
Random Grid Neural Processes for Parametric Partial Differential Equations

Arnaud Vadeboncoeur 1 Ieva Kazlauskaite 1 Yanni Papandreou 2 Fehmi Cirak 1 Mark Girolami 1 3

Ömer Deniz Akyildiz 2

Abstract

We introduce a new class of spatially stochastic
physics and data informed deep latent models for
parametric partial differential equations (PDEs)
which operate through scalable variational neural
processes. We achieve this by assigning probabil-
ity measures to the spatial domain, which allows
us to treat collocation grids probabilistically as
random variables to be marginalised out. Adapt-
ing this spatial statistics view, we solve forward
and inverse problems for parametric PDEs in a
way that leads to the construction of Gaussian
process models of solution fields. The implemen-
tation of these random grids poses a unique set
of challenges for inverse physics informed deep
learning frameworks and we propose a new archi-
tecture called Grid Invariant Convolutional Net-
works (GICNets) to overcome these challenges.
We further show how to incorporate noisy data
in a principled manner into our physics informed
model to improve predictions for problems where
data may be available but whose measurement
location does not coincide with any fixed mesh
or grid. The proposed method is tested on a non-
linear Poisson problem, Burgers equation, and
Navier-Stokes equations, and we provide exten-
sive numerical comparisons. We demonstrate sig-
nificant computational advantages over current
physics informed neural learning methods for
parametric PDEs while improving the predictive
capabilities and flexibility of these models.

1Department of Engineering, University of Cambridge, Trump-
ington St, Cambridge CB2 1PZ. 2Department of Mathematics, Im-
perial College London, Exhibition Rd, South Kensington, London
SW7 2AZ, United Kingdom. 3The Alan Turing Institute, British
Library, 96 Euston Rd, London NW1 2DB, United Kingdom..
Correspondence to: Arnaud Vadeboncoeur <av537@cam.ac.uk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
Partial differential equations (PDEs) are of central impor-
tance in natural sciences and engineering as models for
describing physical phenomena. Numerical solvers of these
equations have received immense attention over the decades
with the development of methods such as finite differences,
finite elements, spectral methods, to name a few (Quarteroni
& Valli, 2008). The main computational problems pertinent
to PDE modelling can be categorised into two main classes:
The task of obtaining a solution to a PDE for a given set
of parameters (forward problem) and the task of recovering
model parameters from solution fields or observations of
solution fields (inverse problem) (Belov, 2012; Stuart, 2010).
Solving each of these problems efficiently and accurately
remains an open problem in the field of scientific computing.
Both problems are of fundamental importance in scientific
and engineering applications and creating efficient and scal-
able methods for solving these problems could have large
ramifications for engineering practice. Recently, physics
informed machine learning (ML) (Raissi et al., 2019) offers
a novel perspective on solving these types of problems for
parametric PDEs and has been shown to be advantageous to
train large networks to learn parametric PDEs for ranges of
parameters (Lu et al., 2021a; Li et al., 2020). These models
can then be deployed to solve PDEs in real-time. The central
objective of this paper is to introduce accurate and uncer-
tainty aware physics informed probabilistic deep learning
methods that go beyond fixed grid approaches to parametric
PDEs, allowing for a synthesis with noisy data measured on
arbitrary grids for forward and inverse problems.

1.1. Contributions

In this paper, we propose a new framework for jointly learn-
ing probabilistic mappings of forward and inverse problems
of parametric PDEs using ideas from spatial statistics (Rip-
ley, 2005; Cressie & Moores, 2021). This new approach
connects neural Gaussian process models of PDE solution
fields with physical parameters through conditioning on ran-
dom domain partitions. More precisely, we propose (1) a
physics driven variational inference framework based on
random grids; (2) new kernels for the learning of Gaussian
random fields; (3) a new grid invariant architecture to enable
learning through random collocation. We demonstrate our

1

Random Grid Neural Processes for Parametric Partial Differential Equations

methods on three PDEs of increasing complexity. The first
is a 1D nonlinear Poisson PDE where we learn the map-
ping of a spectral representation of a diffusion field to the
solution field for a range of forcing conditions. The second
PDE is the spatio-temporal Burgers equation learned for
a range of diffusion and non-linearity coefficients and of
parameterized initial conditions. The third PDE is the in-
compressible Navier-Stokes lid-driven cavity flow problem
where we map density and viscosity coefficients to spatio-
temporal 3D solution fields. Furthermore, we demonstrate
how to correctly incorporate sparse, noisy observations of
sample solution fields to improve the predictive capabili-
ties of the model. We furthermore compare our proposed
method to existing methods such as Physics Driven Deep
Latent Variable Models (PDDLVM) (Vadeboncoeur et al.,
2022), modified DeepONets (Lu et al., 2021a), and Physics-
Informed Parametric Fourier Feature Networks (Wang et al.,
2021a) which we adapt to solve both forward and inverse
problems as described in (Zhao et al., 2022).

1.2. Related Work

In this section, we review relevant work in the literature. We
focus our review on machine learning methods for inference
in parametric PDEs.

Supervised and Semi-Supervised Operator Learning:
These methods for learning differential operators are based
either entirely or partially on noiseless PDE solution datasets
created with classical numerical methods such as FEM or
spectral methods. Such methods include Fourier Neural Op-
erators (Li et al., 2020; Fanaskov & Oseledets, 2022; Tripura
& Chakraborty, 2023). Other methods which use a combi-
nation of pre-computed solutions from classical solvers and
physics informed losses include Physics Informed Neural
Operators and DeepONets (Li et al., 2021; Lu et al., 2021a).
Although these methods have been shown to be effective
in certain scenarios, they fundamentally rely on classical
solvers in order to learn, and so are bound to their natural
limitations for learning new problems. The limitations in-
clude the need to recompute models from scratch for new
parameter instances and rely on CPU-driven operations that
do not parallelize easily. Furthermore, these methods gener-
ally focus on learning the operator from one function space
to another and are typically evaluated on fixed grids. This
is restrictive in cases where the domain geometry, bound-
ary, and initial conditions cannot be easily defined in a
function space form. Instead, we focus our work on PDEs
parameterized by sets of scalar coefficients. The parametric
representation overcomes many of the limitations outlined
in Lu et al. (2022); Tang et al. (2023).

Physics Informed Variational Autoencoders: Several
methods have been proposed to adapt the popular Vari-
ational Autoencoder (VAE) (Welling & Kingma, 2014)

framework to physics problems. Such methods include
physics-informed VAEs (Zhong & Meidani, 2023), physics
integrated VAEs (Takeishi & Kalousis, 2021), autoencod-
ing PDEs (Tait & Damoulas, 2020), and physics-informed
dynamical VAEs (Glyn-Davies et al., 2022). While these
methods rely on variational inference like our approach,
they aim at solving a fundamentally different problem as
they relate the observable space to a discovered physical
latent space. In contrast, we relate solution fields to physical
latent spaces and may use some data from the observation
space to enhance these mappings but we do not directly
map parameters to the observation space (but rather to the
solution space). Furthermore, we are interested in methods
that can perform inference in the absence of data and are
only supplemented/improved by data.

Neural Processes: Neural processes are a new class of deep
probabilistic regression tools (Garnelo et al., 2018b). Neu-
ral and conditional neural processes (Markou et al., 2022;
Garnelo et al., 2018a) output Gaussian uncertainty estimates
around predictions similar to Gaussian processes, but they
do not suffer from the same training scalability issues. These
have partially been adapted to physics problems in Yang
& Perdikaris (2019b;a), however, they are essentially data-
driven rather than physics driven methods.

Methods related to the probabilistic modelling of single
instances of solution fields are pertinent to the proposed
methodology, such as (Long et al., 2022; Tronarp et al.,
2022). Further methods such as (Lu et al., 2021b) compute
inverse problems by posing an optimisation problem. Other
works parameterize physics informed Gaussian processes
(Pang et al., 2019; Long et al., 2022; Zhang et al., 2022;
Chen et al., 2021). These methods are not adapted to para-
metric PDE scenarios as described in Bhattacharya et al.
(2021). We also note the work of Ardizzone et al. (2018)
which uses invertible networks to solve inverse problems
and the methods used for discovering dynamics, e.g., Raissi
& Karniadakis (2018); Brunton et al. (2016). However,
these methods have different objectives than solving classic
inverse problems and focus on hidden dynamics and discov-
ering coordinate transformations. Other works (Chiu et al.,
2022) have explored the use of sets of random collocation
points drawn for every residual evaluation, but this was stud-
ied for single solution field instances, not parametric PDEs,
and only for the forward problem.

