
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PLAN-ANSWER-REFINE-ON-GRAPH: STRUCTURED
PLANNING AND SELF-REFINEMENT FOR LARGE LAN-
GUAGE MODEL REASONING ON KNOWLEDGE GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Incorporating knowledge graphs (KGs) into large language model (LLM) rea-
soning has shown promise in alleviating hallucinations and factual errors. Al-
though existing paradigms of KG-augmented LLMs have achieved encouraging
results, they still exhibit notable limitations when handling multi-hop reasoning
and complex logical queries: (1) search space truncation bias: current meth-
ods generate linear entity-relation reasoning paths, which can prune correct can-
didates prematurely during iterative exploration; and (2) entity error amplifica-
tion: existing methods typically follow the retrieve-and-answer paradigm which
causes LLMs to over-rely on retrieved evidence, exacerbating the impact of in-
correct entities during reasoning. To alleviate the existing challenges, we pro-
pose Plan-Answer-Refine-on-Graph (PARoG), a novel framework for LLM rea-
soning on knowledge graphs. First, PARoG leverages SPARQL queries from
KG data as references, decomposing them into structured step-by-step plans.
We further train LLMs to construct such structured plans, which improves the
logical consistency of reasoning, ensures uniform step granularity, and facili-
tates effective execution on the graph. Second, during reasoning over KGs,
PARoG adopts a plan-answer-refine paradigm: the model first attempts to an-
swer each sub-query independently, and then refines its prediction by integrat-
ing evidence retrieved from the KG. This process mitigates knowledge conflicts
between LLM and KG, substantially reducing hallucinations. Experimental re-
sults on multiple KG reasoning benchmarks demonstrate that PARoG signifi-
cantly outperforms state-of-the-art approaches, achieving especially superior ac-
curacy on multi-hop and logically complex queries. Our code is available at
https://anonymous.4open.science/r/prog-D8CD

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; Ouyang et al., 2022; OpenAI et al., 2023;
Dubey et al., 2024; Guo et al., 2025) have demonstrated remarkable reasoning capabilities in a wide
range of complex natural language processing tasks (Bang et al., 2023; Zhao et al., 2023; Huang
& Chang, 2023; Qiao et al., 2023). However, LLMs remain prone to hallucinations and factual
errors in real-world applications due to their reliance on implicit parametric knowledge (Hu et al.,
2023; Wang et al., 2023a; Huang et al., 2024). Knowledge graphs (KGs), as large-scale structured
external source of factual knowledge, offer explicit, interpertable relational structures which can
ground LLM reasoning, providing a natural complement to limitations of LLMs (Pan et al., 2024).

Recent LLM⊗KG approaches can be categorized into two paradigms. The first leverages step-wise
graph exploration, where LLMs iteratively perform entity–relation walks to progressively construct
reasoning paths (Sun et al., 2024; Ma et al., 2025). The second generates global reasoning plans
where questions are decomposed into sub-objectives and the KG is queried along the planned path
to obtain external information (Luo et al., 2024; Chen et al., 2024b). Though demonstrating notable
improvements, these methods often struggle with complex logical queries that involve conjunctions
or multiple constraints. Our systematic analysis of existing approaches (as described in Appendix
B) identifies the following two fundamental limitations.
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Question I. What country bordering France contains an airport that serves Nijmegen?

Step-1. Identify countries 
that border France, 
Step-2. Search for 
airports in those bordering 
countries, 
Step-3. Check which 
airport serves Nijmegen

France England

Spain

Germany

⋯

⋯
Weeze
Airport Nijmegen

contain serve

Top-K

Step-1. Find Countries that 
Bordering France.
Step-2. Find Countries that 
contain an airport   that 
serves Nijmegen. 
Step-3. Find the conjunction 
of above.

France England

Spain

Germany

Nijmegen

Russia

Germany

Conjunction

(a) Existing Work (e.g., PoG) (b) PARoG (ours)
Question II. What location appointed Dennis Daugaard to governmental position and is bisected by the Missouri River?

Dennis 
Daugaard

David 
Anderson

South 
Dakota

Missouri 
River

South 
Dakota

The United 
States

Dennis Daugaard was appointed to a governmental
position by David Anderson in South Dakota and
Missouri River is bisected by the United States of
America. and I have no idea about the location
where appointed Dennis Daugaard to governmental
position and is bisected by the Missouri River

No. And I need to continue searching.

Reasoning

Enough Information

The Missouri River bisects the state of Missouri, South 
Dakota and Kansas.

The initial answer is Missouri, South Dakota and Kansas.
According to the information searched, South Dakota is
both the location that appointed Dennis Daugaard and
the location bisected by the Missouri River.

Initial Answer

Self-Refinement

(a) Existing Work (e.g., PoG) (b) PARoG (ours)

Dennis 
Daugaard

David 
Anderson

South 
Dakota

Missouri 
River

South 
Dakota

The United 
States

Figure 1: Illustration of the challenges in the existing methods and how our proposed PARoG ad-
dresses these issues: I. Search Space Truncation Bias and II. Error Amplification.

Search Space Truncation Bias due to Linear Reasoning Paths. Current methods construct rea-
soning paths primarily along linear entity–relation steps, iteratively expanding from one entity to
its neighbors. To control the combinatorial explosion of graph exploration, they prune candidate
entities at each step (e.g., using top-k selection). While efficiency, this strategy often eliminates cor-
rect entities prematurely. For instance in Figure 1 (I-a), the correct answer Germany is eliminated
early due to pruning, leading to an incorrect prediction. A more reasonable planning strategy would
first decompose the question into two sub-problems: (i) identify countries bordering France, and
(ii) identify countries with airports serving Nijmegen, and then compute the conjunction of these
results. The limited planning capability of existing methods fundamentally biases the search space
and limits reasoning performance.

Error Amplification from Faulty Entities and Relations. LLM-generated reasoning paths may
introduce spurious or weakly related entities and relations during KG exploration. Existing methods
typically follow a retrieve-and-answer paradigm, where the LLM heavily relies on the retrieved
evidence to produce the final answer. This reliance amplifies errors. For example in Figure 1 (II-a),
during graph-based reasoning, the system retrieves facts such as ”Dennis Daugaard was appointed
by David Anderson in South Dakota” and ”Missouri River is partially constrained by South Dakota,
USA”. Though individually correct, the knowledge are not sufficiently directly connected to answer
the question. Existing methods typically make the LLM to over-rely on the retrieved information,
attempt further reasoning steps, and ultimately fail to produce the correct answer.

To alleviate theses challenges, we propose a Plan–Answer–Refine framework (PARoG), a hybrid
reasoning paradigm that tightly integrates structured explicit guidance with parametric LLM reason-
ing. As shown in Figure 2, our method introduces two key technical contributions. First, we leverage
SPARQL queries as the structured references to supervise planning and train the planning module
using a relatively smaller model (e.g. Llama-3.1-8B) to generate flexible, compositional reasoning
paths that allow complex logical operations over sub-queries (e.g. conjunctions, compositions, su-
perlatives and comparatives). For example in Figure 1 (I-b), instead of searching sequentially from
“France” to its neighboring countries and then their airports, the model can generate conjunctive
sub-objectives such as “find countries bordering France” and “find countries with airports serving
Nijmegen,” then reason over the combination of the sub-objectives, which mitigates search space
truncation bias by moving beyond linear expansions. Second, rather than committing to retrieved
entities in a one-shot retrieve-and-answer paradigm, PARoG first produces a tentative answer using
its parametric knowledge and then explicitly refines it by referring to the retrieved KG entities as
shown in Figure 1 (II-b). This refinement step overrides earlier faulty evidences, preventing error
amplification due to spurious entities or weakly related relations. Our main contributions are as
follows:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Training Data

Planning 
Module

GPT-4

Step-1. Identify the religious organizational leadership 
called the Orthodox Autocephalous Church of Albania.
Step-2. Determine the geographic division where this 
religious leadership is situated. 
Step-3. Find the capital city of this geographic division.

