze2D

The Maze2D environment is a navigation setup where a 2-DoF ball agent moves toward a goal point.
Initially introduced by Fu et al. (2020b) and later adapted by Nam et al. (2022) for meta-learning
tasks, the environment is defined on a 20x20 grid. The agent receives a reward of 1 upon reaching
the goal point within a horizon of 2000 timesteps.

Fig. C.3 (a) provides a visualization of the Maze2D environment, while Fig. C.3 (b) illustrates the
meta-train and meta-test tasks. In Fig. C.3 (b), green squares indicate the goal points for 40 meta-
train tasks, and red squares represent the goal points for 10 meta-test tasks. All tasks share the same
starting point at (10, 10), marked by a blue cross. The observation space is a 4-dimensional con-
tinuous vector containing the ball’s position and velocity, while the action space is a 2-dimensional
continuous vector.

AntMaze

(a) Simulation (b) Training and test tasks

Figure C.4: AntMaze: Visualization of simulation and meta-train/test tasks in AntMaze

The AntMaze environment combines navigation and locomotion, replacing the 2-DoF ball from the
Maze2D environment with a more complex 8-DoF quadruped Ant robot. Initially proposed by Fu
et al. (2020b) and later adapted for meta-learning setups, the environment is defined on a 10x10 grid.
The agent receives a reward of 1 upon reaching the goal point within a horizon of 1000 timesteps.

Fig. C.4 (a) shows a simulation image of the AntMaze environment, and Fig. C.4 (b) depicts
the meta-train and meta-test tasks. In Fig. C.4 (b), green squares mark the goal points for 20
meta-train tasks, while red squares denote the goal points for 10 meta-test tasks. All tasks share a
common starting point at (5, 5), indicated by a blue cross. The observation space is a 29-dimensional
continuous vector that includes the Ant’s state and its (x, y) coordinates, while the action space is
an 8-dimensional continuous vector.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.3 CONSTRUCTION OF OFFLINE DATASET

In this section, we detail the offline datasets used in our experiments. For the Office,
Maze2D, and AntMaze environments, we employ rule-based oracle controllers provided by
each environment. The Office oracle controller is available at https://github.com/clvrai/skild,
while the Maze2D and AntMaze oracle controllers can be found in https://github.com/Farama-
Foundation/D4RL/tree/master. For the Kitchen environment, which only provides human demon-
strations, we train a policy using behavior cloning to serve as the oracle controller.

For the Kitchen environment, 1M transitions are collected using 25 tasks that are not part of the
training or test task setsMtrain ∪Mtest. Similarly, the Office environment collects 1M transitions
using 80 tasks. The Maze2D and AntMaze environments follow the same approach, collecting
0.5M transitions using 40 and 50 tasks respectively, with randomly sampled initial and goal points.
Unlike SiMPL, which randomly samples initial and goal points for each trajectory in the Maze2D
environment, we limit our data collection to 40 distinct tasks, resulting in trajectories that do not
fully cover the map. To introduce noise in the demonstrations, Gaussian noise with various standard
deviations σ is added to the oracle controller’s actions. For the Kitchen and Office environments,
noise levels of σ = 0.1, 0.2, and 0.3 are used, while for Maze2D and AntMaze, σ = 0.5, 1.0, and
1.5 are applied.

24

https://github.com/clvrai/skild
https://github.com/Farama-Foundation/D4RL/tree/master
https://github.com/Farama-Foundation/D4RL/tree/master

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.4 HYPERPARAMETER SETUP

In this section, we outline the hyperparameter setup for the proposed SISL framework. For high-
level policy training, we adopt the hyperparameters from SiMPL for the Kitchen and Maze2D envi-
ronments. For the Office and AntMaze environments, we conduct hyperparameter sweeps using the
Kitchen and Maze2D configurations as baselines.

To ensure a fair comparison, we inherit from SiMPL all hyperparameters that are shared with SISL,
given its multiple loss functions, and we perform parameter sweeps only over SISL specific com-
ponents, namely self-improving skill refinement and skill prioritization via maximum return rela-
beling. We explore prioritization temperature values T ∈ [0.1, 0.5, 1.0, 2.0] and KLD coefficients
λkld

imp ∈ [0, 0.001, 0.002, 0.005] for skill exploration, selecting the best-performing configurations as
defaults. Additionally, the ratio of intrinsic to extrinsic rewards is fixed at levels that show optimal
performance in single-task SAC experiments.

For implementing the skill models (πl, q, p), we follow SPiRL by utilizing LSTM (Graves & Graves,
2012) for the skill encoder and MLP structures for the low-level skill policy and skill prior. For im-
plementing the high-level models (πh, Qh, qe), we follow SiMPL by utilizing Set Transformer (Lee
et al., 2019) for the task encoder and MLP structures for the high-level policy and value function.
Additionally, for implementing the SISL, we utilize MLP structures for πimp, Qimp, and R̂. The de-
tailed hidden network sizes are presented in Table C.3 and Table C.4. Table C.3 presents the network
architectures (the number of nodes in fully connected layers) and the hyperparameters shared across
all environments, while Table C.4 details the environment-specific hyperparameter setups.