2. Background
2.1. Physics Informed ML for Forward Problems

We formulate the nonlinear parametric PDE of interest as

Gwz (u)(x) = 0, x ∈ Ω, (1)
Bw(u)(x) = 0, x ∈ ∂Ω, (2)

2

Random Grid Neural Processes for Parametric Partial Differential Equations

where Ω ⊂ Rd, Gwz is a nonlinear differential operator, z
is a set of parameters for which we solve the inverse prob-
lem, w is an extra set of model parameters for which we
would like to learn the forward and inverse maps1. Simi-
larly, Bw is the boundary operator. For the forward problem,
consider the problem of learning a forward parametric emu-
lator fα : z,w, x→ u(x) where α denotes the parameters
of the emulator. This can be informally formulated as the
approximation problem of finding α⋆ s.t.

Gwz ◦ fα⋆(z,w)(x) ≈ 0, (3)

given the boundary conditions, following (1). This can
be formulated into an optimization problem or can inform
a probabilistic model (Kaltenbach et al., 2023; Gao et al.,
2022; Zhao et al., 2022). In the context of PDEs, the residual
is defined as r = Gwz (u)(x). When r(x) = 0 then u(x) is
the solution to the PDE (1).

Another important aspect to consider is the boundary condi-
tions. In general, there are many ways to enforce boundary
conditions (Raissi et al., 2019). In this work, we use the
hard enforcement method. We can enforce hard boundary
conditions for Dirichlet problems (Rao et al., 2021; Suku-
mar & Srivastava, 2022) with a linear transformation of the
solution field

u(x) = B(x) +D(x)N(x), (4)

where B(x) is an arbitrary function that satisfies the bound-
ary conditions and D(x) = 0 for x ∈ ∂Ω, and D(x) ̸= 0
for x ∈ Ω. Other formulations exist for mixed enforcement
of boundary conditions as well as for more complicated
boundary conditions.

2.2. Physics Informed ML for Inverse Problems

We now consider the problem of fitting a deterministic para-
metric inverse emulator denoted as hβ : u(x),w→ z where
we seek β⋆ s.t.

hβ⋆(fα⋆(z,w,X),w) ≈ z, (5)

for any subset X of the domain Ω. Similarly to the forward
case, this can be done using an optimization or a proba-
bilistic formulation (Vadeboncoeur et al., 2022). We note
that the inverse emulator approximation problem proposed
here relies on a trained forward emulator and is free from
classical numerical solvers. In what follows, we develop
a comprehensive probabilistic framework to tackle such
problems in a principled way.

3. Model Derivation
In this section, we derive the training objective for two
cases of our model: physics informed model in Sec. 3.1

1The inverse problem is defined here w.r.t. z, not w.

and physics and data informed model in Sec. 3.2. In Ap-
pendix A.3 we derive a model for incorporating observations
of nonlinear transformations of solution fields and noisy in-
put parameters e.g. measurements of drag coefficients.

3.1. Physics Informed Probabilistic Framework

Function Space Model: We begin the derivation of the
physics informed probabilistic model by introducing all
distributions of interest with a random field over our solution
field. Our hierarchical probabilistic model is defined as

r|u, z,w ∼ GP(Gwz (u)(x), kr(x, x
′;u, z,w)), (6)

z|u,w ∼ N (µβ(u),Σβ(u,w)), (7)

u ∼ GP(µu(x), ku(x, x
′)), (8)

w ∼ N (µw,Σw). (9)

In this model, Eq. (6) defines a probability distribution over
the residual and informs the model with physics. Eq. (7) is
the inverse emulator to be learned during training for the
inverse map. Finally, (8) and (9) define the priors over u and
w. Leveraging the GP view allows us to choose from several
possible choices of kernels for our different distributions.
Some of these include

kθ(x, x
′) = ϵθδx,x′ , (10)

kθ(x, x
′) = λθ(x)δx,x′ , (11)

kθ(x, x
′) = λθ(x)δx,x′ + ⟨Vθ(x), Vθ(x

′)⟩. (12)

Here θ denotes learnable functions or parameters. The
kernels in 10–(12) correspond to a fixed white noise process,
a heteroscedastic white noise process (diagonal kernel), and
a degenerate deep low-rank covariance matrix (also known
as the left Gram matrix (Rahman et al., 2022; Williams &
Rasmussen, 2006)), respectively. We elaborate on (12) in
Appendix B. These kernels are chosen for their favorable
scalability properties.

Function Space Variational Family: We next introduce
the variational family in function space (which will be dis-
cretized later). For this, we define

u|z,w ∼ GP(µα(x; z,w), kα(x, x
′; z,w)), (13)

z ∼ N (µz,Σz) (14)

where (13) is a flexible variational family parameterized by
a neural network to learn the forward emulator. Eq. (14)
define the prior in the variational family while the vari-
ational distribution over w is the same as the prior in Eq. (9).

Discretization through Conditioning: To obtain a
tractable algorithm, we condition all distributions on a set
of N (grid) points X ⊂ Ω in the domain of the PDE. We

3

Random Grid Neural Processes for Parametric Partial Differential Equations

achieve this by assigning a joint probability measure on
Ω⊗N which we denote as p(X). Sampling from this mea-
sure and conditioning on the sample effectively discretizes
the Gaussian processes. Given the sample, we can discretize
our distributions through conditioning on X as in Cressie
& Moores (2021) and convert distributions defined on the
function space into multivariate normal distributions (MVN)
(Rudner et al., 2021). More precisely, through conditioning
on X, we can convert the infinite dimensional model given
in (6)–(9) into a conditional finite-dimensional model where

p(r|u, z,w,X) = N (Gwz (u),Kr(X,X;u, z,w)), (15)
pβ(z|u,w,X) = N (µβ(u,X,w),Σβ(u,X,w)), (16)

p(u|X) = N (µu(X),Ku(X,X)) (17)

where u = u(X), and r ∈ RN is the discretized residual (a
vector). For the conditional residual (15) we choose a white
noise kernel (10) and the mean function is given by the PDE
evaluated at locations X. The conditional distribution for
z (16) has mean and covariance given as the output of a
neural network with learnable β parameters. We call this
network the “β-Net” and it relates the probability density of
the z parameter to the solution field u and the parameters
w given a partition of the domain. The distribution (17) is
chosen in practice to be uninformative so that the model
predictions are purely influenced by the PDE residual. The
prior on p(w) is the same as (9) since it is independent of
the grid. Finally, our joint model can be factorized as

p(r,u, z,w,X) = (18)
p(r|u, z,w,X)pβ(z|u,w,X)p(u|X)p(w)p(X).

From this joint model we are interested in the marginal
residual which can be obtained by integrating out all other
variables (including the grid) as

p(r) =

∫
p(r,u, z,w,X) dudzdw dX. (19)

We know that the PDE is solved if r = 0, hence our aim will
be to maximize the marginal probability p(r = 0). For this,
we discretize our variational approximation in (13)–(14) by
conditioning on the grid X. In addition, we can convert the
infinite dimensional variational approximation in (13) to a
finite dimensional one by conditioning on X as

qα(u|z,w,X) = N (µα(X; z,w),Kα(X,X; z,w)) (20)

where (20) is a conditional neural process with α learnable
weights that relates the probability density of the solution
field u to the two sets of parameters z and w. This neural
process is given by the α-Net which is the forward emulator.
In the experiments we alternate between a heteroskedastic
white noise kernel (11), and a low-rank kernel (12). Finally,
our joint variational approximation can be written as

q(u, z,w,X) = qα(u|z,w,X)q(z)p(w)p(X). (21)

We then set the virtual observable r = 0 (Rixner &
Koutsourelakis, 2021; Vadeboncoeur et al., 2022). Using
Jensen’s inequality we write out the evidence lower bound

log p(r = 0) ≥ F(α, β) (22)

=

∫
log

p(r = 0|u, z,w,X)pβ(z|u,w,X)p(u|X)

qα(u|z,w,X)q(z)

× qα(u|z,w,X)q(z)p(w)p(X) dudz dw dX.

The most important distinction between this objective and
all other methods known to us is the marginalization of the
spatio-temporal domain through conditioning on random
partitions of the domain. This objective can be computed as
an expectation of the form

F(α, β) = (23)

Eu,z,w,X

[
log

p(r = 0|u, z,w,X)pβ(z|u,w,X)p(u|X)

qα(u|z,w,X)q(z)

]
.

This expectation can be approximated with Monte Carlo
integration. Every Monte Carlo sample evaluation requires
a newly sampled set of collocation points akin to methods
of variational inference in function space (Burt et al., 2020;
Sun et al., 2018). In Alg. 1 we write out the procedure for
training a physics informed RGNP. A similar algorithm is
used for the data and physics case where we then add a
mini-batched data likelihood term in FN (α, β). The RGNP
update starts in the latent space and maps a sampled param-
eter into the solution field, from this proposed solution field
we compute a physics residual and possibly a data likeli-
hood, and then map this proposed solution field back to the
parameters space. Because of this fundamental difference
in the construction of the ELBO, our method can work in
the complete absence of solution field data. Furthermore,
our method generates solution fields of PDEs in function
space, i.e. they can be evaluated anywhere in the domain.