SFT

SPARQL.
(SELECT DISTINCT ?x
WHERE {
FILTER (?x != ?c)
FILTER (!isLiteral(?x) OR lang(?x) = '' OR langMatches(lang(?x), 'en’))
?c ns:religion.religious_leadership_jurisdiction.leader ?k .
?k ns:religion.religious_organization_leadership.organization ns:m.06yy_g .
?c ns:location.country.capital ?x .

}
)

Question. What is the capital city of the geographic
division where the religious organizational leadership is
called the Orthodox Autocephalous Church of Albania?

Step-3

Step-2

Question. What country bordering France contains an airport that serves 
Nijmegen?

Step-1. Find Countries that Bordering France
Step-2. Find Countries that contain an airport  that serves Nijmegen. 
Step-3. Find the conjunction of above.

Russia Germany

Nijmegen

Answer: Russia.

Answer: Germany, 
and Russia.

Self-Refinement

Searching Answering

Answer: I’m not 
sure about that.

Answer: Germany.
Self-Refinement

Conjunction AnsweringGermany, England, 
Italy, …

Germany and Russia

France England

Spain

Germany

Answer: Germany, 
England, Italy, and 

Spain, …

Answer: Germany, 
England, Italy and 

Spain, …

Self-Refinement

Searching Answering

Step-1

(e.g. Llama-3.1)

Planning

(a) SPARQL-Guided Structured Planning (b) Plan-Answer-Refine Paradigm

Figure 2: Overall framework of the proposed PARoG. Unlike prior methods that sequentially expand
entity–relation paths with pruning, and follow the one-shot retrieve-and-answer paradigm, PARoG
combines (a) structured planning with (b) iterative self-refinement, enabling robust handling of com-
plex logical queries with conjunctions, compositions, comparisons, superlatives.

• We propose leveraging SPARQL as structured references to supervise planning to train the model
to generate compositional reasoning paths, which enables the model to handle complex logical
reasoning including conjunction, composition, superlative and comparative queries.

• We propose a plan-answer-refine framework, where the agent first attempts to answer then ex-
plicitly refines the results using retrieved evidence. This step reduces error propagation caused by
faulty entities or relations involved in the reasoning paths.

• We introduce a novel framework PARoG by combining the proposed techniques and evaluate
the performance on multiple real-world KGQA datasets. The experimental results demonstrate
significant improvements over state-of-the-art baselines.

• We provide further analysis demonstrating that PARoG uses a relatively small model (e.g. Llama-
3.1-8B (Dubey et al., 2024)) to generate reasoning paths, yet its performance can surpass larger
planning LLMs (e.g. ChatGPT OpenAI et al. (2023) or Deepseek-R1 (Guo et al., 2025)). We also
discuss the broader impact of using structured symbolic guidance with LLM reasoning beyond
KGQA.

2 PRELIMINARIES

Knowledge Graph. A knowledge graph (KG) is composed of a large set of fact triples, represented
as a graph G = {⟨e, r, e′⟩ | e, e′ ∈ E , r ∈ R}, where E andR denote the sets of entities and relations
respectively. For KGQA tasks in this paper, we assume the availability of a KG that contains the
entities relevant to answering the given natural language question.

SPARQL Query Language. SPARQL (SPARQL Protocol and RDF Query Language) is a formal
query language which allows users to query structured knowledge bases. Given a question q, the
SPARQL query S specifies a pattern of triples to match against the knowledge graph G. A general
SPARQL query consists of a SELECT clause that specifies the variables to retrieve, and a WHERE
clause that defines the graph pattern to match. In our method, SPARQL queries are used to supervise
the generation of reasoning paths by decomposing complex queries into smaller sub-queries. Figure
2 provides an example of SPARQL query.

3
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3 METHODOLOGY

In this section, we present PARoG, a novel hybrid reasoning framework which integrates structured
guidance planning with parametric reasoning and refinement over knowledge graphs. As shown in
Figure 2, PARoG comprises 2 major stages:SPARQL-Guided Structured Planning-training LLMs
to generate compositional planning of sub-objective paths based on SPARQL-guided supervision
for knowledge graph exploration, and Plan-Answer-Refine Paradigm-iteratively completing a sub-
objective with parametric knowledge and then correcting the answer using external KG evidence to
mitigate errors and inconsistencies.

3.1 SPARQL-GUIDED STRUCTURED PLANNING

The current LLM⊗KG paradigm typically generates linear entity-relation reasoning paths. In this
process, the model starts from an entity and iteratively explores its neighbors by following predefined
⟨entity-relationship-entity⟩ paths . While effective for simple queries, this linear path generation
often fails to capture complex multi-step reasoning required for more sophisticated queries. Specif-
ically, when reasoning over complex questions involving compositionality, conjunctions, compara-
tives, or superlatives, LLMs inherent behavior of linear exploration can lead to Search Space Trun-
cation Bias, where pruning intermediate candidates prematurely eliminates correct answers.

SPARQL-Guided Supervision. To address this issue, we propose to use SPARQL queries as a
structured guide for reasoning. SPARQL inherently supports complex queries that involve logical
operations. In this paper, we consider the following operation types:

• Conjunctions: finding entities that satisfy multiple constraints simultaneously. e.g. Find coun-
tries that border France and have airports serving Nijmegen.

• Compositions: expressing queries where the output of one relation serves as the input to another.
e.g. Find the capital city of the country that has airports serving Nijmegen.

• Comparatives: retrieving entities based on relative attributes. e.g. Find countries larger than
France in area and have airports serving Nijmegen.

• Superlatives: selecting the best entity according to a ranking predicate. e.g. Find the largest city
bordering France.

When the intermediate candidate set is large, these query types cannot be properly handled using
linear entity-relation paths but are essential for real-world KGQA tasks.

SPARQL-to-Planning. To transfer this expressiveness into model training, we leverage SPARQL
queries as guidance signals and use state-of-the-art LLMs to automatically generate planning data
from complex questions. For each input question, GPT-4o produces a set of decomposed sub-
questions that reflect the logical structure of the underlying SPARQL query. Specifically, we design
a systematic pipeline to automatically construct a large-scale dataset tailored for KGQA tasks. The
graph-matching process in SPARQL naturally decomposes a complex query into a sequence of con-
secutive search operations and constraints, thereby providing a precise planning path for identifying
intermediate sub-objectives. Building upon this observation, the SPARQL-to-Planning pipeline con-
sists of the following two steps.

• Source Data Collection. We first select diverse ⟨Question, SPARQL⟩ pairs of multi-hop queries
from public KGQA training datasets including WebQSP(Yih et al., 2016), CWQ (Talmor & Be-
rant, 2018), and GrailQA (Gu et al., 2021). These pairs serve as the foundation for aligning
natural language with structured reasoning.

• Semantic Consistency Mapping. With the collected data, we decompose the SPARQL queries
into sub-operations and then translate each atomic operation into a fluent natural language ques-
tion as single sub-objective of the reasoning plan. Following that, we also rephrase the decom-
posed sub-objective sequence back to natural language queries to maintain the semantic consis-
tency. Instead of the original questions, we use the rephrased natural language queries and the
generated sub-objectives as the training data

During dataset construction, the SPARQL queries are decomposed into atomic operations to main-
tain the consistency across plan steps. In this paper, we use GPT-4o Hurst et al. (2024) to automate

4
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the overall process. Finally, the pipeline produces 74,802 high-quality decomposition examples cov-
ering a wide range of query types and reasoning depths. The statistics of different query types are
summarized in Figure 3.

