
Under review as a conference paper at ICLR 2021

BRIDGING THE IMITATION GAP BY
ADAPTIVE INSUBORDINATION

Anonymous authors
Paper under double-blind review

ABSTRACT

When expert supervision is available, practitioners often use imitation learning with
varying degrees of success. We show that when an expert has access to privileged
information that is unavailable to the student, this information is marginalized
in the student policy during imitation learning resulting in an “imitation gap”
and, potentially, poor results. Prior work bridges this gap via a progression from
imitation learning to reinforcement learning. While often successful, gradual
progression fails for tasks that require frequent switches between exploration and
memorization skills. To better address these tasks and alleviate the imitation gap
we propose ‘Adaptive Insubordination’ (ADVISOR), which dynamically weights
imitation and reward-based reinforcement learning losses during training, enabling
switching between imitation and exploration. On a suite of challenging didactic
and MINIGRID tasks, we show that ADVISOR outperforms pure imitation, pure
reinforcement learning, as well as their sequential and parallel combinations.

1 INTRODUCTION

Imitation learning (IL) can be remarkably successful in settings where reinforcement learning (RL)
struggles. For instance, IL succeeds in complex tasks with sparse rewards (Chevalier-Boisvert et al.,
2018a; Peng et al., 2018; Nair et al., 2018), and when the observations are high-dimensional, e.g.,
in visual 3D environments (Kolve et al., 2019; Savva et al., 2019). In such tasks, obtaining a high
quality policy purely from reward-based RL is often challenging, requiring extensive reward shaping
and careful tuning as reward variance remains high. In contrast, IL leverages an expert which is
generally less impacted by the environment’s random state. However, designing an expert often relies
on privileged information that is unavailable at inference time. For instance, it is straightforward to
create a navigational expert when privileged with access to a connectivity graph of the environment
(using shortest-path algorithms) (e.g., Gupta et al., 2017b) or an instruction-following expert which
leverages an available semantic map (e.g., Shridhar et al., 2020; Das et al., 2018b). Similarly, game
experts may have the privilege of seeing rollouts (Silver et al., 2016) or vision-based driving experts
may have access to ground-truth layout (Chen et al., 2020). Such graphs, maps, rollouts, or layouts
aren’t available to the student or at inference time.

How does use of a privileged expert influence the student policy? We show that training an
agent to imitate such an expert results in a policy which marginalizes out the privileged in-
formation. This can result in a student policy which is sub-optimal, and even near-uniform,
over a large collection of states. We call this discrepancy between the expert policy and
the student policy the imitation gap. A frequent strategy used in prior work to improve
upon expert demonstrations (and implicitly to overcome the imitation gap when applicable)
is stage-wise training: IL is used to ‘warm start’ learning and subsequent reward-based RL

1 -2 -2 2

High-value
door chosen
at random

Consistent
reward behind
locked door

1. 2. 3. 4.

Figure 1: PoisonedDoors

algorithms, such as proximal policy optimization (PPO), are used
for fine-tuning (Lowe et al., 2020). While this strategy is often
successful, the following example shows that it can fail dramatically.

Example 1 (Poisoned Doors). Suppose an agent is presented with
N ≥ 3 doors d1, . . . , dN . As illustrated in Fig. 1 (for N = 4),
opening d1 requires entering an unknown but fixed code of lengthM .
Successful code entry results in a guaranteed reward of 1, otherwise
the reward is 0. Since the code is unknown to the agent, it would
have to learn the code. All other doors can be opened without a code.

1

Under review as a conference paper at ICLR 2021

For some randomly chosen 2 ≤ j ≤ N (sampled each episode), the
reward behind dj is 2 but for all i ∈ {2, . . . , N} \ j the reward behind di is −2. Without knowledge
of j, the optimal policy is to always enter the correct code to open d1 obtaining an expected reward
of 1. In contrast, if the expert is given the privileged knowledge of the door dj with reward 2, it will
always choose to open this door immediately. It is easy to see that an agent without knowledge of j
attempting to imitate such an expert will learn open a door among d2, . . . , dN uniformly at random
obtaining an expected return of −2 · (N − 3)/(N − 1). Training with reward-based RL after this
‘warm start’ is strictly worse than starting without it: the agent needs to unlearn its policy and then, by
chance, stumble into entering the correct code for door d1, a practical impossibility when M is large.

To bridge the imitation gap, we introduce Adaptive Insubordination (ADVISOR). ADVISOR adap-
tively weights imitation and RL losses. Specifically, throughout training we use an auxiliary actor
which judges whether the current observation is better treated using an IL or a RL loss. For this,
the auxiliary actor attempts to reproduce the expert’s action using the observations of the student at
every step. Intuitively, the weight corresponding to the IL loss is large when the auxiliary actor can
reproduce the expert’s action with high confidence and is otherwise small. As we show empirically,
ADVISOR combines the benefits of IL and RL while avoiding the pitfalls of either method alone.
Most IL algorithms were designed with common-sense but strong assumptions which implicitly
disallow a discrepancy between expert and student observations: it is when these assumptions are
violated (as they often are in practice) that the imitation gap appears.

We evaluate the benefits of employing ADVISOR across ten tasks including the Poisoned Doors
discussed above, a 2D gridworld, and a suite of tasks based on the MINIGRID environment (Chevalier-
Boisvert et al., 2018a;b). Across all tasks, ADVISOR outperforms popular IL and RL baselines as
well as combinations of these methods. We also demonstrate that ADVISOR can learn to ignore
corruption in expert supervision. ADVISOR can be easily incorporated into existing RL pipelines.
The code to do the same is included in the supplement and will be made publicly available.

2 RELATED WORK

A series of solutions (e.g., Mnih et al., 2015; van Hasselt et al., 2016; Bellemare et al., 2016; Schaul
et al., 2016) have made off-policy deep Q-learning methods stable for complex environments like
Atari Games. Several high-performance (on-policy) policy-gradient methods for deep-RL have
also been proposed (Schulman et al., 2015a; Mnih et al., 2016; Levine et al., 2016; Wang et al.,
2017; Silver et al., 2016). For instance, Trust Region Policy Optimization (TRPO) (Schulman et al.,
2015a) improves sample-efficiency by safely integrating larger gradient steps, but is incompatible
with architectures with shared parameters between policy and value approximators. Proximal Policy
Optimization (PPO) (Schulman et al., 2017) employs a clipped variant of TRPO’s surrogate objective
and is widely adopted in the deep RL community. We also use it as a baseline in our experiments.

As environments get more complex, navigating the search space with only deep RL and simple
heuristic exploration (such as ε-greedy) is increasingly difficult, leading to methods that imitate
expert information (Subramanian et al., 2016). While several approaches exist for leveraging expert
feedback, e.g., Cederborg et al. (2015) consider policy shaping with human evaluations, a simple,
popular, approach to imitation learning (IL) is Behaviour Cloning (BC), a supervised classification
loss between the policy of the learner and expert agents (Sammut et al., 1992; Bain & Sammut, 1995).
BC suffers from compounding of errors due to covariate shift, namely if the learning agent makes a
single mistake at inference time then it can rapidly enter settings where it has never received relevant
supervision and thus fails (Ross & Bagnell, 2010). Data Aggregation (DAgger) (Ross et al., 2011) is
the go-to online sampling framework that trains a sequence of learner policies by querying the expert
at states beyond those that would be reached by following only expert actions. IL is further enhanced,
e.g., via hierarchies (Le et al., 2018), by improving over the expert (Chang et al., 2015; Brys et al.,
2015; Jing et al., 2020), bypassing any intermediate reward function inference (Ho & Ermon, 2016),
and/or learning from experts that differ from the learner (Gupta et al., 2017a; Jiang, 2019; Gangwani
& Peng, 2020). A sequential combination of IL and RL, i.e., pre-training a model on expert data
before letting the agent interact with the environment, performs remarkably well. This strategy has
been applied in a wide range of applications – the game of Go (Silver et al., 2016), robotic and motor
skills (Pomerleau, 1991; Kober & Peters, 2009; Peters & Schaal, 2008; Rajeswaran et al., 2018),
navigation in visually realistic environments (Gupta et al., 2017b; Das et al., 2018a), and web &
language based tasks (He et al., 2016; Das et al., 2017; Shi et al., 2017; Wang et al., 2018).

2

Under review as a conference paper at ICLR 2021

Recent methods mix expert demonstrations with the agent’s own roll-outs instead of using a sequential
combination of IL followed by RL. Chemali & Lazaric (2015) perform policy iteration from expert
and on-policy demonstrations. DQfD (Hester et al., 2018) initializes the replay buffer with expert
episodes and adds roll-outs of (a pretrained) agent. They weight experiences based on the previous
temporal difference errors (Schaul et al., 2016) and use a supervised loss to learn from the expert.
For continuous action spaces, DDPGfD (Vecerı́k et al., 2017) is an analogous incorporation of IL
into DDPG (Lillicrap et al., 2016). POfD (Kang et al., 2018) improves performance by adding a
demonstration-guided exploration term, i.e., the Jensen-Shannon divergence between the expert’s
and the learner’s policy (estimated using occupancy measures). THOR uses suboptimal experts to
reshape rewards and then searches over a finite planning horizon (Sun et al., 2018). Zhu et al. (2018)
show that a combination of GAIL (Ho & Ermon, 2016) and RL can be highly effective for difficult
manipulation tasks.

Critically, the above methods have, implicitly or explicitly, been designed under certain assumptions
(e.g., the agent operates in an MDP) which imply the expert and student observe the same state.
Different from the above methods, we investigate the difference of privilege between the expert policy
and the learned policy. Contrary to a sequential, static, or rule-based combination of supervised loss
or divergence, we train an auxiliary actor to adaptively weight IL and RL losses. To the best of our
knowledge, this hasn’t been studied before.

Our approach attempts to address imitation directly, assuming the information available to the learning
agent is fixed. An indirect approach for reducing this gap is to enrich the information available
to the agent or to improve the agent’s memory of past experience. Several works have considered
this direction in the context of autonomous driving (Codevilla et al., 2018; Hawke et al., 2020) and
continuous control (Gangwani et al., 2019). We expect that these methods can be fruitfully combined
with the method that we discuss next.

3 ADVISOR

We first introduce notation to define the imitation gap and illustrate how it leads to ‘policy averaging.’
Next, using the construct of an auxiliary policy, we propose ADVISOR to bridge this gap. Finally,
we show how to estimate the auxiliary policy in practice using deep nets.

3.1 IMITATION GAP

We want an agent to complete task T in environment E . The environment has states s ∈ S and
the agent executes an action a ∈ A at every discrete timestep t ≥ 0. For simplicity and w.l.o.g.
assume both A and S are finite. For example, let E be a 1D-gridworld in which the agent is tasked
with navigating to a location by executing actions to move left or right, as shown in Fig. 2a. Here
and below we assume states s ∈ S encapsulate historical information so that s includes the full
trajectory of the agent up to time t ≥ 0. The objective is to find a policy π, a mapping from states
to distributions over actions, which maximizes an evaluation criterion. Often this policy search is
restricted to a set of feasible policies Πfeas., for instance Πfeas. may be the set {π(·; θ) : θ ∈ RD}
where π(·; θ) is a deep neural network with D-dimensional parameters θ. In classical (deep) RL
(Mnih et al., 2015; 2016), the evaluation criterion is usually the expected γ-discounted future return.

