

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PLAN-ANSWER-REFINE-ON-GRAPH: STRUCTURED PLANNING AND SELF-REFINEMENT FOR LARGE LAN- GUAGE MODEL REASONING ON KNOWLEDGE GRAPHS

Anonymous authors

Paper under double-blind review

ABSTRACT

Incorporating knowledge graphs (KGs) into large language model (LLM) reasoning has shown promise in alleviating hallucinations and factual errors. Although existing paradigms of KG-augmented LLMs have achieved encouraging results, they still exhibit notable limitations when handling multi-hop reasoning and complex logical queries: (1) search space truncation bias: current methods generate linear entity-relation reasoning paths, which can prune correct candidates prematurely during iterative exploration; and (2) entity error amplification: existing methods typically follow the retrieve-and-answer paradigm which causes LLMs to over-rely on retrieved evidence, exacerbating the impact of incorrect entities during reasoning. To alleviate the existing challenges, we propose Plan-Answer-Refine-on-Graph (PARoG), a novel framework for LLM reasoning on knowledge graphs. First, PARoG leverages SPARQL queries from KG data as references, decomposing them into structured step-by-step plans. We further train LLMs to construct such structured plans, which improves the logical consistency of reasoning, ensures uniform step granularity, and facilitates effective execution on the graph. Second, during reasoning over KGs, PARoG adopts a plan-answer-refine paradigm: the model first attempts to answer each sub-query independently, and then refines its prediction by integrating evidence retrieved from the KG. This process mitigates knowledge conflicts between LLM and KG, substantially reducing hallucinations. Experimental results on multiple KG reasoning benchmarks demonstrate that PARoG significantly outperforms state-of-the-art approaches, achieving especially superior accuracy on multi-hop and logically complex queries. Our code is available at <https://anonymous.4open.science/r/prog-D8CD>

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; Ouyang et al., 2022; OpenAI et al., 2023; Dubey et al., 2024; Guo et al., 2025) have demonstrated remarkable reasoning capabilities in a wide range of complex natural language processing tasks (Bang et al., 2023; Zhao et al., 2023; Huang & Chang, 2023; Qiao et al., 2023). However, LLMs remain prone to hallucinations and factual errors in real-world applications due to their reliance on implicit parametric knowledge (Hu et al., 2023; Wang et al., 2023a; Huang et al., 2024). Knowledge graphs (KGs), as large-scale structured external source of factual knowledge, offer explicit, interpretable relational structures which can ground LLM reasoning, providing a natural complement to limitations of LLMs (Pan et al., 2024).

Recent LLM \otimes KG approaches can be categorized into two paradigms. The first leverages step-wise graph exploration, where LLMs iteratively perform entity-relation walks to progressively construct reasoning paths (Sun et al., 2024; Ma et al., 2025). The second generates global reasoning plans where questions are decomposed into sub-objectives and the KG is queried along the planned path to obtain external information (Luo et al., 2024; Chen et al., 2024b). Though demonstrating notable improvements, these methods often struggle with complex logical queries that involve conjunctions or multiple constraints. Our systematic analysis of existing approaches (as described in Appendix B) identifies the following two fundamental limitations.

Figure 1: Illustration of the challenges in the existing methods and how our proposed PARoG addresses these issues: I. Search Space Truncation Bias and II. Error Amplification.

Search Space Truncation Bias due to Linear Reasoning Paths. Current methods construct reasoning paths primarily along linear entity–relation steps, iteratively expanding from one entity to its neighbors. To control the combinatorial explosion of graph exploration, they prune candidate entities at each step (e.g., using top-k selection). While efficiency, this strategy often eliminates correct entities prematurely. For instance in Figure 1 (I-a), the correct answer *Germany* is eliminated early due to pruning, leading to an incorrect prediction. A more reasonable planning strategy would first decompose the question into two sub-problems: (i) identify countries bordering France, and (ii) identify countries with airports serving Nijmegen, and then compute the conjunction of these results. The limited planning capability of existing methods fundamentally biases the search space and limits reasoning performance.

Error Amplification from Faulty Entities and Relations. LLM-generated reasoning paths may introduce spurious or weakly related entities and relations during KG exploration. Existing methods typically follow a retrieve-and-answer paradigm, where the LLM heavily relies on the retrieved evidence to produce the final answer. This reliance amplifies errors. For example in Figure 1 (II-a), during graph-based reasoning, the system retrieves facts such as "*Dennis Daugaard was appointed by David Anderson in South Dakota*" and "*Missouri River is partially constrained by South Dakota, USA*". Though individually correct, the knowledge are not sufficiently directly connected to answer the question. Existing methods typically make the LLM to over-rely on the retrieved information, attempt further reasoning steps, and ultimately fail to produce the correct answer.

To alleviate these challenges, we propose a Plan–Answer–Refine framework (PARoG), a hybrid reasoning paradigm that tightly integrates structured explicit guidance with parametric LLM reasoning. As shown in Figure 2, our method introduces two key technical contributions. First, we leverage SPARQL queries as the structured references to supervise planning and train the planning module using a relatively smaller model (e.g. Llama-3.1-8B) to generate flexible, compositional reasoning paths that allow complex logical operations over sub-queries (e.g. conjunctions, compositions, superlatives and comparatives). For example in Figure 1 (I-b), instead of searching sequentially from "France" to its neighboring countries and then their airports, the model can generate conjunctive sub-objectives such as "find countries bordering France" and "find countries with airports serving Nijmegen," then reason over the combination of the sub-objectives, which mitigates search space truncation bias by moving beyond linear expansions. Second, rather than committing to retrieved entities in a one-shot retrieve-and-answer paradigm, PARoG first produces a tentative answer using its parametric knowledge and then explicitly refines it by referring to the retrieved KG entities as shown in Figure 1 (II-b). This refinement step overrides earlier faulty evidences, preventing error amplification due to spurious entities or weakly related relations. Our main contributions are as follows:

Figure 2: Overall framework of the proposed PARoG. Unlike prior methods that sequentially expand entity-relation paths with pruning, and follow the one-shot retrieve-and-answer paradigm, PARoG combines (a) structured planning with (b) iterative self-refinement, enabling robust handling of complex logical queries with conjunctions, compositions, comparisons, superlatives.