Table C.3: Network Architecture and Shared Hyperparameters

Shared
Hyperparameters

Group Name
Environments

Kitchen Office Maze2D AntMaze

High-level
Discount Factor γh 0.99
Learning rate λlr

h 0.0003
Network size πh, Qh [128]×6 [256]×4 [128]×6

Low-level

Buffer size Bion 10K
KLD coefficient λkld

l 0.0005
Skill length Hs 10

Skill dimension dim(z) 10
of priority update trajectory Npriority 200

Learning rate λlr
skill 0.001

Learning rate λlr
reward 0.0003

Network size R̂ [128]×3
Network size πl [128]×6
Network size p [128]×7
Network size q LSTM[128]

Skill-Improvement

RND state dropout ratio 0.7
RND output dimension 10

Learning rate λlr
imp 0.0003

Network size πimp, Qimp [256]×4
Network size f, f̂ [128]×4

Table C.4: Environmental Hyperparameters

Environmental
Hyperparameters

Group Name
Environments

Kitchen Office Maze2D AntMaze

High-level

Buffer size Bih 3000 3000 20000 20000
KLD coefficient λkld

h 0.03 0.03 0.001 0.0003
Task latent dimension dim(e) 5 5 6 6

Batch size (RL, per task) 256 256 1024 512
Batch size (context, per task) 1024 1024 8192 4096

Low-level
Skill refinement Kiter 2000 2000 1000 2000

Prioritization temperature T 1.0 1.0 0.5 0.5

Skill-Improvement

Buffer size Biimp 100K 200K 100K 300K
Discount factor γimp 0.95 0.95 0.99 0.99

RND extrinsic ratio δext 5 2 10 10
RND intrinsic ratio δint 0.1 0.1 0.01 0.01
Entropy coefficient λent

imp 0.2 0.2 0.1 0.1

KLD coefficient λkld
imp

0.005 (Expert)

0.001 0.001 0.001
0.005 (σ = 0.1)
0.002 (σ = 0.2)
0.001 (σ = 0.3)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D ADDITIONAL COMPARISON RESULTS
In this section, we provide additional comparison results against baseline algorithms. Following
Fig. 6, additional performance comparisons across all environments and noise levels are presented
in Section D.1, limited offline dataset size in Section D.2, random noise injection in Section D.3,
and diverse sub-optimal offline datasets in Section D.4.

D.1 PERFORMANCE COMPARISON

Fig. D.1 presents the learning curves of average returns for the algorithms on test tasks, corre-
sponding to the experiments summarized in Table 1. Rows represent evaluation environments,
and columns denote noise levels. SISL consistently demonstrated superior robustness, outper-
forming all baselines across various environments and noise levels. At higher noise levels such
as Noise(σ = 0.2), Noise(σ = 0.3) for Kitchen and Office, and Noise(σ = 1.0), Noise(σ = 1.5) for
Maze2D and AntMaze, significant performance improvements highlight the effectiveness of skill
refinement in addressing noisy demonstrations. Even with high-quality offline datasets like Expert
and Noise(σ = 0.1) for Kitchen and Office, and Noise(σ = 0.5) for Maze2D and AntMaze, SISL
further improved performance by learning task-relevant skills. These learning curves align with the
trends observed in the main experiments, confirming that skill refinement enhances performance
across various dataset qualities and effectively adapts to the task distribution.

Interestingly, SPiRL and SiMPL sometimes perform better with mild Gaussian noise than with ex-
pert data, especially in Maze2D and AntMaze. Our analysis suggests that mild noise increases the
diversity of behaviors in the dataset without significantly reducing success rates, allowing agents to
reach goals via more diverse paths. This expands state-action coverage (by about 7.3% in Maze2D
and 5.2% in AntMaze), helping skill-based methods learn more flexible and reusable skills. How-
ever, as the noise level increases further, a significant portion of trajectories fail to reach the goal,
leading to low quality skill learning and degraded downstream performance.

0 100 200 300 400 5000

1

2

3

4

Ki
tc

he
n

Te
st

 A
ve

ra
ge

 R
et

ur
n

Expert

0 100 200 300 400 5000

1

2

3

4 Noise(=0.1)

0 100 200 300 400 5000

1

2

3

4 Noise(=0.2)

0 100 200 300 400 5000

1

2

3

Noise(=0.3)

0 100 200 300 400 500
Iteration

0

1

2

3

Of
fic

e
Te

st
 A

ve
ra

ge
 R

et
ur

n

0 100 200 300 400 500
Iteration

0

1

2

3

4

0 100 200 300 400 500
Iteration

0.0

0.5

1.0

1.5

2.0

0 100 200 300 400 500
Iteration

0.0

0.5

1.0

1.5

0 100 200 300 400 5000.0

0.2

0.4

0.6

0.8

M
az

e2
D

Te
st

 A
ve

ra
ge

 R
et

ur
n

Expert

0 100 200 300 400 5000.0

0.2

0.4

0.6

0.8

Noise(=0.5)

