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Abstract

Generating adsorption configurations, that is, how small atoms or molecules bind1

to complex catalyst surfaces, remains underexplored in inverse materials design.2

We present CompGen, a conditional generative framework that reformulates 3D3

structure prediction as a 2D shell-wise composition task centered on the adsorption4

site. CompGen uses a Chemically Informed Autoencoder (CIAE) to embed sparse5

compositions into a continuous, periodic table aware latent space learned with6

a multi-stage pretraining process. A conditional diffusion model then samples7

in this latent space under multi-physical conditions, including adsorbate identity,8

adsorption energy, and relevant elements, enabling inverse composition design9

of catalytic surfaces. Pretrained on a subset of Open Catalyst 2020, CompGen10

is fine-tuned to more complex high-entropy alloy (HEA) surfaces and achieves11

strong fine-tuned performance. Extensive experiments show robust zero-shot12

and few-shot behavior, highlighting CompGen’s effectiveness for data-efficient,13

domain-transferable inverse design of catalytic surfaces.14

1 Introduction15

Inverse design of catalytic materials is a central AI-for-Science challenge with direct impact on16

energy and environmental technologies (Freeze et al., 2019; Noh et al., 2020; Wang et al., 2023).17

Catalytic performance is governed by active sites, the localized regions on a surface where reactions18

occur (Vogt and Weckhuysen, 2022). Despite rapid advances in generative models for inverse19

materials discovery (Gebauer et al., 2022; Xiao et al., 2023; Zheng et al., 2024; Park et al., 2024;20

Zeni et al., 2025; Joshi et al., 2025), applying them to catalytic surfaces remains difficult because21

local environments around active sites are uncertain, heterogeneous, and should be designed under22

constraints from key reactivity descriptors such as adsorption energy (Wang et al., 2025b). Existing23

approaches that generate explicit 3D coordinates also struggle to encode translational, rotational, and24

periodic symmetries efficiently (Kolluru et al., 2022; Duval et al., 2023; Wang and You, 2025). Recent25

equivariant diffusion methods, Reinforcement Learning schemes, and structure-search workflows26

have advanced adsorbate placement prediction and surface generation, but they mainly target simpler27

systems and often lack explicit, property-conditioned local microstructural design (Lacombe et al.,28

2023; Cornet et al., 2024; Kolluru and Kitchin, 2024; Rønne et al., 2024; Wang et al., 2025a).29

In this work, we reformulate inverse design of catalytic surfaces as a simpler, yet chemically meaning-30

ful composition generation task. We focus on generating the proportions of each type of elements in31

two concentric spherical shells around a surface active site: an inner shell 1 that interacts directly with32

the adsorbed atoms or molecules (i.e., the adsorbates) and an outer shell 2 that surrounds the inner33

shell. This two-shell approach bypasses explicit 3D geometry, but preserves essential ensemble and34

ligand effects used to tune catalytic properties (Li et al., 2018; Pedersen et al., 2022). shell 1 controls35

ensemble feasibility by fixing element counts near the adsorbate, while shell 2 enables ligand tuning36
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Figure 1: The illustration of (a) An example of adsorption configuration on a catalytic surface. (b)
CompGen domain adaptation. (c) CompGen Pipeline.

through second shell composition. This setup provides useful priors that shrink the design space and37

reduce the number of candidate microstates, enabling more efficient high-throughput screening.38

To address the composition generation task, we introduce CompGen, a conditional generative frame-39

work for inverse composition design task. CompGen couples a Chemically Informed Autoencoder40

(CIAE) with a conditional diffusion model. CIAE projects shell-wise composition vectors into a41

chemically-aware latent space using a periodic table representation (PTR) prior (Feng et al., 2021) by42

leveraging on a two-stage pretraining scheme. The conditional diffusion model then samples from43

latent space under physical conditions, including categorical labels and numerical targets such as44

adsorption energy. CompGen is pretrained on a subset of the Open Catalyst 2020 (OC20) dataset45

(Chanussot et al., 2021), covering surfaces with up to three elements, and fine-tuned on a five-element46

HEA dataset (Clausen et al., 2024), demonstrating strong zero-shot and few-shot generalization.47