3.2. Physics and Data Informed Model Derivation

When developing physics emulators to be used in practice,
we may have noisy observation of real world physics be-
haviours. Data of this kind can be of great use when devel-
oping better calibrated and more accurate models (Zhong &
Meidani, 2023; Takeishi & Kalousis, 2021). In the current
state of the art there is a lack of methods that map param-
eters to solution fields adjusted with data in a statistically
principled manner. Many methods which do incorporate
data in a Bayesian manner then map parameters to the ob-
servation space, which may not be the desired output. In
this section we derive a model for direct observation of a
noisy solution field with deterministic inputs. The Bayesian
approach is to pose a model of the form

yD = G(z,w,X) + σne, e ∼ N (0, I), (24)

4

Random Grid Neural Processes for Parametric Partial Differential Equations

where yD is the data and σn is the observational noise, and
G is the mapping from parameters to solution field u. For
our method we pose this mapping G(z,w,X) to be our
stochastic forward model given the α-Net,

yi
D = µα(z

i
D,wi

D,Xi
D) (25)

+Kα(X
i
D,Xi

D; ziD,wi
D)

1
2 e2 + σne1

where e1, e2 ∼ N (0, I) and i indexes the observation set.
In our framework we then jointly learn the forward model
through the α-Net while adjusting the predictions to match
the observed noisy dataset taking into account the relevant
uncertainties. Our full joint model can then be written as

log p(r = 0,yD|zD,wD,XD) ≥ F(α, β) (26)

=

N∑
i

log p(yi
D|ziD,wi

D,Xi
D)

+ Eu,z,w,X

[
log

p(r|u, z,w,X)pβ(z|u,w,X)p(u|X)

qα(u|z,w,X)q(z)

]
.

The lower bound on the marginal likelihood of the zero
residual and the observed data requires the evaluation of
the entire dataset at every iteration. For computational effi-
ciency, we can replace the summation over the entire dataset
with a mini-batch approximation as

F(α, β) ≈ N

|M |
∑
i∈M

log p(yi
D|ziD,wi

D,Xi
D) (27)

+ Eu,z,w,X

[
log

p(r|u, z,w,X)pβ(z|u,w,X)p(u|X)

qα(u|z,w,X)q(z)

]
.

The first term of the ELBO can be efficiently evaluated
and the second term can be approximated using a finite
sample size through a Monte Carlo approximation of the
expectation.

3.3. Grid Invariant Inversion Networks

Central to this new framework is the use of random collo-
cation grids which are sampled every iteration. This poses
unique challenges for the inversion network. Convolutional
neural networks (CNNs) require information to be given on
a fixed uniform grid and are thus unsuitable for our task. A
natural solution for passing information originating on ran-
dom grids to a CNN would be to use a kernel interpolation
method such as the Nadaraya–Watson kernel estimator (Cai,
2001) to interpolate points at random locations to fixed input
locations. However, to capture information from different
length scales, a very fine projection grid is required. Such
grids are computationally expensive and scale asO((nm)d),
where m is the number of points on the projection grid. Bor-
rowing ideas from Li et al. (2020) and kernel feature space
methods (Scholkopf et al., 1999), we develop a scalable
alternative to fine interpolation grids. We first project the

Algorithm 1 Pseudocode for RGNP
Initialise: α0, β0, T (number of iterations), N (number
of Monte Carlo samples), and choose p(z), p(w), p(X).
for t = 1, . . . , T do

for i = 1, . . . , N do
Sample X(i) ∼ p(X)
Sample z(i) ∼ p(z)
Sample w(i) ∼ p(w)
Sample u(i) ∼ qαt−1

(u|z(i),w(i),X(i))
end for
Compute FN (α, β) using Monte-Carlo.
(αt, βt)← ADAM(αt−1, βt−1,FN (α, β))

end for

spatially dependent inputs u(x) ∈ Rds to a learned higher
dimensional space through a small fully connected neu-
ral network P (u(x), x) = v(x) where v(x) ∈ Rdv and
x ∈ Ω ⊂ Rd. We then project each dimension of v(x) at
random locations x onto its own fixed location coarse grid
x∗ through the Nadaraya-Watson estimator

Ik(v(x), x
∗) =

∑
i ϕk(x

∗, xi)v(xi)∑
i ϕk(x∗, xi)

, (28)

where each of the dv kernels has its own learnable length
scale initialized at several different orders of magnitude.
A visual representation of this can be seen in the Ap-
pendix, Fig. 5. Each coarse grid can then represent infor-
mation at different lengthscales and the complexity grows
as O(dv(nm′)d) where m′ is the new grid density of the
interpolation grid which can now be chosen to be arbi-
trarily coarse and in practice is chosen as coarse as a 10
points/dimension lattice. We can choose the kernel ϕk(·, ·)
to be any number of distance measuring functions with learn-
able parameters such as RBF, Matern, etc. We then define
the grid invariant convolutional network (GICNet) as

G(u,w, x) = Conv(·,w) ◦ I1:dv
(·, x∗) ◦ P (·, x) ◦ u(x)

where the projection layer P (u(x), x), the interpolation
layer I(v(x), x) along with the kernel ϕ(x∗, x) lengthscale
and the convolutional and fully connected layers are jointly
trained. Other architectures than a convolutional network
can be used for mapping the dv intermediary function repre-
sentations to the output PDE parameters. Architectures of in-
terest include Fourier Neural Operator layers (Li et al., 2020)
and Wavelet Neural Operator layers (Tripura & Chakraborty,
2023) as well as fully connected layers. Each of these may
bring certain information processing advantages for PDE
inversion networks to be explored in future work.

4. Experiments
In this section, we test our method on a series of PDEs and
compare our method to alternative approaches. We outline

5

Random Grid Neural Processes for Parametric Partial Differential Equations

the setup for the three parameterized PDEs used for compar-
isons, namely a 1D nonlinear Poisson problem, the Burgers
equation, and a non-stationary lid-driven cavity flow Navier-
Stokes problem. The chosen testing metrics are the mean
normalized squared error (see Appendix, (99)) averaged
over 1000 independent samples of z,w drawn from their
priors (100 samples in the Navier-Stokes examples) solved
using FEniCS (Logg et al., 2012). We set the ϵr value in the
residual kernel to a value of 10−2 other than for the Burgers
example as explained in Sec. 4.1.2.

4.1. The PDEs

In this section, we describe the PDEs used in the testing of
the method along with the relevant boundary conditions and
their parametrizations.

4.1.1. NONLINEAR POISSON 1D

The first testing setup is a nonlinear 1D Poisson problem.
The variable z which we want to learn in the inverse problem
are coefficients to a Chebyshev expansion describing the
diffusion field. The variable w over which we are marginal-
izing is a scalar representing a constant forcing over the
domain. We write out the PDE Gwz (u)(x) is given as

∂

∂x

(
k(u, x)

∂u(x)

∂x

)
− w = 0, (29)

k(u, x) = log

(
1 + exp

(
u(x)

nz∑
i=0

ziϕi(x)

))
+ 0.1.

for Ω = [−1, 1], where the Dirichlet boundary conditions
are x(−1) = 0, x(1) = 0. Furthermore, we enforce bound-
ary conditions in an exact manner with,

ū = B(X) +D(X)u, u ∼ qα(u|z,w,X) (30)

where B(x) captures the boundary conditions. The prior
distributions are p(zi) = U(−1, 1) and p(w) = U(1, 2).

4.1.2. BURGERS EQUATION

The second PDE used to test the method is the parametric
Burgers equation with 2 spatio-temporal dimensions (one
space, one time). Here the z parameters control the scaling
of the nonlinear and the diffusive term and the w scalar
modifies the parametric initial conditions. This allows us
to learn forward and inverse mappings for a continuum of
initial conditions of the given form. The PDE Gwz (u)(x) is
defined as

∂u(x, t)

∂t
+ z1u(x, t)

∂u(x, t)

∂x
− z0

∂2u(x, t)

∂x2
= 0, (31)

and the boundary and initial conditions are

u(−1, t) = u(1, t) = 0, (32)
u(x, 0) = sin(2πwx) sin(πx), (33)

for a set domain given as Ω[−1, 1], 0 ≤ t ≤ 1 (Duf-
fin, 2022). The priors are: p(z0) = U(10−2, 10−1),
p(z1) = U(0.5, 1), p(w) = U(0.5, 2). As in the nonlin-
ear Poisson example we enforce boundary conditions in
an exact manner with (30). In this example, we make the
standard deviation of the residual kernel value (ϵθ in (10))
a learnable parameter which drastically increases stability
while maintaining accuracy. It converges to a value in the
range of 10−1.