0 100 200 300 400 5000.0

0.2

0.4

0.6

0.8

1.0 Noise(=1.0)

0 100 200 300 400 5000.0

0.2

0.4

0.6

0.8

1.0 Noise(=1.5)

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

An
tM

az
e

Te
st

 A
ve

ra
ge

 R
et

ur
n

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0 100 200 300 400 500
Iteration

0.0

0.1

0.2

0.3

0.4

SISL SiMPL SPiRL PEARL+RND PEARL SAC+RND SAC

Figure D.1: Learning curves across considered environments and noise levels

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D.2 LIMITED OFFLINE DATASET SIZE

To further investigate the robustness of SISL, we conducted additional experiments to assess the im-
pact of dataset size on skill learning and downstream performance. While SISL primarily addresses
the challenge of refining corrupted skills from noisy demonstrations through online interaction, the
size of the offline dataset remain important factors, especially in practical scenarios. To assess
the impact of dataset size, we conducted additional experiments on the Kitchen environment using
the same expert dataset but reduced to 50% (0.5M), 25% (0.25M), and 10% (0.1M) of its origi-
nal dataset size (1M). As shown in Table D.1, SISL consistently outperforms baselines even under
limited expert data, and its performance degrades more gracefully compared to baselines. These
results confirm SISL’s ability to refine skills even from limited data, which is particularly valuable
in real-world scenarios where collecting high-quality demonstrations is costly or infeasible.

Table D.1: Final performance on the Kitchen environment with varying sizes of expert datasets.

Dataset Size SPiRL SiMPL SISL
Expert(100%) 3.11±0.33 3.40±0.18 3.97±0.09

Expert(50%) 3.11±0.30 3.29±0.18 3.65±0.06

Expert(25%) 2.91±0.29 2.99±0.13 3.60±0.14

Expert(10%) 2.37±0.28 2.56±0.09 3.28±0.15

D.3 RANDOM NOISE INJECTION

While Gaussian noise is a widely used approach for degrading demonstration quality in offline RL
studies, it does not fully capture the diverse and unstructured nature of real-world noise such as
sensor failures, occlusions, or actuator malfunctions. In our main experiments, we adopted multi-
level Gaussian noise for two reasons: (1) it is a standard and accepted method for systematically
degrading demonstration quality, and (2) it enables controlled analysis of robustness under varying
degrees of skill degradation. Notably, in domains such as Kitchen and Office, sufficiently high
levels of Gaussian noise render learned skills nearly unusable, effectively mimicking real-world
failure scenarios in precision control tasks and providing a highly challenging regime for evaluating
robustness.

To further assess the generality of our robustness claims and address concerns about the limitations
of Gaussian noise, we conducted an additional experiment using random action injection in the
Kitchen environment. This approach better simulates real-world anomalies such as actuator faults
or sensor failures. Specifically, at each timestep, the oracle action was replaced with a randomly
sampled action with a probability of 25%, 50%, or 100% (resulting in a uniformly random dataset
at the highest level). This method introduces severe, unstructured corruption into the offline dataset,
representing worst-case real-world failures beyond the smooth degradations induced by Gaussian
noise. As shown in Table D.2, SISL consistently outperformed baseline methods, confirming its
robustness even under extreme, non-gaussian corruption. These results demonstrate SISL’s ability to
refine useful behaviors and maintain strong performance in the presence of severe dataset corruption,
further validating the generality of our robustness claims.

Table D.2: Final performance on the Kitchen environment with the random noise injection.

Noise Type SPiRL SiMPL SISL
Expert 3.11±0.33 3.40±0.18 3.97±0.09

Injection(25%) 0.80±0.15 0.77±0.12 3.42±0.11

Injection(50%) 0.14±0.10 0.04±0.05 3.26±0.15

Injection(100%) 0.07±0.08 0.02±0.05 1.68±0.18

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D.4 DIVERSE SUB-OPTIMAL DATASET

Beyond injecting noise into expert demonstrations, we also considered datasets of diverse quality
sub-optimal demonstration. Our decision to focus on noisy expert trajectories stems from the specific
challenge we aim to address. Unlike offline-RL, which typically assumes access to reward-labeled
trajectories and aims to improve performance from sub-optimal data, our setup considers reward-free
offline data where noise degrades originally near-optimal demonstrations. This setting better reflects
our goal of studying how exploration can help enhance skill learning when clean supervision is
unavailable. To test whether robustness hold across different data qualities, we conducted additional
experiments in the Kitchen domain using three dataset types: expert (return = 4), medium (return
≈ 2), and random (collected from a uniformly random policy). As summarized in Table D.3, SISL
consistently outperforms other methods across all dataset types, further validating its robustness to
data sub-optimality.

