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Abstract

Generating adsorption configurations, that is, how small atoms or molecules bind
to complex catalyst surfaces, remains underexplored in inverse materials design.
We present CompGen, a conditional generative framework that reformulates 3D
structure prediction as a 2D shell-wise composition task centered on the adsorption
site. CompGen uses a Chemically Informed Autoencoder (CIAE) to embed sparse
compositions into a continuous, periodic table aware latent space learned with
a multi-stage pretraining process. A conditional diffusion model then samples
in this latent space under multi-physical conditions, including adsorbate identity,
adsorption energy, and relevant elements, enabling inverse composition design
of catalytic surfaces. Pretrained on a subset of Open Catalyst 2020, CompGen
is fine-tuned to more complex high-entropy alloy (HEA) surfaces and achieves
strong fine-tuned performance. Extensive experiments show robust zero-shot
and few-shot behavior, highlighting CompGen’s effectiveness for data-efficient,
domain-transferable inverse design of catalytic surfaces.

1 Introduction

Inverse design of catalytic materials is a central Al-for-Science challenge with direct impact on
energy and environmental technologies (Freeze et al., 2019; Noh et al., 2020; Wang et al., 2023).
Catalytic performance is governed by active sites, the localized regions on a surface where reactions
occur (Vogt and Weckhuysen, 2022). Despite rapid advances in generative models for inverse
materials discovery (Gebauer et al., 2022; Xiao et al., 2023; Zheng et al., 2024; Park et al., 2024;
Zeni et al., 2025; Joshi et al., 2025), applying them to catalytic surfaces remains difficult because
local environments around active sites are uncertain, heterogeneous, and should be designed under
constraints from key reactivity descriptors such as adsorption energy (Wang et al., 2025b). Existing
approaches that generate explicit 3D coordinates also struggle to encode translational, rotational, and
periodic symmetries efficiently (Kolluru et al., 2022; Duval et al., 2023; Wang and You, 2025). Recent
equivariant diffusion methods, Reinforcement Learning schemes, and structure-search workflows
have advanced adsorbate placement prediction and surface generation, but they mainly target simpler
systems and often lack explicit, property-conditioned local microstructural design (Lacombe et al.,
2023; Cornet et al., 2024; Kolluru and Kitchin, 2024; Rgnne et al., 2024; Wang et al., 2025a).

In this work, we reformulate inverse design of catalytic surfaces as a simpler, yet chemically meaning-
ful composition generation task. We focus on generating the proportions of each type of elements in
two concentric spherical shells around a surface active site: an inner shell I that interacts directly with
the adsorbed atoms or molecules (i.e., the adsorbates) and an outer shell 2 that surrounds the inner
shell. This two-shell approach bypasses explicit 3D geometry, but preserves essential ensemble and
ligand effects used to tune catalytic properties (Li et al., 2018; Pedersen et al., 2022). shell I controls
ensemble feasibility by fixing element counts near the adsorbate, while shell 2 enables ligand tuning
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Figure 1: The illustration of (a) An example of adsorption configuration on a catalytic surface. (b)
CompGen domain adaptation. (¢) CompGen Pipeline.

through second shell composition. This setup provides useful priors that shrink the design space and
reduce the number of candidate microstates, enabling more efficient high-throughput screening.

To address the composition generation task, we introduce CompGen, a conditional generative frame-
work for inverse composition design task. CompGen couples a Chemically Informed Autoencoder
(CIAE) with a conditional diffusion model. CIAE projects shell-wise composition vectors into a
chemically-aware latent space using a periodic table representation (PTR) prior (Feng et al., 2021) by
leveraging on a two-stage pretraining scheme. The conditional diffusion model then samples from
latent space under physical conditions, including categorical labels and numerical targets such as
adsorption energy. CompGen is pretrained on a subset of the Open Catalyst 2020 (OC20) dataset
(Chanussot et al., 2021), covering surfaces with up to three elements, and fine-tuned on a five-element
HEA dataset (Clausen et al., 2024), demonstrating strong zero-shot and few-shot generalization.
To the best of our knowledge, this is the first framework explicitly focused on inverse composition
design of catalytic surfaces. Our contributions are: (i) we cast 3D inverse surface design as a tractable
two-shell composition problem that naturally preserves ensemble and ligand effects; (ii) we develop
the CompGen framework, combining a periodic table-aware CIAE with conditional diffusion for
property-conditioned generation; and (iii) we demonstrate CompGen can robustly transfer from
simple surfaces to compositionally complex HEAs via parameter-efficient fine-tuning, and validate
the model architecture with comprehensive experiments.

