
Under review as a conference paper at ICLR 2024

LEARNING SPATIO-TEMPORAL REPRESENTATION FOR
MULTIVARIATE TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Label sparsity renders the use of the label information of multivariate time series
(MTS) challenging in practice. Thus, unsupervised representation learning meth-
ods have been studied to learn effective representations of MTS without label in-
formation. Recently, many studies have employed contrastive learning to generate
robust representations by capturing underlying information about MTS. However,
they have some limitations, such as the insufficient consideration of relationships
between the variables of MTS and high sensitivity to positive pairs. We proposed a
novel spatio-temporal contrastive representation learning method (STCR) for gen-
erating effective MTS representations suitable for classification and forecasting
tasks. STCR learns representations by encouraging spatio-temporal consistency,
which comprehensively reflects the spatial information and temporal dependency
of MTS and simultaneously mitigates sensitivity to constructing positive pairs for
contrastive learning. The results of extensive experiments on MTS classification
and forecasting tasks demonstrate the efficacy of STCR in generating high-quality
representations and state-of-the-art performance on both tasks.

1 INTRODUCTION

Multivariate time series (MTS), which consists of synchronous variables related to one another over
time, is a crucial data type that is used in various fields, such as engineering, finance, and medicine
(Ding et al., 2022; Lee et al., 2023). However, using MTS label information in practice is challenging
because MTS is sometimes sparsely labeled (Ching et al., 2018; Wickstrøm et al., 2022). Therefore,
learning universal representation, which is suitable for various tasks involving MTS, without label
information has attracted considerable attention (Jing & Tian, 2020; Cheng et al., 2021).

Contrastive learning has achieved superior performance in generating representations without la-
bel information in a self-supervised manner (Zhang & Ma, 2022; Xu et al., 2022). This approach
encourages the representations of context views, which are the variants of the original data with
transformations, especially data augmentations, to be similar; thereby, effective representations can
be learned, achieving promising performance in various downstream tasks. However, the unique
characteristics of time series, such as temporal dependency and irregular patterns, have hindered the
application of conventional augmentation-based contrastive learning approaches (Wickstrøm et al.,
2022). For example, applying rotation, one of the augmentation methods typically used in the com-
puter vision domain, to time series may corrupt their trends or patterns because of the change in
the distribution (Yue et al., 2022). Thus, contrastive learning methods specialized in time series
have emerged by introducing augmentation methods suitable for time series or effectively reflecting
temporal structural information (Yang et al., 2022; Yue et al., 2022). Although these methods can
generate useful representations for various tasks of time series, two notable limitations exist.

First, in most of these methods, spatial information in MTS is not considered. Spatial information,
which indicates structural relations between MTS variables, is crucial in various tasks because it en-
ables the representations to reflect the information of associated variables (Yu et al., 2017; Guo et al.,
2021), that is, spatial information can improve classification performance by enabling representa-
tions with similar structures to be close (Kadous & Sammut, 2005; Cini et al., 2021). Therefore, the
existing methods that do not consider spatial information cannot achieve high performance in tasks
for MTS compared with those for univariate time series (UTS).

1

Under review as a conference paper at ICLR 2024

Second, the representations obtained by time-series contrastive learning are sensitive to configured
positive pairs (Yue et al., 2022). Three typical selection strategies exist to construct positive pairs:

1. Subseries consistency (Franceschi et al., 2019) constructs a time-series instance and its
sampled subseries as a positive pair.

2. Local consistency (Tonekaboni et al., 2021) enforces the local smoothness of representa-
tions by selecting neighboring segments as positive samples.

3. Transformation consistency (Eldele et al., 2021) regards the augmented time series with
specific transformation as a positive sample.

However, the representations obtained from these selection strategies are vulnerable to distribution
changes in time series (Yue et al., 2022). For example, the subseries and local consistencies are
vulnerable to level shifts and anomalies in time series, respectively. Thus, the existing methods may
fail to configure proper positive and negative pairs, which causes performance degradation.

To address these problems, we proposed a Spatio-Temporal Contrastive Representation learning
(STCR) that generates effective representation by capturing the inherent structure of MTS with
spatio-temporal information. Particularly, we introduced spatio-temporal consistency that compre-
hensively considers the spatio-temporal relations in MTS and its temporal dependency while miti-
gating the drawbacks of the conventional selection strategies. Then, we learned effective represen-
tations of MTS by encouraging spatio-temporal consistency.

To demonstrate the effectiveness of STCR, we conducted extensive comparative experiments on
classification and forecasting, which are major tasks in MTS, with state-of-the-art methods (SOTAs).
Consequently, STCR generates remarkably informative representations that can achieve superior
performances on both classification and forecasting tasks compared to those of SOTAs.

This study has the following contributions:

• We proposed a novel contrastive representation learning method that encourages spatio-
temporal consistency to reflect spatial structures of MTS and its temporal dependency.

• To capture the inherent spatial information of MTS, STCR converts an MTS into graphs
with diverse edge structures and enforces the representations from them to be consistent.

• Our method alleviates the drawbacks of the selection strategies for configuring positive
pairs in time series by obtaining robust representations with spatio-temporal consistency.

• The proposed method generates universal representations that achieve superior perfor-
mance for both classification and forecasting tasks compared with that of SOTAs.

2 RELATED WORKS

Because MTS datasets often have insufficient label information, unsupervised representation learn-
ing for MTS has been studied extensively (Wickstrøm et al., 2022). Generally, in existing meth-
ods, temporal dependency is considered for generating MTS representations. For example, T-Loss
(Franceschi et al., 2019) explicitly considered the temporal structure of MTS using a triplet loss
with time-based negative sampling to handle subseries consistency. TNC (Tonekaboni et al., 2021)
captured local temporal relationships between timestamps by constructing a graph, in which each
timestamp is considered to be a node, and learning a representation of the graph. Moreover, TST
(Zerveas et al., 2021), a transformer-based representation learning method for MTS, was introduced.

Recent studies on MTS representation learning have used contrastive learning that effectively cap-
tures underlying information in time series. In TS-TCC (Eldele et al., 2021), several data augmen-
tations, such as jittering, scaling, and permutation, were exploited to learn transformation-invariant
representations of UTS and MTS. TS2Vec (Yue et al., 2022) introduced a hierarchical contrasting
method to learn contextual representations for arbitrary subseries at various semantic levels.

However, the existing methods have some limitations. First, although spatial information is crucial
to analyze MTS because its variables affect each other (Guo et al., 2021), most studies have focused
on reflecting temporal information, not considering spatial information. Thus, their performance on
MTS is low compared with that on UTS. Second, they used only one or two selection strategies,

2

Under review as a conference paper at ICLR 2024

vulnerable to certain distribution changes of MTS, to construct positive and negative pairs; thus,
each method may inherit the drawback from the corresponding selection strategy (Yue et al., 2022).

By contrast, the proposed method effectively handles spatial information capturing relationships
between variables as well as the temporal dependency of MTS, even alleviating the drawbacks of
selection strategies by encouraging spatio-temporal consistency. Using STCR, we generated a uni-
versal representation that improves performance for both MTS classification and forecasting tasks.

3 PROPOSED METHOD

3.1 PROBLEM STATEMENT

Let X = {𝑥𝑖 ∈ R𝐿𝑥×𝑉 }𝑁
𝑖=1 be a set of MTS, where 𝐿𝑥 and 𝑉 are the sequence length and the number

of variables, respectively. We define nonlinear mapping functions 𝑓 : 𝑥𝑖 → 𝑧T
𝑖

, 𝑔 : 𝑥𝑖 → S𝑖 , and
ℎ : [𝑧T

𝑖
; 𝑧S
𝑖
] → 𝑧𝑖 , where 𝑧T

𝑖
, S𝑖 , and 𝑧𝑖 have dimensions 𝐿𝑥×𝑑𝑧T ,𝑉×𝑑𝑧S , and 𝐿𝑥×𝑑𝑧 , respectively,

and 𝑧S
𝑖
∈ R𝐿𝑥×𝑑𝑧S is obtained by multiplying 𝑥𝑖 with S𝑖 . The objective is simultaneously learning

𝑓 , 𝑔, and ℎ to map 𝑥𝑖 to its spatio-temporal representation 𝑧𝑖 .