Table D.3: Final performance on the Kitchen environment with diverse quality of offline datasets.

Dataset SPiRL SiMPL SISL

Expert 3.11±0.33 3.40±0.18 3.97±0.09

Medium 2.62±0.27 3.17±0.26 3.77±0.21

Random 0.07±0.08 0.02±0.05 1.68±0.18

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E COMPUTATIONAL COMPLEXITY

Table E.1 summarizes SISL’s computational complexity, showing that the meta-train time increases
by about 16% relative to SiMPL, which we view as a modest overhead given the performance gains.
For a fair comparison, we keep the amount of training and interaction identical to SiMPL as de-
scribed in Section 5.1, so the number of samples and policy updates does not exceed that of SiMPL.

Table E.2 summarizes the complexity of SISL ablations. “SISL w/o PBoff ” and “SISL w/o Boff” do
not perform reward model training and only add skill refinement compared to SiMPL, increasing
computation time by about 10%. In contrast, “SISL w/o πimp”, “SISL w/o Bon”, and full SISL addi-
tionally perform reward model training, incuring an additional increase of about 3% in computation
time. In particular, “SISL w/o πimp” differs from full SISL by only 2.3% in training time, indicating
that introducing πimp does not lead to a substantial increase in computation cost.

Thus, the 16% overhead mainly arises from skill refinement and reward model training rather than
additional policy learning. This overhead is modest in light of the performance gains: as shown
in Fig. 6, SiMPL does not improve under high-noise settings even with extended training, whereas
SISL continues to improve, justifying this computational overhead. Importantly, considering that the
main goal of meta-RL is adaptation to unseen tasks, SISL does not require additional computational
cost during the fine-tuning phase and maintains similar computation time as SiMPL in the meta-test
phase while still achieving superior performance compared to baseline algorithms.

Table E.1: Comparison of total training time for SiMPL and SISL in Kitchen(Expert).

Algorithm Training time (h) ∆ time vs. SiMPL (%)

SiMPL 42.16 -
SISL 48.96 +16.1

Table E.2: Comparison of total training time for SISL ablation variants in Kitchen(Expert).

Algorithm Training time (h) ∆ time vs. SiMPL (%)

SISL w/o Boff 46.23 +9.6
SISL w/o PBoff 46.71 +10.7
SISL w/o πimp 47.98 +13.8
SISL w/o Bon 48.81 +15.7

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F FURTHER ANALYSIS RESULTS FOR THE SISL FRAMEWORK
In this section, we provide a more detailed analysis and visualization results of the skill refinement
process in the SISL. The analysis performed includes the evolution of the mixing coefficient β in
Section F.1, visualization of the refined skills and the corresponding skill sequence visualization
in Section F.2, task representation in Section F.3, learning stability of the reward model during
the meta-train phase in Section F.4, and comparison of skill trajectory with baseline algorithms in
Section F.5.

F.1 EVOLUTION OF THE MIXING COEFFICIENT β

Fig. F.1 illustrates the evolution of the mixing coefficient β during the meta-train phase across all
environments and noise levels. Initially, low β values reflect reliance on offline datasets for skill
learning, particularly in high-return environments like Kitchen and Office, where training starts with
β values close to zero. This approach prevents performance degradation by avoiding early depen-
dence on lower-quality online samples, while ensuring gradual and stable changes in the skill distri-
bution. As training progresses, the quality of online samples improves, leading to a gradual increase
in β, which facilitates greater utilization of online data for skill refinement. For offline datasets with
higher noise levels, β converges to higher values. Consequently, SISL learns increasingly effective
skills as training proceeds, achieving superior performance on unseen tasks, underscoring the im-
portance of SISL’s ability to dynamically balance the use of offline and online data based on dataset
quality.

0 2K 5K 7K 10K
Iteration

0

0.2

0.4

0.6

0.8

1.0

M
ix

in
g

Co
ef

fic
ie

nt

0 2K 5K 7K 10K
Iteration

0

0.2

0.4

0.6

0.8

1.0

0 1K 2K 3K 4K
Iteration

0

0.2

0.4

0.6

0.8

1.0

0 1K 2K 3K 4K
Iteration

0

0.2

0.4

0.6

0.8

1.0

(a) (b) (c) (d)Kitchen Office Maze2D AntMaze
Expert
Noise(= 0.1)

Noise(= 0.2)
Noise(= 0.3)

Expert
Noise(= 0.5)

Noise(= 1.0)
Noise(= 1.5)

Figure F.1: The evolution of the mixing coefficient β during the meta-train phase

F.2 ADDITIONAL VISUALIZATIONS OF REFINED SKILLS

Here, we present additional visualization results for SISL in the Kitchen and Maze2D environments.
Fig. F.2 illustrates the results in the Kitchen environment (σ = 0.3) after training is completed. On
the left, the t-SNE visualization shows the skill representation z ∼ πh,θ, while the right side high-
lights the distribution of skills corresponding to each subtask in the t-SNE map and how these skills
solve subtasks over time in the Kitchen environment. In the t-SNE map, clusters of markers with
the same shape but different colors indicate that identical subtasks share skills across different tasks.
From the results, it is evident that the skills learned using the proposed SISL framework are well-
structured, with representations accurately divided according to subtasks. This enables the high-level
policy to select appropriate skills for each subtask, effectively solving the tasks. Furthermore, while
SiMPL trained on noisy data often succeeds in only one or two subtasks, SISL progressively refines
skills even in noisy environments, successfully solving most given subtasks.