2 Proposed CompGen Framework

2.1 Problem formulation

We cast inverse catalytic surfaces design task as generating two shell-wise compositions under given
conditions. We define the local neighborhood of an adsorption site by two concentric shells of surface
atoms around the adsorbate’s central (binding) atom'. (1) First shell C;: surface atoms within 2.5 A
cutoff radius of the central atom, i.e., its nearest neighbors by distance. (2) Second shell Cs: surface
atoms within 5.0 A of the central atom that are the nearest neighbors of the first shell atoms.

For each shell k € {1,2}, we use a composition vector c* € R? over D = 118 chemical elements
from the periodic table ordered by atomic number. The i-th entry c¥ € [0, 1] denotes the normalized
atomic percentage of the i-th element within shell k, with Zf’zl c¥ = 1. We then stack the two shell
compositions as C = [c!, c?] € R?XP to be the generation target of CompGen framework.

"The central atom of the adsorbate is the atom that forms the primary bond to the surface, e.g., 0 in *0H, C in
*CH3, and N in *NH3.
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We condition generation on three practical descriptors of an arbitrary pair of adsorbate-surface
configuration: the adsorbate S, the adsorption energy F, and an element list L that specifies the
allowed element types in each shell. In our simplified setting, these three descriptors compactly
define the adsorption model as presented in Figure 1.

Taken together, formally, we aim to learn the conditional distribution of the surface composition
p(C1,C2|S, E, L), so that we can sample novel, constraint-consistent shell compositions. Our pro-
posed CompGen framework reduces the search complexity by at least a polynomial factor in the
number of sites. See more details in Appendix D.

2.2 Chemically Informed Autoencoder (CIAE)

We design the CIAE by imposing chemical prior information in two ways: (i) it represents each
shell composition on a periodic table grid inspired by prior works (Zheng et al., 2018; Feng et al.,
2021), and (ii) it uses a two-stage pretraining scheme that first passes property-aware features into the
encoder and then trains the full autoencoder for reconstruction.

To obtain a compact latent space that preserves core chemical regularities, we pre-process each shell
composition ¢ € R? by mapping it to a 2D grid representation P that encodes the periodic table’s
layout. We then stack the two shell PTRs to form a two-channel input tensor xg = [P1;P2] €
R?*H>W " See more details in Appendix B.

Stage I: Supervised Encoder Pretraining. To inject property awareness into the latent space, we
adopt the General and Transferable Deep Learning (GTDL) framework (Feng et al., 2021) by using a
VGG-like CNN backbone pretrained on the Materials Project dataset (Jain et al., 2013) for a binary
classification task to serve as our encoder fe,.. It maps xg to a latent vector z = fenc(X0; fenc) €
R2xd=xd>  However, unlike the original framework, we do not augment PTRs with handcrafted
features, as our objective is only for composition reconstruction.

Stage II: Pretraining the Autoencoder. With the stage I encoder as initialization, we train the full
autoencoder end-to-end for high-fidelity reconstruction of shell-wise compositions. As mentioned in
stage I, the stacked PTR tensor xqg € R2ZXHXW iq encoded to a low-dimensional latent vector z. In

stage II, a decoder fg.. maps z back to the composition space, producing C= faee(Z; Ogec) € R2XD,
i.e., per-shell elemental fractions rather than PTR pixels. The decoder uses a convolutional block with
a residual connection followed by fully connected layers. The training objective is to minimize the

reconstruction error between the original composition tensor C and the reconstructed tensor C. We
optimize (fenc, Ogec) With a Mean Squared Error (MSE) loss between the ground-truth compositions

C and reconstructions C, averaged over shells and elements.