3.2 SPATIO-TEMPORAL CONTRASTIVE REPRESENTATION LEARNING

Figure 1: Overview of STCR

To learn an effective representation 𝑧𝑖 of
an MTS instance 𝑥𝑖 , we proposed spatio-
temporal consistency that can simultane-
ously consider the spatial relations of MTS
along with its temporal structure while al-
leviating the drawbacks of three typical se-
lection strategies for constructing positive
pairs. STCR simultaneously trains 𝑓 , 𝑔, and
ℎ by encouraging this consistency between
two context views of 𝑥𝑖 obtained from four
modules: random cropping, temporal em-
bedding, spatial embedding, and projection.
Figure 1 displays an overview of the pro-
posed method for generating the representa-
tion of an MTS instance.

Figure 2: Random cropping

Random cropping. We randomly cropped an MTS instance to cre-
ate two subseries, where each subseries is used for obtaining a context
view. As shown in Figure 2, given an MTS instance 𝑥𝑖 ∈ R𝐿𝑥×𝑉 , we
randomly extracted two subseries 𝑥𝑖 and 𝑥′

𝑖
, which have overlapping

time segments [𝑠1, 𝑒1] and [𝑠2, 𝑒2] such that 0 < 𝑠1 ≤ 𝑠2 ≤ 𝑒1 ≤
𝑒2 ≤ 𝐿𝑥 . Following Franceschi et al. (2019), the learned representa-
tions on the overlapped segment [𝑠2, 𝑒1] should be consistent for two
context views. This approach enables us to learn position-agnostic
representations while avoiding dimension collapse (Yue et al., 2022).
Note that random cropping is only used in the training phase.

Temporal embedding. As in Figure 3(a), to capture temporal structures of MTS, we first ap-
plied random masking to the subseries and subsequently obtained temporal features by passing the
masked subseries through encoder 𝑓 . Random masking helps to generate a transformation-invariant
representation capturing the underlying temporal structure for MTS without a strong inductive bias
(Yue et al., 2022). Let 𝑥𝑖 ∈ R𝐿𝑥̃𝑖

×𝑉 be a subseries derived by random cropping for an MTS instance
𝑥𝑖 . Next, 𝑥𝑖 is masked along the time axis with a binary mask 𝑚𝑖 ∈ {0, 1}𝐿𝑥̃𝑖 that is independently
sampled from a Bernoulli distribution with 𝑝 in every forward pass of a learning process. Note that
the same mask vector is applied to every variable of MTS to focus on temporal consistency. Subse-
quently, the masked subseries is passed to encoder 𝑓 to derive temporal features 𝑧T

𝑖
∈ R𝐿𝑥̃𝑖

×𝑑
𝑧T by

3

Under review as a conference paper at ICLR 2024

(a) Temporal Embedding (b) Spatial Embedding

Figure 3: Two embedding modules

𝑧T𝑖 = 𝑓 (𝑚𝑖 × 𝑥𝑖). (1)
The encoder 𝑓 has several temporal blocks that
consist of one-dimensional dilated convolutional
layers (DilatedConv) and GeLU activation func-
tions for capturing the long-term dependency of
MTS as a large receptive field (Bai et al., 2018).

Spatial embedding. In this module illustrated
in Figure 3(b), we used a 𝐾-nearest neighbor (𝐾-
NN) graph, which effectively identifies the re-
lations between the variables of MTS (Ferreira
& Zhao, 2016). First, we calculated similarities
between variables in 𝑥𝑖 using the heat kernel, a
popular method used to construct the edges of
𝐾-NN graph (Bo et al., 2020) as follows:

𝜁
(𝑣,𝑢)
𝑖

= 𝑒−∥ 𝑥̃𝑖,𝑣− 𝑥̃𝑖,𝑢 ∥2/2, (2)

where 𝑣 and 𝑢 denote variables of 𝑥𝑖 . Then, we converted 𝑥𝑖 into a 𝐾-NN graph, G𝐾
𝑖

, where each
node corresponds to a variable and the 𝐾 largest similarities for each variable form the connected
edges. Next, we constructed an encoder 𝑔 consisting of spatial blocks with graph convolutional
layers (GraphConv) followed by GeLU to handle the graph G𝐾

𝑖
. However, because various graphs

can be constructed depending on 𝐾 , the graphs with different 𝐾s may contain different spatial in-
formation (Deng & Hooi, 2021). Therefore, when we convert MTS into 𝐾-NN graphs, setting the
appropriate 𝐾 is a challenging problem. To recognize the underlying spatial structure of MTS by
addressing this problem, we encouraged the representations of 𝐾-NN graphs to be consistent across
various 𝐾 . In particular, we randomly selected 𝐾 from [⌈𝜌 × 𝑉⌉, 𝑉] to construct G𝐾

𝑖
, where 𝜌 is

a connection parameter. The number of connections 𝐾 is independently sampled in every forward
pass of a learning process. Subsequently, we used an adjacency matrix 𝐴𝐾

𝑖
of G𝐾

𝑖
to capture spatial

information S𝑖 ∈ R𝑉×𝑑
𝑧S using the following expression:

S𝑖 = 𝑔(𝑥𝑖 , 𝐴𝐾𝑖). (3)

To reflect the information of the node itself and stable learning of GraphConv, we used self-loop and
feature normalization techniques to 𝐴𝐾

𝑖
(Pham & Yang, 2010). Then, equation 3 is formulated as

S𝑖 = 𝑔(𝑥𝑖 , 𝐷̄− 1
2 𝐴̄𝐾𝑖 𝐷̄

− 1
2), (4)

where 𝐴̄𝐾
𝑖

is an adjacency matrix with self-loop (𝐴̄𝐾
𝑖

= 𝐴𝐾
𝑖
+ 𝐼), 𝐼 is an identity diagonal matrix

of 𝐴𝐾
𝑖

, and 𝐷̄ is a degree matrix of 𝐴̄𝐾
𝑖

(𝐷̄𝑖𝑖 =
∑
𝑗 𝐴̄

𝐾
𝑖 𝑗

). However, S𝑖 has no information about
temporal structure; hence, we used S𝑖 as a weight to allow 𝑥𝑖 to reflect spatial relations between
variables over time. We multiplied 𝑥𝑖 with S𝑖 to generate a feature vector 𝑧S

𝑖
∈ R𝐿𝑥̃𝑖

×𝑑
𝑧S as follows:

𝑧S𝑖 = 𝑥𝑖 × S𝑖 = 𝑥𝑖 × 𝑔(𝑥𝑖 , 𝐷̄− 1
2 𝐴̄𝐾𝑖 𝐷̄

− 1
2). (5)

Projection. To obtain a spatio-temporal feature vector 𝑧𝑖 , one of the context views of 𝑥𝑖 , we con-
catenated the temporal and spatial feature vectors and passed them through a projection head ℎ:

𝑧𝑖 = ℎ

(
[𝑧T𝑖 ; 𝑧S𝑖]

)
. (6)

Loss function. To simultaneously train 𝑓 , 𝑔, and ℎ, we encouraged the spatio-temporal consis-
tency of two context views obtained from the same MTS instance using two contrastive loss func-
tions: instance-wise and timestamp-wise. Given two subseries, 𝑥𝑖 and 𝑥′