Fig. F.3 illustrates how the high-level policy utilizes refined skills obtained at different meta-train
iterations (0.5K, 2K, and 4K) during the meta-test phase to solve a task in Maze2D (σ = 1.5).
When using skills trained solely on the offline dataset (meta-train iteration 0.5K), the agent failed to
perform adequate exploration at meta-test iteration 0K. Even at meta-test iteration 0.5K, the noise
within the skills hindered the agent’s ability to converge to the target task. In contrast, after refining
the skills at meta-train iteration 2K, the agent successfully explored most of the maze during explo-
ration, except for certain tasks in the upper-left region, and achieved all meta-test tasks by iteration
0.5K. Finally, using skills refined at meta-train iteration 4K, the agent not only explored almost
the entire maze at meta-test iteration 0K but also completed all meta-test tasks by iteration 0.5K.
Additionally, trajectories generated with refined skills showed significantly reduced deviations and
shorter paths compared to those using noisy skills. Overall, the results in Fig. F.3 highlight the
importance of SISL’s skill refinement process in ensuring robust and efficient performance.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

H
in

ge
 C

ab
in

et
Sl

id
e

 C
ab

in
et

B
o

tt
o

m
 B

u
rn

e
r

M
ic

ro
w

av
e

Skill Representation

Figure F.2: t-SNE visualization of skill representations (left) and refined skill trajectories for various
subtasks (right) in Kitchen (σ = 0.3). In the skill representation, marker colors denote tasks, while
marker shapes indicate subtasks.

M
et

a-
Tr

ai
n

 It
e

ra
ti

o
n

Meta-Test Iteration

0
.5

K
 <

 𝑲
𝒊𝒕
𝒆
𝒓

0K 0.1K 0.5K

2
K

4
K

Starting Point Test Task Trajectory

Figure F.3: Illustration of trajectories of refined skills during the meta-test phase in Maze2D (σ =
1.5), across various training and test iterations.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

F.3 IMPROVEMENT IN TASK REPRESENTATION THROUGH SKILL REFINEMENT

Fig. F.4 illustrates the effect of skill refinement on task representation through t-SNE visualizations
of task embeddings eT ∼ qe in the Kitchen environment (σ = 0.3), with different tasks represented
by distinct colors. In Fig. F.4 (a), the task encoder is trained using fixed skills directly derived from
noisy demonstrations. The noisy skills obstruct the encoder’s ability to form clear task representa-
tions, making task differentiation challenging. This limitation highlights why, in SiMPL, relying on
skills learned from noisy datasets can sometimes result in poorer performance compared to SPiRL,
which focuses on task-specific skill learning.

Conversely, Fig. F.4 (b) presents the t-SNE visualization when the task encoder is trained during the
meta-train phase with refined skills. The improved skills enable the encoder to form more distinct
and task-specific representations, facilitating better task discrimination. This improvement allows
the high-level policy to differentiate tasks more effectively and select optimal skills for each, thereby
enhancing meta-RL performance. These findings demonstrate that the proposed skill refinement
not only improves the low-level policy but also significantly enhances the task encoder’s ability to
represent and distinguish tasks, contributing to overall performance improvements.

 (a) (b)
(microwave kettle bottom burner slide cabinet)
(microwave bottom burner top burner slide cabinet)
(kettle bottom burner light switch hinge cabinet)
(microwave kettle slide cabinet bottom burner)
(microwave kettle bottom burner top burner)

(kettle bottom burner light switch top burner)
(microwave kettle top burner light switch)
(microwave bottom burner light switch slide cabinet)
(kettle bottom burner top burner light switch)
(microwave kettle light switch slide cabinet)

Figure F.4: t-SNE visualization of task representations in the Kitchen environment (σ = 0.3):
(a) Using only the noisy offline dataset, (b) Proposed SISL trained with refined skills

F.4 STABILITY OF REWARD MODEL LEARNING

Unlike offline-RL, which typically relies on reward-labeled datasets, skill-based RL operates on
reward-free offline data. In SISL, only the skills are learned from the noisy offline trajectories,
while the reward model and the high-level policy are trained online using clean, noise-free training
tasks, as in SiMPL. As shown in Eq. (4), the reward model is trained using transitions sampled
from Biimp and Bion, which contain only online trajectories collected by interacting with training task
i. Since these buffers contain no offline data, the reward model is unaffected by offline noise. To
further support this point, we present Table F.1, which shows the MSE of the reward model remains
consistently low across different offline noise settings in the Kitchen environment. These results
indicate that the reward model maintains high accuracy and continues to support effective relabeling
even when offline skill pretraining is noisy.