- We propose leveraging SPARQL as structured references to supervise planning to train the model to generate compositional reasoning paths, which enables the model to handle complex logical reasoning including conjunction, composition, superlative and comparative queries.
- We propose a plan-answer-refine framework, where the agent first attempts to answer then explicitly refines the results using retrieved evidence. This step reduces error propagation caused by faulty entities or relations involved in the reasoning paths.
- We introduce a novel framework PARoG by combining the proposed techniques and evaluate the performance on multiple real-world KGQA datasets. The experimental results demonstrate significant improvements over state-of-the-art baselines.
- We provide further analysis demonstrating that PARoG uses a relatively small model (e.g. Llama-3.1-8B (Dubey et al., 2024)) to generate reasoning paths, yet its performance can surpass larger planning LLMs (e.g. ChatGPT OpenAI et al. (2023) or Deepseek-R1 (Guo et al., 2025)). We also discuss the broader impact of using structured symbolic guidance with LLM reasoning beyond KGQA.

2 PRELIMINARIES

Knowledge Graph. A *knowledge graph* (KG) is composed of a large set of fact triples, represented as a graph $\mathcal{G} = \{\langle e, r, e' \rangle \mid e, e' \in \mathcal{E}, r \in \mathcal{R}\}$, where \mathcal{E} and \mathcal{R} denote the sets of entities and relations respectively. For KGQA tasks in this paper, we assume the availability of a KG that contains the entities relevant to answering the given natural language question.

SPARQL Query Language. SPARQL (SPARQL Protocol and RDF Query Language) is a formal query language which allows users to query structured knowledge bases. Given a question q , the SPARQL query \mathcal{S} specifies a pattern of triples to match against the knowledge graph G . A general SPARQL query consists of a SELECT clause that specifies the variables to retrieve, and a WHERE clause that defines the graph pattern to match. In our method, SPARQL queries are used to supervise the generation of reasoning paths by decomposing complex queries into smaller sub-queries. Figure 2 provides an example of SPARQL query.

162 **3 METHODOLOGY**

164 In this section, we present PARoG, a novel hybrid reasoning framework which integrates structured
 165 guidance planning with parametric reasoning and refinement over knowledge graphs. As shown in
 166 Figure 2, PARoG comprises 2 major stages:SPARQL-Guided Structured Planning-training LLMs
 167 to generate compositional planning of sub-objective paths based on SPARQL-guided supervision
 168 for knowledge graph exploration, and Plan-Answer-Refine Paradigm-iteratively completing a sub-
 169 objective with parametric knowledge and then correcting the answer using external KG evidence to
 170 mitigate errors and inconsistencies.

171 **3.1 SPARQL-GUIDED STRUCTURED PLANNING**

174 The current $LLM \otimes KG$ paradigm typically generates linear entity-relation reasoning paths. In this
 175 process, the model starts from an entity and iteratively explores its neighbors by following predefined
 176 $\langle entity\text{-}relationship\text{-}entity \rangle$ paths . While effective for simple queries, this linear path generation
 177 often fails to capture complex multi-step reasoning required for more sophisticated queries. Specifi-
 178 cally, when reasoning over complex questions involving compositionality, conjunctions, compar-
 179 atives, or superlatives, LLMs inherent behavior of linear exploration can lead to *Search Space Trun-
 cation Bias*, where pruning intermediate candidates prematurely eliminates correct answers.

180 **SPARQL-Guided Supervision.** To address this issue, we propose to use SPARQL queries as a
 181 structured guide for reasoning. SPARQL inherently supports complex queries that involve logical
 182 operations. In this paper, we consider the following operation types:

- 184 • **Conjunctions:** finding entities that satisfy multiple constraints simultaneously. *e.g. Find coun-
 185 tries that border France and have airports serving Nijmegen.*
- 186 • **Compositions:** expressing queries where the output of one relation serves as the input to another.
 187 *e.g. Find the capital city of the country that has airports serving Nijmegen.*
- 188 • **Comparatives:** retrieving entities based on relative attributes. *e.g. Find countries larger than
 189 France in area and have airports serving Nijmegen.*
- 190 • **Superlatives:** selecting the best entity according to a ranking predicate. *e.g. Find the largest city
 191 bordering France.*

193 When the intermediate candidate set is large, these query types cannot be properly handled using
 194 linear entity-relation paths but are essential for real-world KGQA tasks.

195 **SPARQL-to-Planning.** To transfer this expressiveness into model training, we leverage SPARQL
 196 queries as guidance signals and use state-of-the-art LLMs to automatically generate planning data
 197 from complex questions. For each input question, GPT-4o produces a set of decomposed sub-
 198 questions that reflect the logical structure of the underlying SPARQL query. Specifically, we design
 199 a systematic pipeline to automatically construct a large-scale dataset tailored for KGQA tasks. The
 200 graph-matching process in SPARQL naturally decomposes a complex query into a sequence of con-
 201secutive search operations and constraints, thereby providing a precise planning path for identifying
 202 intermediate sub-objectives. Building upon this observation, the SPARQL-to-Planning pipeline con-
 203 sists of the following two steps.