Model Training. We employ a relatively small but powerful open-source model Llama-3.1-8B
Dubey et al. (2024) as the foundation backbone. The training objective follows the standard autore-
gressive language modeling loss. Specifically, the input template is formatted as following.

Instruction: Decompose the following complex question into a logical
sequence of simpler sub-questions.
Input: Question: [The original complex question]
Response: 1. [First sub-question] 2. [Second sub-question] 3. · · ·

Specifically, given the input tokens x, the model parameters θ are optimized by minimizing the
negative log-likelihood:

argmin
θ
L(θ) = −

H∑
i

Th∑
j

logPθ(oi,j |oh
i,<j ,x) (1)

29.68%

35.78%

4.83%

4.49%

25.22%

Compositions
Conjunctions
Superlatives
Comparatives
Linear Queries

Figure 3: Statistics of
different query types of
the generated planning
data.

where H and Th deba the total number of sub-objectives and the token
number of a single sub-objective respectively, and oi = {oi,1, · · · , oi,Th

}
is the h-th sub-objective. With supervised training, the model learns to
map complex natural language questions into sequences of structured
sub-questions which mirror SPARQL compositional logic. This training
equips the planning module with the ability to produce complex logical
reasoning paths (e.g. conjunctions or comparatives), ensuring correct en-
tities are preserved during exploration and mitigating the Search Space
Truncation Bias of existing approaches.

3.2 PLAN-ANSWER-REFINE PARADIGM

Another fundamental challenge for LLM⊗KG reasoning is Error Ampli-
fication from Faulty Entities and Relations. Existing methods typically
adopt the one-shot retrieve-and-answer paradigm, where LLM generates
a reasoning path, retrieves corresponding entities and relations from the
KG, and then directly uses these retrieved facts to finalize an answer.
Though intuitive, this paradigm suffers from two issues:

• Error Propagation. When a spurious or weakly related entity is introduced by the reasoning
path, the subsequent steps will propagate and accumulate this error.

• Over-Reliance on Retrieval. LLMs often assumes the retrieved evidences from KG to be correct
and sufficient, even when the external information only partially address the query. This over-
reliance prevents the model from self-correcting, leading to faulty answers.

To mitigate this challenge, we introduce the plan-answer-refine mechanism. We employ the LLMs
to generate a tentative answer using the parametric reasoning ability and then leverage the KG rea-
soning agent to iteratively explore the knowledge graph to obtain external information and refine the
answer by adjusting entities or relations. The algorithmic procedure of this mechanism is summa-
rized in Appendix C.

Answering. Let O denotes the reasoning plan generated by the planning module. For each sub-
objective oi ∈ O generated by the planning module, the initial step is leveraging a LLM M to
generate a tentative answer as:

âi =M(Q, oi, IA) (2)
where IA denotes a predefined instruction template and Q is the input question.

Exploration. The KG exploration process of PARoG is similar to existing work (Sun et al.,
2024; Chen et al., 2024b). To be specific for each sub-objective, PARoG starts from an
initial entity and iteratively exploring the knowledge graph. Following previous work (Sun
et al., 2024; Jiang et al., 2023a), the iterations begins with a set of n0 topic entities E0 =

5
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{e01, e02, . . . , e0n0
}. For the i-th iteration (i > 1), we first obtain the current set of K reason-

ing paths Pi−1 = pi−1
1 , · · · , pi−1

K after previous i − 1 iterations. Here, each reasoning path
pi−1
k = [(ei−1,1

s,k , ri−1,1
k , ei−1,1

o,k ), · · · , (ets,k, r
i−1,t
k , ei−1,t

o,k ), · · · , (eTk

s,k, r
i−1,Tk

k , eTk

o,k)] is a sequence
of Tk triples (Tk < i) where t indexes the elements, ei−1,t

s,k and ei−1,t
o,k denote the subject and

object entities respectively, and ri−1,t
k is a relation linking them. Then, we continue to extend

the reasoning paths forward based on the current triples. Concretely, the set of tail nodes in the
current reasoning paths is denoted by Ei−1 = {ei−1

1 , ei−1
2 , · · · ei−1

nk
} and the relation set is rep-

resented as Ri−1 = {ri−1
1 , ri−1

2 , · · · ri−1
nk
}. We then expand the reasoning path through search-

ing over relations entities. With the original question Q and sub-objectives O, we leverage the
LLMs to select the most relevant relations and entities. Specifically, during the relation search-
ing stage, we begin with all relations connected to the tail entities in Ei−1, which are denoted by
RK

init = {riinit,1, riinit,2, . . . , riinit,n}. and employ the LLM to filter out irrelevant relations. In this
step, the entire reasoning plan O is also provided to the LLM so that the model maintains aware-
ness of the global reasoning objective, thereby preventing it from over-focusing on local. Given the
tail entities and filtered relations, the missing entities are obtained using predefined SPARQL query
templates such as (e, r, ?) or (?, r, e). When all the entities are obtained, we leverage the model to
further calculate the relevance between the retrieved entities and the current sub-objective oi and
the question Q. The most relevant entities from a large set of candidates are reserved to update the
reasoning path set, which is denoted by Pi.

Self-Refinement. After each KG exploration iteration, PARoG explicitly re-evaluate the tentative
answer against the retrieved evidences. If inconsistencies or supplementary are detected, PARoG
refines the result by adjusting entities or relations, effectively correcting errors from earlier steps.
Specifically we use the LLMM to correct answer ai as:

ai =M(Pi, oi, âi, IR) (3)

where Pi denotes the set of retrieved triples in the current iteration, and IR is the instruction prompt.
It is also worth noting that we also explicitly ask the LLM to judge whether the retrieved knowledge
aligns with the question; if it does not, the generated tentative answer is directly used instead.

After each round of self-refinement, PARoG is leveraged to determine whether the current result
ai is sufficient to answer the overall question Q. If the answer is ”yes”, we stop searching and use
ai as the final answer to avoid over-exploration. Otherwise, PARoG continues iterative searches
until PARoG finds enough knowledge or reach the maximum number of iterations. Unlike existing
methods, PARoG introduces a mechanism that explicitly integrates the parametric knowledge of
LLMs with external knowledge, reducing reliance on any single retrieval and providing resilience
against misleading entities or relations.

4 EXPERIMENTS

Datasets. We conduct comprehensive experiments on multiple Knowledge Graph Question Answer-
ing (KGQA) benchmark datasets to evaluate the effectiveness of our proposed approach. Specifi-
cally, we utilize three widely-adopted datasets: WebQSP (Web Questions Semantic Parses) (Yih
et al., 2016), GrailQA (Strongly Generalizable Question Answering) (Gu et al., 2021), and CWQ
(ComplexWebQuestions) (Talmor & Berant, 2018). All three datasets are grounded on the Freebase
knowledge graph, which contains 88 million entities, 20K relations and 126 million triplets, making
it one of the most comprehensive knowledge bases for KGQA evaluation.

Metrics. For evaluation, we adopt the Exact Match accuracy (Hits@1) as our primary metric, which
measures the percentage for which the predicted answer exactly matches the ground truth. This
ensures that our evaluation strictly reflects the capability to provide precise answers rather than
partially correct responses. The results are averaged over three seeds and reported as mean ± 95%
confidence interval.