2.3 Conditional Latent Diffusion Model

The chemically informed latent space learned by CIAE in pretraining stages provides the foundation
for the generation task. Given a latent embedding z from the CIAE encoder, we train a conditional
diffusion model to learn the distribution of z conditioned on: (1) Adsorbate S. We encode S as a
one-hot vector of dimension K (K, = 13 in our experiments, covering 13 types of the most basic
adsorbates such as *0, *CH, *NH2) from the OC20 dataset. A learned embedding layer maps this to
s € R? . (2) Adsorption energy E. The scalar target energy (in unit of eV) is repeated to length K
for the stability of training and then passed through a MLP to produce e € R%: . (3) Element list L.
The allowed element types (e.g., [Ru, Pt, Pd, Ag, Ir]) of each shell are embedded to yield 1 € R,

Latent Diffusion. Let zo = z denote the latent representation produced by the pretrained CIAE,
we implement the standard CLDM process. The forward process corrupts latent zg into z; over
discrete timesteps t € {0, ..., T} by gradually adding Gaussian noise. T is chosen large enough
that 2 is approximately standard normal. A neural network ey is trained to run the reverse process,
denoising from t = T to ¢t = 0 by predicting the additive noise. The training objective minimizes the
expected MSE between the true noise and the network’s prediction over noisy latents z;: £(0) =

Eyq,ennr(0,1),t [ lle — €g (z4,t,8,€,1) ||2 ] where ¢y is conditioned on (s, e, 1).

3 Experiment

Metrics. We evaluate the performance of CompGen with three complementary metrics: (i) Fréchet
Distance (FD) for distributional similarity of generated CIAE latent embedding, (ii) Leakage for
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Table 1: Performance comparison of model architecture and fine-tuning methods.

Experiments on Shell 1 0C20 HEA

FD| Leakage] Sim{ | FD| Leakage] Sim?
DiT Baseline Pretrain 137.22 20.44 0.11 | 143.46 20.46 0.10
DiT Baseline + LoRA Fine-tune - - - 121.52 20.39 0.11
U-Net Pretrain 0.48 0.03 0.92 0.43 0.05 0.93
U-Net + Full-param Fine-tune - - - 0.23 0.03 0.95
U-Net + LoRA Fine-tune - - - 0.27 0.04 0.94
DiT Pretrain 0.71 0.13 0.90 2.55 0.18 0.90
DiT + Full-param Fine-tune - - - 0.25 0.04 0.95
DiT + LoRA Fine-tune - - - 0.86 0.12 0.93

. 0C20 HEA

Experiments on Shell 2 FD] Leakagel Sim{ | FD] Leakagel Sim 1
DiT Baseline Pretrain 26.24 -11.30 -0.11 | 43.48 -11.13 -0.13
DiT Baseline + LoRA Fine-tune - - - 46.14 -11.31 -0.15
U-Net Pretrain 1.79 0.21 0.71 11.72 0.34 0.48
U-Net + Full-param Fine-tune - - - 241 0.31 0.52
U-Net + LoRA Fine-tune - - - 2.80 0.31 0.59
DiT Pretrain 2.37 0.26 0.81 4.52 0.31 0.56
DiT + Full-param Fine-tune - - - 6.72 0.28 0.53
DiT + LoRA Fine-tune - - - 4.50 0.38 0.65

compliance with compositional constraints, and (iii) Cosine Similarity for point-wise measure of
quality for the final generated two-shell composition (see Appendix G.2) .

Baseline. To form a chemically agnostic baseline, the composition vector ¢ € R''® is reshaped
into a spatial grid and zero-padded to create a tensor X € R*8*48 This tensor is fed directly to the
diffusion model, bypassing the CIAE entirely (see Appendix G.1).

CIAE Pretraining. We pretrain the CIAE on 95% of the selected OC20 subset to learn a chemically
structured latent space from shell-wise compositions. We report (i) MSE of latent reconstruction
and (ii) point-wise Cosine Similarity between reconstructed and ground truth 118-dimensional
composition vectors for shell 1 and shell 2. Evaluation is performed on held-out OC20 and out-of-
domain HEA test sets. Results are presented in Table 3 (Appendix G.3).

OC20 Pretraining and Fine-tune on HEA. We pretrain CompGen on the OC20 subset to evaluate
both U-Net and DiT backbones with the given three conditions (S, F, and L) in the chemically
informed latent space. To assess the transferability and adaptability of CompGen, we fine-tune
the model on the HEA dataset whose compositional and structural characteristics differ markedly
from OC20. We consider two strategies: (i) Low-Rank Adaptation (LoRA) (Hu et al., 2022) and (ii)
full-parameter fine-tuning.

Results and Analysis. Table 1 reveals four conclusions. (i) A chemistry-aware latent space is crucial:
the chemically agnostic baseline fails to learn a meaningful distribution, whereas our pretrained
models achieve better performance (FD). (i) Both backbones exhibit notable zero-shot transferability
to HEA; the U-Net even improves on shell 1 metrics without fine-tuning. (iii) Fine-tuning consistently
boosts performance as evaluated by FD, with full-parameter fine-tuning of the U-Net delivering the
best results across both shells. (iv) Parameter-efficient LoRA is a strong alternative that can match or
exceed the performance of full-parameter fine-tuning. Especially on the more challenging shell 2
composition generation task, it achieves the highest Sim score.