𝑖
, randomly cropped from 𝑥𝑖 ,

we obtained 𝑧𝑖 and 𝑧′
𝑖

by passing each 𝑥𝑖 and 𝑥′
𝑖

through the temporal embedding, spatial embedding,
and projection modules. Next, we used representations from other MTS instances at timestamp 𝑡 in
the same batch as negatives to calculate instance-wise loss L𝐼𝑊

𝑖
using the following equation:

L𝐼𝑊
𝑖 = − 1

𝐿𝑥

𝐿𝑥∑︁
𝑡=1

𝑙𝑜𝑔
𝑒 𝑧̃𝑖,𝑡 · 𝑧̃

′
𝑖,𝑡∑𝐵

𝑗=1

(
𝑒
𝑧̃𝑖,𝑡 · 𝑧̃′𝑗,𝑡 + 𝟙[𝑖≠ 𝑗]𝑒 𝑧̃𝑖,𝑡 · 𝑧̃ 𝑗,𝑡

) , (7)

4

Under review as a conference paper at ICLR 2024

where 𝐵 is the batch size, and 𝟙 is an indicator function. However, although the instance-wise
contrastive loss is effective for the classification task, it is insufficient for the forecasting task,
which requires fine-grained representations for every timestamp (Yue et al., 2022). Thus, we used
a timestamp-wise contrastive loss function to obtain a discriminate representation over time for
achieving a decent performance in forecasting as well as classification. For the timestamp-wise
contrastive loss function, STCR defines the representations at the same timestamp from two context
views of 𝑥𝑖 as positive pairs, whereas those at different timestamps from 𝑥𝑖 are defined as negative
pairs; thereby, the timestamp-wise contrastive loss L𝑇𝑊

𝑖
is formulated as follows:

L𝑇𝑊𝑖 = − 1
𝐿𝑥

𝐿𝑥∑︁
𝑡=1

𝑙𝑜𝑔
𝑒 𝑧̃𝑖,𝑡 · 𝑧̃

′
𝑖,𝑡∑

𝑡 ′∈Φ

(
𝑒
𝑧̃𝑖,𝑡 · 𝑧̃′𝑖,𝑡′ + 𝟙[𝑡≠𝑡 ′]𝑒 𝑧̃𝑖,𝑡 · 𝑧̃𝑖,𝑡′

) , (8)

where Φ is the set of the overlapping timestamps of two subseries. Finally, the overall loss L of
STCR is calculated as follows:

L =
1
𝑁

𝑁∑︁
𝑖=1

(
L𝐼𝑊
𝑖 + L𝑇𝑊𝑖

)
, (9)

where 𝑁 is the number of MTS instances in the training dataset. Through this learning process, we
can obtain 𝑓 , 𝑔, and ℎ for generating universal representations suitable for various tasks of MTS.
The proposed method is summarized in Algorithm 1.

Algorithm 1 Learning procedure of STCR

Input: MTS dataset X = {𝑥1, 𝑥2, · · · , 𝑥𝑁 }, temporal encoder 𝑓 , spatial encoder 𝑔, projection head
ℎ, and number of optimization iterations 𝑄

Output: Trained 𝑓 , 𝑔, and ℎ
Initialize 𝑓 , 𝑔, and ℎ.
while 𝑞 ≤ 𝑄 do

for 𝑥𝑖 ∈ X do
Randomly crop 𝑥𝑖 to overlapped subseries 𝑥𝑖 and 𝑥′

𝑖
.

Create two context views 𝑧𝑖 and 𝑧′
𝑖

by equations 1-6.
Calculate L𝐼𝑊

𝑖
by equation 7.

Calculate L𝑇𝑊
𝑖

by equation 8.
end for
Update 𝑓 , 𝑔, and ℎ by equation 9.

end while

Furthermore, we analyzed the complexity of the proposed method from two perspectives of the
number of learnable parameters and computational time in Section C.1.

4 EXPERIMENTAL RESULTS

We evaluated the representations generated by STCR on classification and forecasting tasks of MTS.
Here, the experimental results for each task are described in detail. The implementation detail of
STCR is provided in Section A. Also, the experimental settings for each task are given in Section B.

4.1 MULTIVARIATE TIME-SERIES CLASSIFICATION

Table 1 depicts the classification performance of the proposed method compared with the baseline
methods for 11 MTS datasets. Moreover, we performed statistical tests on the classification perfor-
mance to ensure the significance of performance improvement by STCR. In particular, we used a
two-sample Wilcoxon signed rank test (Conover, 1999) between STCR and each baseline method.
The superscripts * and ** imply the rank test’s p-value was smaller than 0.1 and 0.05, respectively.

STCR achieved the best performance in six of 11 datasets, and the average rank was 2.091, out-
performing the baselines. Moreover, the statistical tests showed that STCR performed significantly
better than SOTAs. Notably, STCR achieved overwhelming performance on MTS datasets regard-
less of the number of variables 𝑉 and sequence length 𝐿𝑥 by reflecting both temporal and spatial

5

Under review as a conference paper at ICLR 2024

Table 1: Classification performance for STCR compared with baselines. For each dataset, the best
accuracy score is highlighted in boldface.

Dataset 𝑉 𝐿𝑥
Method

DTW T-Loss TNC TS-TCC TST TS2Vec STCR
HandMovementDirection 10 400 0.231 0.351 0.324 0.243 0.243 0.338 0.351

PhonemeSpectra 11 217 0.151 0.222 0.207 0.252 0.085 0.233 0.186
JapaneseVowels 12 29 0.949 0.989 0.978 0.930 0.978 0.984 0.989

SpokenArabicDigits 13 93 0.963 0.905 0.934 0.970 0.923 0.988 0.955
NATOPS 24 51 0.883 0.917 0.911 0.822 0.850 0.928 0.944

FingerMovements 28 50 0.530 0.580 0.470 0.460 0.560 0.480 0.590
Heartbeat 61 405 0.717 0.741 0.746 0.751 0.746 0.683 0.746

MotorImagery 64 3000 0.500 0.580 0.500 0.610 0.500 0.510 0.550
FaceDetection 144 62 0.529 0.513 0.536 0.544 0.534 0.501 0.557
InsectWingbeat 200 30 - 0.156 0.469 0.264 0.105 0.466 0.453

PEMS-SF 963 144 0.711 0.676 0.699 0.734 0.740 0.682 0.931
Average Rank 5.273** 3.818** 3.909** 3.636* 4.545** 3.818* 2.091

information of MTS. For example, for the PEMS-SF dataset, which 𝑉 = 963 and 𝐿𝑥 = 144, STCR
improved classification performance by approximately 19% than the second-best accuracy score.

By contrast, the baselines exhibited performance differences according to the number of variables
or the sequence length. The second-best method in average rank, TS-TCC, performed poorly in the
datasets with short sequences, such as JapanesVowels and InsectWingbeat. In addition, T-Loss and
TS2Vec showed the worst performance in the datasets with many variables, including PEMS-SF and
FaceDetection. These results confirmed that STCR is effective for MTS classification tasks.

4.2 MULTIVARIATE TIME-SERIES FORECASTING

Table 2 shows the forecasting results of STCR compared with the baselines of forecasting tasks.

Table 2: Forecasting results on MSE and MAE for STCR compared to the baselines. Here, 𝐻 de-
notes the prediction length. For each dataset, the lowest MSE and MAE are highlighted in boldface.