To the best of our knowledge, this is the first framework explicitly focused on inverse composition48

design of catalytic surfaces. Our contributions are: (i) we cast 3D inverse surface design as a tractable49

two-shell composition problem that naturally preserves ensemble and ligand effects; (ii) we develop50

the CompGen framework, combining a periodic table-aware CIAE with conditional diffusion for51

property-conditioned generation; and (iii) we demonstrate CompGen can robustly transfer from52

simple surfaces to compositionally complex HEAs via parameter-efficient fine-tuning, and validate53

the model architecture with comprehensive experiments.54

2 Proposed CompGen Framework55

2.1 Problem formulation56

We cast inverse catalytic surfaces design task as generating two shell-wise compositions under given57

conditions. We define the local neighborhood of an adsorption site by two concentric shells of surface58

atoms around the adsorbate’s central (binding) atom1. (1) First shell C1: surface atoms within 2.5 Å59

cutoff radius of the central atom, i.e., its nearest neighbors by distance. (2) Second shell C2: surface60

atoms within 5.0 Å of the central atom that are the nearest neighbors of the first shell atoms.61

For each shell k ∈ {1, 2}, we use a composition vector ck ∈ RD over D = 118 chemical elements62

from the periodic table ordered by atomic number. The i-th entry cki ∈ [0, 1] denotes the normalized63

atomic percentage of the i-th element within shell k, with
∑D

i=1 c
k
i = 1. We then stack the two shell64

compositions as C = [c1, c2] ∈ R2×D to be the generation target of CompGen framework.65

1The central atom of the adsorbate is the atom that forms the primary bond to the surface, e.g., O in *OH, C in
*CH3, and N in *NH3.
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We condition generation on three practical descriptors of an arbitrary pair of adsorbate-surface66

configuration: the adsorbate S, the adsorption energy E, and an element list L that specifies the67

allowed element types in each shell. In our simplified setting, these three descriptors compactly68

define the adsorption model as presented in Figure 1.69

Taken together, formally, we aim to learn the conditional distribution of the surface composition70

p(C1, C2|S,E,L), so that we can sample novel, constraint-consistent shell compositions. Our pro-71

posed CompGen framework reduces the search complexity by at least a polynomial factor in the72

number of sites. See more details in Appendix D.73

2.2 Chemically Informed Autoencoder (CIAE)74

We design the CIAE by imposing chemical prior information in two ways: (i) it represents each75

shell composition on a periodic table grid inspired by prior works (Zheng et al., 2018; Feng et al.,76

2021), and (ii) it uses a two-stage pretraining scheme that first passes property-aware features into the77

encoder and then trains the full autoencoder for reconstruction.78

To obtain a compact latent space that preserves core chemical regularities, we pre-process each shell79

composition ck ∈ RD by mapping it to a 2D grid representation P that encodes the periodic table’s80

layout. We then stack the two shell PTRs to form a two-channel input tensor x0 = [P1;P2] ∈81

R2×H×W . See more details in Appendix B.82

Stage I: Supervised Encoder Pretraining. To inject property awareness into the latent space, we83

adopt the General and Transferable Deep Learning (GTDL) framework (Feng et al., 2021) by using a84

VGG-like CNN backbone pretrained on the Materials Project dataset (Jain et al., 2013) for a binary85

classification task to serve as our encoder fenc. It maps x0 to a latent vector z = fenc(x0; θenc) ∈86

R2×dz×dz . However, unlike the original framework, we do not augment PTRs with handcrafted87

features, as our objective is only for composition reconstruction.88

Stage II: Pretraining the Autoencoder. With the stage I encoder as initialization, we train the full89

autoencoder end-to-end for high-fidelity reconstruction of shell-wise compositions. As mentioned in90

stage I, the stacked PTR tensor x0 ∈ R2×H×W is encoded to a low-dimensional latent vector z. In91

stage II, a decoder fdec maps z back to the composition space, producing Ĉ = fdec(z; θdec) ∈ R2×D,92

i.e., per-shell elemental fractions rather than PTR pixels. The decoder uses a convolutional block with93

a residual connection followed by fully connected layers. The training objective is to minimize the94

reconstruction error between the original composition tensor C and the reconstructed tensor Ĉ. We95

optimize (θenc, θdec) with a Mean Squared Error (MSE) loss between the ground-truth compositions96

C and reconstructions Ĉ, averaged over shells and elements.97

2.3 Conditional Latent Diffusion Model98

The chemically informed latent space learned by CIAE in pretraining stages provides the foundation99

for the generation task. Given a latent embedding z from the CIAE encoder, we train a conditional100

diffusion model to learn the distribution of z conditioned on: (1) Adsorbate S. We encode S as a101

one-hot vector of dimension Ks (Ks = 13 in our experiments, covering 13 types of the most basic102

adsorbates such as *O, *CH, *NH2) from the OC20 dataset. A learned embedding layer maps this to103

s ∈ Rdh . (2) Adsorption energy E. The scalar target energy (in unit of eV) is repeated to length Ks104

for the stability of training and then passed through a MLP to produce e ∈ Rdh . (3) Element list L.105