We focus on the setting of partially-observed Markov decision processes (POMDPs) where an agent
makes decisions without access to the full state information. We model this restricted access by
defining a filtration function f : S → Of and limiting the space of feasible policies to those policies
Πfeas.
f for which the value of π(s) depends on s only through f(s), i.e., so that f(s) = f(s′) implies

π(s) = π(s′). We call any π satisfying this condition an f -partial policy and the set of feasible
f -partial policies Πfeas.

f . In a gridworld example, f might restrict s to only include information local
to the agent’s current position as shown in Figs. 2c, 2d. If a f -partial policy is optimal among all
other f -partial policies, we say it is f -optimal. We call o ∈ Of a partial-observation and for any
f -partial policy πf we write πf (o) to mean πf (s) if f(s) = o. It is frequently the case that, during
training, we have access to an expert policy which is able to successfully complete the task T . This
expert policy may have access to the whole environment state and thus may be optimal among all
policies. Alternatively, the expert policy may, like the student, only make decisions given partial
information (e.g., a human who sees exactly the same inputs as the student). For flexibility we will

3

Under review as a conference paper at ICLR 2021

A

A
Goal Boundary Agent

1.

2.

A
A

A
A

0. Random start

1. Move right

···

An. Goal reached

Hypothetical episode

2. Move right

3. Move left

0.0 1.0

0.0 1.0

0.0 1.0

0.0 1.0

⇡exp

(a) (b) (c) (d)

Environment E start states

Actions A = {left, right}
= {L, R}

L R

A
A

A
A···

A

f2-partial obs.

0.5 0.5

0.5 0.5

0.0 1.0

0.0 1.0

L R
⇡IL

f2

A

A
A

A
A···

f1-partial obs.

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

L R
⇡IL

f1

Figure 2: Effect of partial observability in a 1-dimensional gridworld environment. (a) The two
start states and actions space for 1D-Lighthouse with N = 4. (b) A trajectory of the agent following
a hypothetical random policy. At every trajectory step we display output probabilities as per the
shortest-path expert (πexp) for each state. (c/d) Using the same trajectory from (b) we highlight the
partial-observations available to the agent (shaded gray) under different filtration function f1, f2.
Notice that, under f1, the agent does not see the goal within its first four steps. The policies πIL

f1 , πIL
f2 ,

learned by imitating πexp, show that imitation results in sub-optimal policies i.e. πIL
f1 , πIL

f2 6= πexp.

define the expert policy as πexp
f exp , denoting it is a f exp-partial policy for some filtration function f exp.

For simplicity, we will assume that πexp
f exp is f exp-optimal. Subsequently, we will drop the subscript

f exp unless we wish to explicitly discuss multiple experts simultaneously.

In IL (Osa et al., 2018; Ross et al., 2011), πf is trained to mimic πexp by minimizing the (expected)
cross-entropy between πf and πexp over a set of sampled states s ∈ S:

min
πf∈Πfeas.

f

Eµ[CE(πexp, πf)(S)] , (1)

where CE(πexp, πf)(S) = −πexp(S) � log πf (S), � denotes the usual dot-product, and S is a
random variable taking value s ∈ S with probability measure µ : S → [0, 1]. Often µ(s) is chosen to
equal the frequency with which an exploration policy (e.g., random actions or πexp) visits state s in
a randomly initialized episode. When it exists, we denote the policy minimizing Eq. (1) as πµ,π

exp

f .

When µ and πexp are unambiguous, we write πIL
f = πµ,π

exp

f .

What happens when there is a difference of privilege (or filtration functions) between the expert and
the student? Intuitively, if the information that an expert uses to make a decision is unavailable to the
student then the student has little hope of being able to mimic the expert’s decisions. As we show in
our next example, even when optimizing perfectly, depending on the choice of f and f exp, IL may
result in πIL

f being uniformly random over a large collection of states. We call the phenomenon that
πIL
f 6= πexp the imitation gap.

Example 2 (1D-Lighthouse). We illustrate the imitation gap using a gridworld spanning
[−N, . . . , N]. The two start states correspond to the goal at −N or N , while the agent is al-
ways initialized at 0 (see Fig. 2a). Clearly, with full state information, πexp maps states to an ‘always
left’ or ‘always right’ probability distribution, depending on whether the goal is on the left or right,
respectively. Suppose now that the agent’s visibility is constrained to a radius of i (Fig. 2c shows
i = 1), i.e., an f i-partial observation is accessible. An agent following an optimal policy with a
visibility of radius i will begin to move deterministically towards any corner, w.l.o.g. assume right.
When the agent sees the rightmost edge (from position N − i), it will either continue to move right
if the goal is visible or, if it’s not, move left until it reaches the goal (at −N). Now we may ask:
what is the best f i-partial policy that can be learnt by imitating πexp (i.e., what is πIL

fi)? Tragically,
the cross-entropy loss causes πIL

fi to be uniform in a large number of states. In particular, an agent
following policy πIL

fi will take left (and right) with probability 0.5, until it is within a distance of i
from one of the corners. Subsequently, it will head directly to the goal. See the policies highlighted
in Figs. 2c, 2d. The intuition for this result is straightforward: until the agent observes one of the
corners it cannot know if the goal is to the right or left and, conditional on its observations, each of
these events is equally likely under µ (assumed uniform). Hence for half of these events the expert
will instruct the agent to go right. For the other half the instruction is to go left. See App. A.1 for a
rigorous treatment of this example. In Sec. 4 and Fig. 5, we train f i-partial policies with f j-optimal
experts for a 2D variant of this example. We empirically verify that a student learns a better policy
when imitating teachers whose filtration function is closest to their own.

4

Under review as a conference paper at ICLR 2021

The above example shows: when a student attempts to imitate an expert that is privileged with
information not available to the student, the student learns a version of πexp in which this privileged
information is marginalized out. We formalize this intuition in the following proposition.
Proposition 1 (Policy Averaging). In the setting of Section 3.1, suppose that Πfeas. contains all f -
partial policies. Then, for any s ∈ S with o = f(s), we have that πIL

f (o) = Eµ[πexp(S) | f(S) = o].

Proofs are deferred to Appendix A.2.

The imitation gap provides theoretical justification for the common practical observation that an agent
trained via IL can often be significantly improved by continuing to train the agent using pure RL
(e.g., PPO) (Lowe et al., 2020; Das et al., 2018b). Obviously training first with IL and then via pure
RL techniques is ad hoc and potentially sub-optimal as discussed in Ex. 1 and empirically shown
in Sec. 4. To alleviate this problem, the student should imitate the expert policy only in settings in
which the expert policy can, in principle, be exactly reproduced by the student. Otherwise the student
should learn via ‘standard’ RL methods. To this end, we introduce ADVISOR.

3.2 ADAPTIVE INSUBORDINATION (ADVISOR) WITH POLICY GRADIENTS

To close the imitation gap, ADVISOR adaptively weights reward-based and imitation losses. Intu-
itively, it supervises a student to imitate an expert policy only in those states s ∈ S for which the
imitation gap is small. For all other states, it trains the student using reward-based RL. To simplify
notation, we denote the reward-based RL loss via Eµ[L(θ, S)] for some loss function L.1 This loss
formulation is general and spans all policy gradient methods, including A2C and PPO. The imitation
loss is the standard cross-entropy loss Eµ[CE(πexp(S), πf (S; θ))]. Concretely, ADVISOR loss is:

LADV(θ) = Eµ[w(S) · CE(πexp(S), πf (S; θ)) + (1− w(S)) · L(θ, S)] . (2)

Our goal is to find a weight function w : S ×Θ→ [0, 1] where w(s) ≈ 1 when the imitation gap is
small and w(s) ≈ 0 otherwise. For this we need an estimator of the distance between πexp and πIL

f at
a state s and a mapping from this distance to weights.

We now define d0(π, πf)(s), a distance estimate between a policy π and an f -partial policy πf at
a state s. We can use any common non-negative distance (or divergence) d between probability
distributions on A, e.g., the KL-divergence (which we use in our experiments). While there are
many possible strategies for using d to estimate d0(π, πf)(s), perhaps the simplest of these strategies
is to define d0(π, πf)(s) = d(π(s), πf (s)). Note that this quantity does not attempt to use any
information about the fiber f−1(f(s)) which may be useful in producing more holistic measures of
distances.2 Appendix A.3 considers how those distances can be used in lieu of d0. Next, using the
above, we need to estimate the quantity d0(πexp, πIL

f)(s).

Unfortunately it is, in general, impossible to compute d0(πexp, πIL
f)(s) exactly as it is intractable to

compute the optimal minimizer πIL
f . Instead we leverage an estimator of πIL

f which we term πaux
f , and

will define in the next section.

Given πaux
f we obtain the estimator d0(πexp, πaux

f) of d0(πexp, πIL
f). Additionally, we make use of the

monotonically decreasing function mα,β : R≥0 → [0, 1], where α, β ≥ 0. We define our weight
function w(s) for s ∈ S as:

w(s) = mα,β(d0(πexp, πaux
f)(s)) with (3)

mα,β(x) = e−αx · 1[x≤β] (4)

Together Eq. 2, 3, 4 define ADVISOR.
1For readability, we implicitly make three key simplifications. First, computing the expectation Eµ[. . .] is

generally intractable, hence we cannot directly minimize losses such as Eµ[L(θ, S)]. Instead, we approximate
the expectation using rollouts from µ and optimize the empirical loss. Second, recent RL methods adjust the
measure µ over states as optimization progresses while we assume it to be static for simplicity. Our final
simplification regards the degree to which any loss can be, and is, optimized. In general, losses are often
optimized by gradient descent and generally no guarantees are given that the global optimum can be found.
Extending our presentation to encompass these issues is straightforward but notationally dense.

2Measures using such information include maxs′∈f−1(f(s) d(π(s
′), πf (s)) or a corresponding expectation

instead of the maximization, i.e., Eµ[d(π(S), πf (S)) | f(S) = o].

5

Under review as a conference paper at ICLR 2021

1 2 3

4

5

Goal

Wall obstacles

Agent’s view:
local & egocentric

5 Lava obstacles
(kill agent)

3

4

5

1 2

Correct
path

Goal

LSTM

Actor

Critic Value

Aux.
Actor

Env ~
Action

sampleNew partial

observation

partial
 observation

ADVISOR loss

PPO value loss

CE loss

E
ncoder

(a) WALLCROSSING (b) LAVACROSSING (c) Model overview

Figure 3: MINIGRID base tasks and model overview. (a) WC: Navigation with wall obstacles,
with additional expert and environmental challenges. We test up-to 25 × 25 grids with 10 walls.
(b) LC: Safe navigation, avoiding lethal lava rivers. We test up-to 15× 15 grids with 10 lava rivers.
(c) An auxiliary actor is added and trained only using IL. The ‘main’ actor policy is trained using the
ADVISOR loss defined in Section 3.2, 3.3.

3.3 THE AUXILIARY POLICY πAUX : ESTIMATING πIL
f IN PRACTICE

In this section we describe how we can, during training, obtain an auxiliary policy πaux
f which

estimates πIL
f . Given this auxiliary policy we estimate d0(πexp, πIL

f)(s) using the plug-in estimator
d0(πexp, πaux

f)(s). While plug-in estimators are intuitive and simple to define, they need not be
statistically efficient. In Appendix A.4 we consider possible strategies for improving the statistical
efficiency of our plug-in estimator via prospective estimation.