Dataset 𝐻

Method

Informer StemGNN TCN LogTrans LSTnet TS2Vec STCR
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.577 0.549 0.614 0.571 0.767 0.612 0.686 0.604 1.293 0.901 0.599 0.534 0.591 0.542
48 0.685 0.625 0.748 0.618 0.713 0.617 0.766 0.757 1.456 0.960 0.629 0.555 0.626 0.565

168 0.931 0.752 0.663 0.608 0.995 0.738 1.002 0.846 1.997 1.214 0.755 0.636 0.762 0.644
336 1.128 0.873 0.927 0.730 1.175 0.800 1.362 0.952 2.655 1.369 0.907 0.717 0.910 0.721
720 1.251 0.896 - - 1.453 1.311 1.397 1.291 2.143 1.380 1.048 0.790 0.997 0.770

ETTh2

24 0.720 0.665 1.292 0.883 1.365 0.888 0.828 0.750 2.742 1.457 0.398 0.461 0.375 0.467
48 1.457 1.001 1.099 0.847 1.395 0.960 1.806 1.034 3.567 1.687 0.580 0.573 0.605 0.597

168 3.489 1.515 2.282 1.228 3.166 1.407 4.070 1.681 3.242 2.513 1.901 1.065 1.587 1.002
336 2.723 1.340 3.086 1.351 3.256 1.481 3.875 1.763 2.544 2.591 2.304 1.215 1.956 1.130
720 3.467 1.473 - - 3.690 1.588 3.913 1.552 4.625 3.709 2.650 1.373 2.092 1.159

ETTm1

24 0.323 0.369 0.620 0.570 0.324 0.374 0.419 0.412 1.968 1.170 0.443 0.436 0.430 0.432
48 0.494 0.503 0.744 0.628 0.477 0.450 0.507 0.583 1.999 1.215 0.582 0.515 0.560 0.514
96 0.678 0.614 0.709 0.624 0.636 0.602 0.768 0.792 2.762 1.542 0.622 0.549 0.601 0.545

288 1.056 0.786 0.843 0.683 1.270 1.351 1.462 1.320 1.257 2.076 0.709 0.609 0.665 0.589
672 1.192 0.926 - - 1.381 1.467 1.669 1.461 1.917 2.941 0.786 0.655 0.779 0.654

Electricity

24 0.312 0.387 0.439 0.388 0.305 0.384 0.297 0.374 0.356 0.419 0.287 0.374 0.331 0.406
48 0.392 0.431 0.413 0.455 0.317 0.392 0.316 0.389 0.429 0.456 0.307 0.388 0.352 0.421

168 0.515 0.509 0.506 0.518 0.358 0.423 0.426 0.466 0.372 0.425 0.332 0.407 0.375 0.438
336 0.759 0.625 0.647 0.596 0.349 0.416 0.365 0.417 0.352 0.409 0.349 0.420 0.391 0.449
720 0.969 0.788 - - 0.447 0.486 0.344 0.403 0.380 0.443 0.375 0.438 0.414 0.467

Average 1.156 0.781 0.977 0.706 1.192 0.837 1.314 0.892 1.903 1.444 0.828 0.636 0.770 0.626
* All 𝐻 ≥ 672 cases of StemGNN fail for the out-of-memory even when 𝐵 = 1.

STCR achieved the lowest average MSE and MAE of 0.770 and 0.626, respectively. STCR outper-
formed the baselines on long-term forecasting with long prediction length 𝐻 because spatial infor-
mation between variables of MTS enhances the ability to recognize long-term patterns (Guo et al.,
2021), and DilatedConv can capture long-term dependency (Li & Zhu, 2021). However, the fore-
casting performance of STCR for Electricity was slightly low. This dataset has only two variables,

6

Under review as a conference paper at ICLR 2024

and even one of the two variables is timestamp information. Although we used additional timestamp
features through preprocessing, these variables may not have sufficient structural relations among
them. Thus, capturing the inherent relationship between variables may not be necessary. However,
STCR showed performance comparable to several baseline methods, even for the Electricity dataset.

4.3 ABLATION STUDIES

Table 3: Accuracy scores of ablation models and STCR.
For each dataset, the best score is highlighted in boldface.
(APDR: Average Performance Drop Rate)

Dataset Context Component Loss Function STCR
w/o C w/o M w/o 𝐾 w/o L𝐼𝑊 w/o L𝑇𝑊

Hand. 0.392 0.311 0.284 0.270 0.351 0.351
Phoneme. 0.189 0.209 0.182 0.163 0.153 0.186
Japaness. 0.976 0.984 0.984 0.965 0.981 0.989
Spoken. 0.960 0.930 0.952 0.952 0.935 0.955
NATOPS 0.917 0.922 0.911 0.906 0.900 0.944
Finger. 0.520 0.480 0.470 0.480 0.520 0.590
Heart. 0.717 0.722 0.722 0.737 0.727 0.746
Motor. 0.500 0.500 0.490 0.500 0.520 0.550
Face. 0.551 0.526 0.528 0.549 0.522 0.557

Insect. 0.449 0.449 0.441 0.438 0.437 0.453
PEMS-SF 0.908 0.850 0.919 0.902 0.919 0.931
APDR (%) 1.785 4.599 6.288 7.183 5.116 -

We performed extensive ablation stud-
ies to demonstrate the effectiveness of
each component of STCR. STCR cre-
ates two context views using three con-
text components: 1) random cropping, 2)
random masking in the temporal embed-
ding module, and 3) randomness on 𝐾 in
the spatial embedding module. The rep-
resentation is obtained by encouraging
spatio-temporal consistency with two
contrastive loss functions: 1) instance-
wise and 2) timestamp-wise. We com-
pared our approach to three ablation
models for context components: STCR
without random cropping (STCR w/o C),
STCR without random masking (STCR
w/o M), and STCR without randomness
on 𝐾 (STCR w/o 𝐾). We also compared the proposed method to two ablation models for loss func-
tion: STCR without instance-wise loss (STCR w/o L𝐼𝑊) and STCR without timestamp-wise loss
(STCR w/o L𝑇𝑊). The accuracy scores of ablation models for STCR are listed in Table 3.

Random cropping. We compared the classification performance of STCR and STCR w/o C. Ran-
dom cropping provides two subseries of an MTS instance with different lengths and positions. As
presented in Table 3, STCR w/o C decreased approximately 1.785% compared to STCR on average
for all datasets. Although the average performance drop rate was low compared to other ablation
models, in some datasets, such as JapaneseVowels and Heartbeat, this model achieved a larger drop
rate than others for context components; hence, it is one of the essential components of STCR.

Random masking. In general, most existing augmentation-based contrastive learning methods
require a strong inductive bias, such as transformation invariance, that is not always suitable for
handling MTS (Yue et al., 2022). Therefore, we only used random masking, a transformation that
does not require strong assumptions. To verify the efficacy of random masking, we compared the
classification performance of STCR and STCR w/o M. As presented in Table 3, STCR w/o M showed
the classification performance of 4.599% decrease than STCR on average. Thus, we demonstrated
that random masking can improve representation quality without unrealistic assumptions.

Randomness on K. We conducted three experiments to investigate the effects of randomness on
𝐾 on classification performance, the ability to recognize long-term patterns, and the robustness to 𝜌.

First, we compared the classification performance of STCR and the ablation model trained by STCR
w/o 𝐾 to show the effect of the randomness on 𝐾 . For the ablation model, we fixed 𝐾 to 0.5 × 𝑉
in the training phase. In Table 3, the classification performance of STCR w/o 𝐾 was substantially
decreased compared to that of STCR. Specifically, because random 𝐾 explicitly affects capturing
the spatial structure of MTS, STCR w/o 𝐾 showed the largest average drop rate of 6.288% compared
to other ablation models in terms of context components.

Next, we verified that randomness on 𝐾 enhances the ability to recognize long-term patterns as well
as the short-term patterns of MTS. As shown in Figure 4, STCR outperformed STCR w/o 𝐾 on
both short- and long-term forecasting tasks. Moreover, as the prediction length 𝐻 increased, the
performance difference between STCR and STCR w/o 𝐾 gradually increased in the ETTh2 dataset.
Thus, we demonstrated that random 𝐾 can improve forecasting performance, even if the prediction
length is long, by capturing inherent spatial information from the graphs with diverse 𝐾 .