The allowed element types (e.g., [Ru, Pt, Pd, Ag, Ir]) of each shell are embedded to yield l ∈ Rdh .106

Latent Diffusion. Let z0 = z denote the latent representation produced by the pretrained CIAE,107

we implement the standard CLDM process. The forward process corrupts latent z0 into zt over108

discrete timesteps t ∈ {0, ..., T} by gradually adding Gaussian noise. T is chosen large enough109

that zT is approximately standard normal. A neural network ϵθ is trained to run the reverse process,110

denoising from t = T to t = 0 by predicting the additive noise. The training objective minimizes the111

expected MSE between the true noise and the network’s prediction over noisy latents zt: L(θ) =112

Ez0,ϵ∼N (0,I),t

[
∥ϵ− ϵθ (zt, t, s, e, l)∥2

]
, where ϵθ is conditioned on (s, e, l).113

3 Experiment114

Metrics. We evaluate the performance of CompGen with three complementary metrics: (i) Fréchet115

Distance (FD) for distributional similarity of generated CIAE latent embedding, (ii) Leakage for116
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Table 1: Performance comparison of model architecture and fine-tuning methods.

Experiments on Shell 1 FD ↓
OC20

Leakage↓ Sim ↑ FD↓
HEA

Leakage↓ Sim ↑
DiT Baseline Pretrain 137.22 20.44 0.11 143.46 20.46 0.10
DiT Baseline + LoRA Fine-tune – – – 121.52 20.39 0.11

U-Net Pretrain 0.48 0.03 0.92 0.43 0.05 0.93
U-Net + Full-param Fine-tune – – – 0.23 0.03 0.95
U-Net + LoRA Fine-tune – – – 0.27 0.04 0.94

DiT Pretrain 0.71 0.13 0.90 2.55 0.18 0.90
DiT + Full-param Fine-tune – – – 0.25 0.04 0.95
DiT + LoRA Fine-tune – – – 0.86 0.12 0.93

Experiments on Shell 2 FD↓
OC20

Leakage↓ Sim ↑ FD↓
HEA

Leakage↓ Sim ↑
DiT Baseline Pretrain 26.24 -11.30 -0.11 43.48 -11.13 -0.13
DiT Baseline + LoRA Fine-tune – – – 46.14 -11.31 -0.15

U-Net Pretrain 1.79 0.21 0.71 11.72 0.34 0.48
U-Net + Full-param Fine-tune – – – 2.41 0.31 0.52
U-Net + LoRA Fine-tune – – – 2.80 0.31 0.59

DiT Pretrain 2.37 0.26 0.81 4.52 0.31 0.56
DiT + Full-param Fine-tune – – – 6.72 0.28 0.53
DiT + LoRA Fine-tune – – – 4.50 0.38 0.65

compliance with compositional constraints, and (iii) Cosine Similarity for point-wise measure of117

quality for the final generated two-shell composition (see Appendix G.2) .118

Baseline. To form a chemically agnostic baseline, the composition vector c ∈ R118 is reshaped119

into a spatial grid and zero-padded to create a tensor X ∈ R48×48. This tensor is fed directly to the120

diffusion model, bypassing the CIAE entirely (see Appendix G.1).121

CIAE Pretraining. We pretrain the CIAE on 95% of the selected OC20 subset to learn a chemically122

structured latent space from shell-wise compositions. We report (i) MSE of latent reconstruction123

and (ii) point-wise Cosine Similarity between reconstructed and ground truth 118-dimensional124

composition vectors for shell 1 and shell 2. Evaluation is performed on held-out OC20 and out-of-125

domain HEA test sets. Results are presented in Table 3 (Appendix G.3).126

OC20 Pretraining and Fine-tune on HEA. We pretrain CompGen on the OC20 subset to evaluate127

both U-Net and DiT backbones with the given three conditions (S, E, and L) in the chemically128

informed latent space. To assess the transferability and adaptability of CompGen, we fine-tune129

the model on the HEA dataset whose compositional and structural characteristics differ markedly130

from OC20. We consider two strategies: (i) Low-Rank Adaptation (LoRA) (Hu et al., 2022) and (ii)131

full-parameter fine-tuning.132

Results and Analysis. Table 1 reveals four conclusions. (i) A chemistry-aware latent space is crucial:133