In Fig. 3c we provide an overview of how we compute the estimator πaux
f via deep nets. As is common

practice (Mnih et al., 2016; Heess et al., 2017; Jaderberg et al., 2017; Pathak et al., 2017; Mirowski
et al., 2017; Chevalier-Boisvert et al., 2018a), the policy net πf (·; θ) is composed via aν ◦ rλ with
θ = (ν, λ), where aν is the actor head (possibly complemented in actor-critic models by a critic head
vν) and rλ is called the representation network. Generally, aν is lightweight, for instance a linear
layer or a shallow MLP followed by a soft-max function. Instead, rλ is a deep and possibly recurrent
neural net. We add another actor head aν′ to our existing network which shares the underlying
representation rλ, i.e., πaux

f = aν′ ◦ rλ. As both actors share the representation rλ they benefit from
any mutual learning. While our instantiation covers most use-cases, ADVISOR can be extended
to estimating πIL

f via two separate networks, i.e., θ′ = (ν′, λ′). In practice we train πf (·; θ) and
πaux
f (·; θ) simultaneously using stochastic gradient descent, as summarized in Algorithm A.1.

4 EXPERIMENTS

We rigorously compare ADVISOR to IL methods, RL methods and their popularly-adopted (yet ad
hoc) combinations. In particular, we evaluate 14 methods. We do this over ten tasks – realizations
of Ex. 1 & Ex. 2, and eight navigational tasks of varying complexity within the fast, versatile
MINIGRID environment (Chevalier-Boisvert et al., 2018a;b). Furthermore, for robustness, we train
50 hyperparameter variants for complex tasks. For all tasks, we find ADVISOR-based methods
outperform or match performance of all baselines. In a final study, we train agents to complete the
PointGoal Navigation task in the visually rich AIHABITAT environment. In this task we compare
ADVISOR to prior work (using PPO) and pure-IL baselines.

4.1 TASKS

Succinct descriptions of our tasks follow. Experts always take globally optimal actions. We defer
further details and description of experts to Appendix A.5.
POISONEDDOORS (PD). As defined in Ex. 1 in Sec. 1 with N = 4,M = 10, see Fig. 1. The
agent’s observation is an integer identifying the agent’s state: (1) the agent must pick a door, (2)
the agent has picked the first door and has either not started entering a code or has just previously
entered a wrong input, or (3) the agent has picked the first door and its last action was a correct code
input. The agent’s action space includes 1 action for each door (used to pick among them) and three
additional actions corresponding to input code values (only operational after choosing door 1).

6

Under review as a conference paper at ICLR 2021

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

LavaCrossing (LC)

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

LC Once Switch

0 20 40

training runs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

WC Corrupt

𝔼[
R
ew
ar
d]

11. ADV
11. ADV10, 14 (ADVdemo + PPO)

0 20 40

training runs

°0.75

°0.50

°0.25

0.00

0.25

0.50

0.75

1.00

PoisonedDoors

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

E
[S

u
cc

es
s]

1. BC

2. DAgger (†)
3. BCtf=1

4. PPO

5. BC! PPO

6. † ! PPO

7. BCtf=1 ! PPO

8. BC+PPO (static)

9. BCdemo

10. BCdemo+ PPO

11. ADV

12. † ! ADV

13. BCtf=1 ! ADV

14. ADVdemo+ PPO

Previous methods

ADVISOR (ours)
0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

E
[S

u
cc

es
s]

1. BC

2. DAgger (†)
3. BCtf=1

4. PPO

5. BC! PPO

6. † ! PPO

7. BCtf=1 ! PPO

8. BC+PPO (static)

9. BCdemo

10. BCdemo+ PPO

11. ADV

12. † ! ADV

13. BCtf=1 ! ADV

14. ADVdemo+ PPO
0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

E
[S

u
cc

es
s]

1. BC

2. DAgger (†)
3. BCtf=1

4. PPO

5. BC! PPO

6. † ! PPO

7. BCtf=1 ! PPO

8. BC+PPO (static)

9. BCdemo

10. BCdemo+ PPO

11. ADV

12. † ! ADV

13. BCtf=1 ! ADV

14. ADVdemo+ PPO0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

E
[S

u
cc

es
s]

1. BC

2. DAgger (†)
3. BCtf=1

4. PPO

5. BC! PPO

6. † ! PPO

7. BCtf=1 ! PPO

8. BC+PPO (static)

9. BCdemo

10. BCdemo+ PPO

11. ADV

12. † ! ADV

13. BCtf=1 ! ADV

14. ADVdemo+ PPO

IL only:

RL, IL→RL, IL+RL:

Based on demonstrations:

(a) (b) (c) (d)

11. ADV

Figure 4: Evaluation following (Dodge et al., 2019). As described in Section 4.3, we plot expected
validation reward of best-found model (y-axis) over an increasing budget of # training runs, each with
random hyperparameter values (x-axis). Clearly, larger E[Reward] with fewer # training runs is better.
We mark the best performing method(s) at the top of each plot.

WALLCROSSING/LAVACROSSING (WC/LC). As illustrated in Fig. 3a, 3b, an agent is tasked to
navigate to the goal using local observations. In doing so, it must avoid walls or deadly (i.e., episode-
ending) rivers of lava. Evidently, imitating a shortest-path expert is easy, requiring no exploration
beyond expert-visited states. Hence, we consider more challenging variants of WC and LC tasks.
For all MINIGRID environments, agents observe a 7×7×3 tensor corresponding to the area just in
front of the agent. For our tasks only 3 actions are relevant (move ahead, rotate left, and rotate right).
SWITCH. The agent is initialized in a WC or LC environment with the “lights turned off.” The agent
can use an additional switch action to get unaffected observations, whereas the shortest-path expert
can navigate in the dark. Hence, the expert doesn’t supervise taking the new action. For both WC
and LC base tasks, we experiment with two switches: (1) lights stay on after using the switch action
(ONCE), or (2) light turn on only for a single timestep (FAULTY).
CORRUPT. To evaluate resilience of methods to a corrupted expert. In every episode the expert
produces correct actions until it is withinNC steps of the target, after which it outputs random actions.
2D-LIGHTHOUSE (2D-LH). A harder, 2D variant of the gridworld task introduced in Ex. 2. Agents
act by moving in a cardinal direction and observe some fixed radius about themselves.

4.2 BASELINES AND ADVISOR-BASED METHODS

Expert supervision comes in two forms: (a) as an expert policy, or (b) as a dataset of expert
demonstrations. We study baselines and ADVISOR in both these forms. For (a), we include IL
baselines with different levels of teacher-forcing (tf): tf=0, tf annealed from 1→0, and tf=1. This
leads to Behaviour Cloning (BC), Data Aggregation (DAgger, †), and BCtf=1, respectively. Also, we
implement pure RL (PPO) which learns only on the sparse rewards. Furthermore, we implement
popular sequential hybrids such as BC then PPO (BC→PPO), DAgger then PPO († → PPO),
BCtf=1 → PPO, and a parallel combination of BC + PPO(static). This is a static variant of our
adaptive combination ADVISOR (ADV). We introduce hybrids such as DAgger then ADVISOR
(† → ADV), and BCtf=1 → ADV. For (b), agents imitate expert demonstrations and hence get no
supervision beyond the states in the demonstrations. This leads to BCdemo and its combination with
PPO (BCdemo + PPO). We introduce a corresponding ADVdemo + PPO, applying ADVISOR on
expert demonstrations while training PPO on on-policy rollouts (see App. A.10 for details). Further
details of all methods are in Appendix A.6. For fairness, the same model architecture is shared across
all methods (recall Fig. 3c, Sec. 3.3). We defer implementation details to Appendix A.7.

4.3 EVALUATION

Fair Hyperparameter Tuning. Often unintentionally done, extensively tuning the hyperpa-
rameters (hps) of a proposed method and not those of the baselines can introduce unfair bias
into evaluations. We avoid this by considering two strategies. For PD and all MINIGRID

7

Under review as a conference paper at ICLR 2021

0 100

Avg Ep Length

1

3

5

7

9

11

V
ie

w
R

a
d
iu

s
(f

i)

0 200 400 600 800

Avg Ep Length

1

3

5

7

9

11

V
ie

w
R

a
d
iu

s
(f

i)

0 100

Avg Ep Length

1

3

5

7

9

11

V
ie

w
R

a
d
iu

s
(f

i)

0 200 400 600 800

Avg Ep Length

1

3

5

7

9

11

V
ie

w
R

ad
iu

s
(f

i)

(d) PPO(a) Behavior Cloning (b) ADV (c) † ! PPO

j = 1 j = 15

V
ie

w
R

a
d
iu

s
(i

) 1

3

5
7

9

11

1

3

5
7
9

11

1

3

5
7
9

11

1

3

5
7
9

11

Figure 5: “Less intelligent” teachers. Learning f i-partial policies using f j-optimal experts 2D-LH.

tasks, we follow recent best practices (Dodge et al., 2019).3 Namely, we tune each method
by randomly sampling a fixed number of hps and reporting, for each baseline, an estimate of
E[Val. reward of best model when allowed a budget of k random hps] for 1 ≤ k ≤ 45. For this we
must train 50 models per method, i.e., 700 for each of these nine tasks. More details in Appendix A.8.
For 2D-LH, we tune the hps of a competing method and use these hps for all other methods.
Training. For the eight MINIGRID tasks, we train each of the 50 training runs for 1 million steps.
For 2D-LH/PD, models saturate much before 3 · 105 steps (details are in Appendix A.9).
Metrics. We record avg. rewards, episode lengths, and success rates. In the following, we report a
subset of these recorded values. Additional plots can be found in Appendix A.11.

4.4 RESULTS

Before delving into task-specific analysis, we state three overall trends. First, for tasks where
best-performing baselines require querying the expert policy during training, ADV significantly
outperforms all methods. These are the more difficult tasks which need exploration, such as PD
and SWITCH. Second, for tasks where the best-performing baselines are demonstrations-based,
ADVdemo + PPO improves over or matches previous methods. Third, a head-on comparison of
BC + PPO(static) and ADV shows that our dynamic weighting approach is superior across all tasks.

PD. This environment was designed to be adversarial to standard imitation-learning approaches and
so it is not surprising, see Fig. 4a, that models trained using standard IL techniques (DAgger, BC,
BCtf=1) perform poorly. Qualitatively, they attempt to open door 1 with a low probability and thus
obtain an expected reward near −2/3. Baselines that learn from rewards, e.g., PPO, can learn to
avoid doors 2-4 but in practice cannot learn the combination to open the first door. This results in an
average reward of 0. Notice that warm-starting with any form of IL is actively harmful: e.g., it takes
many hyperparameter evaluations before we consistently find a DAgger→PPO model that reproduces
the performance of a plain PPO model. Finally, only our ADV method consistently produces high
quality models (avg. reward approaching 1).

LC. The vanilla LC setting reveals that the imitation gap between the expert and the agent obser-
vations is nominal. Intuitively, the agent’s egocentric partial observations are sufficient to learn to
replicate the shortest-path expert actions: it need only follow alleys of safe ground leading to the
narrow gaps in otherwise continuous obstacles. This is validated by the high performance of BCtf=1

(and BCdemo) which learn only from expert trajectories and have no hope of bridging an imitation gap.
Methods learning from demonstrations and RL (e.g., ADVdemo+PPO and BCdemo →PPO) perform
only marginally better. Thus, when the imitation gap is small and BC from demonstrations is highly
successful, we conclude that the gains from using ADVISOR-based methods may be marginal.