7

Under review as a conference paper at ICLR 2024

(a) ETTh1 (b) ETTh2 (c) ETTm1

Figure 4: Difference of MSE between STCR and STCR w/o 𝐾 on ETT datasets with various 𝐻s

Figure 5: Accuracy of STCR across various con-
nection parameters, 𝜌, (and corresponding 𝐾)

We demonstrated the robustness against con-
nection parameter 𝜌 used to determine the num-
ber of connections 𝐾 in the inference phase.
Figure 5 shows the accuracy scores of STCR
by varying 𝜌 ∈ [0.1, 0.9] (and the correspond-
ing 𝐾). We observed that the classification per-
formances for various 𝜌 values are similar for
most datasets, which implies that STCR is not
highly sensitive to 𝜌 owing to the randomness
on 𝐾 in the training phase. Therefore, ran-
dom 𝐾 enhances robustness to the number of
connections, which may be challenging to set
appropriately, by encouraging consistent repre-
sentations for graphs consisting of various 𝐾s.

Thus, random 𝐾 improves classification and
forecasting performances by reflecting inherent
structural information for relationships between variables of MTS and enhancing robustness to 𝐾 .

Table 4: MSE and MAE of ablation models. For
each dataset, the lowest results are highlighted in
boldface. (AEGR: Average error growth rate)

Dataset 𝐻
w/o L𝐼𝑊 w/o L𝑇𝑊 STCR

MSE MAE MSE MAE MSE MAE

ETTh1

24 0.588 0.542 0.688 0.584 0.591 0.542
48 0.628 0.569 0.730 0.611 0.626 0.565

168 0.766 0.650 0.877 0.692 0.762 0.644
336 0.955 0.745 1.024 0.766 0.910 0.721
720 1.034 0.792 1.157 0.841 0.997 0.770

ETTh2

24 0.368 0.462 0.434 0.481 0.375 0.467
48 0.616 0.595 0.657 0.610 0.605 0.597

168 1.693 1.016 1.726 1.017 1.587 1.002
336 2.614 1.264 2.652 1.288 1.956 1.130
720 2.139 1.177 2.330 1.189 2.092 1.159

ETTm1

24 0.463 0.465 0.484 0.460 0.430 0.432
48 0.612 0.552 0.638 0.547 0.560 0.514
96 0.642 0.573 0.652 0.572 0.601 0.545

288 0.720 0.619 0.745 0.630 0.665 0.589
672 0.818 0.676 0.888 0.699 0.779 0.654

AEGR (%) 8.274 3.543 15.854 6.350 - -

Instance-wise contrastive loss. As presented
in Table 3, the classification performance of
STCR w/o L𝐼𝑊 was highly decreased for most
datasets. Also, the ablation model showed a
larger average performance drop rate (7.183%)
than STCR w/o L𝑇𝑊 . Thus, the instance-wise
contrastive loss, L𝐼𝑊 , fulfills a more important
role for the classification task than L𝑇𝑊 by en-
couraging instances belonging to the same class
to be close to each other with spatio-temporal
consistency at the instance level.

Timestamp-wise contrastive loss. This loss
function is useful for forecasting tasks by
considering spatio-temporal consistency at the
timestamp level. Table 4 provides the MSE
and MAE results of two ablation models, STCR
w/o L𝐼𝑊 and STCR w/o L𝑇𝑊 , and STCR on
ETT datasets. On average, two ablation models
showed worse forecasting performance than STCR. Specifically, although STCR showed slightly
superior performance than ablation models on short-term forecasting, STCR achieved overwhelm-
ing performance for long-term forecasting. Moreover, STCR w/o L𝑇𝑊 exhibited a higher average
error growth rate than STCR w/o L𝐼𝑊 did. This result implies that the instance-wise and timestamp-
wise contrastive loss functions can improve forecasting performance as well as classification per-
formance; in addition, the timestamp-wise contrastive loss enables the model to effectively generate
representations more suitable for forecasting tasks than the instance-level contrastive loss.

8

Under review as a conference paper at ICLR 2024

Table 5: Accuracy scores of ablation models against consistency along with STCR. For each dataset,
the best score is highlighted in boldface.

Dataset STCR → Subseries → Local → Jittering → Fliping → Permutation

HandMovementDirection 0.351 0.405 0.257 0.257 0.230 0.311
PhonemeSpectra 0.186 0.129 0.109 0.180 0.186 0.199
JapaneseVowels 0.989 0.968 0.981 0.968 0.981 0.976

SpokenArabicDigits 0.955 0.940 0.910 0.953 0.921 0.937
NATOPS 0.944 0.933 0.828 0.894 0.928 0.894

FingerMovements 0.590 0.560 0.530 0.450 0.570 0.590
Heartbeat 0.746 0.746 0.732 0.741 0.722 0.722

MotorImagery 0.550 0.490 0.500 0.540 0.500 0.500
FaceDetection 0.557 0.558 0.547 0.548 0.537 0.543
InsectWingbeat 0.453 0.417 0.365 0.445 0.446 0.434

PEMS-SF 0.931 0.908 0.896 0.861 0.902 0.844

Average 0.659 0.641 0.605 0.622 0.629 0.632

Spatio-temporal consistency. Furthermore, to demonstrate the effectiveness of spatio-temporal
consistency, we performed additional ablation studies against the proposed spatio-temporal consis-
tency. We compared the classification performance of our method to those of five ablation models:
two STCRs replacing the proposed spatio-temporal consistency with subseries and local consisten-
cies, respectively, and three STCRs replacing random masking with jittering, flipping, and permu-
tation, respectively. Consequently, as shown in Table 5, the proposed spatio-temporal consistency
outperformed the ablation models in most datasets and achieved the best average accuracy.

5 CONCLUSION

We proposed a novel representation learning method, STCR, to learn universal representations for
various tasks of MTS by encouraging spatio-temporal consistency to capture inherent spatial infor-
mation and temporal dependency while mitigating the drawbacks of the typical selection strategies.
We obtained two context views using random cropping, temporal embedding, spatial embedding,
and projection modules; a spatio-temporal representation is learned by instance-wise and timestamp-
wise contrastive loss functions encouraging spatio-temporal consistency between two context views.
Through extensive experiments on classification and forecasting tasks, we demonstrated that STCR
is useful for generating universal representations while performing better than SOTAs.

Limitations. The proposed method has two limitations. First, STCR shows relatively low per-
formance in some datasets, especially for those with a small number of variables. Because STCR
reflects structural relations among the variables in MTS by a 𝐾-NN graph, the performance for the
datasets with few variables or no meaningful spatial information can be suboptimal. Second, al-
though STCR shows comparable processing times with TS2Vec, the SOTA with high efficiency in
MTS representation learning, in a reasonable number of variables, the processing time rapidly in-
creases with the number of variables (see Table 6). For example, in PEMS-SF dataset, which has
963 variables, STCR remarkably improved classification performance by about 36% compared to
TS2Vec by reflecting spatial information (see Table 1). However, in terms of computational time,
since the 𝐾-NN graph constructed by these variables requires a large amount of additional compu-
tation in learning the graph neural network and processing with the learned network in the inference
phase (O(𝑉2) where 𝑉 is the number of variables or nodes), STCR performed slower than TS2Vec.