the chemically agnostic baseline fails to learn a meaningful distribution, whereas our pretrained134

models achieve better performance (FD). (ii) Both backbones exhibit notable zero-shot transferability135

to HEA; the U-Net even improves on shell 1 metrics without fine-tuning. (iii) Fine-tuning consistently136

boosts performance as evaluated by FD, with full-parameter fine-tuning of the U-Net delivering the137

best results across both shells. (iv) Parameter-efficient LoRA is a strong alternative that can match or138

exceed the performance of full-parameter fine-tuning. Especially on the more challenging shell 2139

composition generation task, it achieves the highest Sim score.140

4 Conclusion141

In this work, we cast inverse catalysts design as a two-shell composition generation task and introduce142

CompGen, a modular framework that couples CIAE with CLDM to supply compositionally actionable143

priors that collapse the otherwise vast 3D search space. Across multiple metrics, CompGen achieves144

high generation quality and strong transfer from subset of OC20 surfaces to compositionally complex145

HEA surfaces via efficient fine-tuning. The framework is architecture-agnostic and can accommodate146

alternative encoders, generators, and conditioning schemes as the task evolves.147
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A Related work250

Inverse materials design. Generative models have advanced inverse materials design by mapping251

target properties to novel structures. Early GAN-based methods (Nouira et al., 2018; Kim et al.,252

2020; Zhao et al., 2021) laid the groundwork, followed by diffusion-based (Hoogeboom et al., 2022;253

Jiao et al., 2023; Pakornchote et al., 2024) and flow-based approaches (AI4Science et al., 2023) that254

further improved the task with high-fidelity generalization. Recent representative diffusion models255

include MatterGen (Zeni et al., 2025), which uses property-conditioned denoising to improve the256

generation of stable, unique, and novel inorganic materials, and All-atom Diffusion Transformer257

(ADiT) (Joshi et al., 2025), which maps molecules and crystals into a shared VAE latent space and258

jointly generates periodic and non-periodic atomic structures via a latent-space diffusion Transformer.259

Inverse catalysts design. Inverse design of catalytic surfaces raises distinct challenges beyond bulk260

generation. A range of paradigms has been explored: reinforcement learning, language-model–based261

generation, and diffusion models. AdsorbRL (Lacombe et al., 2023) employs a Deep Q-Network262

(Mnih et al., 2015) to navigate vast compositional spaces and identify catalysts optimized with263

given adsorption energy targets. CatGPT (Mok and Back, 2024) leverages a GPT-2-based language264

model (Radford et al., 2019) to generate string-based representations of catalyst surfaces, enabling265

fine-tuning for downstream property prediction tasks validated by Density Functional Theory (DFT)266

(Kohn and Sham, 1965) calculations. Among diffusion models, Rønne et al. (Rønne et al., 2024)267

propose a rotationally equivariant diffusion framework with force-field guidance to sample low-energy268

silver-oxide surface structures, though without explicit conditioning on target properties. OM-Diff269

(Cornet et al., 2024) introduces a guided equivariant diffusion model that generates 3D structures of270

homogeneous organometallic catalysts, conditioned on specific metal centers via regressor-informed271

denoising. AdsorbDiff (Kolluru and Kitchin, 2024) predicts the optimal adsorbate binding orientations272

and placements on catalytic surfaces. However, it focuses on improving placement success rates rather273

than generating the local surface environment of active sites. Complementary to these generative274

efforts, structure-search workflows have been proposed for inverse catalysts such as metal-oxide275

interfaces (Kempen and Andersen, 2025). An thermodynamics-guided search over ZnyOx and InyOx276

clusters on pure metal surfaces uncovers stable active site motifs and highlights the importance of277

site diversity in design. Most recently, PGH-VAE (Wang et al., 2025a) applies a topology-aware VAE278

with features from topological algebraic analysis to inverse design of active sites on IrPdPtRhRu279

HEA surfaces.280

B Periodic table representation (PTR) details281

Our approach begins with how we represent the atomic environment in the model. Instead of a282

simple list of atoms, we leverage the inherent structure of the periodic table to create a chemically-283

aware input representation. The compositional vector for each shell mentioned in Probelm Setup,284

ck ∈ RD, is transformed into a 2D grid-like representation. This is achieved by mapping the285

fractional concentration of each element to a specific location on a 2D grid that mirrors the layout of286

the periodic table. Formally, the entry at position (h,w) for shell k is defined as: (Pk)h,w = cki if287

cell (h,w) corresponds to element i and 0 otherwise, where Pk is called the PTR for shell k. Cells288

for absent elements and empty positions are zero-padded. Specifically, we construct Pk ∈ RH×W ,289

with dimensions corresponding to the periodic table (i.e., H = 9,W = 18). Each cell (h,w) in this290

grid is uniquely assigned to a chemical element based on its position. The value of each cell is then291

fitted with the fractional concentration of its corresponding element from the composition vector ck.292