Table F.1: MSE of reward model under different noise levels in the Kitchen environment.

Kitchen(Expert) Kitchen(σ=0.1) Kitchen(σ=0.2) Kitchen(σ=0.3)

MSE 0.005±0.001 0.005±0.001 0.004±0.001 0.005±0.001

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

F.5 COMPARISON OF SKILL TRAJECTORY VISUALIZATIONS

To visually demonstrate the skill difference between the baseline algorithm and SISL, we have added
a visualization comparison of the skill trajectories for SPiRL, SiMPL, and SISL. Specifically, Fig.
F.5 and F.6 present the skill trajectory visualizations of the microwave-opening and bottom-burner
control subtasks in the Kitchen(σ = 0.3). The SPiRL and SiMPL fail to complete these subtasks due
to noise in the learned skills, either do not succeed in opening the microwave door or fail to properly
reach the bottom-burner switch. In contrast, SISL successfully grasps and opens the microwave door
and correctly manipulates the bottom-burner. These results highlight the substantial impact of noise
in offline demonstrations on subtask performance, and demonstrate that SISL progressively refines
skills even in noisy environments, successfully solving most given subtasks.

SP
iR

L
Si

M
PL

SI
SL

Timestep (𝒕𝒕)

𝑡𝑡 = 0 𝑡𝑡 = 10 𝑡𝑡 = 20 𝑡𝑡 = 30

Figure F.5: Comparison of skill trajectory visualizations for the microwave-opening subtask in
Kitchen(σ = 0.3) across algorithms.

Timestep (𝒕𝒕)

𝑡𝑡 = 0 𝑡𝑡 = 5 𝑡𝑡 = 15 𝑡𝑡 = 20

SP
iR

L
Si

M
PL

SI
SL

Figure F.6: Comparison of skill trajectory visualizations for the bottom-burner control subtask in
Kitchen(σ = 0.3) across algorithms.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

G ADDITIONAL ABLATION STUDIES

In this section, we conduct additional ablation studies for Kitchen and Maze2D environments across
all noise levels. These studies include component evaluation and SISL’s skill refinement-related
hyperparameters discussed in Section G.1, prioritization temperature T in Section G.2, the KLD
coefficient λkld

imp for the skill-improvement policy in Section G.3, additional component evaluation
on RND and re-initialization in Section G.4skill refinement interval Kiter in Section G.5, and com-
parison with Goal-Conditioned RL in Section G.6.

G.1 COMPONENT EVALUATION

Fig. G.1 presents comprehensive results across all noise levels from the component evaluation in
Section 5.5. While improvements are modest under conditions with high-quality offline datasets,
such as Expert and Noise (σ = 0.1) for Kitchen, and Expert and Noise (σ = 0.5) for Maze2D,
notable performance gains are still observed. The significant degradation observed in the absence
of the skill-improvement policy πimp highlights its crucial role in mitigating minor noise and dis-
covering improved paths. For higher noise levels, such as Noise (σ = 0.2), Noise (σ = 0.3) for
Kitchen, and Noise (σ = 1.0), Noise (σ = 1.5) for Maze2D, excluding the online buffer or skill
prioritization via maximum return relabeling (Bon or PBoff) caused significant performance drops,
emphasizing the importance of maximum return relabeling in SISL. Additionally, relying solely on
the online buffer without utilizing the offline dataset led to performance deterioration, demonstrat-
ing the offline dataset’s value in addressing meta-test tasks involving behaviors not available during
meta-train. Beyond these specific findings, most trends align with the results discussed in the main
text, further validating the effectiveness of SISL’s components across different noise levels.

3.0

3.2

3.4

3.6

3.8

4.0

Ki
tc

he
n

Te
st

 A
ve

ra
ge

 R
et

ur
n

Expert

3.0

3.2

3.4

3.6

3.8

4.0 Noise(= 0.1)

2.0

2.5

3.0

3.5

4.0 Noise(= 0.2)

0

1

2

3

Noise(= 0.3)

0.6

0.7

0.8

0.9

M
az

e2
D

Te
st

 A
ve

ra
ge

 R
et

ur
n

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

1.0

SISL SISL w/o P off SISL w/o off SISL w/o on SISL w/o imp

Figure G.1: Component evaluation across all noise levels in Kitchen and Maze2D

G.2 PRIORITIZATION TEMPERATURE T

The prioritization temperature T regulates the balance between sampling from online and offline
buffers. Fig. G.2 shows performance across different noise levels in Kitchen and Maze2D envi-
ronments as T varies. Low T values lead to excessive sampling from high-return buffers, while
high T approximates uniform sampling, diminishing the prioritization effect. Both environments
experienced degraded performance at T = 0.1 and T = 2.0, highlighting the importance of proper
tuning. In the Kitchen environment (maximum return = 4), T = 1.0 achieved the best performance
across all noise levels, whereas in the Maze2D environment (maximum return = 1), T = 0.5 was
optimal. This difference occurs because environments with lower max returns exhibit smaller gaps
between low- and high-return buffers, reducing the effect of prioritization. Based on these findings,
we suggest a practical guideline: select T roughly in proportion to the environment’s maximum
achievable return. This approach offers a principled starting point for tuning T without requiring an
extensive hyperparameter sweep, thereby improving usability and reproducibility. Accordingly, we
set the best-performing hyperparameter values as defaults for each environment.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