- 204 • **Source Data Collection.** We first select diverse $\langle Question, SPARQL \rangle$ pairs of multi-hop queries
 205 from public KGQA training datasets including WebQSP(Yih et al., 2016), CWQ (Talmor & Be-
 206 rant, 2018), and GrailQA (Gu et al., 2021). These pairs serve as the foundation for aligning
 207 natural language with structured reasoning.
- 208 • **Semantic Consistency Mapping.** With the collected data, we decompose the SPARQL queries
 209 into sub-operations and then translate each atomic operation into a fluent natural language ques-
 210 tion as single sub-objective of the reasoning plan. Following that, we also rephrase the decom-
 211 posed sub-objective sequence back to natural language queries to maintain the semantic consis-
 212 tency. Instead of the original questions, we use the rephrased natural language queries and the
 213 generated sub-objectives as the training data

214 During dataset construction, the SPARQL queries are decomposed into atomic operations to main-
 215 tain the consistency across plan steps. In this paper, we use GPT-4o Hurst et al. (2024) to automate

the overall process. Finally, the pipeline produces 74,802 high-quality decomposition examples covering a wide range of query types and reasoning depths. The statistics of different query types are summarized in Figure 3.

Model Training. We employ a relatively small but powerful open-source model Llama-3.1-8B Dubey et al. (2024) as the foundation backbone. The training objective follows the standard autoregressive language modeling loss. Specifically, the input template is formatted as following.

Instruction: Decompose the following complex question into a logical sequence of simpler sub-questions.
Input: Question: [The original complex question]
Response: 1. [First sub-question] 2. [Second sub-question] 3. ...

Specifically, given the input tokens \mathbf{x} , the model parameters θ are optimized by minimizing the negative log-likelihood:

$$\arg \min_{\theta} \mathcal{L}(\theta) = - \sum_i^H \sum_j^{T_h} \log P_{\theta}(o_{i,j} | \mathbf{o}_{i,<j}^h, \mathbf{x}) \quad (1)$$

where H and T_h dea the total number of sub-objectives and the token number of a single sub-objective respectively, and $\mathbf{o}_i = \{o_{i,1}, \dots, o_{i,T_h}\}$ is the h -th sub-objective. With supervised training, the model learns to map complex natural language questions into sequences of structured sub-questions which mirror SPARQL compositional logic. This training equips the planning module with the ability to produce complex logical reasoning paths (e.g. conjunctions or comparatives), ensuring correct entities are preserved during exploration and mitigating the Search Space Truncation Bias of existing approaches.

3.2 PLAN-ANSWER-REFINE PARADIGM

Another fundamental challenge for LLM \otimes KG reasoning is *Error Amplification from Faulty Entities and Relations*. Existing methods typically adopt the one-shot retrieve-and-answer paradigm, where LLM generates a reasoning path, retrieves corresponding entities and relations from the KG, and then directly uses these retrieved facts to finalize an answer. Though intuitive, this paradigm suffers from two issues:

- **Error Propagation.** When a spurious or weakly related entity is introduced by the reasoning path, the subsequent steps will propagate and accumulate this error.
- **Over-Reliance on Retrieval.** LLMs often assumes the retrieved evidences from KG to be correct and sufficient, even when the external information only partially address the query. This over-reliance prevents the model from self-correcting, leading to faulty answers.

To mitigate this challenge, we introduce the plan-answer-refine mechanism. We employ the LLMs to generate a tentative answer using the parametric reasoning ability and then leverage the KG reasoning agent to iteratively explore the knowledge graph to obtain external information and refine the answer by adjusting entities or relations. The algorithmic procedure of this mechanism is summarized in Appendix C.

Answering. Let \mathcal{O} denotes the reasoning plan generated by the planning module. For each sub-objective $o_i \in \mathcal{O}$ generated by the planning module, the initial step is leveraging a LLM \mathcal{M} to generate a tentative answer as:

$$\hat{a}_i = \mathcal{M}(Q, o_i, I_A) \quad (2)$$

where I_A denotes a predefined instruction template and Q is the input question.

Exploration. The KG exploration process of PARoG is similar to existing work (Sun et al., 2024; Chen et al., 2024b). To be specific for each sub-objective, PARoG starts from an initial entity and iteratively exploring the knowledge graph. Following previous work (Sun et al., 2024; Jiang et al., 2023a), the iterations begins with a set of n_0 topic entities $\mathcal{E}_0 =$

Figure 3: Statistics of different query types of the generated planning data.

270 $\{e_1^0, e_2^0, \dots, e_{n_0}^0\}$. For the i -th iteration ($i > 1$), we first obtain the current set of K reasoning paths $\mathcal{P}_{i-1} = p_1^{i-1}, \dots, p_K^{i-1}$ after previous $i-1$ iterations. Here, each reasoning path $p_k^{i-1} = [(e_{s,k}^{i-1,1}, r_k^{i-1,1}, e_{o,k}^{i-1,1}), \dots, (e_{s,k}^t, r_k^{i-1,t}, e_{o,k}^{i-1,t}), \dots, (e_{s,k}^{T_k}, r_k^{i-1,T_k}, e_{o,k}^{T_k})]$ is a sequence of T_k triples ($T_k < i$) where t indexes the elements, $e_{s,k}^{i-1,t}$ and $e_{o,k}^{i-1,t}$ denote the subject and object entities respectively, and $r_k^{i-1,t}$ is a relation linking them. Then, we continue to extend the reasoning paths forward based on the current triples. Concretely, the set of tail nodes in the current reasoning paths is denoted by $\mathcal{E}_{i-1} = \{e_1^{i-1}, e_2^{i-1}, \dots, e_{n_k}^{i-1}\}$ and the relation set is represented as $\mathcal{R}_{i-1} = \{r_1^{i-1}, r_2^{i-1}, \dots, r_{n_k}^{i-1}\}$. We then expand the reasoning path through searching over relations entities. With the original question Q and sub-objectives \mathcal{O} , we leverage the LLMs to select the most relevant relations and entities. Specifically, during the relation searching stage, we begin with all relations connected to the tail entities in E^{i-1} , which are denoted by $\mathcal{R}_{init}^K = \{r_{init,1}^i, r_{init,2}^i, \dots, r_{init,n}^i\}$, and employ the LLM to filter out irrelevant relations. In this step, the entire reasoning plan O is also provided to the LLM so that the model maintains awareness of the global reasoning objective, thereby preventing it from over-focusing on local. Given the tail entities and filtered relations, the missing entities are obtained using predefined SPARQL query templates such as $(e, r, ?)$ or $(?, r, e)$. When all the entities are obtained, we leverage the model to further calculate the relevance between the retrieved entities and the current sub-objective o_i and the question Q . The most relevant entities from a large set of candidates are reserved to update the reasoning path set, which is denoted by \mathcal{P}_i .