4 Conclusion

In this work, we cast inverse catalysts design as a two-shell composition generation task and introduce
CompGen, a modular framework that couples CIAE with CLDM to supply compositionally actionable
priors that collapse the otherwise vast 3D search space. Across multiple metrics, CompGen achieves
high generation quality and strong transfer from subset of OC20 surfaces to compositionally complex
HEA surfaces via efficient fine-tuning. The framework is architecture-agnostic and can accommodate
alternative encoders, generators, and conditioning schemes as the task evolves.
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A Related work

Inverse materials design. Generative models have advanced inverse materials design by mapping
target properties to novel structures. Early GAN-based methods (Nouira et al., 2018; Kim et al.,
2020; Zhao et al., 2021) laid the groundwork, followed by diffusion-based (Hoogeboom et al., 2022;
Jiao et al., 2023; Pakornchote et al., 2024) and flow-based approaches (Al4Science et al., 2023) that
further improved the task with high-fidelity generalization. Recent representative diffusion models
include MatterGen (Zeni et al., 2025), which uses property-conditioned denoising to improve the
generation of stable, unique, and novel inorganic materials, and All-atom Diffusion Transformer
(ADIT) (Joshi et al., 2025), which maps molecules and crystals into a shared VAE latent space and
jointly generates periodic and non-periodic atomic structures via a latent-space diffusion Transformer.

Inverse catalysts design. Inverse design of catalytic surfaces raises distinct challenges beyond bulk
generation. A range of paradigms has been explored: reinforcement learning, language-model-based
generation, and diffusion models. AdsorbRL (Lacombe et al., 2023) employs a Deep Q-Network
(Mnih et al., 2015) to navigate vast compositional spaces and identify catalysts optimized with
given adsorption energy targets. CatGPT (Mok and Back, 2024) leverages a GPT-2-based language
model (Radford et al., 2019) to generate string-based representations of catalyst surfaces, enabling
fine-tuning for downstream property prediction tasks validated by Density Functional Theory (DFT)
(Kohn and Sham, 1965) calculations. Among diffusion models, Rgnne et al. (Rgnne et al., 2024)
propose a rotationally equivariant diffusion framework with force-field guidance to sample low-energy
silver-oxide surface structures, though without explicit conditioning on target properties. OM-Diff
(Cornet et al., 2024) introduces a guided equivariant diffusion model that generates 3D structures of
homogeneous organometallic catalysts, conditioned on specific metal centers via regressor-informed
denoising. AdsorbDiff (Kolluru and Kitchin, 2024) predicts the optimal adsorbate binding orientations
and placements on catalytic surfaces. However, it focuses on improving placement success rates rather
than generating the local surface environment of active sites. Complementary to these generative
efforts, structure-search workflows have been proposed for inverse catalysts such as metal-oxide
interfaces (Kempen and Andersen, 2025). An thermodynamics-guided search over Zn, O, and In, O,
clusters on pure metal surfaces uncovers stable active site motifs and highlights the importance of
site diversity in design. Most recently, PGH-VAE (Wang et al., 2025a) applies a topology-aware VAE
with features from topological algebraic analysis to inverse design of active sites on IrPdPtRhRu
HEA surfaces.

B Periodic table representation (PTR) details

Our approach begins with how we represent the atomic environment in the model. Instead of a
simple list of atoms, we leverage the inherent structure of the periodic table to create a chemically-
aware input representation. The compositional vector for each shell mentioned in Probelm Setup,
c* € RP, is transformed into a 2D grid-like representation. This is achieved by mapping the
fractional concentration of each element to a specific location on a 2D grid that mirrors the layout of
the periodic table. Formally, the entry at position (h, w) for shell & is defined as: (P)p ., = cF if
cell (h,w) corresponds to element ¢ and 0 otherwise, where Py, is called the PTR for shell k. Cells
for absent elements and empty positions are zero-padded. Specifically, we construct Pj, € R7*W
with dimensions corresponding to the periodic table (i.e., H = 9, W = 18). Each cell (h, w) in this
grid is uniquely assigned to a chemical element based on its position. The value of each cell is then
fitted with the fractional concentration of its corresponding element from the composition vector c*.
Formally, the entry at position (h, w) for shell k is defined as:

¢ if cell (h,w) corresponds to element 4

Puhw=14" )
(i), {O otherwise

where Py, is called the PTR for shell k. This representation transforms the compositional data
into a grid-like tensor that spatially encodes chemical relationships. For instance, elements in the
same group appear in the same column, while elements in the same period appear in the same row.
This structure provides a powerful inductive bias, rendering a 2D Convolutional Neural Network
(CNN) well-suited architecture for our autoencoder. This allows the model to recognize patterns
of chemically similar elements, effectively capturing complex relationships that are missing with
non-spatial representation.
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C Analysis of CompGen data efficiency for training

To evaluate the data efficiency of our model, we conduct a systematic study using 40%, 60%, and
80% of the training data. These results are compared to a backbone model trained on the full dataset
(100%). The model performance is evaluated on both OC20 and HEA tasks, by using MSE between
latent embeddings and cosine similarity between shell compositions. Results are shown in Table 2
and figure 2.

Table 2: Performance under varying proportion of training data. Lower MSE and higher similarity
values indicate better performance.

Data MSE (0C20), OC20shell 11+ OC20shell2+ MSE (HEA)| HEA shell 11 HEA shell 21

40% 31.7891 0.8640 0.8207 48.7329 0.8484 0.5634
60% 28.9034 0.8848 0.8288 46.1000 0.8662 0.5715
80% 29.5925 0.8813 0.8343 44.3454 0.9014 0.5776
100% 26.1264 0.9037 0.8107 27.8641 0.8988 0.5627
MSE vs. Data Proportion Shell 1 Similarity vs. Data Proportion Shell 2 Similarity vs. Data Proportion
—e— OC 0.90 —e— 0C20 O S SRR d
i HEA —=— HEA 080 ¥
<089 <
> 5075
=) . 5oas 5 - 0C20
w £ £ 070 = HEA
=35 ~ 0.87 ~
3 3 065
i '/\/A o0 ’ 0.60
0.85 B i S -
25 0.55
100 920 80 70 60 50 40 100 90 80 70 60 50 40 100 90 80 70 60 50 40
Training Data (%) Training Data (%) Training Data (%)

Figure 2: Data scaling effect across multiple metrics. Performance of the model under varying
proportion of training data (40%, 60%, 80%, 100%). (Left) Mean squared error (MSE) for both OC20
and HEA tasks. (Middle) Similarity of shell 1 composition across generated structures. (Right)
Similarity of shell 2 composition. Results demonstrate consistent model improvement with more
training data, following typical deep learning scaling laws.

From Table 2, we observe a general trend between training data size and model performance. On the
0C20 task, the MSE steadily improves from 31.79 at 40% to 28.90 at 60%, and reaches 29.59 at 80%),
approaching the full-data baseline of 26.12. The OC20 shell similarity scores also improve, with
0OC20 shell 2 increasing from 0.8207 to 0.8343, demonstrating better local structural consistency.

Similarly, on the HEA task, the MSE drops from 48.73 (40%) to 44.34 (80%), and HEA shell 2
similarity grows from 0.5634 to 0.5776. Notably, this slightly exceeds the backbone score (0.5627),
suggesting that fine-tuning on a subset can potentially outperform full-data pretraining under certain
domain shifts.

Overall, these results are consistent with the expected data scaling behavior in deep models. Model
performance improves sublinearly with more data, and even partial training (60 - 80%) is sufficient to
recover most of the backbone performance. This demonstrates the data efficiency and generalizability
of the proposed method.

D CompGen efficiency analysis

Setup and notation. Fix an adsorption site type (e.g., atop, bridge, hollow) on a specified facet.
Let n1 be the number of labeled first shell sites (directly coordinated surface atoms; e.g., n;=1,2,3
for atop/bridge/hollow respectively), and let no be the number of labeled second shell sites (near-
surface/subsurface neighbors within a fixed cutoff). Let £ be the full element set under consideration
(e.g., HEA elements), with || = Ng. For each shell s € {1,2}, let A; C & denote the allowed
element set for that shell (provided by design rules or domain constraints), with size |As| = Ns. A
microstate is a distinct assignment of elements to the n, labeled sites of shell s (and likewise for the
other shell); we count microstates for the two shells jointly by multiplication.

We consider three levels of constraints:
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1. Unconstrained (U): Any site may take any element in £.