G.3 KLD COEFFICIENT λkld
imp

The KLD coefficient λkld
imp regulates the strength of the KLD term between the skill-improvement

policy and the action distribution induced by the prioritized online buffer Bion for each task T i. Fig.
G.3 illustrates performance variations with λkld

imp ∈ [0, 0.001, 0.002, 0.005].

In the Kitchen environment, λkld
imp = 0.005 performed best for Expert and Noise (σ = 0.1), while

λkld
imp = 0.002 and λkld

imp = 0.001 were optimal for Noise (σ = 0.2) and Noise (σ = 0.3), respectively.
At lower noise levels, the high-level policy benefits from quickly following high-return samples,
whereas at higher noise levels, focusing on exploration to discover shorter paths becomes more ad-
vantageous. For the Maze2D environment, performance was consistent across λkld

imp = 0.001, 0.002,

and 0.005, with only minor variations observed. However, when λkld
imp = 0, removing the KLD term

resulted in significant performance degradation across all noise levels in both Kitchen and Maze2D
environments. This highlights the necessity of guidance from high-return samples for effectively
solving long-horizon tasks. Based on these results, we selected the best-performing hyperparameter
values as defaults for each environment.

0 100 200 300 400 500
Iteration

3.0

3.5

4.0

Ki
tc

he
n

Te
st

 A
ve

ra
ge

 R
et

ur
n Expert

0 100 200 300 400 500
Iteration

3.0

3.5

4.0 Noise(= 0.1)

0 100 200 300 400 500
Iteration

2.5

3.0

3.5

Noise(= 0.2)

0 100 200 300 400 500
Iteration

2.5

3.0

3.5
Noise(= 0.3)

0 100 200 300 400 500
Iteration

0.2

0.4

0.6

0.8

M
az

e2
D

Te
st

 A
ve

ra
ge

 R
et

ur
n Expert

0 100 200 300 400 500
Iteration

0.2

0.4

0.6

0.8

Noise(= 0.5)

0 100 200 300 400 500
Iteration

0.00

0.25

0.50

0.75

1.00 Noise(= 1.0)

0 100 200 300 400 500
Iteration

0.2

0.4

0.6

0.8

1.0 Noise(= 1.5)

T = 0.1 T = 0.5 T = 1.0 T = 2.0

Figure G.2: Impact of the prioritization temperature T across all noise levels in Kitchen and Maze2D

0 100 200 300 400 500
Iteration

2.75

3.00

3.25

3.50

3.75

4.00

Ki
tc

he
n

Te
st

 A
ve

ra
ge

 R
et

ur
n

Expert

0 100 200 300 400 500
Iteration

2.75

3.00

3.25

3.50

3.75

4.00 Noise(= 0.1)

0 100 200 300 400 500
Iteration

2.5

3.0

3.5

Noise(= 0.2)

0 100 200 300 400 500
Iteration

2.0

2.5

3.0

3.5
Noise(= 0.3)

0 100 200 300 400 500
Iteration

0.2

0.4

0.6

0.8

M
az

e2
D

Te
st

 A
ve

ra
ge

 R
et

ur
n

Expert

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

Noise(= 0.5)

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

Noise(= 1.0)

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

1.0 Noise(= 1.5)

kld
imp = 0 kld

imp = 0.001 kld
imp = 0.002 kld

imp = 0.005

Figure G.3: Impact of the KLD coefficient λkld
imp across all noise levels in Kitchen and Maze2D

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

G.4 ADDITIONAL COMPONENT EVALUATION

Following the ablation of SISL’s core components in Section G.1, we performed additional ablations
on the remaining components that could affect performance. These evaluations are conducted in the
Kitchen environment using both a Expert and a high-noise condition Noise(σ = 0.3), and the results
are shown in Table G.1.

The SISL w/o RND is a variant that excludes RND from skill-improvement policy πimp training
and relies solely on SAC. The results show performance degradation compared to full SISL, with
especially large drops under high-noise conditions where exploration capability is critical. This
suggests that RND encourages exploration toward rare or less frequently visited states, enabling the
discovery of more diverse and useful trajectories.