Formally, the entry at position (h,w) for shell k is defined as:293

(Pk)h,w =

{
cki if cell (h,w) corresponds to element i
0 otherwise

where Pk is called the PTR for shell k. This representation transforms the compositional data294

into a grid-like tensor that spatially encodes chemical relationships. For instance, elements in the295

same group appear in the same column, while elements in the same period appear in the same row.296

This structure provides a powerful inductive bias, rendering a 2D Convolutional Neural Network297

(CNN) well-suited architecture for our autoencoder. This allows the model to recognize patterns298

of chemically similar elements, effectively capturing complex relationships that are missing with299

non-spatial representation.300
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C Analysis of CompGen data efficiency for training301

To evaluate the data efficiency of our model, we conduct a systematic study using 40%, 60%, and302

80% of the training data. These results are compared to a backbone model trained on the full dataset303

(100%). The model performance is evaluated on both OC20 and HEA tasks, by using MSE between304

latent embeddings and cosine similarity between shell compositions. Results are shown in Table 2305

and figure 2.306

Table 2: Performance under varying proportion of training data. Lower MSE and higher similarity
values indicate better performance.

Data MSE (OC20) ↓ OC20 shell 1 ↑ OC20 shell 2 ↑ MSE (HEA) ↓ HEA shell 1 ↑ HEA shell 2 ↑
40% 31.7891 0.8640 0.8207 48.7329 0.8484 0.5634
60% 28.9034 0.8848 0.8288 46.1000 0.8662 0.5715
80% 29.5925 0.8813 0.8343 44.3454 0.9014 0.5776
100% 26.1264 0.9037 0.8107 27.8641 0.8988 0.5627

Figure 2: Data scaling effect across multiple metrics. Performance of the model under varying
proportion of training data (40%, 60%, 80%, 100%). (Left) Mean squared error (MSE) for both OC20
and HEA tasks. (Middle) Similarity of shell 1 composition across generated structures. (Right)
Similarity of shell 2 composition. Results demonstrate consistent model improvement with more
training data, following typical deep learning scaling laws.

From Table 2, we observe a general trend between training data size and model performance. On the307

OC20 task, the MSE steadily improves from 31.79 at 40% to 28.90 at 60%, and reaches 29.59 at 80%,308

approaching the full-data baseline of 26.12. The OC20 shell similarity scores also improve, with309

OC20 shell 2 increasing from 0.8207 to 0.8343, demonstrating better local structural consistency.310

Similarly, on the HEA task, the MSE drops from 48.73 (40%) to 44.34 (80%), and HEA shell 2311

similarity grows from 0.5634 to 0.5776. Notably, this slightly exceeds the backbone score (0.5627),312

suggesting that fine-tuning on a subset can potentially outperform full-data pretraining under certain313

domain shifts.314

Overall, these results are consistent with the expected data scaling behavior in deep models. Model315

performance improves sublinearly with more data, and even partial training (60 - 80%) is sufficient to316

recover most of the backbone performance. This demonstrates the data efficiency and generalizability317

of the proposed method.318

D CompGen efficiency analysis319

Setup and notation. Fix an adsorption site type (e.g., atop, bridge, hollow) on a specified facet.320

Let n1 be the number of labeled first shell sites (directly coordinated surface atoms; e.g., n1=1, 2, 3321

for atop/bridge/hollow respectively), and let n2 be the number of labeled second shell sites (near-322

surface/subsurface neighbors within a fixed cutoff). Let E be the full element set under consideration323

(e.g., HEA elements), with |E| = NE . For each shell s ∈ {1, 2}, let As ⊆ E denote the allowed324

element set for that shell (provided by design rules or domain constraints), with size |As| = Ns. A325

microstate is a distinct assignment of elements to the ns labeled sites of shell s (and likewise for the326

other shell); we count microstates for the two shells jointly by multiplication.327

We consider three levels of constraints:328
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1. Unconstrained (U): Any site may take any element in E .329