2. Subset-constrained (S): Shell s may take only elements in A, (no composition counts
enforced).

3. CoMPGEN-constrained (C): In addition to A, shell s has a composition count vector
K, = (Ks,i)iEAS with KSJ' € ZZO and EiEAS KSJ' = Ng.

Unless stated, we treat sites as labeled.?

Case U: Unconstrained. Each of the n; first shell sites and ny second shell sites may independently
take any of the Ng elements:
#My = N, M

Case S: Subset-constrained by shell. Restricting to .A; and A5 yields
#Ms = Nlm N2n23 2
N

which is a factor of (N—E) " (]J\\;—;) "2 reduction relative to (1).

Case C: COMPGEN composition-constrained. Given count vectors K; and K5, the number of
assignments for each shell is a multinomial coefficient:

n1! ’flg!
#Mc = X . 3)
[lica, K1 Tlica, K2

first shell second shell

This follows from counting the permutations of n labeled sites subject to exact element counts K ;
in shell s.

Reduction factors. Equations (1), (2), (3) imply the hierarchy
#Mc < #FMs < #FMy.
In particular,
#MC _ n1! ’I’LQ! 1 #MC 711! 7’L2! 1

#Ms [Lica, Kii! Tlica, K. . N Ny™? #Mu T K T K . Nprtne’

showing that COMPGEN yields exponential-in-n s reductions when ng is moderate (with exact factors
governed by the multinomial denominators).

Concrete HEA example with motif-aware n;. Consider a quinary HEA with & =
{Ag,Ir,Pd, Pt,Ru} (Ng = 5). Fix a hollow adsorption motif on an fcc(111) facet so n; = 3
(three directly coordinated surface atoms).® Let the near-surface cutoff yield no = 6 second
shell sites (adjustable to your geometry). Assume design constraints: A; = {Pt,Pd} (N,=2),
A; = {Pt,Pd, Ag, Ru} (No=4).
Unconstrained: #My = 5™ = 5% = 1,953,125.
Subset-constrained: #Mg = 23.45 = 8.4,096 = 32,768.

Suppose COMPGEN proposes the first shell counts K1 = (K4 py, K1 pa) = (2, 1) and the second
shell counts Ky = (K27pt, Kg)pd, K2,Aga K27Ru) = (3, 1,1, 1) Then
3! 6!
#Me = 5 X s
=~ —_—
=3 =120
Thus, relative to the unconstrained case, the search is reduced by a factor of 1,953,125/360 = 5,425,

and relative to the subset-only case by 32,768/360 ~ 91. These counts are before any geometric
relaxation or symmetry pruning.

= 360.

Labeled sites reflect distinct geometric positions around the adsorption center (e.g., the three specific metal
atoms forming an fcc/hep hollow). If certain positions are symmetry-equivalent, one may divide by the symmetry
group size to obtain a reduced count; our formulas give an upper bound that is sufficient to show the reduction
factors.

3For atop and bridge motifs, set n1=1 or 2.
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Remarks on symmetry and unlabeled variants. If certain labeled positions are symmetry-
equivalent (e.g., the three hollow sites under a C'3 rotation), one may divide the counts by the
appropriate group size to obtain a tighter estimate. Alternatively, if one prefers to treat sites as
unlabeled, the first shell count reduces to the number of distinct compositions only (one per feasible

K), which is (”lf\;lef 1); COMPGEN then selects a single K1, and the count is 1 for that shell. Our

labeled-site model provides a conservative (larger) count and hence a conservative reduction factor.

E Dataset details

Two datasets are considered during the pretraining and fine-tuning stages of CompGen. For pretrain-
ing, we utilize a subset of the per-adsorbate trajectories from the OC20 dataset*. Specifically, we
extract trajectories involving 13 common adsorbates (*0, *H, *OH, *0H2, *C, *CH, *CH2, *CH3, *CH4,
*N, *NH, *NH2, and *NH3)’, with well-defined central atoms as reference to calculate the distance to
the surface atoms for each shell. These adsorbates are adsorbed on distinct surfaces, each composed
of at most three different element types. In total, 52 unique surface elements are presented, and the
final dataset consists of 131,740 adsorption configurations. We first randomly split the dataset with
5% as test set, and further split the remaining 95% of the dataset into training and validation set with
ratio of 90:10.