Compared Methods. We compare PARoG with 17 LLM-based approaches from 3 categories: (1)
LLM prompting methods, (2) LLM reasoning over KGs (LLM ⊗ KG), (3) end-to-end fine-tuned
KG-augmented LLMs, and (4) graph-retrieval methods. The details of the compared approaches are
described in Appendix E.
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Table 1: Performance comparison of different methods on two KGQA benchmarks.
Methods WebQSP CWQ

LLM Prompting

IO (Brown et al., 2020) 63.3 37.6
CoT (Wei et al., 2022) 62.2 38.8
SC (Wang et al., 2023c) 61.1 45.4

Graph-Retrieval Methods

GNN-Rag (Mavromatis & Karypis, 2025) 82.8 62.8
SubgraphRag + GPT4o (Li et al., 2025) 87.1 54.9

LLM ⊗ KG with GPT-3.5

ToG (Sun et al., 2024) 76.2 57.1
RoG (Luo et al., 2024) 81.5 52.6
KG-Agent (Jiang et al., 2025) 79.2 56.1
StructGPT (Jiang et al., 2023a) 75.2 55.2
PoG (Chen et al., 2024b) 82.0 63.2
ReKnowS (Wang et al., 2025) 81.1 58.5

PARoG 89.0 (± 1.3) 73.1 (± 0.9)

LLM ⊗ KG with GPT-4

ToG (Sun et al., 2024) 80.7 65.4
KG-Agent (Jiang et al., 2025) 81.2 67.0
StructGPT (Jiang et al., 2023a) 79.5 64.7
PoG (Chen et al., 2024b) 87.3 75.0
ReKnowS (Wang et al., 2025) 83.8 66.8

PARoG 91.2 (± 0.9) 79.3 (± 1.1)

Implementations. For SPARQL-Guided Supervision, we use the training split of WebQSP,
GrailQA, and CWQ as the source and employ GPT-4 to generate the training data, and the statistics
is summarized in Appendix D. We use Llama-3.1-8B as the backbone to train the planning module
with learning rate 2e-5 on 4 Nvidia A800 GPUs. We use GPT-3.5 or GPT-4 to serve as the underly-
ing LLMs and report the results on both, thereby analyzing our method across diverse settings.

4.1 PERFORMANCE COMPARISON

69.4
65.1 66.2

37

82
75.5 74.5 74.6

44.6

89.3

Compositions Conjunctions Comparatives Superlatives Linear Quries

PoG PARoG (Ours)
+8.1% +14.4% +12.7% +20.5% +8.9%

Figure 4: Performance comparison over different
query types.

Main Results. The comparison results on
WebQSP and CWQ in Table 2. Across
both benchmarks, our propose method PARoG
consistently outperforms existing approaches.
Compared with the state-of-the-art baseline
Planning-on-Graph (PoG), PARoG gains sub-
stantial improvements of 3.9 and 4.3 points on
WebQSP and CWQ respectively with GPT-4.
Under the more challenging setting with GPT-
3.5, more significant improvements can be ob-
served: PARoG surpasses the baseline by 7.3
on WebQSP and 10.1 on CWQ. It is worth not-
ing that the improvements are particularly pro-
nounced on CWQ, which contains more com-
plex multi-hop and compositional queries, un-
derscoring the advantage of our structured plan-
ning and self-refinement mechanism. On the GrailQA benchmark (Table 2), PARoG also achieves
consistent state-of-the-art performance across all evaluation settings. Using GPT-3.5, PARoG
reaches an overall accuracy of 82.7, surpassing the state-of-the-art Debate-on-Graph (DoG) by a
large margin of 4.9 points. Under the stronger GPT-4 setting, our method further improves to an
overall 87.2 points, exceeding the compared methods by 2.5 points. It can be observed that the im-
provements of PARoG are particularly significant on compositional and zero-shot queries, demon-
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Table 2: Performance comparison of different methods on GrailQA.
Method Overall I.I.D. Compositional Zero-shot

LLM Prompting

IO Prompt (Brown et al., 2020) 29.4 – – –
CoT (Wei et al., 2022) 28.1 – – –
Self-Consistency (Wang et al., 2023c) 29.6 – – –

End-to-End Fine-Tuned KG-Augmented LLMs

RnG-KBQA (Ye et al., 2022) 68.8 86.2 63.8 63.0
TIARA (Shu et al., 2022) 73.0 87.8 69.2 68.0
FC-KBQA (Zhang et al., 2023) 73.2 88.5 70.0 67.6
Pangu (Gu et al., 2023) 75.4 84.4 74.6 71.6
FlexKBQA (Li et al., 2024b) 62.8 71.3 59.1 60.6
GAIN (Shu & Yu, 2024) 76.3 88.5 73.7 71.8
KG-Agent (Jiang et al., 2025) 86.1 92.0 80.0 86.3

LLM ⊗ KG with GPT-3.5

KB-BINDER (Li et al., 2023a) 53.2 72.5 51.8 45.0
ToG (Sun et al., 2024) 68.7 70.1 56.1 72.7
PoG (Chen et al., 2024b) 76.5 76.3 62.1 81.7
DoG (Ma et al., 2025) 77.8 – – –

PARoG 82.7 (± 1.5) 85.4 (± 0.9) 66.7 (± 2.0) 87.1 (± 2.2)

LLM ⊗ KG with GPT-4

ToG (Sun et al., 2024) 81.4 79.4 67.3 86.5
PoG (Chen et al., 2024b) 84.7 87.9 69.7 88.6
DoG (Ma et al., 2025) 80.0 – – –

PARoG 87.1 (± 1.3) 89.5 (± 2.1) 73.2 (± 1.9) 91.1 (± 2.3)

strating robustness in both complex reasoning and out-of-distribution scenarios. These results high-
light that PARoG not only advances the overall accuracy but also generalizes better to complex and
zero-shot queries, demonstrating the effectiveness of the proposed methodology.

Analysis on Different Query Types. We summarize the comparison between our method PARoG
and PoG on different query types in Figure 4. Overall, our method PARoG consistently outperforms
PoG across all types. Compared with simple categories such as Linear Queries and Compositions,
the gains become substantially larger on structurally more complex queries. In particular, PARoG
achieves significant improvements of 12.7% on Comparatives, 14.4% on Conjunctions, and 20.5 %
on Superlatives. These results highlight that PARoG is especially effective in handling queries with
multi-step reasoning and complex logical structures.

4.2 GENERALIZATION STUDY

Table 3: Generalization Study:
performance of PARoG using
different source KGs on We-
bQSP and CWQ.

Method WebQSP CWQ

with Freebase

ToG 76.2 57.1
PoG 82.0 63.2
PARoG 89.3 73.3

with WikiData

ToG 68.6 54.9
PoG 73.8 60.7
PARoG 79.1 69.5

To analyze the robustness across different schema organizations,
we evaluate PARoG on CWQ and WebQSP with different source
KGs (Freebase and WikiData), as shown in Table 3. Notably, the
absolute performance on Wikidata is lower than that on Freebase
because the datasets are originally annotated for Freebase. More-
over, Wikidata is substantially larger and more heterogeneous,
which increases the difficulty for KG exploration and relation fil-
tering. PARoG consistently produces substantial improvements
over compared approaches under the WikiData setting. The re-
sults demonstrate that the proposed SPARQL-Guided Structured
Planning and Plan-Answer-Refine are not tied to specific relations
but generalize well under different schema organizations, relation
granularities, and naming conventions. The improvements are es-
pecially pronounced on CWQ, where the queries are relatively
more complicated.
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4.3 ABLATION STUDY

We conduct ablation studies to examine the contributions of the two core components in our frame-
work SPARQL-Guided Structured Planning and the Plan-Answer-Refine paradigm. The results are
shown in Table 5 and 4. First, remove self-refinement consistently reduces performance across all
datasets and settings. It can be observed the decline in performance when using GPT-3.5. This result
demonstrates the Answer–Refine paradigm effectively mitigates error amplification, especially par-
ticularly in scenarios where the underlying LLM is relatively weak. Second, compare our SPARQL-
supervised planning module (trained with Llama-3.1-8B) using much larger LLMs directly as plan-
ners. Despite having few parameters (8B), our model consistently outperforms GPT-3.5 (∼20B)
and DeepSeek-R1 (671B) by large margins (up to 8.1 points on complex CWQ). This result demon-
strates that SPARQL-guided supervision provides strong compositional reasoning signals, enabling
smaller models to surpass much larger LLMs on reasoning path planning. These ablations prove
that both self-refinement and SPARQL-supervised planning are essential to the effectiveness and
efficiency of our framework.