4.1.3. NAVIER-STOKES EQUATIONS

The final PDE used to test the method is the incompressible
Navier-Stokes non-stationary lid-driven cavity flow. This
is a setup for studying fundamental aspects of confined
fluid-flows (Botella & Peyret, 1998). The solution field is
a 3-dim. vector field defined as the velocity and pressure
[u, p]⊤, where u = [u1, u2]

⊤ are the horizontal and ver-
tical velocities. We do not define a w variable for these
experiments. The equations for Gwz (u)(x) describing the
dynamics are given by

z1
∂u

∂t
+ z1u · ∇u+∇p− z2∇2u = 0, (34)

∇ · u = 0 (35)

over a square domain, Ω(x, y, t) between 0 and 1. We define
a non-stationary boundary condition on the top edge of the
square domain as

u1(x, 1, t) = (1− (2x− 1)6)t, (36)

and all other boundary conditions of u1, u2 are zero. The α
and β distributions are then defined as

u1, u2, p|z ∼ GP(µα(x; z), kα(x, x
′; z)), (37)

z|u1, u2, p ∼ N (µβ(u1, u2, p),Σβ(u1, u2, p)). (38)

The z1 variable corresponds to the fluid density and the
z2 parameter corresponds to the dynamic viscosity. Here
p(z1) = U(0.8, 1) and p(z2) = U(0.1, 1). For this exam-
ple, we enforce exact boundary conditions with (30) but
enforce a soft divergence as an extra residual appended in
the residual vector (scaled 10×).

4.2. Comparisons of Physics Informed Model

In this section we describe the physics informed compar-
isons for the nonlinear Poisson and Burgers equation. We
compare our diagonal and low-rank covariance methods
(RGNP-D, RGNP-LR) to a fixed grid PDDLVM (Vadebon-
coeur et al., 2022), a Fourier Feature Net (FFNet) forward
emulator (Wang et al., 2021a) with a GICNet inversion net-
work on a fixed grid, and a physics informed DeepONet

2We used a reduced batched size of 5 collocation sets because
of memory constraints. The same number of gradient updates were
used hence the similar run-times for the 2.5k and 10k examples.

6

Random Grid Neural Processes for Parametric Partial Differential Equations

Table 1. Comparisons of Physics Informed Models

METHOD N. COLL MNSE u MNSE z u IN 2σ z IN 2σ TIME

NL POISSON 1D

RGNP-D 30 9.21 · 10−5 ±8.66 · 10−4 1.48 · 10−2 ±2.41 · 10−2 95.6% 99.7% 6.31
RGNP-LR α 2, β 1 30 2.63 · 10−4 ±1.88 · 10−3 6.72 · 10−2 ±5.96 · 10−2 94.7% 68.1% 6.19
PDDLVM 30 1.69 · 10−4 ±1.36 · 10−3 8.10 · 10−3 ±1.36 · 10−3 92.3% 95.2% 4.83
FFNET & GICNET 30 1.90 · 10−4 ±2.04 · 10−3 6.75 · 10−1 ±1.57 · 10−0 – – 5.06
DEEPONETS & K-I. 30 6.62 · 10−4 ±3.41 · 10−3 5.58 · 10−2 ±4.62 · 10−2 – – 3.31
DEEPONETS & K-I. 100 6.62 · 10−4 ±3.95 · 10−3 3.66 · 10−2 ±2.48 · 10−2 – – 5.36
DEEPONETS & K-I. 300 7.69 · 10−4 ±3.90 · 10−3 2.58 · 10−2 ±2.58 · 10−2 – – 11.34

BURGERS

RGNP-D 225 1.63 · 10−4 ±1.58 · 10−4 9.05 · 10−3 ±1.73 · 10−2 99.9% 100.0% 73.56
RGNP-LR α 2, β 0 225 9.51 · 10−5 ±9.73 · 10−5 8.04 · 10−3 ±1.66 · 10−2 99.9% 100.0% 73.45
PDDLVM 225 2.70 · 10−1 ±2.12 · 10−1 5.32 · 10−2 ±6.49 · 10−2 97.7% 63.0% 59.02
FFNET & GICNET 225 7.11 · 10−1 ±1.70 · 10−1 1.19 · 10−1 ±1.75 · 10−1 – – 66.45
DEEPONETS & K-I. 225 9.44 · 10−1 ±4.68 · 10−1 8.66 · 10−2 ±1.45 · 10−1 – – 36.00
DEEPONETS & K-I. 900 4.16 · 10−1 ±2.07 · 10−1 9.79 · 10−1 ±7.15 · 10−1 – – 105.61
DEEPONETS & K-I. 2.5K 9.65 · 10−2 ±1.05 · 10−1 5.04 · 10−1 ±2.32 · 10−1 – – 281.14
DEEPONETS & K-I.2 10K 3.71 · 10−3 ±8.22 · 10−3 2.01 · 10−2 ±5.35 · 10−2 – – 284.90

Table 2. Comparisons of Physics and Noisy Data Informed Models

METHOD N. COLL MNSE u MNSE z u IN 2σ z IN 2σ TIME

NL POISSON 1D

RGNP-D 30 1.59 · 10−5 ±5.26 · 10−5 5.45 · 10−3 ±6.25 · 10−3 97.2% 99.7% 6.21
RGNP-LR α 2, β 1 30 3.56 · 10−5 ±2.48 · 10−4 3.43 · 10−2 ±7.40 · 10−2 98.6% 62.9% 6.47
PDDLVM 30 1.67 · 10−5 ±3.60 · 10−5 7.26 · 10−3 ±7.23 · 10−3 95.3% 97.6% 4.23
FFNET & GICNET 30 2.85 · 10−4 ±8.76 · 10−4 4.36 · 10−1 ±5.76 · 10−1 – – 5.59
DEEPONETS & K-I. 30 1.55 · 10−4 ±2.77 · 10−4 9.70 · 10−2 ±8.99 · 10−2 – – 3.94
DEEPONETS & K-I. 100 2.17 · 10−4 ±2.86 · 10−4 1.29 · 10−1 ±1.52 · 10−1 – – 5.67
DEEPONETS & K-I. 300 3.27 · 10−4 ±4.44 · 10−4 6.97 · 10−2 ±4.56 · 10−1 – – 11.70

(Wang et al., 2021b) with a test-time kernel interpolation
(K-I) layer with a convolutional neural net on a fixed grid.
Methods other than ours rely on creating a dataset of 1k
input pairs of z,w variables for the Poisson problem, and
10k samples for the Burgers example. Table 1 summarizes
the results for all methods for the two PDE setups. We
report the MNSE as in (99) and its standard deviation over
the 1000 testing samples. We also report the percentage
of predictions within 2σ of the ground truth solution and
the total training times in minutes. Test time inference is
in the order of 10−2 − 10−3 seconds. The column labeled
“N. COLL” denotes the number of collocation points used at
every residual computation step. We use a batch size of 50
samples for the Poisson problem, and a batch size of 25 for
the Burgers equation (this is reduced to a batch size of 5 for
the 10k collocation DeepONet & kernel-interpolation case
because of excessive memory consumption). We train the
Poisson problem for 20k gradient updates and we train the
Burgers setup for 80k gradient update steps. All learning is

done using the Adam optimizer (Kingma et al., 2015) with a
decaying learning rate. In Fig. 1 we show an example output
from the α-Net for the solution field of the nonlinear Poisson
1D problem. In Fig. 2 we show example outputs for a solu-
tion field for the diagonal model from the α-Net. The main
reason for the gain in performance of the probabilistic model
is due to the stochastic treatment of the collocation points.
By treating the collection of collocation points as random
variables to be marginalized through Monte Carlo integra-
tion we obtain domain averaged residuals which proves to
be advantageous when learning parametric physics.

4.3. Comparison of Physics & Data Informed Model

In this section, we show the results from the physics and
data informed model compared to the nonlinear Poisson 1D
problem. The setups are similar to the previous section but
now the loss for the proposed model is given by (27) and
we incorporate noisy observation of solution fields in the
inference. We use 1k noisy sample solutions measured at

7

Random Grid Neural Processes for Parametric Partial Differential Equations

Table 3. Results for Physics informed models applied to Navier-Stokes lid-driven cavity flow

METHOD N. COLL MNSE u1 MNSE z u1 IN 2σ z IN 2σ TIME
MNSE u2 u2 IN 2σ

RGNP-D 512 2.37× 10−2 ±1.16× 10−2 6.12× 10−3 ±6.00× 10−3 38.3% 66.5% 297.6
3.59× 10−2 ±1.55× 10−2 49.8%

RGNP-LR α 2, β 0 512 2.39× 10−2 ±1.16× 10−2 4.07× 10−3 ±3.98× 10−3 50.4% 66.5% 306.2
3.62× 10−2 ±1.54× 10−2 58.0%

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

u
(x

)
±

2σ

Figure 1. Sample results from the Nonlinear Poisson 1D setup
for the diagonal model given by the qα(u|z,w,X) distribution.
Here, the solid line is the FE solution, the dashed line is the mean
estimate, and the scatter points are the random samples; the shaded
area is the 2σ uncertainty.