290 **Self-Refinement.** After each KG exploration iteration, PARoG explicitly re-evaluate the tentative
 291 answer against the retrieved evidences. If inconsistencies or supplementary are detected, PARoG
 292 refines the result by adjusting entities or relations, effectively correcting errors from earlier steps.
 293 Specifically we use the LLM \mathcal{M} to correct answer a_i as:

$$a_i = \mathcal{M}(\mathcal{P}_i, o_i, \hat{a}_i, I_R) \quad (3)$$

294 where \mathcal{P}_i denotes the set of retrieved triples in the current iteration, and I_R is the instruction prompt.
 295 It is also worth noting that we also explicitly ask the LLM to judge whether the retrieved knowledge
 296 aligns with the question; if it does not, the generated tentative answer is directly used instead.
 297

298 After each round of self-refinement, PARoG is leveraged to determine whether the current result
 299 a_i is sufficient to answer the overall question Q . If the answer is "yes", we stop searching and use
 300 a_i as the final answer to avoid over-exploration. Otherwise, PARoG continues iterative searches
 301 until PARoG finds enough knowledge or reach the maximum number of iterations. Unlike existing
 302 methods, PARoG introduces a mechanism that explicitly integrates the parametric knowledge of
 303 LLMs with external knowledge, reducing reliance on any single retrieval and providing resilience
 304 against misleading entities or relations.

4 EXPERIMENTS

305 **Datasets.** We conduct comprehensive experiments on multiple Knowledge Graph Question Answering
 306 (KGQA) benchmark datasets to evaluate the effectiveness of our proposed approach. Specifically,
 307 we utilize three widely-adopted datasets: WebQSP (Web Questions Semantic Parses) (Yih
 308 et al., 2016), GrailQA (Strongly Generalizable Question Answering) (Gu et al., 2021), and CWQ
 309 (ComplexWebQuestions) (Talmor & Berant, 2018). All three datasets are grounded on the Freebase
 310 knowledge graph, which contains 88 million entities, 20K relations and 126 million triplets, making
 311 it one of the most comprehensive knowledge bases for KGQA evaluation.

312 **Metrics.** For evaluation, we adopt the Exact Match accuracy (Hits@1) as our primary metric, which
 313 measures the percentage for which the predicted answer exactly matches the ground truth. This
 314 ensures that our evaluation strictly reflects the capability to provide precise answers rather than
 315 partially correct responses. The results are averaged over three seeds and reported as mean \pm 95%
 316 confidence interval.

317 **Compared Methods.** We compare PARoG with 17 LLM-based approaches from 3 categories: (1)
 318 LLM prompting methods, (2) LLM reasoning over KGs ($LLM \otimes KG$), (3) end-to-end fine-tuned
 319 KG-augmented LLMs, and (4) graph-retrieval methods. The details of the compared approaches are
 320 described in Appendix E.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Performance comparison of different methods on two KGQA benchmarks.

Methods	WebQSP	CWQ
<i>LLM Prompting</i>		
IO (Brown et al., 2020)	63.3	37.6
CoT (Wei et al., 2022)	62.2	38.8
SC (Wang et al., 2023c)	61.1	45.4
<i>Graph-Retrieval Methods</i>		
GNN-Rag (Mavromatis & Karypis, 2025)	82.8	62.8
SubgraphRag + GPT4o (Li et al., 2025)	87.1	54.9
<i>LLM \otimes KG with GPT-3.5</i>		
ToG (Sun et al., 2024)	76.2	57.1
RoG (Luo et al., 2024)	81.5	52.6
KG-Agent (Jiang et al., 2025)	79.2	56.1
StructGPT (Jiang et al., 2023a)	75.2	55.2
PoG (Chen et al., 2024b)	82.0	63.2
ReKnowS (Wang et al., 2025)	81.1	58.5
PARoG	89.0 (± 1.3)	73.1 (± 0.9)
<i>LLM \otimes KG with GPT-4</i>		
ToG (Sun et al., 2024)	80.7	65.4
KG-Agent (Jiang et al., 2025)	81.2	67.0
StructGPT (Jiang et al., 2023a)	79.5	64.7
PoG (Chen et al., 2024b)	87.3	75.0
ReKnowS (Wang et al., 2025)	83.8	66.8
PARoG	91.2 (± 0.9)	79.3 (± 1.1)

Implementations. For SPARQL-Guided Supervision, we use the training split of WebQSP, GrailQA, and CWQ as the source and employ GPT-4 to generate the training data, and the statistics is summarized in Appendix D. We use Llama-3.1-8B as the backbone to train the planning module with learning rate 2e-5 on 4 Nvidia A800 GPUs. We use GPT-3.5 or GPT-4 to serve as the underlying LLMs and report the results on both, thereby analyzing our method across diverse settings.

4.1 PERFORMANCE COMPARISON

Main Results. The comparison results on WebQSP and CWQ in Table 2. Across both benchmarks, our propose method PARoG consistently outperforms existing approaches. Compared with the state-of-the-art baseline Planning-on-Graph (PoG), PARoG gains substantial improvements of 3.9 and 4.3 points on WebQSP and CWQ respectively with GPT-4. Under the more challenging setting with GPT-3.5, more significant improvements can be observed: PARoG surpasses the baseline by 7.3 on WebQSP and 10.1 on CWQ. It is worth noting that the improvements are particularly pronounced on CWQ, which contains more complex multi-hop and compositional queries, underscoring the advantage of our structured planning and self-refinement mechanism. On the GrailQA benchmark (Table 2), PARoG also achieves consistent state-of-the-art performance across all evaluation settings. Using GPT-3.5, PARoG reaches an overall accuracy of 82.7, surpassing the state-of-the-art Debate-on-Graph (DoG) by a large margin of 4.9 points. Under the stronger GPT-4 setting, our method further improves to an overall 87.2 points, exceeding the compared methods by 2.5 points. It can be observed that the improvements of PARoG are particularly significant on compositional and zero-shot queries, demon-

Figure 4: Performance comparison over different query types.