Table 4: Ablation Study: w/ or w/o Self-
Refinement (SR).

Method WebQSP GrailQA CWQ

GPT-3.5

w/o SR 88.0 78.9 69.2
w/ SR 89.3 82.7 73.3

GPT-4

w/o SR 89.7 85.5 77.2
w/ SR 91.2 87.2 79.3

To better understand the behavioral contribution of
the Plan-Answer-Refine component, we further ex-
amine its ability to correct initially incorrect predic-
tions. Specifically, for each dataset, we isolate all ex-
amples where the tentative answer produced by the
vanilla LLM is incorrect, and compute the proportion
of these errors that are successfully fixed after refine-
ment. As shown in Table 6, PARoG corrects around
70% of the initial wrong answers and the correction
rate is particularly high on GrailQA, which is con-
sistent with its greater logical compositionality and
schema diversity. This result highlights the effective-
ness of the answer-refinement paradigm. The correctness rate of the initial answers is listed in
Appendix F.

4.4 EFFICIENCY ANALYSIS

Table 5: Ablation Study: Comparison our SPARQL-
supervised planing module to LLMs.

Method # Para WebQSP GrailQA CWQ

Ours 8B 89.3 82.7 73.3
GPT-3.5 ∼ 20B 83.2 76.9 65.2
Deepseek-R1 671B 88.5 80.2 68.7

We further analyze the efficiency of dif-
ferent methods in terms of LLM calls
and token usage, as shown in Table 7.
Our method consistently achieves not
only higher accuracy but also greater ef-
ficiency across all datasets. These re-
sults demonstrate that PARoG not only
advances the SOTA performance but also
significantly reduces computational overhead, making it more efficient and cost-effective for real-
world application.

4.5 CASE STUDY

We also provide case studies to discuss the effectiveness and limitations of PARoG in Appendix I.

5 RELATED WORK

Table 6: Error correction rate (CR Rate) of
the Plan-Answer-Refine paradigm.

Dataset WebQSP CWQ GrailQA

CR Rate 73.4 62.4 77.1

LLMs with Knowledge Graphs. Large Language
Models (LLMs) have shown remarkable reason-
ing capabilities (Brown et al., 2020; Wei et al.,
2022; Zhou et al., 2023) but often prone to hallu-
cinate when answering knowledge-intensive queries
(Ji et al., 2023). To address this, combining LLMs
reasoning with external knowledge graphs (KGs) have been introduced (Logan et al., 2019; Luo
et al., 2023; Jiang et al., 2023b; Pan et al., 2024). Approaches such as KG-based representation

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 7: Efficiency Analysis: Performance vs. token cost across different methods and datasets.
Dataset Method LLM Call Input Token Output Token Total Token Hits@1

ToG 15.9 6,031.2 987.7 7,018.9 76.2
WebQSP PoG 9.0 5,234.8 282.9 5,517.7 82.0

PARoG 8.3 5,012.3 241.4 5,253.8 89.3

ToG 22.6 8,182.9 1,486.4 9,669.4 57.1
CWQ PoG 13.3 7,803.0 353.2 8,156.2 63.2

PARoG 10.2 7,110.7 288.5 7,398.8 73.3

ToG 11.1 4,066.0 774.6 4,840.6 68.7
GrailQA PoG 6.5 3,372.8 202.8 3,575.6 76.5

PARoG 6.0 3,180.9 178.1 3,358.2 82.7

learning (Guu et al., 2020; Li et al., 2023b; Dehghan et al., 2024), knowledge-based instruction-
tuning (Zhang et al., 2023; Chen et al., 2024a; Luo et al., 2024), retrieval-augmented generation
with KG facts (Wang et al., 2024; Wen et al., 2024; Zhang et al., 2024; Wang et al., 2023b), graph-
constrained generation (Guan et al., 2024; Luo et al., 2025), and semantic parsing on KGs (Ye et al.,
2022; Yu et al., 2022) demonstrate the benefit of grounding LLM outputs in structured knowledge.

Interactive LLM Reasoning over Knowledge Graphs. Inspired by strong capability of deep rea-
soning on structured data (Jiang et al., 2023a; Edge et al., 2024; Jin et al., 2024), recent methods
introduce explicit reasoning paths to guide LLM interactively inference over KGs and have achieved
significant improvements (Yao et al., 2023; Li et al., 2024a; Mavromatis & Karypis, 2024; Sun et al.,
2024; Tan et al., 2025; Chen et al., 2024b). Think-on-Graph (Sun et al., 2024) treats reasoning
as agent-based exploration where LLMs iteratively search paths with traceability and correction.
Generate-on-Graph (Xu et al., 2024) extends to incomplete KGs by enabling LLMs to generate
missing triples. Plan-on-graph (Chen et al., 2024b) applies adaptive planning by decomposing ques-
tions into sub-goals and refining paths via guidance and reflection. KG-Agent (Jiang et al., 2025)
formalizes multi-hop reasoning as program execution with tool use, KG execution, and memory
updates. Debate-on-Graph (Ma et al., 2025) models reasoning as a multi-agent debate, where agents
generate, and critique reasoning paths to enhance reliability. ReKnoS (Wang et al., 2025) introduces
super-relations to connect relational paths, enabling bidirectional reasoning and improving retrieval
efficiency. There are also more recent efforts such as (Shen et al., 2025) and (Zhu et al., 2025)
introducing alignment and reflection-based strategies to regulate LLM reasoning over KGs.

Our work also belongs to this line of work but differs from prior methods by introducing SPARQL-
guided structured planning and answer-refine mechanism. Compared with existing work, the pro-
posed method enables reasoning over complex logical operations beyond linear paths, and explicitly
mitigate the inconsistency between the parametric knowledge of LLM and external KG evidence.

6 DISCUSSION AND CONCLUSION

In this paper, we present Plan-Answer-Refine-on-Graph (PARoG) a novel framework for LLM rea-
soning over knowledge graphs. PARoG introduces two innovations SPARQL-guided structured
planning and the Answer-Refinement paradigm, effectively mitigating search space truncation bias
and error amplification issues. Extensive experiments on WebQSP, CWQ, and GrailQA demonstrate
that PARoG achieves new state-of-the-art results while also being more efficient and cost-effective.

Limitation. Despite the improvements, PARoG still relies on the coverage and correctness of avail-
able KGs. Besides, while SPARQL-guided training reduces dependence on large models, generating
high-quality planning data still requires strong teacher models (e.g., GPT-4o), which may limit ac-
cessibility. Moreover, our refinement process is static and offline without dynamic feedback loops
during reasoning, we leave the exploration of online refinement for future work due to its complexity.

Broader Impact and Future Work. PARoG that structured symbolic guidance can enhance LLM
reasoning, which can be applied wherever external structured signals are available beyond KGQA.
In the future the study direct include dynamic refinement, multi-modal knowledge graphs, and boot-
strapped self-improvement, which could make PARoG more scalable, general and accessible.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used OpenAI ChatGPT for writings refinement and correction of typos during the preparation of
this manuscript.

B ERROR ANALYSIS OF EXISTING METHODS.

We conduct an error analysis of existing methods (ToG and PoG). Among the failed exam-
ples:83.39% of WebQSP questions,85.34% of GrailQA questions, and 90.14% of CWQ queries
fail due to missing answer entities in the retrieval phase. Figure 5 shows the distribution of different
query types of the failed examples.

29.68%

35.78%

4.83%

4.49%

25.22%

标题Compositions
Conjunctions
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Comparatives
Linear Queries

45.12%

38.80%
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Compositions
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Figure 5: Error Distribution of PoG.