60 locations with a noise standard deviation σn = 0.05. In
Fig 6 we show 5 samples of observed solution fields. The
algorithm only sees the scatter points, not the solid ground-
truth line. The losses for the other methods against which
we compare are modified to include a data-fit term as in
Wang et al. (2021b) to have a trade-off between fitting the
differential operator and the observations. When incorpo-
rating data from noisy observations of solution fields, it is
of crucial importance to have an inference scheme capable
of correctly characterizing the uncertainty inherent in the
observations (Kennedy & O’Hagan, 2001) to maximise the
accuracy of the inference. A deterministic formulation is
not able to take account of the noise in the observations and
thus produces a single estimate of the parameters that might
over-fit to the noise in the observations.

4.4. Navier-Stokes Lid Driven Cavity Flow

We apply our method to a challenging parametric Navier-
Stokes problem. We define the parametric differential opera-
tor and boundary conditions for a time-dependent lid-driven
cavity flow example using the incompressible Navier-Stokes

(a) FE solution (b) mean-α

(c) sample-α (d) stddev-α

Figure 2. Sample result from the α-Net with a diagonal kernel for
the Burgers equation. We show the FE solution, the mean estimate,
the standard deviation field, and a sample from qα(u|z,w,X).

equations. Here the parameters correspond to the dynamic
viscosity and the fluid density. In Table 1 we compute these
quantities for 100 independent samples of z and w drawn
from the priors. All models are run for 100k gradient update
steps. We note that obtaining reliable and accurate reference
solutions to Navier-Stokes problems is very challenging.

5. Conclusion
In this paper, we propose a new framework of random col-
location neural processes for solving forward and inverse
parametric physics problems. Our method leverages spa-
tial statistics, variational inference, neural processes, and
a proposed grid-invariant convolutional network to solve
forward and inverse problems in a probabilistically coherent
manner. Our method is physics informed at training time
and can incorporate noisy observations of solutions fields
from arbitrary grids in a statistically principled way. We test
our method on a nonlinear Poisson problem, the Burgers
equation, and the incompressible Navier-Stokes equations.

8

Random Grid Neural Processes for Parametric Partial Differential Equations

(a) Streamlines FE (b) Streamlines α-Net diag.

(c) u1 FE (d) u1 α-Net diag.

(e) u2 FEM (f) u2 α-Net diag.

Figure 3. A comparison of the mean solution fields of the α-Net
with a diagonal covariance and the FE solution.

We further compare our method with a series of alternative
physics and data-informed methods. We find our method
is highly competitive with other approaches in terms of ac-
curacy, uncertainty quantification, and compute time. This
strongly supports the probabilistic treatment of collocation
grids for the physics-informed solution of parametric PDEs.

The uncertainty captured by the proposed methodology re-
flects the confidence of the model with respect to the given
solution fields and parameters. When using these models in
practice, the application expert can then use this uncertainty
to gauge the reliability of the predictions from the model,
an important feature due to the black-box nature of deep
learning models. In essence, a practitioner has information
helping them assess their confidence in the accuracy of the
given solution fields and whether more training is required
or if they should use a different solution method outright.
Furthermore, the inverse problems are often ill-posed and a
range of parameters may yield the observed solution fields; a
uncertainty quantification framework can capture this while
a deterministic approach cannot.

The performance of our approach on the Navier-Stokes ex-

amples points to some limitations in using uniform distribu-
tions over domains for sampling the collocation points. The
distributions p(X) can be adapted to sample more points
close to boundaries to better capture complex boundary
effects; this can be implemented within our framework. Di-
vergence enforcing (Richter-Powell et al., 2022) methods
could potentially also be used to accelerate convergence.
Chebyshev network architectures could also be investigated
(Tang et al., 2023) as an alternative architecture for faster
and more regularized residual computation. Further pos-
sible extensions include the incorporation of CAN-PINN
collocation methods (Chiu et al., 2022). The GP formula-
tion of our method implies that other GP methods such as
deep kernels (Wilson et al., 2016) and sparse GPs could
be leveraged (Snelson & Ghahramani, 2005; Titsias, 2009).
We could also make use of variational weak forms in the
residual (Kharazmi et al., 2019) to lower the differentiability
order of the PDEs and potentially increase learning stability.
The generality of the proposed framework implies that it
can be readily extended to incorporate many of the newest
advances in physics informed machine learning.

Acknowledgements
A. V. was supported by the Baxter & Alma Ricard
Foundation Scholarship. I. K. was funded by a Biometrika
Fellowship awarded by the Biometrika Trust. Y. P. was
supported by a Roth Scholarship funded by the Department
of Mathematics, Imperial College London. F. C. was
supported by Wave 1 of The UKRI Strategic Priorities
Fund under the EPSRC Grant EP/T001569/1, particularly
the “Digital twins for complex engineering systems”
theme within that grant, and The Alan Turing Institute.
M. G was supported by a Royal Academy of Engineering
Research Chair, and EPSRC grants EP/W005816/1,
EP/V056441/1, EP/V056522/1, EP/T000414/1,
EP/R018413/2, EP/R034710/1, EP/R004889/1. This
work has been supported by The Alan Turing Institute
through the Theory and Methods Challenge Fortnights
event “Accelerating generative models and nonconvex
optimisation”, which took place on 6-10 June 2022 and 5-9
Sep 2022 at The Alan Turing Institute headquarters. We
thank the reviewers for their insightful comments.

References
Ardizzone, L., Kruse, J., Wirkert, S., Rahner, D., Pellegrini,

E. W., Klessen, R. S., Maier-Hein, L., Rother, C., and
Köthe, U. Analyzing inverse problems with invertible
neural networks. arXiv preprint arXiv:1808.04730, 2018.

Belov, Y. Y. Inverse problems for partial differential equa-
tions. In Inverse Problems for Partial Differential Equa-
tions. De Gruyter, 2012.

9

Random Grid Neural Processes for Parametric Partial Differential Equations

Bhattacharya, K., Hosseini, B., Kovachki, N. B., and Stu-
art, A. M. Model Reduction And Neural Networks For
Parametric PDEs. The SMAI journal of computational
mathematics, 7, 2021. doi: 10.5802/smai-jcm.74.

Botella, O. and Peyret, R. Benchmark spectral results on
the lid-driven cavity flow. Computers & Fluids, 27(4):
421–433, 1998.

Brunton, S. L., Proctor, J. L., and Kutz, J. N. Discovering
governing equations from data by sparse identification of
nonlinear dynamical systems. Proceedings of the national
academy of sciences, 113(15):3932–3937, 2016.

Burt, D. R., Ober, S. W., Garriga-Alonso, A., and van der
Wilk, M. Understanding variational inference in function-
space. In Third Symposium on Advances in Approximate
Bayesian Inference, 2020.

Cai, Z. Weighted nadaraya–watson regression estimation.
Statistics & probability letters, 51(3):307–318, 2001.

Chen, Y., Hosseini, B., Owhadi, H., and Stuart, A. M. Solv-
ing and learning nonlinear PDEs with Gaussian processes.
Journal of Computational Physics, 447:110668, 2021.

Chiu, P.-H., Wong, J. C., Ooi, C., Dao, M. H., and Ong,
Y.-S. Can-pinn: A fast physics-informed neural network
based on coupled-automatic–numerical differentiation
method. Computer Methods in Applied Mechanics and
Engineering, 395:114909, 2022.

Cressie, N. and Moores, M. T. Spatial statistics. arXiv
preprint arXiv:2105.07216, 2021.

Dehaene, D. and Brossard, R. Re-parameterizing VAEs for
stability. arXiv preprint arXiv:2106.13739, 2021.

Ding, J. and Zhou, A. Eigenvalues of rank-one updated
matrices with some applications. Applied Mathematics
Letters, 20(12):1223–1226, 2007.

Duffin, C. Statistical finite element methods for nonlinear
PDEs. 2022.

Fanaskov, V. and Oseledets, I. Spectral neural operators.
arXiv preprint arXiv:2205.10573, 2022.

Gao, H., Zahr, M. J., and Wang, J.-X. Physics-informed
graph neural Galerkin networks: A unified framework
for solving PDE-governed forward and inverse problems.
Computer Methods in Applied Mechanics and Engineer-
ing, 390:114502, 2022.