LC SWITCH. IL and warm-started methods receive no supervision to explore the switch action and
thus learning in the dark resulting in poor policies, see Fig 4c. Also, early episode termination when
agents encounter lava prevents PPO success due to sparse rewards. ADVISOR leverages it’s RL loss
to learn to ‘switch’ on lights after which it successfully imitates the expert.

WC CORRUPT. In Fig. 4d we investigate ADVISOR’s ability to learn to ignore a corrupted expert.
While this is not what ADVISOR was designed for, it is interesting to see that ADV-based methods
are able to accomplish this task and do significantly better than the best performing competitor
(BC→PPO). This suggests that ADVISOR is robust to expert failure.

3See also reproducibility checklist in EMNLP’20 CfP: https://2020.emnlp.org/call-for-papers

8

https://2020.emnlp.org/call-for-papers

Under review as a conference paper at ICLR 2021

2D-LH. Here we vary the privilege of an expert and study learning from “less intelligent” teachers.
Particularly, for each method, we train an f i-partial policy using an f j-optimal expert (except for PPO
which uses no expert supervision) 25 times. Each policy is then evaluated on 200 random episodes
and the average episode length (lower being better) is recorded. For all odd i, j with 1 ≤ i ≤ 11,
1 ≤ j ≤ 15, and j ≥ i we show boxplots of the 25 training runs. Grey vertical lines show optimal
average episode lengths for f i-partial policies.
For BC we find training of an f i-partial policy with an f j-expert to result in a near optimal policy
when i = j but even small increases in j result in dramatic decreases in performance. This emphasizes
the imitation gap. Surprisingly, while performance tends to drop with increasing j, the largest i, j
gaps do not consistently correspond to the worst performing models. While this seems to differ from
our results in Ex. 2, recall that there the policy µ was fixed while here it varies through training,
resulting in complex learning dynamics.
Additionally, we find that: (i) PPO can perform well but has high variance across runs due to the
problem of sparse rewards, and (ii) for this task, both ADVISOR and DAgger→PPO can ameliorate
the impact of the imitation gap but ADVISOR consistently outperforms in all settings.

4.5 POINTGOAL NAVIGATION IN VISUALLY-RICH 3D ENVIRONMENTS

To highlight possible applications of ADVISOR to complex, visually rich, environments, we consider
the PointGoal navigation (PointNav) task within AIHABITAT (Savva et al., 2019). We briefly describe
the task, followed by the methods, and discuss results.

0 5 10 15 20 25
RGB frames (Million)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SP
L

Savva et al., ICCV 2019

ADVISOR
Only IL (BC)
Only RL (PPO w/ 4 proc.)
Only RL (PPO w/ 8 proc.)
Only RL (PPO w/ 16 proc.)

Methods SPL
@5↑

SPL
@10↑

SPL
@25↑

PPO (3 runs) 0.307 0.404 0.468
BC 0.259 0.505 0.649
ADVISOR 0.579 0.685 0.741

Figure 6: PointNav in AIHABITAT.

Task. In PointNav, a randomly spawned agent must nav-
igate to a goal specified by a relative-displacement vector.
The observation space is composed of rich egocentric RGB
observations (256×256×3) with a limited field of view.
The action space is {move ahead, rotate right,
rotate left, stop}. The task was formulated by An-
derson et al. (2018) and implemented for the AIHABITAT
simulator by Savva et al. (2019). Our reward structure,
train/val/test splits, PointNav dataset, and implementa-
tion4 follow Savva et al. (2019). To better understand
sample-efficiency, we report the primary metric adopted
to evaluate PointNav, i.e., success weighted by path length
(SPL), on the validation set at different points of training.
We train on the standard Gibson set of 76 scenes, and
report metrics as an average over the val. set consisting of
14 unseen scenes in AIHABITAT. We use a budget of 25
Mn frames, i.e., ∼2 days of training on 4 NVIDIA TitanX GPUs, and 28 CPUs for each method.

Methods. Savva et al. (2019) train their RGB agents using PPO. We train pure IL (on-policy behavior
cloning) using the optimal shortest-path action. The pure IL agent observes a filtered egocentric
observation while the expert has access to the full env. state. We also train on-policy ADVISOR.

Results. Fig. 6 summarizes the results for the above methods. Despite being extensively tuned, we
found that the training configuration released with habitat-lab is susceptible to small changes
in the number of processes that collect data for PPO optimization. In contrast, for pure IL and
ADVISOR baselines we don’t tune hyper-parameters, i.e., we use exactly the same hyper-parameters
as the released configuration. We mark an SPL of 0.46 via a dashed line, which was the result
reported by Savva et al. (2019) for an RGB agent on the Gibson dataset. ADVISOR substantially
outperforms other methods.

5 CONCLUSION

We introduce the imitation gap as one explanation for the empirical observation that imitating “more
intelligent” teachers can lead to worse policies. While prior work has, implicitly, attempted to bridge
this imitation gap, we introduce a principled adaptive weighting technique (ADVISOR), which we
test on a suite of ten tasks. Due to the fast rendering speed of MINIGRID, PD and 2D-LH, we could
undertake a study where we trained over 6 billion steps, to draw statistically significant inferences.

4https://github.com/facebookresearch/habitat-lab

9

Under review as a conference paper at ICLR 2021

REFERENCES

Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta, Vladlen
Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, et al. On evaluation of
embodied navigation agents. arXiv preprint arXiv:1807.06757, 2018.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence,
1995.

Marc G Bellemare, Georg Ostrovski, Arthur Guez, Philip S Thomas, and Rémi Munos. Increasing
the action gap: New operators for reinforcement learning. In AAAI, 2016.

Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E. Taylor, and Ann
Nowé. Reinforcement learning from demonstration through shaping. In Qiang Yang and Michael J.
Wooldridge (eds.), Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 3352–3358. AAAI Press,
2015. URL http://ijcai.org/Abstract/15/472.

Thomas Cederborg, Ishaan Grover, Charles L. Isbell Jr., and Andrea Lockerd Thomaz. Policy
shaping with human teachers. In Qiang Yang and Michael J. Wooldridge (eds.), Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, pp. 3366–3372. AAAI Press, 2015. URL http://ijcai.org/
Abstract/15/474.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daume, and John Langford. Learning
to search better than your teacher. In ICML, 2015.

Jessica Chemali and Alessandro Lazaric. Direct policy iteration with demonstrations. In Qiang
Yang and Michael J. Wooldridge (eds.), Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp.
3380–3386. AAAI Press, 2015. URL http://ijcai.org/Abstract/15/476.

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by cheating. In
Conference on Robot Learning, 2020.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. In ICLR, 2018a.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018b.

Felipe Codevilla, Matthias Müller, Antonio M. López, Vladlen Koltun, and Alexey Dosovitskiy.
End-to-end driving via conditional imitation learning. In 2018 IEEE International Conference
on Robotics and Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018, pp. 1–9. IEEE,
2018. doi: 10.1109/ICRA.2018.8460487. URL https://doi.org/10.1109/ICRA.2018.
8460487.

A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra. Embodied Question Answering. In
CVPR, 2018a.

A. Das, G. Gkioxari, S. Lee, D. Parikh, and D. Batra. Neural Modular Control for Embodied Question
Answering. In CoRL, 2018b.

Abhishek Das, Satwik Kottur, José M.F. Moura, Stefan Lee, and Dhruv Batra. Learning cooperative
visual dialog agents with deep reinforcement learning. In ICCV, 2017.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and Noah A. Smith. Show your work:
Improved reporting of experimental results. In EMNLP, 2019.

Tanmay Gangwani and Jian Peng. State-only imitation with transition dynamics mismatch. In ICLR,
2020.

10

http://ijcai.org/Abstract/15/472
http://ijcai.org/Abstract/15/474
http://ijcai.org/Abstract/15/474
http://ijcai.org/Abstract/15/476
https://github.com/maximecb/gym-minigrid
https://doi.org/10.1109/ICRA.2018.8460487
https://doi.org/10.1109/ICRA.2018.8460487

Under review as a conference paper at ICLR 2021

Tanmay Gangwani, Joel Lehman, Qiang Liu, and Jian Peng. Learning belief representations for
imitation learning in pomdps. In Amir Globerson and Ricardo Silva (eds.), Proceedings of the
Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-
25, 2019, pp. 383. AUAI Press, 2019. URL http://auai.org/uai2019/proceedings/
papers/383.pdf.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant
feature spaces to transfer skills with reinforcement learning. In ICLR, 2017a.

S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive Mapping and Planning for
Visual Navigation. In CVPR, 2017b.

Jeffrey Hawke, Richard Shen, Corina Gurau, Siddharth Sharma, Daniele Reda, Nikolay Nikolov,
Przemyslaw Mazur, Sean Micklethwaite, Nicolas Griffiths, Amar Shah, and Alex Kendall. Urban
driving with conditional imitation learning. In 2020 IEEE International Conference on Robotics
and Automation, ICRA 2020, Paris, France, May 31 - August 31, 2020, pp. 251–257. IEEE, 2020.
doi: 10.1109/ICRA40945.2020.9197408. URL https://doi.org/10.1109/ICRA40945.
2020.9197408.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. Dual learning
for machine translation. In NeurIPS, 2016.

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of locomotion behaviours in rich environments.
arXiv preprint arXiv:1707.02286, 2017.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In AAAI,
2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In NeurIPS, 2016.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
ICLR, 2017.

Nan Jiang. On value functions and the agent-environment boundary. arXiv preprint arXiv:1905.13341,
2019.

Mingxuan Jing, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Chao Yang, Bin Fang, and Huaping Liu.
Reinforcement learning from imperfect demonstrations under soft expert guidance. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12,
2020, pp. 5109–5116. AAAI Press, 2020. URL https://aaai.org/ojs/index.php/
AAAI/article/view/5953.

Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy optimization with demonstrations. In ICML, 2018.

D. Kingma and J. Ba. A method for stochastic optimization. In CVPR, 2017.

Jens Kober and Jan R Peters. Policy search for motor primitives in robotics. In NeurIPS, 2009.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: an interactive 3d environment
for visual AI. arXiv preprint arXiv:1712.05474, 2019.

Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudik, Yisong Yue, and Hal Daumé. Hierarchical
imitation and reinforcement learning. In ICML, 2018.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. JMLR, 2016.

11

http://auai.org/uai2019/proceedings/papers/383.pdf
http://auai.org/uai2019/proceedings/papers/383.pdf
https://doi.org/10.1109/ICRA40945.2020.9197408
https://doi.org/10.1109/ICRA40945.2020.9197408
https://aaai.org/ojs/index.php/AAAI/article/view/5953
https://aaai.org/ojs/index.php/AAAI/article/view/5953

Under review as a conference paper at ICLR 2021

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR,
2016.

Ryan Lowe, Abhinav Gupta, Jakob N. Foerster, Douwe Kiela, and Joelle Pineau. On the interaction
between supervision and self-play in emergent communication. In ICLR, 2020.