The SISL w/o Re-Initialize refers to a variant that continues training the high-level policy πh without
re-initializing it at each Kiter during the meta-training process. In SISL, the skill model is period-
ically updated every Kiter steps, which effectively changes the environment dynamics observed by
the high-level policy. Continuing to train the same high-level policy across different skill sets intro-
duces non-stationarity, leading to instability. To address this, we reset both the policy parameters
and the buffer at each skill update so that the high-level policy can re-learn from scratch under a
new, stable MDP defined by the updated skills. This technique is consistent with practices in contin-
ual and safe reinforcement learning, where re-initialization is often used to manage sudden changes
in task dynamics (Kim et al., 2023; Kong et al., 2024). To empirically validate this decision, we
conducted ablation experiments on high-level policy re-initialization. The results show that remov-
ing re-initialization leads to a substantial performance drop, supporting the necessity of this design
choice.

Table G.1: Comparison of SISL with/without RND and re-initialization.
Dataset SISL SISL w/o RND SISL w/o Re-Initialize

Kitchen(Expert) 3.97±0.09 3.90±0.14 3.11±0.22

Kitchen(σ = 0.3) 3.48±0.07 3.14±0.10 0.41±0.11

G.5 SKILL REFINEMENT INTERVAL Kiter

As shown in Fig. 6, the high-level policy πh in the Kitchen environment typically requires at
least 1K iterations within each interval to improve and converge, implying that if Kiter is too
small, skill refinement is triggered before πh has sufficiently adapted to the current skill library.
Based on this observation, we used Kiter = 2000 as the default setting in the Kitchen envi-
ronment. To validate this intuition more rigorously, we conducted hyperparameter search over
Kiter ∈ {100, 500, 1000, 2000, 5000} in the Kitchen (σ = 0.3) setting. The results confirm our
hypothesis: with Kiter = 100, πh is updated before it can meaningfully exploit the skills, leading
to a substantial performance drop. Conversely, when Kiter = 5000, πh converges well but skill
refinement happens too infrequently, reducing the overall performance gain. These findings support
the reasoning behind our chosen interval.

0 2K 4K 6K 8K 10K
Iteration

0

1

2

3

4

Av
er

ag
e

Re
tu

rn

Meta-Train

Kiter = 100 Kiter = 500 Kiter = 1000 Kiter = 2000 Kiter = 5000

Figure G.4: Impact of the skill refinement interval Kiter in Kitchen(σ = 0.3)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

G.6 COMPARISON WITH GOAL-CONDITIONED RL

We first note that standard goal-conditioned RL (GCRL) assumes explicit, environment-provided
goals and single-task learning, whereas in our meta-RL setting no goals are given and the agent
must infer task while learning a policy that generalizes across many tasks. Despite these differences,
to provide an empirical reference point, we modify our environments to explicitly provide goals
and evaluate a representative GCRL method, HER (Andrychowicz et al., 2017) with SAC, trained
directly on the test tasks without offline data. As presented in Table G.2, HER achieves notably lower
performance than SISL in Maze2D and fails to make progress in AntMaze, where the success rate
remains at zero. Even with explicit goals, these sparse-reward long-horizon tasks appear difficult to
solve without pretrained skills, which helps contextualize the advantages of our framework.

Table G.2: Final performance of goal-conditioned RL (HER) given a target goal.

Environment SAC+HER SISL

Maze2D(Expert)

0.37±0.09

0.87±0.05

Maze2D(σ = 0.5) 0.89±0.03

Maze2D(σ = 1.0) 0.93±0.05

Maze2D(σ = 1.5) 0.99±0.02

AntMaze(Expert)

0.00±0.00

0.81±0.08

AntMaze(σ = 0.5) 0.82±0.05

AntMaze(σ = 1.0) 0.60±0.02

AntMaze(σ = 1.5) 0.41±0.01

37

	Introduction
	Related Works
	Background
	Methodology
	Motivation: Toward Robust Skill Learning under Noisy Demonstrations
	Self-Improving Skill Refinement with Decoupled Policies
	Skill Prioritization via Maximum Return Relabeling

	Experiment
	Experimental Setup
	Environmental Setup
	Performance Comparison
	In-depth Analysis of the Proposed Skill Refinement Process
	Ablation Studies

	Limitation
	Conclusion
	The use of Large Language Models (LLMs)
	Implementation Details on SISL
	Initial Skill Learning Phase
	Meta-Train Phase
	Meta-Test Phase

	Detailed Experimental Setup
	Other Baselines
	Environmental Details
	Construction of Offline Dataset
	Hyperparameter Setup

	Additional Comparison Results
	Performance Comparison
	Limited Offline Dataset Size
	Random Noise Injection
	Diverse Sub-Optimal Dataset

	Computational Complexity
	Further Analysis Results for the SISL Framework
	Evolution of The Mixing Coefficient
	Additional Visualizations of Refined Skills
	Improvement in Task Representation through Skill Refinement
	Stability of Reward Model Learning
	Comparison of Skill Trajectory Visualizations

	Additional Ablation Studies
	Component Evaluation
	Prioritization Temperature T
	KLD Coefficient kldimp
	Additional Component Evaluation
	Skill Refinement Interval Kiter
	Comparison with Goal-Conditioned RL