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T.,
Saxton, D., Shanahan, M., Teh, Y. W., Rezende, D., and
Eslami, S. A. Conditional neural processes. In Interna-
tional Conference on Machine Learning, pp. 1704–1713.
PMLR, 2018a.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S., and Teh, Y. W. Neural pro-
cesses. arXiv preprint arXiv:1807.01622, 2018b.

Glyn-Davies, A., Duffin, C., Akyildiz, Ö. D., and Giro-
lami, M. Φ-DVAE: Learning Physically Interpretable
Representations with Nonlinear Filtering. arXiv preprint
arXiv:2209.15609, 2022.

Kaltenbach, S., Perdikaris, P., and Koutsourelakis, P.-S.
Semi-supervised invertible neural operators for bayesian
inverse problems. Computational Mechanics, pp. 1–20,
2023.

Kennedy, M. C. and O’Hagan, A. Bayesian calibration of
computer models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 63(3):425–464, 2001.

Kharazmi, E., Zhang, Z., and Karniadakis, G. E. Variational
physics-informed neural networks for solving partial dif-
ferential equations. arXiv preprint arXiv:1912.00873,
2019.

Kingma, D. P., Ba, J., Bengio, Y., and LeCun, Y. 3rd inter-
national conference on learning representations. ICLR,
San Diego, 2015.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020.

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu,
B., Azizzadenesheli, K., and Anandkumar, A. Physics-
informed neural operator for learning partial differential
equations. arXiv preprint arXiv:2111.03794, 2021.

Logg, A., Mardal, K.-A., and Wells, G. Automated solution
of differential equations by the finite element method: The
FEniCS book, volume 84. Springer Science & Business
Media, 2012.

Long, D., Wang, Z., Krishnapriyan, A., Kirby, R., Zhe, S.,
and Mahoney, M. AutoIP: A united framework to inte-
grate physics into Gaussian processes. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S. (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 14210–14222. PMLR,
17–23 Jul 2022.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via deeponet based on the
universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218–229, 2021a.

Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., and
Johnson, S. G. Physics-informed neural networks with

10

Random Grid Neural Processes for Parametric Partial Differential Equations

hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, 2021b.

Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang,
Z., and Karniadakis, G. E. A comprehensive and fair
comparison of two neural operators (with practical exten-
sions) based on fair data. Computer Methods in Applied
Mechanics and Engineering, 393:114778, 2022.

Markou, S., Requeima, J., Bruinsma, W., Vaughan, A., and
Turner, R. E. Practical conditional neural process via
tractable dependent predictions. In International Confer-
ence on Learning Representations, 2022.

Pang, G., Yang, L., and Karniadakis, G. E. Neural-net-
induced Gaussian process regression for function approx-
imation and PDE solution. Journal of Computational
Physics, 384:270–288, 2019.

Petersen, K. B., Pedersen, M. S., et al. The matrix cookbook.
Technical University of Denmark, 7(15):510, 2008.

Quarteroni, A. and Valli, A. Numerical approximation of
partial differential equations. Springer, 2008.

Rahman, S., Johnson, V. E., and Rao, S. S. Using the
left gram matrix to cluster high dimensional data. arXiv
preprint arXiv:2202.08236, 2022.

Raissi, M. and Karniadakis, G. E. Hidden physics models:
Machine learning of nonlinear partial differential equa-
tions. Journal of Computational Physics, 357:125–141,
2018.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for
activation functions. arXiv preprint arXiv:1710.05941,
2017.

Rao, C., Sun, H., and Liu, Y. Physics-informed deep
learning for computational elastodynamics without la-
beled data. Journal of Engineering Mechanics, 147(8):
04021043, 2021.

Richter-Powell, J., Lipman, Y., and Chen, R. T. Neural
conservation laws: A divergence-free perspective. In Ad-
vances in Neural Information Processing Systems, 2022.

Ripley, B. D. Spatial statistics. John Wiley & Sons, 2005.

Rixner, M. and Koutsourelakis, P.-S. A probabilistic genera-
tive model for semi-supervised training of coarse-grained
surrogates and enforcing physical constraints through vir-
tual observables. Journal of Computational Physics, 434:
110218, 2021.

Rudner, T. G., Chen, Z., Teh, Y. W., and Gal, Y. Tractable
function-space variational inference in bayesian neural
networks. In Advances in Neural Information Processing
Systems, 2021.

Scholkopf, B., Mika, S., Burges, C. J., Knirsch, P., Muller,
K.-R., Ratsch, G., and Smola, A. J. Input space versus
feature space in kernel-based methods. IEEE transactions
on neural networks, 10(5):1000–1017, 1999.

Snelson, E. and Ghahramani, Z. Sparse Gaussian processes
using pseudo-inputs. Advances in neural information
processing systems, 18, 2005.

Stuart, A. M. Inverse problems: A Bayesian perspec-
tive. Acta Numerica, 19:451–559, 2010. doi: 10.1017/
S0962492910000061.

Sukumar, N. and Srivastava, A. Exact imposition of
boundary conditions with distance functions in physics-
informed deep neural networks. Computer Methods in
Applied Mechanics and Engineering, 389:114333, 2022.

Sun, S., Zhang, G., Shi, J., and Grosse, R. Functional
variational bayesian neural networks. In International
Conference on Learning Representations, 2018.

Tait, D. J. and Damoulas, T. Variational autoencoding of
PDE inverse problems. arXiv preprint arXiv:2006.15641,
2020.

Takeishi, N. and Kalousis, A. Physics-integrated variational
autoencoders for robust and interpretable generative mod-
eling. Advances in Neural Information Processing Sys-
tems, 34:14809–14821, 2021.

Tang, S., Feng, X., Wu, W., and Xu, H. Physics-informed
neural networks combined with polynomial interpolation
to solve nonlinear partial differential equations. Comput-
ers & Mathematics with Applications, 132:48–62, 2023.

Titsias, M. Variational learning of inducing variables in
sparse Gaussian processes. In Artificial intelligence and
statistics, pp. 567–574. PMLR, 2009.

Tripura, T. and Chakraborty, S. Wavelet neural operator for
solving parametric partial differential equations in com-
putational mechanics problems. Computer Methods in
Applied Mechanics and Engineering, 404:115783, 2023.

Tronarp, F., Bosch, N., and Hennig, P. Fenrir: Physics-
enhanced regression for initial value problems. In Chaud-
huri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G.,
and Sabato, S. (eds.), Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 21776–
21794. PMLR, 17–23 Jul 2022.

11

Random Grid Neural Processes for Parametric Partial Differential Equations

Vadeboncoeur, A., Akyildiz, Ö. D., Kazlauskaite, I., Giro-
lami, M., and Cirak, F. Deep probabilistic models for
forward and inverse problems in parametric PDEs. arXiv
preprint arXiv:2208.04856, 2022.

Wang, S., Wang, H., and Perdikaris, P. On the eigenvec-
tor bias of fourier feature networks: From regression to
solving multi-scale PDEs with physics-informed neural
networks. Computer Methods in Applied Mechanics and
Engineering, 384:113938, 2021a.

Wang, S., Wang, H., and Perdikaris, P. Learning the solution
operator of parametric partial differential equations with
physics-informed DeepONets. Science advances, 7(40):
eabi8605, 2021b.

Welling, M. and Kingma, D. P. Auto-encoding variational
bayes. In ICLR, 2014.

Williams, C. K. and Rasmussen, C. E. Gaussian processes
for machine learning, volume 2. MIT press Cambridge,
MA, 2006.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P.
Deep kernel learning. In Artificial intelligence and statis-
tics, pp. 370–378. PMLR, 2016.

Yang, Y. and Perdikaris, P. Adversarial uncertainty quantifi-
cation in physics-informed neural networks. Journal of
Computational Physics, 394:136–152, 2019a.

Yang, Y. and Perdikaris, P. Conditional deep surrogate mod-
els for stochastic, high-dimensional, and multi-fidelity
systems. Computational Mechanics, 64(2):417–434,
2019b.

Zhang, J., Zhang, S., and Lin, G. PAGP: A physics-assisted
Gaussian process framework with active learning for for-
ward and inverse problems of partial differential equa-
tions. arXiv preprint arXiv:2204.02583, 2022.

Zhao, Q., Lindell, D. B., and Wetzstein, G. Learning to solve
PDE-constrained inverse problems with graph networks.
In ICML 2nd AI for Science Workshop, 2022.

Zhong, W. and Meidani, H. PI-VAE: Physics-informed vari-
ational auto-encoder for stochastic differential equations.
Computer Methods in Applied Mechanics and Engineer-
ing, 403:115664, 2023. ISSN 0045-7825.

12

Random Grid Neural Processes for Parametric Partial Differential Equations

A. Physics & Data Models
In this section, we write out the full derivation for the physics and data informed models. We include an extra derivation for a
model where we observe a nonlinear transformation of the solution field and noisy parameter observations. This results in an
additional lower bound. We first derive the model for maximizing the marginal likelihood of the residual and observational
data. We then derive the tractable model shown in the main paper and the model for nonlinear solution field observations.