A Rupam Mahmood, Hado P van Hasselt, and Richard S Sutton. Weighted importance sampling for
off-policy learning with linear function approximation. In NeurIPS, 2014.

P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre,
K. Kavukcuoglu, et al. Learning to navigate in complex environments. In ICLR, 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In ICML, 2016.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcom-
ing exploration in reinforcement learning with demonstrations. In ICRA, 2018.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, and Jan Peters.
An algorithmic perspective on imitation learning. Foundations and Trends in Robotics, 2018.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In ICML, 2017.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: Example-guided
deep reinforcement learning of physics-based character skills. ACM Trans. Graph., 2018.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 2008.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural
computation, 1991.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In RSS, 2018.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In AISTATS, 2010.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In AISTATS, 2011.

Claude Sammut, Scott Hurst, Dana Kedzier, and Donald Michie. Learning to fly. In Machine
Learning Proceedings, 1992.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A
Platform for Embodied AI Research. In ICCV, 2019.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized Experience Replay. In ICLR, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015b.

12

Under review as a conference paper at ICLR 2021

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Tianlin Tim Shi, Andrej Karpathy, Linxi Jim Fan, Jonathan Hernandez, and Percy Liang. World of
bits: An open-domain platform for web-based agents. In ICML, 2017.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, R. Mottaghi, Luke
Zettlemoyer, and D. Fox. Alfred: A benchmark for interpreting grounded instructions for everyday
tasks. CVPR, 2020.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the
game of Go with deep neural networks and tree search. Nature, 2016.

Kaushik Subramanian, Charles L Isbell Jr, and Andrea L Thomaz. Exploration from demonstration
for interactive reinforcement learning. In AAMAS, 2016.

Wen Sun, J. Andrew Bagnell, and Byron Boots. Truncated horizon policy search: Combining rein-
forcement learning & imitation learning. In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=ryUlhzWCZ.

Mark van der Laan and Susan Gruber. One-step targeted minimum loss-based estimation based on
universal least favorable one-dimensional submodels. The international journal of biostatistics, 12
(1):351–378, 2016.

A.W. van der Vaart. Asymptotic Statistics. Asymptotic Statistics. Cambridge University
Press, 2000. ISBN 9780521784504. URL https://books.google.com/books?id=
UEuQEM5RjWgC.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI, 2016.

Matej Vecerı́k, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas
Manfred Otto Heess, Thomas Rothörl, Thomas Lampe, and Martin A. Riedmiller. Leveraging
demonstrations for deep reinforcement learning on robotics problems with sparse rewards. ArXiv,
abs/1707.08817, 2017.

Xin Wang, Wenhu Chen, Jiawei Wu, Yuan-Fang Wang, and William Yang Wang. Video captioning
via hierarchical reinforcement learning. In CVPR, 2018.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu, and
Nando de Freitas. Sample efficient actor-critic with experience replay. In ICLR, 2017.

Larry Wasserman. All of Nonparametric Statistics (Springer Texts in Statistics). Springer-Verlag,
Berlin, Heidelberg, 2006. ISBN 0387251456.

Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi, Saran Tunyasuvunakool,
János Kramár, Raia Hadsell, Nando de Freitas, and Nicolas Heess. Reinforcement and imitation
learning for diverse visuomotor skills. In Proceedings of Robotics: Science and Systems, 2018.

13

https://openreview.net/forum?id=ryUlhzWCZ
https://books.google.com/books?id=UEuQEM5RjWgC
https://books.google.com/books?id=UEuQEM5RjWgC

Under review as a conference paper at ICLR 2021

APPENDIX: BRIDGING THE IMITATION GAP BY ADAPTIVE INSUBORDINATION

The appendix includes theoretical extensions of ideas presented in the main paper and details of
empirical analysis. We structure the appendix into the following subsections:

A.1 A formal treatment of Ex. 2 on 1D-Lighthouse.
A.2 Proof of Proposition 1.
A.3 Distance measures beyond d0

π(πf)(s) = d(π(s), πf (s)) utilized in ADVISOR.5

A.4 Future strategies for improving statistical efficiency of d0
πexp(πIL

f)(s) estimator and a prospec-
tive approach towards it.

A.5 Descriptions of all the tasks that we evaluate baselines on, including values for grid size,
obstacles, corruption distance etc. We also include details about observation space for each
of these tasks.

A.6 Additional details about nature of learning, expert supervision and hyperparameters searched
for each baseline introduced in Sec. 4.2.

A.7 Details about the underlying model architecture for all baselines across different tasks.
A.8 Methodologies adopted for ensuring fair hyperparameter tuning of previous baselines when

comparing ADVISOR to them.
A.9 Training implementation including maximum steps per episode, reward structure and com-

puting infrastructure adopted for this work. We clearly summarize all structural and training
hyperparameters for better reproducibility.

A.11 Additional plots for all tasks to supplement Fig. 4. We include a walk-through of Fig. 4, i.e.,
expected maximum validation performance plots.

A.12 Implementation details for the PointNav task on the AIHabitat platform.

A ADDITIONAL INFORMATION

A.1 FORMAL TREATMENT OF EXAMPLE 2

Let N ≥ 1 and consider a 1-dimensional grid-world with states S = {−N,N} × {0, . . . , T} ×
{−N, . . . , N}T . Here g ∈ {−N,N} are possible goal positions, elements t ∈ {0, . . . , T} corre-
spond to the episode’s current timestep, and (pi)

T
i=1 ∈ {−N, . . . , N}T correspond to possible agent

trajectories of length T . Taking action a ∈ A = {left, right} = {−1, 1} in state (g, t, (pi)
T
i=1) ∈ S

results in the deterministic transition to state (g, t+ 1, (p1, . . . , pt, clip(pt + a,−N,N), 0, . . . , 0)).
An episode start state is chosen uniformly at random from the set {(±N, 0, (0, . . . , 0))} and the goal
of the agent is to reach some state (g, t, (pi)

T
i=1) with pt = g in the fewest steps possible. We now

consider a collection of filtration functions f i, that allow the agent to see spaces up to i steps left/right
of its current position but otherwise has perfect memory of its actions. See Figs. 2c, 2d for examples
of f1- and f2-partial observations. For 0 ≤ i ≤ N we define f i so that

f i(g, t, (pi)
T
i=1) = ((`0, . . . , `t), (p1 − p0, . . . , pt − pt−1)) and (5)
`j = (1[pj+k=N] − 1[pj+k=−N] | k ∈ {−i, . . . , i}) for 0 ≤ j ≤ t. (6)

Here `j is a tuple of length 2 · i+ 1 and corresponds to the agent’s view at timestep j while pk+1− pk
uniquely identifies the action taken by the agent at timestep k. Let πexp be the optimal policy
given full state information so that πexp(g, t, (pi)

T
i=1) = (1[g=−N], 1[g=N]) and let µ be a uniform

distribution over states in S. It is straightforward to show that an agent following policy πIL
fi will

take random actions until it is within a distance of i from one of the corners {−N,N} after which
it will head directly to the goal, see the policies highlighted in Figs. 2c, 2d. The intuition for this
result is straightforward: until the agent observes one of the corners it cannot know if the goal is
to the right or left and, conditional on its observations, each of these events is equally likely under
µ. Hence in half of these events the expert will instruct the agent to go right and in the other half
to go left. The cross entropy loss will thus force πIL

fi to be uniform in all such states. Formally,

5We overload main paper’s notation d0(π, πf)(s) with d0π(πf)(s)

14

Under review as a conference paper at ICLR 2021

Algorithm A.1: On-policy ADVISOR algorithm overview. Some details omitted for clarity.
Input: Trainable policies (πf , π

aux
f), expert policy πexp, rollout length L, environment E .

Output: Trained policy
1 begin
2 Initialize the environment E
3 θ ← randomly initialized parameters
4 while Training completion criterion not met do
5 Take L steps in the environment using πf (·; θ) and record resulting rewards and

observations (restarting E whenever the agent has reached a terminal state)
6 Evaluate πaux

f (·; θ) and πexp at each of the above steps
7 L← the empirical version of the loss from Eq. (2) computed using the above rollout
8 Compute∇θL using backpropagation
9 Update θ using∇θL via gradient descent

10 return πf (·; θ)

we will have, for s = (g, t, (pi)
T
i=1), πIL

fi(s) = πexp(s) if and only if min0≤q≤t(pq) − i ≤ −N or
max0≤q≤t(pq) + i ≥ N and, for all other s, we have πIL

fi(s) = (1/2, 1/2). In Sec. 4, see also Fig. 5,
we train f i-partial policies with f j-optimal experts for a 2D variant of this example. �

A.2 PROOF OF PROPOSITION 1

We wish to show that the minimizer of Eµ[−πexp
fe (S)� log πf (S)] among all f -partial policies πf is

the policy π = Eµ[πexp(S) | f(S)]. This is straightforward, by the law of iterated expectations and
as πf (s) = πf (f(s)) by definition. We obtain

Eµ[−πexp
fe (S)� log πf (S)] = −Eµ[Eµ[πexp

fe (S)� log πf (S) | f(S)]]

= −Eµ[Eµ[πexp
fe (S)� log πf (f(S)) | f(S)]]

= −Eµ[Eµ[πexp
fe (S) | f(S)]� log πf (f(S))]

= Eµ[−π(f(S))� log πf (f(S))] . (7)

Now let s ∈ S and let o = f(s). It is well known, by Gibbs’ inequality, that −π(o)� log πf (o) is
minimized (in πf (o)) by letting πf (o) = π(o) and this minimizer is feasible as we have assumed
that Πf contains all f -partial policies. Hence it follows immediately that Eq. (7) is minimized by
letting πf = π which proves the claimed proposition.

A.3 OTHER DISTANCE MEASURES

As discussed in Section 3.2, there are several different choices one may make when choosing a
measure of distance between the expert policy πexp and an f -partial policy πf at a state s ∈ S. The
measure of distance we use in our experiments, d0

πexp(πf)(s) = d(πexp(s), πf (s)), has the (potentially)
undesirable property that f(s) = f(s′) does not imply that d0

πexp(πf)(s) = d0
πexp(πf)(s′). While

an in-depth evaluation of the merits of different distance measures is beyond this current work, we
suspect that a careful choice of such a distance measure may have a substantial impact on the speed of
training. The following proposition lists a collection of possible distance measures with a conceptual
illustration given in Fig. A.1.

Proposition 2. Let s ∈ S and o = f(s) and for any 0 < β < ∞ define, for any policy π and
f -partial policy πf ,

dβµ,π(πf)(s) = Eµ[
(
d0
π(πf)(S)

)β | f(S) = f(s)]1/β , (8)

with d∞µ,π(πf)(s) equalling the essential supremum of d0
π(πf) under the conditional distribution

Pµ(· | f(S) = f(s)). As a special case note that

d1
µ,π(πf)(s) = Eµ[d0

π(πf)(S) | f(S) = f(s)].

15

Under review as a conference paper at ICLR 2021

Then, for all β ≥ 0 and s ∈ S (almost surely µ), we have that π(s) 6= πf (f(s)) if and only if
dβπ(πf)(s) > 0.

Proof. This statement follows trivially from the definition of πIL and the fact that d(π, π′) ≥ 0 with
d(π, π′) = 0 if and only if π = π′.