Future research directions. One possible solution to handle MTS datasets with a small number
of variables using our approach is to construct 𝐾-NN graphs in the latent space formed by simple
embedding. If the latent representations contain spatial information on structural relations of the
input MTS data, we expect to gain an effect similar to our approach. Beside, by constructing graphs
with latent representations, STCR can also be adapted to UTS. Meanwhile, to enhance the superi-
ority of our method by reducing the complexity, we can devise an efficient method that simplifies a
large graph to a small graph without losing spatial information.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural deep clustering
network. In Proceedings of the web conference 2020, pp. 1400–1410, 2020.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bix-
iong Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-
series forecasting. Advances in neural information processing systems, 33:17766–17778, 2020.

Yanping Chen, Bing Hu, Eamonn Keogh, and Gustavo EAPA Batista. Dtw-d: time series semi-
supervised learning from a single example. In Proceedings of the 19th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pp. 383–391, 2013.

Ziqiang Cheng, Yang Yang, Shuo Jiang, Wenjie Hu, Zhangchi Ying, Ziwei Chai, and Chunping
Wang. Time2graph+: Bridging time series and graph representation learning via multiple atten-
tions. IEEE Transactions on Knowledge and Data Engineering, 2021.

Travers Ching, Daniel S Himmelstein, Brett K Beaulieu-Jones, Alexandr A Kalinin, Brian T Do,
Gregory P Way, Enrico Ferrero, Paul-Michael Agapow, Michael Zietz, Michael M Hoffman,
et al. Opportunities and obstacles for deep learning in biology and medicine. Journal of The
Royal Society Interface, 15(141):20170387, 2018.

Andrea Cini, Ivan Marisca, and Cesare Alippi. Filling the g ap s: Multivariate time series imputation
by graph neural networks. arXiv preprint arXiv:2108.00298, 2021.

William Jay Conover. Practical nonparametric statistics, volume 350. john wiley & sons, 1999.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time
series. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 4027–
4035, 2021.

Wangxiang Ding, Wenzhong Li, Zhijie Zhang, Chen Wan, Jianhui Duan, and Sanglu Lu. Time-
varying gaussian markov random fields learning for multivariate time series clustering. IEEE
Transactions on Knowledge and Data Engineering, 2022.

Dheeru Dua, Casey Graff, et al. Uci machine learning repository. 2017.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and
Cuntai Guan. Time-series representation learning via temporal and contextual contrasting. arXiv
preprint arXiv:2106.14112, 2021.

Leonardo N Ferreira and Liang Zhao. Time series clustering via community detection in networks.
Information Sciences, 326:227–242, 2016.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
learning for multivariate time series. Advances in neural information processing systems, 32,
2019.

Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. Learning dynamics and
heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Transactions on Knowl-
edge and Data Engineering, 34(11):5415–5428, 2021.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Longlong Jing and Yingli Tian. Self-supervised visual feature learning with deep neural networks:
A survey. IEEE transactions on pattern analysis and machine intelligence, 43(11):4037–4058,
2020.

Mohammed Waleed Kadous and Claude Sammut. Classification of multivariate time series and
structured data using constructive induction. Machine learning, 58:179–216, 2005.

10

Under review as a conference paper at ICLR 2024

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference
on research & development in information retrieval, pp. 95–104, 2018.

Sangho Lee, Jeongsub Choi, and Youngdoo Son. Efficient visibility algorithm for high-frequency
time-series: application to fault diagnosis with graph convolutional network. Annals of Opera-
tions Research, pp. 1–21, 2023.

Mengzhang Li and Zhanxing Zhu. Spatial-temporal fusion graph neural networks for traffic flow
forecasting. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp.
4189–4196, 2021.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Hong Thom Pham and Bo-Suk Yang. Estimation and forecasting of machine health condition using
arma/garch model. Mechanical systems and signal processing, 24(2):546–558, 2010.

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning for
time series with temporal neighborhood coding. arXiv preprint arXiv:2106.00750, 2021.

Kristoffer Wickstrøm, Michael Kampffmeyer, Karl Øyvind Mikalsen, and Robert Jenssen. Mixing
up contrastive learning: Self-supervised representation learning for time series. Pattern Recogni-
tion Letters, 155:54–61, 2022.

Xovee Xu, Fan Zhou, Kunpeng Zhang, and Siyuan Liu. Ccgl: Contrastive cascade graph learning.
IEEE Transactions on Knowledge and Data Engineering, 2022.

Xinyu Yang, Zhenguo Zhang, and Rongyi Cui. Timeclr: A self-supervised contrastive learning
framework for univariate time series representation. Knowledge-Based Systems, 245:108606,
2022.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8980–8987, 2022.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eick-
hoff. A transformer-based framework for multivariate time series representation learning. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
2114–2124, 2021.

Junbo Zhang and Kaisheng Ma. Rethinking the augmentation module in contrastive learning: Learn-
ing hierarchical augmentation invariance with expanded views. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16650–16659, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

11

Under review as a conference paper at ICLR 2024

A IMPLEMENTATION DETAILS

A.1 PREPROCESSING

Following previous works (Franceschi et al., 2019; Zhou et al., 2021; Yue et al., 2022), we used
three preprocessing techniques to handle MTS:

Normalization of variables with different scales. Because each variable in MTS has a different
scale, we normalized each variable independently using a z-score. In forecasting tasks, we measured
all evaluation metrics with normalized values.

Handling variable-length and missing values. For a variable-length dataset, we padded all in-
stances to have the same length by NaNs, meaning the missing values. When missing values oc-
curred, we masked the corresponding positions as zero. Moreover, when we handled the graph of
subseries in the spatial embedding module, we padded the node features to the same dimension as
the sequence length of the input instance by zero.

Use of timestamp information. We used additional timestamp features, including minute, hour,
day-of-week, day-of-month, day-of-year, month-of-year, and week-of-year, when available.

A.2 HYPERPARAMETERS

Because most previous studies for representation learning assume that label information and down-
stream tasks are unknown, selecting appropriate hyperparameters based on the model performance
is difficult. Hence, following Yue et al. (2022), we used fixed hyperparameters regardless of the
downstream tasks and did not perform additional hyperparameter optimization. Referring to (Yue
et al., 2022), the batch size 𝐵 was set to 8, and the learning rate was 10−3. The number of opti-
mization iterations was set to 200 for datasets when the number of instances was less than 100,000;
otherwise, it was set to 600. In the training phase, when the instance has a sequence length larger
than 3,000, we clipped the sequence into segments with 3,000 timestamps. Encoder 𝑓 for the tem-
poral embedding module contained ten hidden temporal blocks consisting of two DilatedConv with
an activation function, GeLU (Hendrycks & Gimpel, 2016), and skip connections existed between
neighboring blocks. For the ℓ-th block, the dilation parameter was set to 2ℓ . The kernel size was
set to 3, each DilatedConv had a dimension of 64, and a residual block mapped the hidden features
to 𝑑𝑧T -dimensional temporal features. We set 𝑝 in the Bernoulli distribution for random masking to
0.5. Subsequently, the encoder 𝑔 used in the spatial embedding module was configured with three
hidden spatial blocks consisting of GraphConv and GeLU. We set the output dimensions of Graph-
Convs corresponding to each spatial block to 128, 64, and 𝑑𝑧S , respectively. In addition, for the
spatial embedding module, we set the connection parameter 𝜌 to 0.5 in the training phase because
low-quality graphs with insufficient information for relationships between variables of MTS hinder
obtaining effective spatial features; thereby, the range of 𝐾 was [⌈0.5 × 𝑉⌉, 𝑉]. In the inference
phase, we fixed 𝐾 to the median value of the range of 𝐾 used in the training phase. In the projection
module, we configured ℎ with two fully connected layers with 64 and 𝑑𝑧 dimensions, respectively.
Here, 𝑑𝑧T , 𝑑𝑧S , and 𝑑𝑧 were equally set to 320.

All experiments were executed on the Pytorch platform using an Intel Core i9-10900X at 3.70 GHz
CPU, 256 GB RAM, and GeForce RTX 3090 24GB GPU. The code for STCR is implemented based
on the official code of TS2Vec 1. Our code is attached as a zip file in submission.