C ALGORITHM FOR THE PLAN-ANSWER-REFINE PARADIGM

We summarize the comprehensive algorithmic procedure of Plan-Answer-Refine as shown in Algo-
rithm 1.

D DETAILS OF DATASETS

WebQSP consists of 4,737 natural language questions that require single or multi-hop reasoning
over Freebase. GrailQA presents a more challenging scenario with 64,331 questions designed to
test compositional generalization capabilities. CWQ contains 34,689 complex questions requiring
multi-hop reasoning and constraint handling. These datasets collectively provide a robust testbed for
evaluating various aspects of KGQA performance, including reasoning complexity, generalization
ability, and scalability. The statistics of the datasets are summarized in Table 8.

Table 8: Statistics of datasets.
Datasets #Train #Test Max #hop

WebQSP 2,826 1,628 2
CWQ 27,639 3,531 4

GrailQA 44,337 13,231 4
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Algorithm 1 PARoG.
Require: Question Q, Knowledge Graph G, LLMM, Planning module PLAN(·), instruction tem-

plates IA, IR, initial topic entity set E0 (size n0), max iterations Tmax

Ensure: Final answer a
1: O ← PLAN(Q) ▷ Generate sub-objectives with the SPARQL-supervised planner
2: A ← ∅
3: for each sub-objective oi ∈ O do
4: âi ←M(Q, oi, IA) ▷ Tentative answer by parametric reasoning
5: P0 ← {[ ]} ▷ Initialize reasoning paths
6: E0 ← {e01, . . . , e0n0

}
7: for t = 1 to Tmax do
8: Et−1 ← TAILENTITIES(Pt−1)
9: Rinit

t ← NEIGHBORRELATIONS(G, Et−1)
10: Rt ←M(Q, oi,O,Rinit

t ) ▷ Filter relations with global plan awareness
11: Ecandt ← SPARQLQUERY(G, Et−1,Rt)
12: SCORE(e)←M(Q, oi, e), ∀e ∈ Ecandt
13: Et ← SELECTRELEVANT(Ecandt , SCORE) ▷ Select a variable number of most relevant

entities
14: Pt ← EXTENDPATHS(Pt−1, Et,Rt)
15: ai ←M(Pt, oi, âi, IR) ▷ Self-refine tentative answer
16: if ALIGN(Pt, Q) = false then
17: ai ← âi ▷ Fallback if retrieved knowledge is irrelevant
18: end if
19: if SUFFICIENT(ai, Q) = true then
20: break
21: end if
22: end for
23: A ← A∪ {ai}
24: end for
25: a← AGGREGATE(A,O) ▷ Combine refined sub-answers according to O to form the final

answer.
26: return a

E DETAILS OF COMPARED BASELINES

We compare PARoG with 17 LLM-based approaches from 3 categories: (1) LLM prompting meth-
ods, (2) LLM reasoning over KGs (LLM ⊗ KG), and (3) end-to-end fine-tuned KG-augmented
LLMs. The details of the compared approaches are described as follows.

E.1 LLM PROMPTING

• Input-Output Prompting (Brown et al., 2020):A standard few-shot prompting approach without
explicit reasoning guidance, serving as a basic LLM QA baseline.

• Chain-of-Thought (Wei et al., 2022): Chain-of-Thought prompting encourages the LLM to ex-
plicitly generate intermediate reasoning steps, improving logical consistency on complex queries.

• Self-Consistency (Wang et al., 2023c): Self-consistency prompting samples multiple reasoning
chains and aggregates their results, reducing random errors and improving answer stability.

E.2 LLM ⊗ KGS

• Think-on-Graph (Sun et al., 2024): Think-on-Graph models reasoning as an agent-based explo-
ration, where the LLM iteratively traverses the knowledge graph to build interpretable paths.

• Reasoning-on-Graph (Luo et al., 2024): Reason-on-Graph constrains LLM outputs to faithful
graph-grounded reasoning paths, improving interpretability and correctness of answers.

• KG-Agent (Jiang et al., 2025): An autonomous agent framework that formalizes multi-hop rea-
soning as program execution with KG queries, external tool use, and memory updates.
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• StructGPT (Jiang et al., 2023a): A structured generation framework where LLMs are guided by
schema-constrained prompts to produce reasoning paths over structured data.

• Plan-on-Graph (Chen et al., 2024b): Plan-on-Graph decomposes complex queries into struc-
tured sub-goals and adaptively plans reasoning paths on the KG, enabling better compositional
reasoning.

• ReKnowS (Wang et al., 2025): ReKnowS introduces the concept of super-relations to connect
multiple relational paths, allowing bidirectional reasoning and improving retrieval efficiency.

• KB-BINDER (Li et al., 2023a): KB-BINDER bridges LLM reasoning with KG facts using a
binding mechanism that grounds parametric knowledge in structured evidence.

• Debate-on-Graph (Ma et al., 2025): Debate-on-Graph models reasoning as a multi-agent debate,
where different agents generate and critique reasoning paths to improve reliability.

E.3 END-TO-END FINE-TUNED KG-AUGMENTED LLMS

• RnG-KBQA (Ye et al., 2022): A generation-augmented KBQA model that iteratively ranks can-
didate answers, combining generative reasoning with retrieval.

• TIARA (Shu et al., 2022): A multi-grained retrieval framework designed to strengthen robustness
of KBQA systems against noisy or incomplete evidence.

• FC-KBQA (Zhang et al., 2023): Fine-to-Coarse composition framework that first retrieves broad
candidates and then refines answers hierarchically for complex KBQA.

• Pangu (Gu et al., 2023): An end-to-end KBQA model that emphasizes compositional general-
ization, allowing it to handle more complex query structures.

• FlexKBQA (Li et al., 2024b): A flexible, LLM-powered KBQA framework designed for few-
shot learning and adaptable to low-resource settings.

• GAIN (Shu & Yu, 2024): A KBQA method optimized for distribution shifts, making reasoning
more robust across different domains and data splits.

E.4 GRAPH-RETRIEVAL METHODS

• GNN-RAG (Mavromatis & Karypis, 2025): A deep learning method uses graph neural networks
to retrieve the most relevant nodes and subgraphs for LLM reasoning.

• SubgraphRag (Li et al., 2025): A method builds and retrieves localized subgraphs to provide
structured graph context for LLMs.

F STATISTICAL ANALYSIS OF MAJOR COMPONENTS

We conduct analysis to measure the proportion of questions for which the search process prematurely
prunes the correct path (reported as truncation rate). The results are as follows.

Table 9: Truncation Rate.
Method Truncation Rate (%)

PoG 38.82
PARoG 19.48

Moreover, to better understand how often the tentative answers produced by the LLM are incorrect,
we list the correctness rate (%) in the initial answers generated by LLM as shown in Table 10.

Table 10: Correctness rate of initial answers (%).
Dataset WebQSP CWQ GrailQA

Correctness rate of initial answers (%) 61.7 28.9 43.4

These numbers verify that LLM parametric knowledge is often incomplete or unreliable, highlight-
ing the necessity of a refinement stage grounded in KG execution.
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G STABILITY AND SENSITIVITY ANALYSIS

To analyze the stability of the proposed method, we run the experiments under three seeds and report
the mean ± 95% CI for different settings. The results are shown in Table 11, 12 and 13.