The above proposition shows that any dβ can be used to consistently detect differences between πexp

and πIL
f , i.e., it can be used to detect the imitation gap. Notice also that for any β > 0 we have that

dβµ,πexp(πIL
f)(s) = dβµ,πexp(πIL

f)(s′) whenever f(s) = f(s′).

As an alternative to using d0, we now describe how d1
µ,πexp(πIL

f)(s) can be estimated in practice during
training. Let πaux

f be an estimator of πIL
f as usual. To estimate d1

µ,πexp(πIL
f)(s) we assume we have

access to a function approximator gψ : Of → R parameterized by ψ ∈ Ψ, e.g., a neural network.
Then we estimate d1

µ,πexp(πIL
f)(s) with gψ̂ where ψ̂ is taken to be the minimizer of the loss

Lµ,πexp,πaux
f

(ψ) = Eµ

[(
d(πexp(S), πaux

f (f(S)))− gψ(f(S))
)2]

. (9)

The following proposition then shows that, assuming that d1
µ,πexp(πaux

f) ∈ {gψ | ψ ∈ Ψ}, gψ̂ will
equal d1

µ,πexp(πaux
f) and thus gψ̂ may be interpreted as a plug-in estimator of d1

µ,πexp(πIL
f).

Proposition 3. For any ψ ∈ Ψ,

Lµ,πexp,πaux
f

(ψ) = Eµ[(d1
µ,πexp(πaux

f)(S)− gψ(f(S)))2] + c,

where c = Eµ[(d(πexp(S), πaux(f(S))) − d1
µ,πexp,π̂(S))2] is constant in ψ and this implies that if

d1
µ,πexp(πaux

f) ∈ {gψ | ψ ∈ Ψ} then gψ̂ = d1
µ,πexp(πaux

f).

Proof. In the following we let Of = f(S). We now have that

Eµ[
(
d(πexp(S), πaux

f (Of))− gψ(Of)
)2

]

= Eµ[
(
(d(πexp(S), πaux

f (Of))− d1
µ,πexp(πaux

f)(S)) + (d1
µ,πexp(πaux

f)(S)− gψ(Of))
)2

]

= Eµ[(d(πexp(S), πaux
f (Of))− d1

µ,πexp(πaux
f)(S))2] + Eµ[(d1

µ,πexp(πaux
f)(S)− gψ(Of)))2]

+ 2 · Eµ[((d(πexp(S), πaux
f (Of))− d1

µ,πexp(πaux
f)(S)) · (d1

µ,πexp(πaux
f)(S)− gψ(Of)))]

= c+ Eµ[(d1
µ,πexp(πaux

f)(S)− gψ(Of)))2]

+ 2 · Eµ[((d(πexp(S), πaux
f (Of))− d1

µ,πexp(πaux
f)(S)) · (d1

µ,πexp(πaux
f)(S)− gψ(Of)))].

Now as as d1
µ,πexp(πaux

f)(s) = d1
µ,πexp(πaux

f)(s′) for any s, s′ with f(s) = f(s′) we have that
d1
µ,πexp(πaux

f)(S)− gψ(Of) is constant conditional on Of and thus

Eµ[(d(πexp(S), πaux
f (Of))− d1

µ,πexp(πaux
f)(S)) · (d1

µ,πexp(πaux
f)(S)− gψ(Of)) | Of]

= Eµ[(d(πexp(S), πaux
f (Of))− d1

µ,πexp(πaux
f)(S) | Of] · Eµ[d1

µ,πexp(πaux
f)(S)− gψ(Of) | Of]

= Eµ[d1
µ,πexp(πaux

f)(S)− d1
µ,πexp(πaux

f)(S) | Of] · Eµ[d1
µ,πexp(πaux

f)(S)− gψ(Of) | Of]

= 0.

Combining the above results and using the law of iterated expectations gives the desired result.

A.4 FUTURE DIRECTIONS IN IMPROVING DISTANCE ESTIMATORS

In this section we highlight possible directions towards improving the estimation of d0
πexp(πIL

f)(s) for
s ∈ S. As a comprehensive study of these directions is beyond the scope of this work, our aim in
this section is intuition over formality. We will focus on d0 here but similar ideas can be extended to
other distance measures, e.g., those in Sec. A.3.

16

Under review as a conference paper at ICLR 2021

⇡exp(s3)
⇡exp(s2)

⇡exp(s1)

⇡IL(f(s))

1

10

1

10
f�1(f(s)) = {s1, s2, s3}

⇡IL(f(s)) =

3X

i=1

µ(si | f(s)) · ⇡exp(si)

d0
⇡exp(⇡IL)(s1)

1

10

µ1 = µ(s1|f(s)) = 0.3

µ2 = µ(s2|f(s)) = 0.1

µ3 = µ(s3|f(s)) = 0.6

1

10

d1
⇡exp(⇡IL) = µ1 · d0

⇡exp(⇡IL)(s1)

= µ2 · d0
⇡exp(⇡IL)(s2)

= µ3 · d0
⇡exp(⇡IL)(s3)

(a) (c) (d)(b)

Figure A.1: Concept Illustration. Here we illustrate several of the concepts from our paper. Suppose
our action space A contains three elements. Then for any s ∈ S and policy π, the value π(s) can
be represented as a single point in the 2-dimensional probability simplex {(x, y) ∈ R2 | x ≥ 0, y ≥
0, x + y ≤ 1} shown as the grey area in (a). Suppose that the fiber f−1(f) contains the three
unique states s1, s2, and s3. In (a) we show the hypothetical values of πexp when evaluated at these
points. Proposition 1 says that πIL(s) lies in the convex hull of {πexp(si)}3i=1 visualized as a magenta
triangle in (a). Exactly where πIL(s) lies depends on the probability measure µ, in (b) we show how
a particular instantiation of µ may result in a realization of πIL(s) (not to scale). (c) shows how d1

πexp

measures the distance between πexp(s1) and πIL(s1). Notice that it ignores s2 and s3. In (d), we
illustrate how d0

πexp produces a “smoothed” measure of distance incorporating information about all
si.

As discussed in the main paper, we estimate d0
πexp(πIL

f)(s) by first estimating πIL
f with πaux

f and
then forming the “plug-in” estimator d0

πexp(πaux
f)(s). For brevity, we will write d0

πexp(πaux
f)(s) as d̂.

While such plug-in estimators are easy to estimate and conceptually compelling, they need not be
statistically efficient. Intuitively, the reason for this behavior is because we are spending too much
effort in trying to create a high quality estimate πaux

f of πIL
f when we should be willing to sacrifice

some of this quality in service of obtaining a better estimate of d0
πexp(πIL

f)(s). Very general work in
this area has brought about the targeted maximum-likelihood estimation (TMLE) (van der Laan &
Gruber, 2016) framework. Similar ideas may be fruitful in improving our estimator d̂.

Another weakness of d̂ discussed in the main paper is that is not prospective. In the main paper we
assume, for readability, that we have trained the estimator πaux

f before we train our main policy. In
practice, we train πaux

f alongside our main policy. Thus the quality of πaux
f will improve throughout

training. To clarify, suppose that, for t ∈ [0, 1], πaux
f,t is our estimate of πIL

f after (100 · t)% of training
has completed. Now suppose that (100 · t)% of training has completed and we wish to update
our main policy using the ADVISOR loss given in Eq. (2). In our current approach we estimate
d0
πexp(πIL

f)(s) using d0
πexp(πaux

f,t)(s) when, ideally, we would prefer to use d0
πexp(πaux

f,1)(s) from the end
of training. Of course we will not know the value of d0

πexp(πaux
f,1)(s) until the end of training but we

can, in principle, use time-series methods to estimate it. To this end, let qω be a time-series model
with parameters ω ∈ Ω (e.g., qω might be a recurrent neural network) and suppose that we have stored
the model checkpoints (πaux

f,i/K | i/K ≤ t). We can then train qω to perform forward prediction, for
instance to minimize

bt·Kc∑

j=1

(
d0
πexp(πaux

f,j/K)(s)− qω(s, (πaux
f,i/K(s))j−1

i=1)
)2

,

and then use this trained qω to predict the value of d0
πexp(πaux

f,1)(s). The advantage of this prospective
estimator qω is that it can detect that the auxiliary policy will eventually succeed in exactly imitating
the expert in a given state and thus allow for supervising the main policy with the expert cross entropy
loss earlier in training. The downside of such a method: it is significantly more complicated to
implement and requires running inference using saved model checkpoints.

A.5 ADDITIONAL TASK DETAILS

In Sec. 4.1, we introduced the different tasks where we compare ADVISOR with various other IL
and RL methods. Here, we provide additional details for each of them along with information about
observation space associated with each task. For training details for the tasks, please see Sec. A.9.

17

Under review as a conference paper at ICLR 2021

A.5.1 POISONEDDOORS (PD)

Goal Corner

AgentBoundary

A

A
Observ
-ations

Figure A.2: 2D-
LIGHTHOUSE

This environment is a reproduction of our example from Sec. 1. An
agent is presented with N = 4 doors d1, . . . , d4. Door d1 is locked,
requiring a fixed {0, 1, 2}10 code to open, but always results in a
reward of 1 when opened. For some randomly chosen j ∈ {2, 3, 4},
opening door dj results in a reward of 2 and for i 6∈ {1, j}, opening
door di results in a reward of −2. The agent must first choose a door
after which, if it has chosen door 1, it must enter the combination
(receiving a reward of 0 if it enters the incorrect combination) and,
otherwise, the agent immediately receives its reward. See Fig. 1.

A.5.2 2D-LIGHTHOUSE (2D-LH)

2D variant of the exemplar grid-world task introduced in Ex. 2,
aimed to empirically verify our analysis of the imitation gap. A
reward awaits at a randomly chosen corner of a square grid of size
2N + 1 and the agent can only see the local region, a square of size 2i+ 1 about itself (an f i-partial
observation). Additionally, all f i allow the agent access to it’s previous action. As explained in Ex. 2,
we experiment with optimizing f i-policies when given supervision from f j-optimal experts (i.e.,
experts that are optimal when restricted to f j-partial observations). See Fig. A.2 for an illustration.

A.5.3 WALLCROSSING (WC)

Initialized on the top-left corner the agent must navigate to the bottom-right goal location. There
exists at least one path from start to end, navigating through obstacles. Refer to Fig. 3a where, for
illustration, we show a simpler grid. Our environment is of size 25× 25 with 10 walls (‘S25, N10’
as per the notation of (Chevalier-Boisvert et al., 2018b)), which are placed vertically or horizontally
across the grid. The expert is a shortest path agent with access to the entire environment’s connectivity
graph and is implemented via the networkx python library.

A.5.4 LAVACROSSING (LC)

Similar to WALLCROSSING in structure and expert, except that obstacles are lava instead of walls.
Unlike walls (into which the agent can bump without consequence) here the episode terminates if
the agent steps on lava. See Fig. 3b. This LC environment has size 25× 25 with 10 lava rivers
(‘S25, N10’).

A.5.5 WC/LC SWITCH

In this task the agent faces a more challenging filtration function. In addition to navigational actions,
agents for this task have a ‘switch’ action. Using this switch action, the agents can switch-on the lights
of an otherwise darkened environment which is implemented as an observation tensor of all zeros. In
WC, even in the dark, an agent can reach the target by taking random actions with non-negligible
probability. Achieving this in LC is nearly impossible as random actions will, with high probability,
result in stepping into lava and thereby immediately end the episode.