378

379

Table 2: Performance comparison of different methods on GrailQA.

Method	Overall	I.I.D.	Compositional	Zero-shot
<i>LLM Prompting</i>				
IO Prompt (Brown et al., 2020)	29.4	–	–	–
CoT (Wei et al., 2022)	28.1	–	–	–
Self-Consistency (Wang et al., 2023c)	29.6	–	–	–
<i>End-to-End Fine-Tuned KG-Augmented LLMs</i>				
RnG-KBQA (Ye et al., 2022)	68.8	86.2	63.8	63.0
TIARA (Shu et al., 2022)	73.0	87.8	69.2	68.0
FC-KBQA (Zhang et al., 2023)	73.2	88.5	70.0	67.6
Pangu (Gu et al., 2023)	75.4	84.4	74.6	71.6
FlexKBQA (Li et al., 2024b)	62.8	71.3	59.1	60.6
GAIN (Shu & Yu, 2024)	76.3	88.5	73.7	71.8
KG-Agent (Jiang et al., 2025)	86.1	92.0	80.0	86.3
<i>LLM \otimes KG with GPT-3.5</i>				
KB-BINDER (Li et al., 2023a)	53.2	72.5	51.8	45.0
ToG (Sun et al., 2024)	68.7	70.1	56.1	72.7
PoG (Chen et al., 2024b)	76.5	76.3	62.1	81.7
DoG (Ma et al., 2025)	77.8	–	–	–
PARoG	82.7 (\pm 1.5)	85.4 (\pm 0.9)	66.7 (\pm 2.0)	87.1 (\pm 2.2)
<i>LLM \otimes KG with GPT-4</i>				
ToG (Sun et al., 2024)	81.4	79.4	67.3	86.5
PoG (Chen et al., 2024b)	84.7	87.9	69.7	88.6
DoG (Ma et al., 2025)	80.0	–	–	–
PARoG	87.1 (\pm 1.3)	89.5 (\pm 2.1)	73.2 (\pm 1.9)	91.1 (\pm 2.3)

405

406 strating robustness in both complex reasoning and out-of-distribution scenarios. These results highlight that PARoG not only advances the overall accuracy but also generalizes better to complex and 407 zero-shot queries, demonstrating the effectiveness of the proposed methodology.

408

409 **Analysis on Different Query Types.** We summarize the comparison between our method PARoG 410 and PoG on different query types in Figure 4. Overall, our method PARoG consistently outperforms 411 PoG across all types. Compared with simple categories such as Linear Queries and Compositions, 412 the gains become substantially larger on structurally more complex queries. In particular, PARoG 413 achieves significant improvements of 12.7% on Comparatives, 14.4% on Conjunctions, and 20.5 % 414 on Superlatives. These results highlight that PARoG is especially effective in handling queries with 415 multi-step reasoning and complex logical structures.

416

417

4.2 GENERALIZATION STUDY

418

419

420

421

422

423

424

425

426

427

428

429

430

431

To analyze the robustness across different schema organizations, we evaluate PARoG on CWQ and WebQSP with different source KGs (Freebase and WikiData), as shown in Table 3. Notably, the absolute performance on Wikidata is lower than that on Freebase because the datasets are originally annotated for Freebase. Moreover, Wikidata is substantially larger and more heterogeneous, which increases the difficulty for KG exploration and relation filtering. PARoG consistently produces substantial improvements over compared approaches under the WikiData setting. The results demonstrate that the proposed SPARQL-Guided Structured Planning and Plan-Answer-Refine are not tied to specific relations but generalize well under different schema organizations, relation granularities, and naming conventions. The improvements are especially pronounced on CWQ, where the queries are relatively more complicated.

Table 3: Generalization Study: performance of PARoG using different source KGs on WebQSP and CWQ.

Method	WebQSP	CWQ
<i>with Freebase</i>		
ToG	76.2	57.1
PoG	82.0	63.2
PARoG	89.3	73.3
<i>with WikiData</i>		
ToG	68.6	54.9
PoG	73.8	60.7
PARoG	79.1	69.5

432 4.3 ABLATION STUDY
433

434 We conduct ablation studies to examine the contributions of the two core components in our frame-
435 work SPARQL-Guided Structured Planning and the Plan-Answer-Refine paradigm. The results are
436 shown in Table 5 and 4. First, remove self-refinement consistently reduces performance across all
437 datasets and settings. It can be observed the decline in performance when using GPT-3.5. This result
438 demonstrates the Answer-Refine paradigm effectively mitigates error amplification, especially par-
439 ticularly in scenarios where the underlying LLM is relatively weak. Second, compare our SPARQL-
440 supervised planning module (trained with Llama-3.1-8B) using much larger LLMs directly as plan-
441 ners. Despite having few parameters (8B), our model consistently outperforms GPT-3.5 ($\sim 20B$) and DeepSeek-R1 (671B) by large margins (up to 8.1 points on complex CWQ). This result demon-
442 strates that SPARQL-guided supervision provides strong compositional reasoning signals, enabling
443 smaller models to surpass much larger LLMs on reasoning path planning. These ablations prove
444 that both self-refinement and SPARQL-supervised planning are essential to the effectiveness and
445 efficiency of our framework.