Table 11: Stability Analysis on main datasets.
Method WebQSP GrailQA CWQ

GPT-3.5

ToG 76.4 ± 1.9 68.9 ± 1.5 57.2 ± 1.8
PoG 82.1 ± 2.2 76.5 ± 2.1 63.2 ± 1.2
PARoG 89.0 ± 1.3 82.7 ± 1.5 73.1 ± 0.9

GPT-4

ToG 80.7 ± 1.7 80.9 ± 1.4 65.6 ± 2.2
PoG 87.3 ± 1.5 84.3 ± 1.8 75.0 ± 1.4
PARoG 91.2 ± 0.9 87.1 ± 1.3 79.3 ± 1.1

Table 12: Stability analysis on w/ or w/o Self-Refinement (SR).
Method WebQSP GrailQA CWQ

GPT-3.5

w/o SR 88.0 ± 1.6 78.9 ± 1.4 69.2 ± 1.2
w/ SR 89.0 ± 1.3 82.7 ± 1.5 73.1 ± 0.9

GPT-4

w/o SR 89.7 ± 1.1 85.5 ± 1.4 77.2 ± 1.0
w/ SR 91.2 ± 0.9 87.1 ± 1.3 79.3 ± 1.1

Table 13: Stability and Sensitivity analysis on different planners.
Method # Para WebQSP GrailQA CWQ

General LLMs

GPT-3.5 ∼ 20B 83.1 ± 1.4 76.7 ± 1.6 65.4 ± 1.2
Deepseek-R1 671B 88.2 ± 1.5 80.2 ± 1.3 68.7 ± 1.1

Ours

llama3.1-8B 8B 89.0 ± 1.3 82.7 ± 1.5 73.3 ± 0.9
llama3.2-1B 1B 87.2 ± 1.2 79.1 ± 1.6 68.5 ± 1.1
llama2-13B 13B 88.4 ± 1.4 81.9 ± 1.2 70.3 ± 1.0

Notably, PARoG shows higher accuracy and consistently smaller confidence intervals than all base-
lines. Moreover, the smaller planner outperforms larger general LLMs. Even the smallest 1B planner
still achieves comparable performance compared to Deepseek-R1, confirming that SPARQL-guided
training provides a stronger planning signal than scaling model size alone. These results prove the
stability and reproducibility of the SPARQL-guided planner and the Answer-Refine mechanism.

H EFFICIENCY TRADE-OFFS.

To better characterize the efficiency–accuracy trade-off, we conducted an additional study varying
the maximum planning iterations in PARoG as shown in Figure 6. Unlike existing methods, PARoG
does not use a fixed beam width. Instead, it maintains a dynamic beam, while the overall search
budget is controlled by the maximum number of planning iterations.
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Figure 6: Efficiency Trade-offs.

I CASE STUDY

To better understand the reasoning improvements brought by our proposed method, we analyze two
representative failure cases from the baseline method Planning-on-Graph (PoG) and contrast them
with the corresponding inference paths of our model (PARoG), as shown in Table 14.

Table 14: Examples of reasoning conducted by PARoG. Red denotes incorrect reasoning paths and
answers, while green denotes correct ones.

Case 1: Composition plan error

Question What is considered modern in the country where Bilady, Bilady, Bilady language is the
national anthem?

Answer Modern Standard Arabic

PoG

# Plan: [Identify the country where ”Bilady, Bilady, Bilady” is the national anthem, Re-
search the definition of ”modern” in the context of countries]
# Reasoning Path: m.0478lbx→ government.national anthem of a country.anthem→ Bi-
lady, Bilady, Bilady
m.0478lbx→ government.national anthem of a country.country→ Egypt
# Answer: Egypt

PARoG

# Plan: [Identify the country where ”Bilady, Bilady, Bilady” is the national anthem, Re-
search modern cultural, social, or technological aspects in that country]
# Reasoning Path: m.0478lbx→ government.national anthem of a country.anthem→ Bi-
lady, Bilady, Bilady
m.0478lbx→ government.national anthem of a country.country→ Egypt
Egypt→ location.country.languages spoken→Modern Standard Arabic
# Answer: Modern Standard Arabic

Case 2: Parametric Knowledge Bridging KG Gaps

Question What movies did Adam Sandler play in and is about Christmas?

Answer Eight Crazy Nights

PoG
# Reasoning Path: Adam Sandler→ film.actor.film→ {Eight Crazy Nights,The Chanukah
Song, Reign Over Me, Funny People, The Meyerowitz Stories, The Week Of}
# Answer: The Chanukah Song

PARoG

# Reasoning Path: Adam Sandler→ film.actor.film→{Eight Crazy Nights, Funny People,
Reign Over Me, etc.}
LLM answers:Eight Crazy Nights is about Christmas
# Answer: Eight Crazy Nights
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I.1 CASE 1: COMPOSITION PLAN ERROR

This example investigates the question:

What is considered modern in the country where Bilady, Bilady, Bilady language is the national anthem?

The question requires a two-hop reasoning process: (1) identify the country given the national an-
them, and (2) determine the language that is considered “modern” in that country. The baseline PoG
fails in the planning stage by misinterpreting the intent of “modern” as referring to the country itself
rather than a language. As a result, it outputs “Egypt” as the final answer, which is incomplete and
incorrect.

In contrast, PARoG correctly preserves the linguistic intent of the original question during the plan-
ning phase. Unlike PoG, which misinterprets ”modern” as referring to a modern country, PARoG
correctly interprets it as referring to a modern language spoken in the identified country.

It first identifies Egypt as the country where ”Bilady, Bilady, Bilady” is the national anthem—same
as PoG—but goes a step further by reasoning that Modern Standard Arabic is the relevant modern
language spoken in Egypt. This is captured in the following reasoning path:

Egypt → languages spoken → Modern Standard Arabic

By grounding the abstract query term ”modern” into a specific linguistic attribute, PARoG success-
fully answers the question with Modern Standard Arabic, demonstrating its ability to disambiguate
vague terms and construct semantically aligned plans that lead to correct, complete answers.

This case highlights the strength of the Plan-Answer-Refine framework in maintaining semantic
consistency and avoiding reasoning drift during multi-hop KGQA.

I.2 CASE 2: PARAMETRIC KNOWLEDGE BRIDGING KG GAPS

We also examine the following question:

What movies did Adam Sandler play in and is about Christmas?

The PoG baseline retrieves several films involving Adam Sandler—such as The Chanukah Song,
Reign Over Me, and Funny People—but it fails to search whether these movies are related to Christ-
mas, ultimately yielding the incorrect result The Chanukah Song. In contrast, PARoG follows a
similar retrieval process and also identifies several films involving Adam Sandler through its agent
module. However, despite failing to retrieve any explicit evidence from the knowledge graph re-
garding the ”Christmas” constraint, PARoG demonstrates a more robust and semantically grounded
refinement process. By leveraging the parametric knowledge encoded within the LLM, it success-
fully infers that Eight Crazy Nights is a Christmas-themed film. This case illustrates the strength of
the plan-answer-refine paradigm in producing correct answers even when symbolic evidence from
the KG is absent, showcasing the complementary power of LLM-based reasoning.

J FAILURE CASE ANALYSIS

Table 15 presents representative failure cases of PARoG and highlights the underlying causes across
three major error categories. Case 1 illustrates a relation-selection error, where the planner or ex-
ploration stage selects a relation chain which is semantically plausible but ultimately incorrect(e.g.,
directed by instead of actor-performance relations), diverting the search away from the gold path.
Case 2 shows an instance of incomplete multi-branch retrieval, where the system successfully re-
covers the film-related path but misses an additional TV-series branch required to produce the full
multi-answer set. This demonstrates that although PARoG effectively handles compositional con-
straints, multi-source answer aggregation remains challenging when evidence spans heterogeneous
subgraphs. Case 3 shows a failure case caused by KG incompleteness: when numerical attributes
or relational paths needed to instantiate a constraint are absent from the underlying KG, PARoG
is unable to retrieve the gold entity and must instead rely on parametric knowledge, often leading
to incorrect final predictions. Overall, these cases reveal that remaining errors primarily stem from
(i) subtle relation disambiguation, (ii) multi-branch retrieval coverage, and (iii) missing or incom-
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Table 15: Failure cases of PARoG and corresponding error causes.
Case 1: Relation selection error

Question What movie did Ron Howard do with cinematography was by Mark Irwin?