We experiment with two variants of this ‘switch’ – ONCE and FAULTY. In the ONCE SWITCH variant,
once the the ‘switch’ action is taken, the lights remain on for the remainder of the episode. This is
implemented as the unaffected observation tensor being available to the agent. In contrast, in the
FAULTY SWITCH variant, taking the ‘switch’ action will only turn the lights on for a single timestep.
This is implemented as observations being available for one timestep followed by zero tensors (unless
the ‘switch’ action is executed again).

The expert for these tasks is the same as for WC and LC. Namely, the expert always takes actions
along the shortest path from the agents current position to the goal and is unaffected by whether the
light is on or off. For the expert-policy-based methods this translates to the learner agent getting
perfect (navigational) supervision while struggling in the dark, with no cue for trying the switch
action. For the expert-demonstrations-based methods this translates to the demonstrations being
populated with blacked-out observations paired with perfect actions: such actions are, of course,

18

Under review as a conference paper at ICLR 2021

difficult to imitate. As FAULTY is more difficult than ONCE (and LC more difficult than WC) we set
grid sizes to reduce the difference in difficulty between tasks. In particular, we choose to set WC
ONCE SWITCH on a (S25, N10) grid and the LC ONCE SWITCH on a (S15, N7) grid. Moreover,
WC FAULTY SWITCH is set with a (S15, N7) grid and LC FAULTY SWITCH with a (S9, N4) grid.

A.5.6 WC/LC CORRUPT

In the SWITCH task, we study agents with observations affected by a challenging filtration function.
In this task we experiment with corrupting the expert’s actions. The expert policy flips over to a
random policy when the expert is NC steps away from the goal. For the expert-policy-based method
this translates to the expert outputting uniformly random actions once it is within NC steps from the
target. For the expert-demonstrations-based methods this translates to the demonstrations consisting
of some valid (observation, expert action) tuples, while the tuples close to the target have the expert
action sampled from a uniform distribution over the action space. WC CORRUPT is a (S25, N10)
grid with NC = 15, while the LC CORRUPT is significantly harder, hence is a (S15, N7) grid with
NC = 10.

A.5.7 OBSERVATION SPACE

Within our 2D-LH environment we wish to train our agent in the context of Proposition 1 so that
the agent may learn any f -partial policy. As the 2D-LH environment is quite simple, we are able to
uniquely encode the state observed by an agent using a 44 · 52 = 6400 dimensional {0, 1}-valued
vector such that any f -partial policy can be represented as a linear function applied to this observation
(followed by a soft-max).6 Within the PD environment the agent’s observed state is very simple:
at every timestep the agent observes an element of {0, 1, 2, 3} with 0 denoting that no door has yet
been chosen, 1 denoting that the agent has chosen door d1 but has not begun entering the code, 2
indicating that the agent has chosen door d1 and has started entering the code, and 3 representing the
final terminal state after a door has been opened or combination incorrectly entered. The MINIGRID
environments (Chevalier-Boisvert et al., 2018b) enable agents with an egocentric “visual” observation
which, in practice, is an integer tensor of shape 7× 7× 3, where the channels contain integer labels
corresponding to the cell’s type, color, and state. Kindly see (Chevalier-Boisvert et al., 2018b;a) for
details. For the above tasks, the cell types belong to the set of (empty, lava, wall, goal).

A.6 ADDITIONAL BASELINE DETAILS

In Tab. A.1, we include details about the baselines considered in this work, including – purely IL
(1 − 3, 9), purely RL (4), a sequential combination of them (5 − 7), static combinations of them
(8, 10), and our dynamic combinations (11 − 14). Moreover, we study methods which learn from
both expert policy (expert action available for any state) and expert demonstrations (offline dataset
of pre-collected trajectories). The hyperparameters (hps) we consider for optimization in our study
have been chosen as those which, in preliminary experiments, had a substantial impact on model
performance. This includes the learning rate (lr), portion of the training steps devoted to the first
stage in methods with two stages (stage-split), and the temperature parameter in the weight function
(α).7 Implicitly, the random environment seed can also be seen as a hyperparameter. We sample
hyperparameters uniformly at random. In particular, we sample lr from [10−4, 0.5) on a log-scale,
stage-split from [0.1, 0.9), and α from {5.0, 20.0}.

A.7 ARCHITECTURE DETAILS

2D-LH model. As discussed in Sec. A.5.7, we have designed the observation given to our agent
so that a simple linear layer followed by a soft-max function is sufficient to capture any f -partial
policy. As such, our main and auxiliary actor models for this task are simply linear functions mapping

6As the softmax function prevents us from learning a truly deterministic policy we can only learn a policy
arbitrarily close to such policies. In our setting, this distinction is irrelevant.

7See Sec. 3.2 for definition of the weight function for ADVISOR.
8While implemented with supervision from expert policy, due to the teacher forcing being set to 1.0, this

method can never explore beyond states (and supervision) in expert demonstrations.

19

Under review as a conference paper at ICLR 2021

Table A.1: Baseline details. IL/RL: Nature of learning, Expert supervision: the type of expert
supervision leveraged by each method, Hps. searched: hps. that were randomly searched over, fairly
done with the same budget (see Sec. A.8 for details).

Method IL/RL Expert supervision Hps. searched
1 BC IL Policy lr
2 † IL Policy lr, stage-split
3 BCtf=1 IL Policy8 lr
4 PPO RL Policy lr
5 BC→ PPO IL→RL Policy lr, stage-split
6 † → PPO IL→RL Policy lr, stage-split
7 BCtf=1 → PPO IL→RL Policy lr, stage-split
8 BC + PPO IL+RL Policy lr
9 BCdemo IL Demonstrations lr
10 BCdemo + PPO IL+RL Demonstrations lr
11 ADV IL+RL Policy lr, α
12 † → ADV IL+RL Policy lr, α, stage-split
13 BCtf=1 → ADV IL+RL Policy lr, α, stage-split
14 BCdemo + ADV IL+RL Demonstrations lr, α

the input 6400-dimensional observation to a 4-dimensional output vector followed by a soft-max
non-linearity. The critic is computed similarly but with a 1-dimensional output and no non-linearity.

PD model. Our PD model has three sequential components. The first embedding layer maps a given
observation, a value in {0, 1, 2, 3}, to an 128-dimensional embedding. This 128-dimensional vector
is then fed into a 1-layer LSTM (with a 128-dimensional hidden state) to produce an 128-output
representation h. We then compute our main actor policy by applying a 128× 7 linear layer followed
by a soft-max non-linearity. The auxiliary actor is produced similarly but with separate parameters in
its linear layer. Finally the critic’s value is generated by applying a 128× 1 linear layer to h.

MINIGRID model. Here we detail each component of the model architecture illustrated in Fig. 3c.
The encoder (‘Enc.’) converts observation tensors (integer tensor of shape 7×7×3) to a corresponding
embedding tensor via three embedding sets (of length 8) corresponding to type, color, and state of the
object. The observation tensor, which represents the ‘lights-out’ condition, has a unique (i.e., different
from the ones listed by (Chevalier-Boisvert et al., 2018b)) type, color and state. This prevents any
type, color or state from having more than one connotation. The output of the encoder is of size
7× 7× 24. This tensor is flattened and fed into a (single-layered) LSTM with a 128-dimensional
hidden space. The output of the LSTM is fed to the main actor, auxiliary actor, and the critic. All
of these are single linear layers with output size of |A|, |A| and 1, respectively (main and auxiliary
actors are followed by soft-max non-linearities).

A.8 FAIR HYPERPARAMETER TUNING

As discussed in the main paper, we consider two approaches for ensuring that comparisons to
baselines are fair. In particular, we hope to avoid introducing misleading bias in our results by
extensively tuning the hyperparameters (hps) of our ADVISOR methodology while leaving other
methods relatively un-tuned.

2D-LH: Tune by Tuning a Competing Method. The goal of our experiments with the 2D-LH
environment are, principally, to highlight that increasing the imitation gap can have a substantial
detrimental impact on the quality of policies learned by training IL. Because of this, we wish to give
IL the greatest opportunity to succeed and thus we are not, as in our other experiments, attempting to
understand its expected performance when we must search for good hyperparameters. To this end,
we perform the following procedure for every i, j ∈ {1, 3, 5 . . . , 15} with i < j.

For every learning rate λ ∈ {100 values evenly spaced in [10−4, 1] on a log-scale} we train a f i-
partial policy to imitate a f j-optimal expert using BC. For each such trained policy, we roll out
trajectories from the policy across 200 randomly sampled episodes (in the 2D-LH there is no

20

Under review as a conference paper at ICLR 2021

distinction between training, validation, and test episodes as there are only four unique initial world
settings). For each rollout, we compute the average cross entropy between the learned policy and
the expert’s policy at every step. A “best” learning rate λi,j is then chosen by selecting the learning
rate resulting in the smallest cross entropy (after having smoothed the results with a locally-linear
regression model (Wasserman, 2006)).

A final learning rate is then chosen as the average of the λi,j and this learning rate is then used
when training all methods to produce the plots in Fig. 5. As some baselines require additional
hyperparameter choices, these other hyperparameters were chosen heuristically (post-hoc experiments
suggest that results for the other methods are fairly robust to these other hyperparameters).

All Other Tasks: Random Hyperparameter Evaluations. As described in the main paper, we
follow the best practices suggested by Dodge et al. (2019). In particular, for all tasks (except for
2D-LH) we train each of our baselines when sampling that method’s hyperparameters, see Table A.1
and recall Sec. A.6, at random 50 times. Our plots, e.g., Fig. 4, then report an estimate of the expected
(validation set) performance of each of our methods when choosing the best performing model from
a fixed number of random hyperparameter evaluations. Unlike (Dodge et al., 2019), we compute this
estimate using a U-statistic (van der Vaart, 2000, Chapter 12) which is unbiased. Shaded regions
encapsulate the 25-to-75th quantiles of the bootstrap distribution of this statistic.

A.9 TRAINING IMPLEMENTATION

A summary of the training hyperparameters and their values is included in Tab. A.2. Kindly
see (Schulman et al., 2017) for details on PPO and (Schulman et al., 2015b) for details on generalized
advantage estimation (GAE).

Max. steps per episode. The maximum number of steps allowed in the 2D-LH task is 1000. Within
the PD task, an agent can never take more than 11 steps in a single episode (1 action to select the
door and then, at most, 10 more actions to input the combination if d1 was selected) and thus we do
not need to set a maximum number of allowed steps. The maximum steps allowed for an episode of
WC/LC is set by (Chevalier-Boisvert et al., 2018b;a) to 4S2, where S is the grid size. We share the
same limits for the challenging variants – SWITCH and CORRUPT. Details of task variants, their grid
size, and number of obstacles are included in Sec. A.5.

Reward structure. Within the 2D-LH task, the agent receives one of three possible rewards after
every step: when the agent finds the goal it receives a reward of 0.99, if it otherwise has reached the
maximum number of steps (1000) it receives a −1 reward, and otherwise, if neither of the prior cases
hold, it obtains a reward of −0.01. See Sec. A.5.1 for a description of rewards for the PD task. For
WC/LC, (Chevalier-Boisvert et al., 2018b;a) configure the environment to give a 0 reward unless
the goal is reached. If the goal is reached, the reward is 1− episode length

maximum steps . We adopt the same reward
structure for our SWITCH and CORRUPT variants as well.