446 To better understand the behavioral contribution of
447 the Plan-Answer-Refine component, we further ex-
448 amine its ability to correct initially incorrect predic-
449 tions. Specifically, for each dataset, we isolate all ex-
450 amples where the tentative answer produced by the
451 vanilla LLM is incorrect, and compute the proportion
452 of these errors that are successfully fixed after refi-
453 nement. As shown in Table 6, PARoG corrects around
454 70% of the initial wrong answers and the correction
455 rate is particularly high on GrailQA, which is con-
456 sistent with its greater logical compositionality and
457 schema diversity. This result highlights the effective-
458 ness of the answer-refinement paradigm. The correctness rate of the initial answers is listed in
459 Appendix F.

460 4.4 EFFICIENCY ANALYSIS
461

462 We further analyze the efficiency of dif-
463 ferent methods in terms of LLM calls
464 and token usage, as shown in Table 7.
465 Our method consistently achieves not
466 only higher accuracy but also greater ef-
467 ficiency across all datasets. These re-
468 sults demonstrate that PARoG not only
469 advances the SOTA performance but also
470 significantly reduces computational overhead, making it more efficient and cost-effective for real-
471 world application.

472 4.5 CASE STUDY
473

474 We also provide case studies to discuss the effectiveness and limitations of PARoG in Appendix I.

477 5 RELATED WORK
478

479 **LLMs with Knowledge Graphs.** Large Language
480 Models (LLMs) have shown remarkable reason-
481 ing capabilities (Brown et al., 2020; Wei et al.,
482 2022; Zhou et al., 2023) but often prone to hallu-
483 cinate when answering knowledge-intensive queries
484 (Ji et al., 2023). To address this, combining LLMs
485 reasoning with external knowledge graphs (KGs) have been introduced (Logan et al., 2019; Luo et al.,
486 2023; Jiang et al., 2023b; Pan et al., 2024). Approaches such as KG-based representation

432 Table 4: Ablation Study: w/ or w/o Self-
433 Refinement (SR).

Method	WebQSP	GrailQA	CWQ
<i>GPT-3.5</i>			
w/o SR	88.0	78.9	69.2
w/ SR	89.3	82.7	73.3
<i>GPT-4</i>			
w/o SR	89.7	85.5	77.2
w/ SR	91.2	87.2	79.3

432 Table 5: Ablation Study: Comparison our SPARQL-
433 supervised planing module to LLMs.

Method	# Para	WebQSP	GrailQA	CWQ
Ours	8B	89.3	82.7	73.3
GPT-3.5	$\sim 20B$	83.2	76.9	65.2
Deepseek-R1	671B	88.5	80.2	68.7

432 Table 6: Error correction rate (CR Rate) of
433 the Plan-Answer-Refine paradigm.

Dataset	WebQSP	CWQ	GrailQA
CR Rate	73.4	62.4	77.1

486

487 Table 7: Efficiency Analysis: Performance vs. token cost across different methods and datasets.

488	Dataset	Method	LLM Call	Input Token	Output Token	Total Token	Hits@1
489	WebQSP	ToG	15.9	6,031.2	987.7	7,018.9	76.2
490		PoG	9.0	5,234.8	282.9	5,517.7	82.0
491		PARoG	8.3	5,012.3	241.4	5,253.8	89.3
492	CWQ	ToG	22.6	8,182.9	1,486.4	9,669.4	57.1
493		PoG	13.3	7,803.0	353.2	8,156.2	63.2
494		PARoG	10.2	7,110.7	288.5	7,398.8	73.3
495	GrailQA	ToG	11.1	4,066.0	774.6	4,840.6	68.7
496		PoG	6.5	3,372.8	202.8	3,575.6	76.5
497		PARoG	6.0	3,180.9	178.1	3,358.2	82.7

498

499

500 learning (Guu et al., 2020; Li et al., 2023b; Dehghan et al., 2024), knowledge-based instruction-
 501 tuning (Zhang et al., 2023; Chen et al., 2024a; Luo et al., 2024), retrieval-augmented generation
 502 with KG facts (Wang et al., 2024; Wen et al., 2024; Zhang et al., 2024; Wang et al., 2023b), graph-
 503 constrained generation (Guan et al., 2024; Luo et al., 2025), and semantic parsing on KGs (Ye et al.,
 504 2022; Yu et al., 2022) demonstrate the benefit of grounding LLM outputs in structured knowledge.

505

506 **Interactive LLM Reasoning over Knowledge Graphs.** Inspired by strong capability of deep rea-
 507 soning on structured data (Jiang et al., 2023a; Edge et al., 2024; Jin et al., 2024), recent methods
 508 introduce explicit reasoning paths to guide LLM interactively inference over KGs and have achieved
 509 significant improvements (Yao et al., 2023; Li et al., 2024a; Mavromatis & Karypis, 2024; Sun et al.,
 510 2024; Tan et al., 2025; Chen et al., 2024b). Think-on-Graph (Sun et al., 2024) treats reasoning
 511 as agent-based exploration where LLMs iteratively search paths with traceability and correction.
 512 Generate-on-Graph (Xu et al., 2024) extends to incomplete KGs by enabling LLMs to generate
 513 missing triples. Plan-on-graph (Chen et al., 2024b) applies adaptive planning by decomposing ques-
 514 tions into sub-goals and refining paths via guidance and reflection. KG-Agent (Jiang et al., 2025)
 515 formalizes multi-hop reasoning as program execution with tool use, KG execution, and memory
 516 updates. Debate-on-Graph (Ma et al., 2025) models reasoning as a multi-agent debate, where agents
 517 generate, and critique reasoning paths to enhance reliability. ReKnoS (Wang et al., 2025) introduces
 518 super-relations to connect relational paths, enabling bidirectional reasoning and improving retrieval
 519 efficiency. There are also more recent efforts such as (Shen et al., 2025) and (Zhu et al., 2025)
 520 introducing alignment and reflection-based strategies to regulate LLM reasoning over KGs.