Ground truth Osmosis Jones

error cause

# PARoG Reasoning Path: Mark Irwin→ film.cinematographer.film→Scream
Ron Howard”→ film.film.directed by→Apollo 13
Answer:Scream
# Ground truth path: Ron Howard→ film.actor.film→ m.03g24
m.03g24→ film.performance.film→ Osmosis Jones
Osmosis Jones→ film.film.cinematography→Mark Irwin
# Cause: Incorrect relation selection (choosing film.film.directed by and
film.cinematographer.film instead of the actor–performance relations) diverts explo-
ration to irrelevant paths, thereby missing the gold answer.

Case 2: Incomplete multi-answer retrieval (partial answer set)

Question who plays blaine in batman

Ground truth Matthew Wagner,Danny Trejo,Carlos Alazraqui,Tom Hardy

error cause

# PARoG reasoning path (only one branch retrieved):
# Film path retrieved:
Blaine→ film.film character.portrayed in films→
film.performance.actor→ Tom Hardy, Carlos Alazraqui, Matthew Wagner
Missing actor from the TV branch: Danny Trejo.

# Ground truth path (union of two branches):
# Film path:
Blaine→ film.film character.portrayed in films→
film.performance.actor→ Tom Hardy, Carlos Alazraqui, Matthew Wagner
# TV path:
Blaine→ tv.tv character.appeared in tv program→
tv.regular tv appearance.actor→ Danny Trejo

# Cause: The ground-truth answer set is formed by the union of a film path and a TV
path, but PARoG identifies only one branch (film) and overlooks the tv program branch,
resulting in an incomplete multi-answer retrieval.

Case 3: Path absence due to KG incompleteness.

Question What countries in Oceania, that have the emissions per capita in dated metric ton of
0.091351?

Ground truth Papua New Guinea

error cause

PARoG Reasoning: Cook Islands is a country in Oceania that has emissions per capita of
0.091351 metric tons
Path absence due to KG incompleteness. The KG does not contain a valid relational path
that instantiates the numeric condition 0.091351 (i.e., this value is missing/not represented),
so PARoG cannot retrieve the exact matching entity and is forced to Use the LLM internal
Knowledge.

plete KG facts—providing actionable directions for future improvements such as stronger relation
grounding, expanded query branching, and KG-aware confidence estimation.

K SEARCH SPARQL

we define several SPARQL queries for Freebase queries, which can be executed to search the relation
and entity in the Knowledge graph
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PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?relation
WHERE {

ns:mid ?relation ?x .
}

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?relation
WHERE {

?x ?relation ns:mid .
}

K.1 ENTITY SEARCH

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?tailEntity
WHERE {

ns:mid ns:relation ?tailEntity .
}

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?tailEntity
WHERE {

?tailEntity ns:mid ns:relation .
}

K.2 ENTITY NAME

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?tailEntity
WHERE {

{
?entity ns:type.object.name ?tailEntity .
FILTER(?entity = ns:mid)

}
UNION
{

?entity <http://www.w3.org/2002/07/owlsameAs> ?tailEntity .
FILTER(?entity = ns:mid)

}
}

L PROMPT TEMPLATES FOR LLM AGENTS

We introduce the full prompting strategy used in our framework, which can be divided into two main
stages:

• Data Generation Stage: Generating training data from SPARQL queries.

• Agent Reasoning Stage: Guiding the LLM through the full Plan-Answer-Refine reasoning pro-
cedure based on decomposed subgoals and retrieved knowledge.

L.1 DATA GENERATION STAGE:

For each input question, GPT-4o produces a set of decomposed sub-questions that reflect the logical
structure of the underlying SPARQL query.Here we display the prompt we use to generate the sub-
question.
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L.1.1 DATA GENERATE

Please break down the process of answering the question into as few
subobjectives as possible based on semantic analysis and sparql

Now you need to directly output subobjectives of the following question
in list format like the example above. The output format should be [
subobjective1, subobjective2,...]

Q: \{Query\}

Sparql: \{Sparql Query\}

Output:

L.2 AGENT REASONING STAGE:

We detail the complete prompt templates used in our iterative reasoning framework, including an-
swer initialization, relation/entity pruning, state updating, and self-refinement.

L.3 INIT ANSWERING

ased on your own knowledge, output the current known information required
to achieve the subobjectives.

\texttt{In-Context Few-shot}

Q: \{Query\}

Subobjectives:\{list of sub questions\}

Now you need to directly output the results of the following question in
JSON format without other information or notes.

Output:

L.4 RELATION PRUNE

Please provide as few highly relevant relations as possible to the
question and its subobjectives from the following relations.

\texttt{In-Context Few-shot}

Q: \{Query\}

Subobjectives:\{list of sub questions\}

Topic Entity: \{Topic Entity\}

Relations: \{list of relations\}

output:

The LLM is instructed to directly select a subset of candidate relations(No thresholds), we do not
set a fixed thresholds.and this discrete selection is used as the pruned relation set; we do not apply
any additional numeric thresholds on LLM scores.
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L.5 ENTITY PRUNE

For each triple pattern (e,r,?)(e, r, ?)(e,r,?), we construct a prompt of the form.

Which entities in the following list ([] in Triples) can be used to
answer question? Please provide the minimum possible number of
entities, and strictly adhering to the constraints mentioned in the
question.

Now you need to directly output the entities from [] in Triplets for the
following question in list format without other information or notes.

\texttt{In-Context Few-shot}

Q: \{Query\}

Subobjectives:\{list of sub questions\}

Relation: \{Current Relation\}

Entites: \{list of entities\}

output:

The LLM is prompted to directly choose a subset of the provided candidate entities that are most
relevant for answering the question(no thresholds).similarly,we do not set a fixed threshold.

L.6 UPDATE THE KG REASONING STATE

Based on the provided information to revise the memory,if the memory has
conflict with the provided information,use the provided information
to revise the memory.If the provided information is not enough to
revise the memory, keep the memory unchanged.

\texttt{In-Context Few-shot}

Now you need to directly output the results of the following question in
JSON format without other information or notes.

Q: \{Query\}

Memory: \{the status of the sub-questions\}

Knowledge triples: \{Explored Paths\}

output:

Q: \{Query\}

Knowledge triples: \{Explored Paths\}

Output:

L.7 SELF-REFINE

Given the question and the associated retrieved knowledge graph triples (
entity, relation, entity), you are asked to

self-refine the initial answers based on them. if the initial answers
have conflict with the provided information,use the provided
information to refine them.If the provided information is not enough
to refine the answers, keep the answers unchanged.
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\texttt{In-Context Few-shot}

Q: \{Query\}

Knowledge triples: \{Explored Paths\}

Inital answers:\{The inital answers generated by the llm\}

Output:

L.8 ANSWER

PARoG runs an iterative plan–answer–refine loop with two complementary stopping conditions.
First, we cap the planning horizon by a fixed maximum number of iterations. Second, at each
iteration we call a final-answer head that takes the original question, the currently explored KG
paths, and the refined result of resolved sub-questions as input.

Please answer the question based on the memory, related knowledge
triplets and your knowledge.

Now you need to directly output the results of the following question in
JSON format (must include "A" and "R") without other information or
notes.

\texttt{In-Context Few-shot}

Q: \{Query\}

Knowledge triples: \{Explored Paths\}

Memory: \{the status of the sub-questions\}

Output:

The model is required to output a JSON object with keys ”A” (final answer) and ”R” (short ratio-
nale). If the predicted answer field ”A” is non-empty and not an “unknown” placeholder, we accept
it and terminate the whole process early, without further KG exploration. Otherwise, we continue to
the next iteration until either a satisfactory answer is produced or the maximum iteration is reached,
in which case we fall back to answering based on the LLM’s own parametric knowledge plus the
accumulated triples in the context.
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