Computing infrastructure. As mentioned in Sec. 4.3, for all tasks (except LH) we train 50 models
(with randomly sampled hps) for each baseline. This amounts to 650 models per task or 5850 models
in total. For each task, we utilize a g4dn.12xlarge instance on AWS consisting of 4 NVIDIA T4
GPUs and 48 CPUs. We run through a queue of 650 models using 48 processes. For tasks set in the
MINIGRID environments, models each require ≈ 0.9 GB GPU memory and all training completes in
18 to 24 hours. For the PD task, model memory footprints are smaller and training all 650 models is
significantly faster (< 8 hours).

A.10 THE ADVDEMO + PPO METHOD

As described in the main paper, the ADVdemo + PPO method attempts to bring the benefits of our
ADVISOR methodology to the setting where expert demonstrations are available but an expert policy
(i.e., an expert that can be evaluated at arbitrary states) is not. Attempting to compute the ADVISOR
loss (recall Eq. (2)) on off-policy demonstrations is complicated however, as our RL loss assumes
access to on-policy demonstrations. In theory, importance sampling methods, see, e.g., (Mahmood
et al., 2014), can be used to “reinterpret” expert demonstrations as though they were on-policy.
But such methods are known to be somewhat unstable, non-trivial to implement, and may require
information about the expert policy that we do not have access to. For these reasons, we choose to

21

Under review as a conference paper at ICLR 2021

Table A.2: Structural and training hyperparameters.

Hyperparamter Value
Structural

Cell type embedding length 8
Cell color embedding length 8
Cell state embedding length 8
LSTM layers 1
LSTM hidden size 128
Layers in critic 1
Layers in actor 1

PPO
Clip parameter (ε) (Schulman et al., 2017) 0.1
Decay on ε Linear(1, 0)
Processes to sample steps 20
Rollout timesteps 100
Minibatch size 1000
Epochs 4
Value loss coefficient 0.5
Discount factor (γ) 0.99
GAE parameter (λ) 1.0

Training
Optimizer Adam (Kingma & Ba, 2017)
(β1, β2) for Adam (0.9, 0.999)
Learning rate searched
Gradient clip norm 0.5
Training steps (WC/LC & variants) 1 · 106

Training steps (2D-LH & PD) 3 · 105

use a simple solution: when computing the ADVISOR loss on expert demonstrations we ignore the
RL loss. Thus ADVdemo + PPO works by looping between two phases:

• Collect an (on-policy) rollout using the agent’s policy, compute the PPO loss for this rollout
and perform gradient descent on this loss to update the parameters.

• Sample a rollout from the expert demonstrations and, using this rollout, compute the
demonstration-based ADVISOR loss

LADV-demo(θ) = Edemos.[w(S) · CE(πexp(S), πf (S; θ))], (10)

and perform gradient descent on this loss to update the parameters.

A.11 ADDITIONAL PLOTS

𝔼[
R
ew
ar
d]

0 20 40

training runs

°0.75

°0.50

°0.25

0.00

0.25

0.50

0.75

1.00

PoisonedDoors

11. ADV

1 run

∼10 hp. settings are enough
to reach optimal performance

Expected reward
for the best
of 40 runs

POISONEDDOORS

Figure A.3: Walk-through
of Fig. 4.

As mentioned in Sec. 4.3, we record three metrics for our tasks.
Reward is the metric that best jointly captures success and effective
path planning (see Sec. A.9 for reward structure). In Fig. A.3, we
illustrate the key aspects of a figure showing expected maximum
validation performance. In the main paper, we included some reward
plots in Fig. 4. Specifically, Fig. A.4g, A.4e, and A.4d have already
been included in the main paper (as Fig. 4c, 4b, and 4d). The remain-
ing variants for WC/LC, FAULTY/ONCE SWITCH, and CORRUPT
are presented in Fig. A.4.

Success rate shows a similar trend, following from the definition
of rewards, i.e., agents which reach the target more often, mostly
end up with higher rewards. In Fig. A.5, we plot success rate for
WC/LC, FAULTY/ONCE SWITCH, and CORRUPT tasks.

22

Under review as a conference paper at ICLR 2021

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0
LC Corrupt

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

LavaCrossing (LC)

0 20 40

training runs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LC Faulty Switch

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

LC Once Switch

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

WallCrossing (WC)

0 20 40

training runs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

WC Once Switch

0 20 40

training runs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

WC Faulty Switch

0 20 40

training runs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

WC Corrupt

𝔼[
R

ew
ar

d]
𝔼[

R
ew

ar
d]

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

E
[S

u
cc

es
s]

1. BC

2. DAgger (†)
3. BCtf=1

4. PPO

5. BC! PPO

6. † ! PPO

7. BCtf=1 ! PPO

8. BC+PPO (static)

9. BCdemo

10. BCdemo+ PPO

11. ADV

12. † ! ADV

13. BCtf=1 ! ADV

14. ADVdemo+ PPO

RL, IL→RL, IL+RL:

ADVISOR (ours)

IL only:

Previous methods

Based on demonstrations:

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

E
[S

u
cc

es
s]

1. BC

2. DAgger (†)
3. BCtf=1

4. PPO

5. BC! PPO

6. † ! PPO

7. BCtf=1 ! PPO

8. BC+PPO (static)

9. BCdemo

10. BCdemo+ PPO

11. ADV

12. † ! ADV

13. BCtf=1 ! ADV

14. ADVdemo+ PPO

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

E
[S

u
cc

es
s]

1. BC

2. DAgger (†)
3. BCtf=1

4. PPO

5. BC! PPO

6. † ! PPO

7. BCtf=1 ! PPO

8. BC+PPO (static)

9. BCdemo

10. BCdemo+ PPO

11. ADV

12. † ! ADV

13. BCtf=1 ! ADV

14. ADVdemo+ PPO

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

E
[S

u
cc

es
s]

1. BC

2. DAgger (†)
3. BCtf=1

4. PPO

5. BC! PPO

6. † ! PPO

7. BCtf=1 ! PPO

8. BC+PPO (static)

9. BCdemo

10. BCdemo+ PPO

11. ADV

12. † ! ADV

13. BCtf=1 ! ADV

14. ADVdemo+ PPO

11. ADV
9, 10, 14 (ADVdemo + PPO)

14. ADVdemo+ PPO

11. ADV 11. ADV

11. ADV11. ADV
10, 14 (ADVdemo + PPO)

Figure A.4: E[Reward] for baselines on MINIGRID tasks. We include all variants of tasks con-
sidered in this work. Similar to Fig. 4, we plot estimates of the expected maximum validation
set reward of all baselines (including our method), when allowing for increasingly many (random)
hyperparameter evaluations (larger E[Reward] with fewer evals. is better).

23

Under review as a conference paper at ICLR 2021

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

WallCrossing (WC)

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

WC Once Switch

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

WC Faulty Switch

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

WC Corrupt

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

LC Corrupt

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

LavaCrossing (LC)

0 20 40

training runs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
LC Faulty Switch

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0
LC Once Switch

𝔼[
Su

cc
es

s]
𝔼[

Su
cc

es
s]

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

E
[S

u
cc

es
s]

1. BC

2. DAgger (†)
3. BCtf=1

4. PPO

5. BC! PPO

6. † ! PPO

7. BCtf=1 ! PPO

8. BC+PPO (static)

9. BCdemo

10. BCdemo+ PPO

11. ADV

12. † ! ADV

13. BCtf=1 ! ADV

14. ADVdemo+ PPO

RL, IL→RL, IL+RL:

ADVISOR (ours)

IL only:

Previous methods

Based on demonstrations:

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

E
[S

u
cc

es
s]

1. BC

2. DAgger (†)
3. BCtf=1

4. PPO

5. BC! PPO

6. † ! PPO

7. BCtf=1 ! PPO

8. BC+PPO (static)

9. BCdemo

10. BCdemo+ PPO

11. ADV

12. † ! ADV

13. BCtf=1 ! ADV

14. ADVdemo+ PPO

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

E
[S

u
cc

es
s]

1. BC

2. DAgger (†)
3. BCtf=1

4. PPO

5. BC! PPO

6. † ! PPO

7. BCtf=1 ! PPO

8. BC+PPO (static)

9. BCdemo

10. BCdemo+ PPO

11. ADV

12. † ! ADV

13. BCtf=1 ! ADV

14. ADVdemo+ PPO

0 20 40

training runs

0.0

0.2

0.4

0.6

0.8

1.0

E
[S

u
cc

es
s]

1. BC

2. DAgger (†)
3. BCtf=1

4. PPO

5. BC! PPO

6. † ! PPO

7. BCtf=1 ! PPO

8. BC+PPO (static)

9. BCdemo

10. BCdemo+ PPO

11. ADV

12. † ! ADV

13. BCtf=1 ! ADV

14. ADVdemo+ PPO

11. ADV
9, 10, 14 (ADVdemo + PPO)

14. ADVdemo+ PPO

11. ADV 11. ADV

11. ADV11. ADV
10, 14 (ADVdemo + PPO)

Figure A.5: E[Success Rate] for baselines on MINIGRID tasks. We include all variants of tasks
considered in this work. This is the expected maximum validation set success rate of all baselines
(including our method), when allowing for increasingly many (random) hyperparameter evaluations
(larger E[Success Rate] with fewer evals. is better).

24

Under review as a conference paper at ICLR 2021

A.12 IMPLEMENTATION DETAILS OF POINTNAV TASK

We follow the dataset splits released for the AIHabitat 2019 Challenge at CVPR 2019. The reward
structure is identical to Savva et al. (2019). Concretely:

rt =

{
rgoal + rcloser + ν if agent ‘stops’ next to goal
rcloser + ν otherwise

. (11)

rgoal is the terminal reward of reaching the goal, rclose is the decrease in the geodesic distance to the
goal after the step taken at time t, and ν is the negative reward (time penalty) to encourage optimal
paths. rgoal is 10.0 and ν is −0.01, following the implementation of Savva et al. (2019) released as
part of the habitat-lab.

To create Fig. 6, we evaluate checkpoints after every 1024k frames of experience. This is plotted
as the thin line. The thick line and shading depicts the rolling mean (with a window size of 2) and
corresponding standard deviation. We stopped training the PPO with 16 processes as it showed no
signs of training. For the table, we state the best performance of checkpoints ≤ 5, 10, 25 Mn frames
of experience.

25

	Introduction
	Related Work
	ADVISOR
	Imitation gap
	Adaptive Insubordination (ADVISOR) with Policy Gradients
	The Auxiliary Policy aux: Estimating ILf in Practice

	Experiments
	Tasks
	Baselines and ADVISOR-based Methods
	Evaluation
	Results
	PointGoal Navigation in Visually-Rich 3D Environments

	Conclusion
	Additional Information
	Formal treatment of Example 2
	Proof of Proposition 1
	Other Distance Measures
	Future Directions in Improving Distance Estimators
	Additional Task Details
	PoisonedDoors (PD)
	2D-Lighthouse (2D-LH)
	WallCrossing (WC)
	LavaCrossing (LC)
	WC/LC Switch
	WC/LC Corrupt
	Observation space

	Additional Baseline Details
	Architecture Details
	Fair Hyperparameter Tuning
	Training Implementation
	The ADVdemo+PPO method
	Additional Plots
	Implementation Details of PointNav Task