A.1. General Physics & Data Informed Model

We begin by presenting the overall framework for maximizing the marginal likelihood of the residual and the data. We
outline the observational model in the subsequent subsections as this depends on the nature of the data we are dealing with.
Firstly, as shown in the paper for the physics informed model we write out a joint distribution over all variables of interest to
maximize a marginal likelihood. The new marginal likelihood is for the residual and the data observation conditioned on the
dataset inputs for these observations. We factorize the model in a similar fashion as the physics informed model including a
data likelihood term. For brevity, we begin with the already discretized distributions. We have

p(r,yD,u, z,w,X|zD,wD,XD) = p(r|u, z,w)p(yD|zD,wD,XD)pβ(z|u,w,X)p(u|X)p(w)p(X). (39)

We then write out the variational approximation to the joint over the latent variables as

q(u, z,w,X) = qα(u|z,w,X)q(z)p(w)p(X). (40)

Here yD, zD,wD,XD denotes the observations of the solution field, the associated physical parameter, the extra model
parameter, and the observation locations of the yD data respectively. We can then write out the evidence lower-bound on the
marginal likelihood using Jensen’s inequality

log p(r = 0,yD|zD,wD,XD) ≥ F(α, β) (41)

F(α, β) =
∫

log
p(r,yD,u, z,w,X|zD,wD,XD)

q(u, z,w,X)
q(u, z,w,X) dudzdw dX. (42)

Rewriting the integration for an expectation we obtain

F(α, β) = Eu,z,w,X [log p(r,yD,u, z,w,X|zD,wD,XD)− log q(u, z,w,X)] . (43)

We then factorize out the likelihood term from the expectation as this term does not depend on the integration variables,

F(α, β) = log p(yD|zD,wD,XD) + Eu,z,w,X [log p(r,u, z,w,X)− log q(u, z,w,X)] . (44)

We note that the form of the likelihood term depends on the nature of the observation model.

A.2. Physics and Noisy Data Informed Model

We now derive the full ELBO for an observation model where we observe noisy solution fields at point locations. We pose
our observation model as

yi
D = G(ziD,wi

D,Xi
D) + σne1. (45)

In our case, we learn the observation operator G(·) is qα(u|ziD,wi
D,Xi

D) which yields a mean and a covariance. We can
write this out as the resulting observation model explicitly as

yi
D = µα(z

i
D,wi

D,Xi
D) +Kα(X

i
D,Xi

D; ziD,wi
D)

1
2 e2 + σne1, (46)

where e1, e2 ∼ N (0, I). This corresponds to a product of normal distributions of the form

p(yD|zD,wD,XD) =

N∏
i=0

N (yi
D;µα(X

i, ziD,wi
D), Σ̄α(X

i, ziD,wi
D)), (47)

13

Random Grid Neural Processes for Parametric Partial Differential Equations

with a new covariance that takes into account the iid Gaussian noise along with the covariance coming from the α-distribution,

Σ̄α(X, z,w) = Kα(X,X; z,w) + σ2
nI. (48)

We will then approximate the likelihood function over the entire dataset with a mini-batch version which we write out as

log p(yD|zD,wD,XD) ≈ N

|M |
∑
i∈M

logN (yi
D;µα(X

i, ziD,wi
D), Σ̄α(X

i, ziD,wi
D)). (49)

Bringing all things together from Sec. A.1 we obtain the mini-batched ELBO

log p(r,yD|zD,wD,XD) ≥ F(α, β) (50)

=

N∑
i

log p(yi
D|ziD,wi

D,Xi
D) + Eu,z,w,X

[
log

p(r|u, z,w,X)pβ(z|u,w,X)p(u|X)

qα(u|z,w,X)q(z)

]
(51)

≈ N

|M |
∑
i∈M

log p(yi
D|ziD,wi

D,Xi
D) + Eu,z,w,X

[
log

p(r|u, z,w,X)pβ(z|u,w,X)p(u|X)

qα(u|z,w,X)q(z)

]
. (52)

This objective is a lower-bound on the marginal likelihood of the observational data and the physics residual. This model
relies on direct noisy observations of the solution field of interest along with knowing (or deterministically estimating) the
generating parameters of the PDE yielding the observations.

A.3. Physics and Indirect Noisy Observations and Noisy Parameters Informed Model

In this section we derive a model that is not included in the main paper that deals with indirect observations of the solution
field and noisy measurements of the source parameters of the PDE. In this case, we deal with a general setting where we
indirectly observe the solution field through some other known nonlinear mapping. One of the more salient examples of
such a scenario is the noisy measurement of drag coefficients given from a fluid flow. Here the PDE describes the fluid
velocity, and from a velocity field, we can compute the drag coefficient. Drag coefficients can also be easier to measure than
direct solution fields.

For such a model where the parameters are also noisily measured (or estimated probabilistically through a Bayesian inverse
problem), we write out the full observation model as

yi
D = g

(
G(ziD,wi

D,Xi
D)
)
+ eyi

D
, eyi

D
∼ N (0, ϵ2yi

D
I), (53)

ziD = z̃+ ezi , ezi ∼ N (0, ϵ2ziI), (54)

wi
D = w̃ + ewi , ewi ∼ N (0, ϵ2wiI), (55)

Xi
D = X̃+ eXi , eXi ∼ N (0, ϵ2XiI). (56)

where G(·) is qα(u|z̃, w̃, X̃). This yields a collection of Gaussian distributions which we write out as

p(yi
D|ũ) = N (yi

D|g(ũ), ϵ2yi
D
I), (57)

p(z̃|ziD) = N (z̃|ziD, ϵ2zi
D
I), (58)

p(w̃|wi
D) = N (w̃|ziD, ϵ2wi

D
I), (59)

p(X̃|Xi
D) = N (X̃|Xi

D, ϵ2Xi
D
I). (60)

The ũ, z̃, w̃, X̃ variables are not directly observed. We can then write out the likelihood term of the observation data as

p(yD|zD,wD,XD) =

N∏
i

p(yi
D|ziD,wi

D,Xi
D), (61)

log p(yD|zD,wD,XD) =

N∑
i

log p(yi
D|ziD,wi

D,Xi
D), (62)

log p(yD|zD,wD,XD) ≈ N

|M |
∑
i∈M

log p(yi
D|ziD,wi

D,Xi
D). (63)

14

Random Grid Neural Processes for Parametric Partial Differential Equations

We then marginalize out the data variables to obtain the marginal likelihood of the data in terms of the available distributions,

log p(yi
D|ziD,wi

D,Xi
D) = log

∫
p(yi

D, ũ, z̃, w̃, X̃|ziD,wi
D,Xi) dũ dz̃ dw̃ dX̃, (64)

log p(yi
D|ziD,wi

D,Xi
D) = log

∫
p(yi

D|ũ)qα(ũ|z̃, w̃, X̃)p(z̃|ziD)p(w̃|wi
D)p(X̃|Xi

D) dũ dz̃ dw̃ dX̃. (65)

We then use Jensen’s inequality to obtain a lower bound on this marginal likelihood in terms of log distributions for
computational convenience and apply the same mini-batching as before,

log p(yi
D|ziD,wi

D,Xi
D) ≥ Eũ,z̃,w̃,X̃

[
log p(yi

D|ũ)
]
, (66)

log p(yD|zD,wD,XD) ≥
N∑
i

Eũ,z̃,w̃,X̃

[
log p(yi

D|ũ)
]
, (67)

≈ N

|M |
∑
i∈M

Eũ,z̃,w̃,X̃

[
log p(yi

D|ũ)
]
. (68)

We can then use the previously derived result from Sec. A.1 to obtain the complete ELBO on the marginal likelihood of the
data and the residual,

log p(r,yD|zD,wD,XD) ≥ F(α, β) (69)

=

N∑
i

Eũ,z̃,w̃,X̃

[
log p(yi

D|ũ)
]
+ Eu,z,w,X

[
log

p(r|u, z,w,X)pβ(z|u,w,X)p(u|X)

qα(u|z,w,X)q(z)

]
, (70)

≈ N

|M |
∑
i∈M

Eũ,z̃,w̃,X̃

[
log p(yi

D|ũ)
]
+ Eu,z,w,X

[
log

p(r|u, z,w,X)pβ(z|u,w,X)p(u|X)

qα(u|z,w,X)q(z)

]
. (71)

With this model, the method can be generalized to incorporate data from multiple sources that are not just direct observations
of the solution field. This also opens the doors to the possibility of learning missing dynamics not described in the PDEs in
an experimentally feasible way.