2. Subset-constrained (S): Shell s may take only elements in As (no composition counts330

enforced).331

3. COMPGEN-constrained (C): In addition to As, shell s has a composition count vector332

Ks = (Ks,i)i∈As
with Ks,i ∈ Z≥0 and

∑
i∈As

Ks,i = ns.333

Unless stated, we treat sites as labeled.2334

Case U: Unconstrained. Each of the n1 first shell sites and n2 second shell sites may independently335

take any of the NE elements:336

#MU = N n1+n2

E . (1)

Case S: Subset-constrained by shell. Restricting to A1 and A2 yields337

#MS = N n1
1 N n2

2 , (2)

which is a factor of
(
N1

NE

)n1
(
N2

NE

)n2 reduction relative to (1).338

Case C: COMPGEN composition-constrained. Given count vectors K1 and K2, the number of339

assignments for each shell is a multinomial coefficient:340

#MC =
n1!∏

i∈A1
K1,i!︸ ︷︷ ︸

first shell

× n2!∏
i∈A2

K2,i!︸ ︷︷ ︸
second shell

. (3)

This follows from counting the permutations of ns labeled sites subject to exact element counts Ks,i341

in shell s.342

Reduction factors. Equations (1), (2), (3) imply the hierarchy343

#MC ≤ #MS ≤ #MU.

In particular,344

#MC

#MS
=

n1!∏
i∈A1

K1,i!

n2!∏
i∈A2

K2,i!
· 1

N n1
1 N n2

2

,
#MC

#MU
=

n1!∏
i K1,i!

n2!∏
i K2,i!

· 1

N n1+n2

E

,

showing that COMPGEN yields exponential-in-ns reductions when ns is moderate (with exact factors345

governed by the multinomial denominators).346

Concrete HEA example with motif-aware n1. Consider a quinary HEA with E =347

{Ag, Ir,Pd,Pt,Ru} (NE = 5). Fix a hollow adsorption motif on an fcc(111) facet so n1 = 3348

(three directly coordinated surface atoms).3 Let the near-surface cutoff yield n2 = 6 second349

shell sites (adjustable to your geometry). Assume design constraints: A1 = {Pt,Pd} (N1=2),350

A2 = {Pt,Pd,Ag,Ru} (N2=4).351

Unconstrained: #MU = 5n1+n2 = 59 = 1,953,125.

Subset-constrained: #MS = 2 3 · 4 6 = 8 · 4,096 = 32,768.

Suppose COMPGEN proposes the first shell counts K1 = (K1,Pt,K1,Pd) = (2, 1) and the second352

shell counts K2 = (K2,Pt,K2,Pd,K2,Ag,K2,Ru) = (3, 1, 1, 1). Then353

#MC =
3!

2! 1!︸︷︷︸
=3

× 6!

3! 1! 1! 1!︸ ︷︷ ︸
=120

= 360.

Thus, relative to the unconstrained case, the search is reduced by a factor of 1,953,125/360 ≈ 5,425,354

and relative to the subset-only case by 32,768/360 ≈ 91. These counts are before any geometric355

relaxation or symmetry pruning.356

2Labeled sites reflect distinct geometric positions around the adsorption center (e.g., the three specific metal
atoms forming an fcc/hcp hollow). If certain positions are symmetry-equivalent, one may divide by the symmetry
group size to obtain a reduced count; our formulas give an upper bound that is sufficient to show the reduction
factors.

3For atop and bridge motifs, set n1=1 or 2.
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Remarks on symmetry and unlabeled variants. If certain labeled positions are symmetry-357

equivalent (e.g., the three hollow sites under a C3 rotation), one may divide the counts by the358

appropriate group size to obtain a tighter estimate. Alternatively, if one prefers to treat sites as359

unlabeled, the first shell count reduces to the number of distinct compositions only (one per feasible360

K1), which is
(
n1+N1−1

N1−1

)
; COMPGEN then selects a single K1, and the count is 1 for that shell. Our361

labeled-site model provides a conservative (larger) count and hence a conservative reduction factor.362

E Dataset details363

Two datasets are considered during the pretraining and fine-tuning stages of CompGen. For pretrain-364

ing, we utilize a subset of the per-adsorbate trajectories from the OC20 dataset4. Specifically, we365

extract trajectories involving 13 common adsorbates (*O, *H, *OH, *OH2, *C, *CH, *CH2, *CH3, *CH4,366

*N, *NH, *NH2, and *NH3)5, with well-defined central atoms as reference to calculate the distance to367

the surface atoms for each shell. These adsorbates are adsorbed on distinct surfaces, each composed368

of at most three different element types. In total, 52 unique surface elements are presented, and the369

final dataset consists of 131,740 adsorption configurations. We first randomly split the dataset with370