521

522 Our work also belongs to this line of work but differs from prior methods by introducing SPARQL-
 523 guided structured planning and answer-refine mechanism. Compared with existing work, the pro-
 524 posed method enables reasoning over complex logical operations beyond linear paths, and explicitly
 525 mitigate the inconsistency between the parametric knowledge of LLM and external KG evidence.

526

527 6 DISCUSSION AND CONCLUSION

528

529 In this paper, we present Plan-Answer-Refine-on-Graph (PARoG) a novel framework for LLM rea-
 530 soning over knowledge graphs. PARoG introduces two innovations SPARQL-guided structured
 531 planning and the Answer-Refinement paradigm, effectively mitigating search space truncation bias
 532 and error amplification issues. Extensive experiments on WebQSP, CWQ, and GrailQA demon-
 533 strate that PARoG achieves new state-of-the-art results while also being more efficient and cost-effective.

534

535 **Limitation.** Despite the improvements, PARoG still relies on the coverage and correctness of avail-
 536 able KGs. Besides, while SPARQL-guided training reduces dependence on large models, generating
 537 high-quality planning data still requires strong teacher models (e.g., GPT-4o), which may limit ac-
 538 cessibility. Moreover, our refinement process is static and offline without dynamic feedback loops
 539 during reasoning, we leave the exploration of online refinement for future work due to its complexity.

540

541 **Broader Impact and Future Work.** PARoG that structured symbolic guidance can enhance LLM
 542 reasoning, which can be applied wherever external structured signals are available beyond KGQA.
 543 In the future the study direct include dynamic refinement, multi-modal knowledge graphs, and boot-
 544 strapped self-improvement, which could make PARoG more scalable, general and accessible.

540 REFERENCES
541

542 Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
543 Ziwei Ji, Tiezheng Yu, Willy Chung, et al. A multitask, multilingual, multimodal evaluation of
544 chatgpt on reasoning, hallucination, and interactivity. *arXiv preprint arXiv:2302.04023*, 2023.

545 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
546 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
547 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

548 Liyi Chen, Chuan Qin, Ying Sun, Xin Song, Tong Xu, Hengshu Zhu, and Hui Xiong. Collaboration-
549 aware hybrid learning for knowledge development prediction. In *Proceedings of the ACM Web
550 Conference 2024*, pp. 3976–3985, 2024a.

551 Liyi Chen, Panrong Tong, Zhongming Jin, Ying Sun, Jieping Ye, and Hui Xiong. Plan-on-graph:
552 Self-correcting adaptive planning of large language model on knowledge graphs. In *Proceedings
553 of the 38th Conference on Neural Information Processing Systems*, 2024b.

554 Mohammad Dehghan, Mohammad Alomrani, Sunyam Bagga, David Alfonso-Hermelo, Khalil Bibi,
555 Abbas Ghaddar, Yingxue Zhang, Xiaoguang Li, Jianye Hao, Qun Liu, et al. Ewek-qa: Enhanced
556 web and efficient knowledge graph retrieval for citation-based question answering systems. In
557 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
558 1: Long Papers)*, pp. 14169–14187, 2024.

559 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
560 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
561 *arXiv e-prints*, pp. arXiv–2407, 2024.

562 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
563 Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
564 graph rag approach to query-focused summarization. *arXiv preprint arXiv:2404.16130*, 2024.

565 Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu Su. Beyond IID:
566 three levels of generalization for question answering on knowledge bases. In *Proceedings of the
567 Web Conference*, pp. 3477–3488, 2021.

568 Yu Gu, Xiang Deng, and Yu Su. Don’t generate, discriminate: A proposal for grounding language
569 models to real-world environments. In *The 61st Annual Meeting Of The Association For Compu-
570 tational Linguistics*, 2023.

571 Xinyan Guan, Yanjiang Liu, Hongyu Lin, Yaojie Lu, Ben He, Xianpei Han, and Le Sun. Mitigating
572 large language model hallucinations via autonomous knowledge graph-based retrofitting.
573 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 18126–18134,
574 2024.

575 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
576 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
577 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

578 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
579 language model pre-training. In *International conference on machine learning*, pp. 3929–3938.
580 PMLR, 2020.

581 Xuming Hu, Junzhe Chen, Xiaochuan Li, Yufei Guo, Lijie Wen, Philip S Yu, and Zhijiang Guo. Do
582 large language models know about facts? *arXiv preprint arXiv:2310.05177*, 2023.

583 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
584 In *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 1049–1065, 2023.

585 Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
586 and Denny Zhou. Large language models cannot self-correct reasoning yet. In *The Twelfth
587 International Conference on Learning Representations*, 2024.

594 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 595 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 596 *arXiv:2410.21276*, 2024.

597 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
 598 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM*
 599 *computing surveys*, 55(12):1–38, 2023.

600

601 Jinhao Jiang, Kun Zhou, KeMing Ye, Xin Zhao, Ji-Rong Wen, et al. Structgpt: A general framework
 602 for large language model to reason over structured data. In *The 2023 Conference on Empirical*
 603 *Methods in Natural Language Processing*, 2023a.

604 Jinhao Jiang, Kun Zhou, Xin Zhao, and Ji-Rong Wen. Unikgqa: Unified retrieval and reasoning
 605 for solving multi-hop question answering over knowledge graph. In *The Eleventh International*
 606 *Conference on Learning Representations*, 2023b.

607 Jinhao Jiang, Kun Zhou, Xin Zhao, Yang Song, Chen Zhu, Hengshu Zhu, and Ji-Rong Wen.
 608 KG-agent: An efficient autonomous agent framework for complex reasoning over knowledge
 609 graph. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
 610 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics*
 611 (*Volume 1: Long Papers*), pp. 9505–9523, Vienna, Austria, July 2025. Association for Com-
 612 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.468. URL
 613 <https://aclanthology.org/2025.acl-long.468/>.