B. Low-Rank Covariance Matrix
In this section, we discuss in detail how we can use a low-rank covariance matrix. The low-rank kernel is expressed as

k(x, x′) = λ(x)δx,x′ + ⟨V (x), V (x′)⟩, (72)

where V (x) ∈ Rl and l denotes the column dimension of the rectangular matrices resulting from this kernel. Here we show
that the left Gram matrix VV⊤ results from this kernel

(VV⊤)ij =
∑
l

VilVjl, (73)

=
∑
l

V (xi)lV (xj)l, (74)

= ⟨V (xi), V (xj)⟩. (75)

Expanding out the definition of the kernel for a collection X,X′ of points we obtain

K(X,X) = Λ+VV⊤, (76)
Λ = diag(λ), (77)

V ∈ Rn×l, (78)

where λ ∈ Rn and V ∈ Rn×l. We now show how we can sample and evaluate the log-density efficiently without ever
constructing the full n× n matrix.

15

Random Grid Neural Processes for Parametric Partial Differential Equations

B.1. Sampling the Low-Rank Covariance

Sampling from a typical dense covariance matrix requires a Cholesky decomposition of the Matrix, an O(n3) operation.
However, with the special structure of the low-rank kernel in (76) we can sample efficiently with

ϵ = λ1/2 ⊙ ϵλ +VϵV , (79)
ϵλ ∼ N (0, In) ∈ Rn, (80)

ϵV ∼ N (0, Il) ∈ Rl. (81)

B.2. Evaluating the Log-Density

Evaluating the log-density requires two main operations that are computationally expensive: solving a linear system of
equations, and evaluating a log determinant. Usually, both of these two operations can be computed with a Cholesky
decomposition which is O(n3). We show how we can evaluate the log density more efficiently by using the form of (76).
Firstly we write out the log density of an MVN,

logN (µ,Σ) = −n

2
(2π)− 1

2
log(|K(X,X)|)− 1

2
(x− µ)⊤K(X,X)−1(x− µ). (82)

We first look at how to efficiently solve the linear system by making use of the Woodbury (Petersen et al., 2008) identity,

K(X,X)−1a = Λ−1a−Λ−1V(Il +V⊤Λ−1V)−1V⊤Λ−1a, (83)

where a = x− µ. To compute this efficiently we make use of

(Λ−1 · a)i = λ−1
i ai, (84)

(Λ−1 ·V)ij = λ−1
i Vij . (85)

The largest matrix is l× n and requires inverting a l× l matrix where l≪ n. We then look at how to efficiently compute the
determinant of the low-rank covariance matrix. Using the matrix determinant lemma (Ding & Zhou, 2007) we have

|K(X,X)| = det(Λ+VV⊤) = det(Il +V⊤Λ−1V)
∏
i

λi. (86)

This only requires taking the determinant of a l × l matrix. This can be done by computing the Cholesky of the inner matrix
as,

L = chol(Il +V⊤Λ−1V), (87)

and computing the log determinant as,

log |Σ| = 2Tr(log(L)). (88)

To form the covariance matrix in (76) from the neural network output of the α-Net we have

Nα(z,w,X1:n) = O1:n, oi ∈ R2+l, (89)

where Nα(·) is a the α-Net and

O1:n,1 = µα ∈ Rn, (90)
σT (O1:n,2) = λα ∈ Rn, (91)

O1:n,3:3+l = Vα ∈ Rn×l. (92)

and σT (·) is an exp-linear function (Dehaene & Brossard, 2021) constraining the value to be in a set positive interval
typically chosen to be [10−5, 1]. In Sec. 4.4 we construct distributions for a vector field, in which case the distribution can
be written simply as

qα(u
1, . . . ,ud|z,w,ω) = N


µ

1
α(. . .)

...
µd

α(. . .)

 ; diag

λ
1
α(. . .)

...
λd
α(. . .)

+

V
1
α(. . .)

...
Vd

α(. . .)


V

1
α(. . .)

...
Vd

α(. . .)


⊤ . (93)

We note that the columns of V must be unique, else the matrix will be singular.

16

Random Grid Neural Processes for Parametric Partial Differential Equations

C. Distribution of Normalised Squared Errors
In this section we show boxplots of the 1000 log NSEs samples for RGNP-D (corresponding to row 1 of table 1) and
DeepONet (trained with 300 collocation points, corresponding to row 7 of Table 1. - Poisson) for the nonlinear Poisson
example.

RGNP-D DeepONet

−18

−16

−14

−12

−10

−8

−6

−4

−2

lo
g

N
S

E

Figure 4. Box plot of log NSE for RGNP-D and DeepONet (300 N. Coll.) for the nonlinear Poisson example.

In Fig. 4 we see the spread of the samples in the log domain. The outliers as exponentially far from the mean.

D. Experiments
The experiments were all run using TensorFlow. All experiments were conducted with “swish” activation functions
(Ramachandran et al., 2017). The inversion networks are implemented with 1D, 2D, and alternated 1D & 2D convolutional
networks for the Nonlinear Poisson, Burgers, and Navier-Stokes problems, respectively. In Fig. 6 we show 5 example data
samples. The scatter points are the data passed to the algorithm. A visual representation of the GICNet interpolation layers
can be seen in Fig. 5.

D.1. Nonlinear Poisson

The D(x) function used to enforce the Dirichlet boundary conditions for this problem is

D(x) = cos
(xπ

2

)
. (94)

Architecture Details:

• number of hidden layers: 7

• number of neurons / hidden layer: 300

• activation: swish

• GICNet channel dimension: 20

• GICNet point/dim lattice: 20

We generate a dataset of 1000 evaluations for parameters drawn from the priors as the ground truth. It took 12.0 minutes to
generate 1000 solutions using FEniCS.

17

Random Grid Neural Processes for Parametric Partial Differential Equations

Figure 5. A visual representation of the lifting of a signal sampled at random locations into a higher dimensional feature space where
it is then interpolated with various kernels onto a fixed grid. This rich feature space evaluated at a fixed location is then passed to a
convolutional neural network with a matching channel dimension.

D.2. Burgers

For the DeepONet, FNN, and GICNet we train forward net with mean absolute residual as squared mean residual is too
unstable. We have 10,000 training latent parameters. For DeepONet we shorten the number of collocation evaluations for
100× 100 grid as we reduce the batch size but keep the same number of iterations. Generating the 1000 sample dataset
using FEniCS takes 33.5 mins. The D(x, t) function used to enforce the Dirichlet boundary conditions for this problem is

D(x, t) = sin (xπ) t. (95)

Architecture Details:

• number of hidden layers: 8

• number of neurons / hidden layer: 400

• activation: swish

• GICNet channel dimension: 20

• GICNet point/dim lattice: 10

D.3. Navier-Stokes

The D(x, t) function used to enforce the Dirichlet boundary conditions for this problem is

D(x, y, t) = sin(xπ) sin(yπ)t. (96)

18

Random Grid Neural Processes for Parametric Partial Differential Equations

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

Figure 6. Five example data samples. We show the true solution given by the solver in a solid line, and the noisy scatter data yD .

The full Navier-Stokes equations can be written more explicitly as

z0
∂u1

∂t
+ z0

(
u1

∂u1

∂x
+ u2

∂u1

∂y

)
+

∂p

∂x
− z1

(
∂2u1

∂x2
+

∂2u1

∂y2

)
= 0,

z0
∂u2

∂t
+ z0

(
u1

∂u2

∂x
+ u2

∂u2

∂y

)
+

∂p

∂y
− z1

(
∂2u2

∂x2
+

∂2u2

∂y2

)
= 0,

∂u1

∂x
+

∂u2

∂y
= 0. (97)

The fully defined boundary and initial conditions are

u1(x, 1, t) = (1− (2x− 1)6)t, (98)
u1(0, y, t) = u1(1, y, t) = u1(x, 0, t) = 0,

u2(0, y, t) = u2(1, y, t) = u2(x, 0, t) = u2(x, 1, t) = 0,

u1(x, y, 0) = u2(x, y, 0) = 0,

p(0, 0, t) = 0.

Architecture Details:

• number of hidden layers: 10

• number of neurons / hidden layer: 200

• activation: swish

• GICNet channel dimension: 30

• GICNet point/dim lattice: 10

D.4. MNSE

The expression used for defining the MNSE used to test the methods is

MNSE(x, x∗) =
1

N

N∑
i

∥x− x∗∥22
∥x∗∥22

, (99)

where x is the output of the method and x∗ is the ground truth.

19

Random Grid Neural Processes for Parametric Partial Differential Equations

D.5. Hardware

All experiments were run on an AMD Ryzen 9 5950X CPU (16 cores, 32 virtual) with 128GB memory and a Nvidia RTX
3090 (24GB VRAM) GPU. The GPU memory usage was limited to 6GB for the nonlinear Poisson problems, 10GB for the
Burgers examples, and 20GB for the Navier-Stokes examples.

20