HEASs have recently gained attention as promising catalysts due to their highly diverse local structural
composition, which enable fine-tuning of catalytic properties across a broad design space. To evaluate
CompGen’s fine-tuning capabilities, we adopt the HEA dataset from Clausen et al. (Clausen et al.,
2024), which includes 4,892 distinct adsorption configurations of *0H and *0 on HEA surfaces
composed of five elements: Ag, Ir, Pd, Pt, and Ru. The same pre-processing protocol is applied as
in the pretraining dataset by extracting normalized first and second shell element compositions. We
follow the original data split as used in the original paper, keeping the same 80:10:10 ratio for the
fine-tuning experiments of CompGen.

We further provide more details about the OC20 dataset used in CompGen pretraining stage. First we
have the heatmap for composition distribution over element vs. adsorption energy on both shell over
adsorbate *C. The composition heatmap for OC20 is presented in Figure 3 and 4.

First Shell Composition Distribution vs. Adsorption Energy
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-50

)
=
2
&

(-0.439, 0.62
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(2.758. 3.8241 -]
(3.824, .91 -l

(4.89, 5.956] -
(5.956, 7.022] -
(7.022, 8.087] -

o

Adsorption Energy

lement (Sorted by Atomic Number)

Figure 3: Composition heatmap for shell 1.

To further investigate the relationship between composition and adsorption energy, we perform a
detailed analysis on a narrow slice of the property landscape. Figure 5 and Figure 6 specifically
examine the "middle energy bin", visualizing the element compositions of the extracted 15 surfaces
that exhibit the lowest adsorption energies within this range. This examination provides a high
resolution of the diversity for element combinations that condition on a constrained range of target
adsorption energies.

*The OC20 dataset is available at https://fair-chem.github.io/catalysts/datasets/oc20.html
The * sign indicates that the atom or molecule is bound to the surface of the catalyst.
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Second Shell Composition Distribution vs. Adsorption Energy
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Figure 4: Composition heatmap for shell 2.
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Figure 5: Composition heatmap for specific range of adsorption energies on shell 1.

Detailed Composition for Top 15 Lowest Energies in Middle Bin: (-0.439, 0.627]
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Figure 6: Composition heatmap for specific range of adsorption energies on shell 2.

30 F Diffusion model details

391 Forward Noising Process
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Let z be the initial input x( for diffusion, we define a fixed forward (noising) kernel that does not
dependon y :

T

g(rrr|2)=[Ja(@lz), gl o) =N (xt; v1- ﬁtwt—hﬁtI)

t=1
xrr ~ N(O, I)

Here, x7 is the noisy input at timestep 7', drawn from a multivariate normal distribution with zero
mean and identity covariance matrix (I). This 27 will undergo a series of denoising steps to gradually
transform into an idea latent embedding on the given information using the formula given above.
Marginally,

q(xi|2) =N (25 Va1 —a)T), a=]][0-8)
s=1

Learned Reverse (Denoising) Process To reverse the forward diffusion process, we train a neural
network €g to predict the noise added to a noised sample z; at time step ¢. This prediction is
conditioned not only on x; and ¢, but also on additional conditioning variables specific to the task:

€9 = €p(x4,1,8,€,1)

where s, e and 1 denote external conditioning inputs, composed by three counterparts as language
description for elements and properties, elements in categories and properties in numerical value.

Based on this predicted noise, we define the reverse transition distribution as a Gaussian:

pQ(xt—l | xt,s,e,l) = N(l‘t—l;ﬂ'f)(l‘t)tvsae7l)a Et)

Here, the mean pp and the variance X; are typically parameterized as follows:

L (-2
—— Tt~
oy V19— oy
This formulation follows the DDPM framework, where ¢y learns to approximate the true noise, and
the predicted mean guides the reverse sampling trajectory toward denoised data z.

¥y = 6tI7 Mg(fﬂt,t,&e,l) = ' €9<$t7tasvevl)>

Training Objective

We still minimize the simple noise prediction loss, but conditioned on (s, e, 1) :

2
[':(9) = IEz,s7e7l,er'V./\/‘(0,I)775 |:H6 — €9 (\/aZ + v 1- 071567 ta 5, €, 1) H :l .

Here, s, e,1 are drawn from their respective empirical distributions, € is standard Gaussian noise, and
t is uniform on {1,...,T}.