B EXPERIMENTAL SETTINGS

B.1 MULTIVARIATE TIME-SERIES CLASSIFICATION

For classification tasks, a class should be assigned to each MTS instance; hence, instance-level
representations are required. For a fair comparison, we used max pooling over all timestamps to
obtain the instance-level representations following Yue et al. (2022). Then, following the same

1https://github.com/yuezhihan/ts2vec

12

Under review as a conference paper at ICLR 2024

protocol with Franceschi et al. (2019) and Yue et al. (2022), we trained a support vector machine
(SVM) classifier with the RBF kernel using the instance-level representations to predict the class of
each instance. We set the penalty 𝐶 with a grid search ranging in [10−4, 104] by cross-validation for
the training dataset.

Datasets. We used MTS classification datasets from the University of East Anglia and the Uni-
versity of California Riverside (UEA & UCR) time-series classification repository for evaluation.
Among 30 MTS datasets in the repository, we selected 11 datasets that have at least ten variables
and 100 training instances. The repository separately provides training and test datasets, so we used
the training dataset to train the model and the test dataset to evaluate the trained model.

Baselines. To demonstrate that the representations learned by STCR are suitable for the classifica-
tion task, we compared the proposed method to SOTAs in unsupervised time-series representation
learning, including T-Loss (Franceschi et al., 2019), TS-TCC (Eldele et al., 2021), TST (Zerveas
et al., 2021), TNC (Tonekaboni et al., 2021), and TS2Vec (Yue et al., 2022) in addition to DTW
(Chen et al., 2013). Each method is summarized in the main manuscript. We used the results re-
ported in Yue et al. (2022) for all baseline methods.

Evaluation metric. We evaluated the classification performance by measuring the accuracy score.

B.2 MULTIVARIATE TIME-SERIES FORECASTING

Given the last 𝑇 observations 𝑥𝑡−𝑇+1, · · · , 𝑥𝑡 , we predict the 𝐻 upcoming observations
𝑥𝑡+1, · · · , 𝑥𝑡+𝐻 by using 𝑧𝑡 , the spatio-temporal representation of the last timestamp 𝑡. Specifi-
cally, we adopted a protocol of Yue et al. (2022), which used a linear regression model with 𝐿2
regularization trained by using 𝑧𝑡 as the input to directly predict future observations 𝑥𝑡+1, · · · , 𝑥𝑡+𝐻 .
We set the regularization coefficient 𝛼 by a grid search on the validation dataset from search space
{0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}.

Datasets. To evaluate forecasting performance, we used four public datasets, including three ETT
datasets (Zhou et al., 2021) and Electricity dataset (Dua et al., 2017). ETT datasets, including
ETTh1, ETTh2, and ETTm1, collect two years of power transformer data, containing long-term
trends, periodicity, and irregular patterns from two stations. ETTh1 and ETTh2 were collected every
hour, and ETTm1 was collected in a 15-min unit. The Electricity dataset contained the electricity
consumption data for 321 clients over three years. Following Zhou et al. (2021) and Yue et al.
(2022), we resampled the Electricity data into hourly data. In addition, we split ETT datasets into
training, validation, and test datasets with 12, 4, and 4 months, respectively (Zhou et al., 2021). The
Electricity was split into 60%, 20%, and 20% (Yue et al., 2022). To demonstrate the performance of
both short- and long-term forecasting, we lengthened the prediction length 𝐻 progressively, from 1
day to 30 days for hourly data and from 6 hours to 7 days for minute data.

Baselines. We compared the forecasting performance of STCR with TS2Vec, which is the SOTA
of MTS representation learning. In addition, we also compared our method with the SOTAs of MTS
forecasting tasks, including Informer (Zhou et al., 2021), LogTrans (Li et al., 2019), LSTnet (Lai
et al., 2018), TCN (Bai et al., 2018), and StemGNN (Cao et al., 2020).

• Informer is a transformer-based method for efficiently forecasting MTS.
• LogTrans improves forecasting performance by mitigating the memory bottleneck of the

transformer.
• LSTnet uses both convolutional and recurrent neural networks to recognize both short-term

and long-term trends of MTS.
• TCN is an MTS forecasting method that introduces DilatedConv for the first time.
• StemGNN is an MTS forecasting method that uses spectral information with Fourier trans-

form to improve forecasting performance, whereas most other spatio-temporal graph neu-
ral networks focusing on the graphs may differ in performance by how to construct graphs
from time series.

We used the results reported in Yue et al. (2022) for all baseline methods.

13

Under review as a conference paper at ICLR 2024

Evaluation metrics. We used two evaluation metrics for forecasting tasks: mean squared error
(MSE) and mean absolute error (MAE). MSE is measured as follows:

𝑀𝑆𝐸 =
1
𝐻𝑉

𝐻∑︁
ℎ=1

𝑉∑︁
𝑣=1

(𝑥𝑣𝑡+ℎ − 𝑥
𝑣
𝑡+ℎ)

2, (10)

where 𝑥𝑣
𝑡+ℎ and 𝑥𝑣

𝑡+ℎ are the observed and predicted values on variable 𝑣 at timestamp 𝑡 + ℎ, respec-
tively. Another metric, MAE, is measured as follows:

𝑀𝐴𝐸 =
1
𝐻𝑉

𝐻∑︁
ℎ=1

𝑉∑︁
𝑣=1

|𝑥𝑣𝑡+ℎ − 𝑥
𝑣
𝑡+ℎ |. (11)

C ADDITIONAL EXPERIMENTS

C.1 COMPLEXITY ANALYSIS

Since our encoder architecture has an additional embedding module to handle the 𝐾-NN graph com-
pared to TS2Vec (Yue et al., 2022), which is the SOTA with high efficiency in MTS representation
learning, it requires more computation. In this regard, here, we discuss the efficiency of the proposed
method from two perspectives: the number of parameters and computational time.

To examine the number of learnable parameters of our method, we denoted the number of variables
passing through 𝑙-th layer of the temporal encoder as𝑉 (𝑙) , and the sequence length after 𝑙′-th layer of
the spatial encoder as 𝐿 (𝑙′)

𝑥 . 𝐿 and 𝐿′ are the number of layers in the temporal and spatial encoders,
respectively. In addition, the size of the one-dimensional convolution filter in the temporal encoder
is denoted as 𝑑𝑘 . Thus, the STCR has the following number of learnable parameters:

𝐿∑︁
𝑙=1
𝑉 (𝑙−1)𝑉 (𝑙)𝑑𝑘 +

𝐿′∑︁
𝑙′=1

𝐿
(𝑙′−1)
𝑥 𝐿

(𝑙′)
𝑥 + (𝑉 (𝐿) + 𝐿 (𝐿′)

𝑥)𝑑ℎ + 𝑑ℎ𝑑𝑧 , (12)

where 𝑉 (0) and 𝐿 (0)
𝑥 are the number of variables and sequence lengths of the original time series,

respectively. In addition, 𝑑ℎ is the number of hidden features in the projection head. The first
and second terms are the number of learnable parameters of the temporal and spatial encoders,
respectively, and the others refer to the number of parameters in the projection head consisting of
two fully connected layers.