5% as test set, and further split the remaining 95% of the dataset into training and validation set with371

ratio of 90:10.372

HEAs have recently gained attention as promising catalysts due to their highly diverse local structural373

composition, which enable fine-tuning of catalytic properties across a broad design space. To evaluate374

CompGen’s fine-tuning capabilities, we adopt the HEA dataset from Clausen et al. (Clausen et al.,375

2024), which includes 4,892 distinct adsorption configurations of *OH and *O on HEA surfaces376

composed of five elements: Ag, Ir, Pd, Pt, and Ru. The same pre-processing protocol is applied as377

in the pretraining dataset by extracting normalized first and second shell element compositions. We378

follow the original data split as used in the original paper, keeping the same 80:10:10 ratio for the379

fine-tuning experiments of CompGen.380

We further provide more details about the OC20 dataset used in CompGen pretraining stage. First we381

have the heatmap for composition distribution over element vs. adsorption energy on both shell over382

adsorbate *C. The composition heatmap for OC20 is presented in Figure 3 and 4.383

Figure 3: Composition heatmap for shell 1.

To further investigate the relationship between composition and adsorption energy, we perform a384

detailed analysis on a narrow slice of the property landscape. Figure 5 and Figure 6 specifically385

examine the "middle energy bin", visualizing the element compositions of the extracted 15 surfaces386

that exhibit the lowest adsorption energies within this range. This examination provides a high387

resolution of the diversity for element combinations that condition on a constrained range of target388

adsorption energies.389

4The OC20 dataset is available at https://fair-chem.github.io/catalysts/datasets/oc20.html
5The * sign indicates that the atom or molecule is bound to the surface of the catalyst.
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Figure 4: Composition heatmap for shell 2.

Figure 5: Composition heatmap for specific range of adsorption energies on shell 1.

Figure 6: Composition heatmap for specific range of adsorption energies on shell 2.

F Diffusion model details390

Forward Noising Process391
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Let z be the initial input x0 for diffusion, we define a fixed forward (noising) kernel that does not392

depend on y :393

q (x1:T | z) =
T∏

t=1

q (xt | xt−1) , q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
xT ∼ N (0, I).

Here, xT is the noisy input at timestep T , drawn from a multivariate normal distribution with zero394

mean and identity covariance matrix (I). This xT will undergo a series of denoising steps to gradually395

transform into an idea latent embedding on the given information using the formula given above.396

Marginally,397

q (xt | z) = N
(
xt;

√
ᾱtz, (1− ᾱt) I

)
, ᾱt =

t∏
s=1

(1− βs)

Learned Reverse (Denoising) Process To reverse the forward diffusion process, we train a neural398

network ϵθ to predict the noise added to a noised sample xt at time step t. This prediction is399

conditioned not only on xt and t, but also on additional conditioning variables specific to the task:400

ϵθ = ϵθ(xt, t, s, e, l)

where s, e and l denote external conditioning inputs, composed by three counterparts as language401

description for elements and properties, elements in categories and properties in numerical value.402

Based on this predicted noise, we define the reverse transition distribution as a Gaussian:403

pθ(xt−1 | xt, s, e, l) = N (xt−1;µθ(xt, t, s, e, l),Σt)

Here, the mean µθ and the variance Σt are typically parameterized as follows:404

Σt = βtI, µθ(xt, t, s, e, l) =
1

√
αt

(
xt −

βt√
1− ᾱt

· ϵθ(xt, t, s, e, l)

)
This formulation follows the DDPM framework, where ϵθ learns to approximate the true noise, and405

the predicted mean guides the reverse sampling trajectory toward denoised data z.406

Training Objective407

We still minimize the simple noise prediction loss, but conditioned on (s, e, l) :408