Inference (Sampling) At inference time, we begin by drawing a pure noise sample x7 from the
standard normal distribution A/ (0,T). Then, for each timestep ¢ counting down from 7" to 1, we
denoise by sampling

Tg—1 ~ N (/149 (xta t7 S, e, l) 3 BtI)

where 119 is the predicted mean of our network conditioned on the current noisy state x;, the timestep
t, and the three conditioning signals s (adsorbate), e (adsorption energy) and ¢ (language description)
which will be transferred as vectors s, e and 1 correspondingly. As we step backward through time,
the noise magnitude (3; shrinks according to our predefined schedule, gradually transforming the
initial noise into our target latent sample. After completing the final step at ¢ = 1, the resulting z is
returned as a sample approximately drawn from the desired conditional distribution pg., (z | s, e, 1).

13



420

421

422
423
424
425
426
427
428
429

430

431
432

434
435

436

437
438
439

440
441

442
443
444

445

446

447
448
449

Table 3: CIAE pretraining reconstruction performance. The evaluation includes test sets from both
the pretraining domain dataset (OC20) and the out-of-domain dataset (HEA). Metrics reported are
Mean Square Error (MSE) and Cosine Similarity (Sim).

Dataset Avg. MSE | Avg. Sim (shell 1) T Avg. Sim (shell 2) T Avg. Sim (all shells) 1
0OC20 test set 3.4974 0.8767 0.9935 0.9351
HEA test set 5.1630 0.9785 0.9471 0.9628

G More details about experiments

G.1 Baseline.

We construct a chemically agnostic baseline that bypasses the CIAE and feeds an unstructured, image-
based representatio directly to the DiT model. Starting from a composition vector ¢ € R*'&, we
zero-pad it to an augmented vector ¢’ € R'2Y for reshaping compatibility, where ¢’ = pad(c; (0, 2));
¢’ is then reshaped into a matrix M = reshape(c’, (15,8)) € R°*® mapping the elemental
features into a rudimentary spatial grid devoid of any embedded chemical priors. Finally, to create a
standardized input, this matrix M is padded into a larger zero-tensor X € R*®*48 which is defined
as X; ; = M; ;if 1 <1 < 15,1 < j < 8and 0 otherwise. This final tensor X serves as the direct
input to the diffusion model.

G.2 Maetrics

¢ Fréchet Distance (FD). Motivated by image generation evaluation (Heusel et al., 2017), we adopt
the Fréchet distance for comparing the generated distribution and input distribution of surface
compositions. We use CIAE encoder to project both real (X,.) and generated (X4) compositions
into the same chemical-aware latent space. The FD is then calculated based on the means (u,., pty)
and covariances (X,, 3,) of the latent embeddings:

FD = [|p1, — |3 +Tr (2, + 2y - 2(2,5,)?)

Lower FD scores indicate a closer match between the real and generated distributions.

* Leakage. For a ground truth composition c, define its support (allowed set of elements) as
S = {i | ¢; > 0}. Given a generated composition ¢, leakage quantifies the sum of all proportions
fall outside the support in the disallowed set S¢. For a batch of N samples, we define:

N
1 DI L
Leakage = N2 ¢
j=1 1655

where S is the disallowed set for the j-th ground truth sample c). Lower values indicate better
consistency of generated compositions.

* Cosine Similarity (Sim). It provides a direct point-wise measure of generation quality by
evaluating the alignment between a pair of ground truth vector ¢ and generated vector ¢. Sim
computes the average cosine similarity over N samples:

N . .

) 1 cl) . el
Sim = % 2 [0
N lcW]2][e0)]]2

where the - sign denotes the dot product. Higher values indicate higher similarity.

G.3 CIAE pretraining results
These results in Table 3 show that CIAE can efficiently map the sparse inputs to the chemically

consistent latent space and achieve low reconstruction error and high alignment with target elemental
compositions across both shells, with reasonable transferability to unseen HEA dataset.
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H Limitations and Future Work

Looking ahead, we plan to redesign the current PTR-initialized VGG encoder with a purpose-built
CIAE tailored especially for catalytic surface compositions, exploring novel architectures (e.g.,
axial attention) and conducting broader ablation studies. For stage I pretraining, we will move
beyond generic classification pretraining task toward objectives that better align the latent space
with representation of surface compositions. We will also enrich the multi-physical conditions with
obtainable surface information related with ensemble and ligand effects, such as the active site motifs,
facet labels, and simple geometric details such as distances from the adsorbate center to first shell
atoms, in order to develop more expressive embeddings for these inputs. Together, these upgrades aim
to yield more uniquely determined generations and a stronger, end-to-end path from target properties
to deployable catalyst candidates.
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