By contrast, TS2Vec does not consider spatial information of multivariate time series, so it has the
following number of learnable parameters:

𝑉̃𝑉 (0) +
𝐿∑︁
𝑙=1
𝑉 (𝑙−1)𝑉 (𝑙)𝑑𝑘 (13)

Table 6: Training time per iteration and inference time
per instance for STCR and TS2Vec

Dataset TS2Vec STCR

Training Inference Training Inference

HandMovementDirection 0.223 6.89e-4 0.209 2.86e-3
PhonemeSpectra 0.193 2.02e-4 0.184 2.45e-3
JapaneseVowels 0.059 2.46e-4 0.062 2.53e-3

SpokenArabicDigits 0.158 1.73e-4 0.167 2.48e-3
NATOPS 0.148 1.94e-4 0.174 2.78e-3

FingerMovements 0.148 2.00e-4 0.180 2.91e-3
Heartbeat 0.227 3.85e-4 0.349 5.65e-3

MotorImagery 0.508 1.13e-3 0.562 8.36e-3
FaceDetection 0.151 2.01e-4 1.167 2.65e-2
InsectWingbeat 0.138 2.07e-4 2.133 6.33e-2

PEMS-SF 0.178 5.61e-4 45.91 1.09e-0

where 𝑉̃ is the number of variables in the
time series, and 𝑉 (0) is the number after
the input projection layer. The first term
indicates the number of parameters in the
input projection layer, and the second term
regards the rest parts of the encoder.

Thus, the total number of learnable pa-
rameters for TS2Vec and STCR differs ap-
proximately as much as the number of
learnable parameters required by the spa-
tial encoder of STCR.

Then, we also compared the processing
time of our method to that of TS2Vec. For
two methods, we reported the training time per iteration and the inference time per instance in Ta-
ble 6. The proposed method shows comparable processing times with TS2Vec with a reasonable

14

Under review as a conference paper at ICLR 2024

number of variables, but the processing time rapidly increases with the number of variables. For ex-
ample, in the PEMS-SF dataset, which has 963 variables, STCR remarkably improved classification
performance by about 25 percentage points (or 36.5%) compared to TS2Vec by reflecting spatial
information (see Table 1 in the manuscript). However, in terms of computational time, since the
graph constructed by these variables requires a large amount of additional computation in learning
the graph neural network and processing with the learned network in the inference phase (O(𝑉2)
where 𝑉 is the number of variables or nodes), STCR can be slower than TS2Vec.

C.2 GRAPHICAL ANALYSIS

We performed a graphical analysis of the representations learned by the proposed method using
UMAP (McInnes et al., 2018), a recently proposed technique for visualization. We selected two
datasets, PEMS-SF and JapaneseVowels, which exhibit the largest and smallest performance gaps,
respectively, between STCR and TS2Vec, which is the SOTA in MTS representation learning.

(a) TS2Vec (Japanese.) (b) STCR (Japanese.) (c) TS2Vec (PEMS-SF) (d) STCR (PEMS-SF)

Figure 6: Visualization on JapaneseVowels ((a) and (b)) and PEMS-SF ((c) and (d))

As shown in Figure 6, for the JapaneseVowels dataset, we observed that both methods form well-
distinguished clusters for all classes. However, for the PEMS-SF dataset, the representations learned
by STCR form significantly better distinct groups for each class than TS2Vec, especially the classes
0, 5, and 6. Through this analysis, we can reaffirm the effectiveness of the proposed method.

C.3 SENSITIVITY ANALYSIS

To investigate the impact of hyperparameters used in our method, we performed sensitivity analyses
for the number of optimization iterations 𝑄 and the assigned weights for two loss functions, L𝐼𝑊

and L𝑇𝑊 . Here, we followed the experimental settings described in Section B.1.

(a) Iteration numbers for optimization (𝑄) (b) Weights on two loss functions

Figure 7: Accuracy scores of STCR (a) across various iteration numbers for optimization and (b)
when assigning different weights for two loss functions

15

Under review as a conference paper at ICLR 2024

Iteration numbers for optimization. We observed the classification performance of the proposed
method on 11 MTS datasets by varying optimization iterations, 𝑄. As shown in Figure 7(a), in
most datasets, the classification performance gradually increased until about 200 iterations, whereas
slightly decreasing or being stable after that.

Weights on two loss functions. We compared the classification performances of STCR on 11
MTS datasets when assigning different weights for instance-wise and timestamp-wise contrastive
losses, L𝐼𝑊 and L𝑇𝑊 . As shown in Figure 7(b), although assigning the same weights achieved the
best average accuracy, we show that our approach is not sensitive to the weights in most datasets.

D NOTATIONS

For a comprehensive understanding of our work, we provided a notation table, including the dimen-
sions of the variables, in Table 7.

Table 7: Notations

Notation Description Dimension

X Set of multivariate time-series instances -
𝑁 Number of instances -
𝑥𝑖 Multivariate time-series instance 𝐿𝑥 ×𝑉
𝐿𝑥 Sequence length of 𝑥𝑖 -
𝑉 Number of variables -
𝑥𝑖 Randomly extracted subseries 𝐿 𝑥̃𝑖 ×𝑉
𝐿 𝑥̃𝑖 Sequence length of 𝑥𝑖 -
𝑥′
𝑖

Another randomly extracted subseries 𝐿 𝑥̃′
𝑖
×𝑉

𝐿 𝑥̃′
𝑖

Sequence length of 𝑥′
𝑖

-
𝑓 Temporal encoder -
𝑧T
𝑖

Temporal features of 𝑥𝑖 𝐿𝑥 × 𝑑𝑧T
𝑧T
𝑖

Temporal features of 𝑥𝑖 𝐿 𝑥̃𝑖 × 𝑑𝑧T
𝑚𝑖 Binary mask ∈ {0, 1} of 𝑥𝑖 𝐿 𝑥̃𝑖
𝑔 Spatial encoder -
𝑧S Spatial features of 𝑥𝑖 𝐿𝑥 × 𝑑𝑧S
𝑧S
𝑖

Spatial features of 𝑥𝑖 𝐿 𝑥̃𝑖 × 𝑑𝑧S
𝜁
(𝑣,𝑢)
𝑖

Similarity between variables 𝑣 and 𝑢 of 𝑥𝑖 -
𝜌 Connection parameter -
𝐾 Number of connections -
G𝐾
𝑖

Graph with 𝐾 connections of 𝑥𝑖 -
𝐴𝐾
𝑖

Adjacency matrix of G𝐾
𝑖

𝑉 ×𝑉
𝐴̄𝐾
𝑖

Adjacency matrix with self-loop (𝐴̄𝐾
𝑖
= 𝐴𝐾

𝑖
+ 𝐼) 𝑉 ×𝑉

𝐷̄ Degree matrix of 𝐴̄𝐾
𝑖

𝑉 ×𝑉
𝐼 Identity diagonal matrix of 𝐴𝐾

𝑖
𝑉 ×𝑉

S𝑖 Spatial information of 𝑥𝑖 𝑉 × 𝑑𝑧S
ℎ Projection head -
𝑧𝑖 Spatio-temporal representation of 𝑥𝑖 𝐿𝑥 × 𝑑𝑧
𝑧𝑖 Spatio-temporal representation of 𝑥𝑖 𝐿 𝑥̃𝑖 × 𝑑𝑧
𝑧′
𝑖

Spatio-temporal representation of 𝑥′
𝑖

𝐿 𝑥̃′
𝑖
× 𝑑𝑧

L𝐼𝑊 Instance-wise contrastive loss -
L𝑇𝑊 Timestamp-wise contrastive loss -
L Overall loss -
𝐵 Batch size -
Φ Set of the overlapping timestamps of two subseries -

16

	Introduction
	Related Works
	Proposed Method
	Problem Statement
	Spatio-Temporal Contrastive Representation Learning

	Experimental Results
	Multivariate Time-Series Classification
	Multivariate Time-Series Forecasting
	Ablation Studies

	Conclusion
	Implementation Details
	Preprocessing
	Hyperparameters

	Experimental Settings
	Multivariate Time-Series Classification
	Multivariate Time-Series Forecasting

	Additional Experiments
	Complexity Analysis
	Graphical Analysis
	Sensitivity Analysis

	Notations