L(θ) = Ez,s,e,l,ϵ∼N (0,I),t

[∥∥∥ϵ− ϵθ

(√
ᾱz+

√
1− ᾱtϵ, t, s, e, l

)∥∥∥2] .
Here, s, e, l are drawn from their respective empirical distributions, ϵ is standard Gaussian noise, and409

t is uniform on {1, . . . , T}.410

Inference (Sampling) At inference time, we begin by drawing a pure noise sample xT from the411

standard normal distribution N (0, I). Then, for each timestep t counting down from T to 1 , we412

denoise by sampling413

xt−1 ∼ N (µθ (xt, t, s, e, l) , βtI)

where µθ is the predicted mean of our network conditioned on the current noisy state xt, the timestep414

t, and the three conditioning signals s (adsorbate), e (adsorption energy) and ℓ (language description)415

which will be transferred as vectors s, e and l correspondingly. As we step backward through time,416

the noise magnitude βt shrinks according to our predefined schedule, gradually transforming the417

initial noise into our target latent sample. After completing the final step at t = 1, the resulting z is418

returned as a sample approximately drawn from the desired conditional distribution pdata (z | s, e, l).419
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Table 3: CIAE pretraining reconstruction performance. The evaluation includes test sets from both
the pretraining domain dataset (OC20) and the out-of-domain dataset (HEA). Metrics reported are
Mean Square Error (MSE) and Cosine Similarity (Sim).

Dataset Avg. MSE ↓ Avg. Sim (shell 1) ↑ Avg. Sim (shell 2) ↑ Avg. Sim (all shells) ↑
OC20 test set 3.4974 0.8767 0.9935 0.9351
HEA test set 5.1630 0.9785 0.9471 0.9628

G More details about experiments420

G.1 Baseline.421

We construct a chemically agnostic baseline that bypasses the CIAE and feeds an unstructured, image-422

based representatio directly to the DiT model. Starting from a composition vector c ∈ R118, we423

zero-pad it to an augmented vector c′ ∈ R120 for reshaping compatibility, where c′ = pad(c; (0, 2));424

c′ is then reshaped into a matrix M = reshape(c′, (15, 8)) ∈ R15×8, mapping the elemental425

features into a rudimentary spatial grid devoid of any embedded chemical priors. Finally, to create a426

standardized input, this matrix M is padded into a larger zero-tensor X ∈ R48×48, which is defined427

as Xi,j = Mi,j if 1 ≤ i ≤ 15, 1 ≤ j ≤ 8 and 0 otherwise. This final tensor X serves as the direct428

input to the diffusion model.429

G.2 Metrics430

• Fréchet Distance (FD). Motivated by image generation evaluation (Heusel et al., 2017), we adopt431

the Fréchet distance for comparing the generated distribution and input distribution of surface432

compositions. We use CIAE encoder to project both real (Xr) and generated (Xg) compositions433

into the same chemical-aware latent space. The FD is then calculated based on the means (µr,µg)434

and covariances (Σr,Σg) of the latent embeddings:435

FD = ||µr − µg||22 + Tr
(
Σr +Σg − 2(ΣrΣg)

1
2

)
Lower FD scores indicate a closer match between the real and generated distributions.436

• Leakage. For a ground truth composition c, define its support (allowed set of elements) as437

S = {i | ci > 0}. Given a generated composition ĉ, leakage quantifies the sum of all proportions438

fall outside the support in the disallowed set Sc. For a batch of N samples, we define:439

Leakage =
1

N

N∑
j=1

∑
i∈Sc

j

ĉ
(j)
i

where Sc
j is the disallowed set for the j-th ground truth sample c(j). Lower values indicate better440

consistency of generated compositions.441

• Cosine Similarity (Sim). It provides a direct point-wise measure of generation quality by442

evaluating the alignment between a pair of ground truth vector c and generated vector ĉ. Sim443

computes the average cosine similarity over N samples:444

Sim =
1

N

N∑
j=1

c(j) · ĉ(j)

||c(j)||2||ĉ(j)||2

where the · sign denotes the dot product. Higher values indicate higher similarity.445

G.3 CIAE pretraining results446

These results in Table 3 show that CIAE can efficiently map the sparse inputs to the chemically447

consistent latent space and achieve low reconstruction error and high alignment with target elemental448

compositions across both shells, with reasonable transferability to unseen HEA dataset.449
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H Limitations and Future Work450

Looking ahead, we plan to redesign the current PTR-initialized VGG encoder with a purpose-built451

CIAE tailored especially for catalytic surface compositions, exploring novel architectures (e.g.,452

axial attention) and conducting broader ablation studies. For stage I pretraining, we will move453

beyond generic classification pretraining task toward objectives that better align the latent space454

with representation of surface compositions. We will also enrich the multi-physical conditions with455

obtainable surface information related with ensemble and ligand effects, such as the active site motifs,456

facet labels, and simple geometric details such as distances from the adsorbate center to first shell457

atoms, in order to develop more expressive embeddings for these inputs. Together, these upgrades aim458

to yield more uniquely determined generations and a stronger, end-to-end path from target properties459

to deployable catalyst candidates.460
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