614

615 Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng
 616 Tang, Suhang Wang, Yu Meng, et al. Graph chain-of-thought: Augmenting large language models
 617 by reasoning on graphs. In *Findings of the Association for Computational Linguistics ACL 2024*,
 618 pp. 163–184, 2024.

619 Mufei Li, Siqi Miao, and Pan Li. Simple is effective: The roles of graphs and large language mod-
 620 els in knowledge-graph-based retrieval-augmented generation. In *The Thirteenth International*
 621 *Conference on Learning Representations*, 2025.

622 Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, and Wenhu Chen. Few-shot in-context
 623 learning on knowledge base question answering. In *Proceedings of the 61st Annual Meeting of*
 624 *the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 6966–6980, 2023a.

625

626 Wendi Li, Wei Wei, Xiaoye Qu, Xian-Ling Mao, Ye Yuan, Wenfeng Xie, and Dangyang Chen. Trea:
 627 Tree-structure reasoning schema for conversational recommendation. In *Proceedings of the 61st*
 628 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 629 2970–2982, 2023b.

630

631 Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng Ding, Shafiq Joty, Soujanya Poria, and Li-
 632 dong Bing. Chain-of-knowledge: Grounding large language models via dynamic knowledge
 633 adapting over heterogeneous sources. In *The Twelfth International Conference on Learning Rep-
 634 resentations*, 2024a.

635

636 Zhenyu Li, Sunqi Fan, Yu Gu, Xiuxing Li, Zhichao Duan, Bowen Dong, Ning Liu, and Jiany-
 637 ong Wang. Flexkbqa: A flexible llm-powered framework for few-shot knowledge base question
 638 answering. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp.
 18608–18616, 2024b.

639

640 Robert Logan, Nelson F Liu, Matthew E Peters, Matt Gardner, and Sameer Singh. Barack’s wife
 641 hillary: Using knowledge graphs for fact-aware language modeling. In *Proceedings of the 57th*
 642 *Annual Meeting of the Association for Computational Linguistics*, pp. 5962–5971, 2019.

643

644 Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful
 645 and interpretable large language model reasoning. In *The Twelfth International Conference on*
 646 *Learning Representations*, 2024.

647

648 Linhao Luo, Zicheng Zhao, Gholamreza Haffari, Yuan-Fang Li, Chen Gong, and Shirui Pan. Graph-
 649 constrained reasoning: Faithful reasoning on knowledge graphs with large language models. In
 650 *Forty-second International Conference on Machine Learning*, 2025.

648 Ziyang Luo, Can Xu, Pu Zhao, Xiubo Geng, Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin
 649 Jiang. Augmented large language models with parametric knowledge guiding. *arXiv preprint*
 650 *arXiv:2305.04757*, 2023.

651 Jie Ma, Zhitao Gao, Qi Chai, Wangchun Sun, Pinghui Wang, Hongbin Pei, Jing Tao, Lingyun Song,
 652 Jun Liu, Chen Zhang, et al. Debate on graph: a flexible and reliable reasoning framework for large
 653 language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39,
 654 pp. 24768–24776, 2025.

655 Costas Mavromatis and George Karypis. Gnn-rag: Graph neural retrieval for large language model
 656 reasoning. *arXiv preprint arXiv:2405.20139*, 2024.

657 Costas Mavromatis and George Karypis. Gnn-rag: Graph neural retrieval for efficient large lan-
 658 guage model reasoning on knowledge graphs. In *Findings of the Association for Computational*
 659 *Linguistics: ACL 2025*, pp. 16682–16699, 2025.

660 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
 661 cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
 662 Avila, Igor Babuschkin, Suchir Balaji, and et al. Gpt-4 technical report, 2023.

663 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 664 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 665 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 666 27730–27744, 2022.

667 Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
 668 language models and knowledge graphs: A roadmap. *IEEE Transactions on Knowledge and Data*
 669 *Engineering*, 36(7):3580–3599, 2024.

670 Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei
 671 Huang, and Huajun Chen. Reasoning with language model prompting: A survey. In *Proceedings*
 672 *of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 673 *Papers)*, pp. 5368–5393, 2023.

674 Xiangqing Shen, Fanfan Wang, and Rui Xia. Reason-align-respond: Aligning llm reasoning with
 675 knowledge graphs for kgqa. 2025.

676 Yiheng Shu and Zhiwei Yu. Distribution shifts are bottlenecks: Extensive evaluation for grounding
 677 language models to knowledge bases. In *Proceedings of the 18th Conference of the European*
 678 *Chapter of the Association for Computational Linguistics: Student Research Workshop*, pp. 71–
 679 88, 2024.

680 Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje Karlsson, Tingting Ma, Yuzhong Qu, and Chin-Yew Lin.
 681 Tiara: Multi-grained retrieval for robust question answering over large knowledge base. In *Pro-
 682 ceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp.
 683 8108–8121, 2022.

684 Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel Ni,
 685 Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
 686 language model on knowledge graph. In *The Twelfth International Conference on Learning Rep-
 687 resentations*, 2024.

688 Alon Talmor and Jonathan Berant. The Web as a knowledge-base for answering complex questions.
 689 In *Conference of the North American Chapter of the Association for Computational Linguistics:
 690 Human Language Technologies, Volume 1 (Long Papers)*, pp. 641–651, 2018.

691 Xingyu Tan, Xiaoyang Wang, Qing Liu, Xiwei Xu, Xin Yuan, and Wenjie Zhang. Paths-over-graph:
 692 Knowledge graph empowered large language model reasoning. In *Proceedings of the ACM on*
 693 *Web Conference 2025*, pp. 3505–3522, 2025.

694 Jiapu Wang, Sun Kai, Linhao Luo, Wei Wei, Yongli Hu, Alan Wee-Chung Liew, Shirui Pan, and
 695 Baocai Yin. Large language models-guided dynamic adaptation for temporal knowledge graph
 696 reasoning. *Advances in Neural Information Processing Systems*, 37:8384–8410, 2024.

702 Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li, Yunsen Xian, Chuantao Yin, Wenge Rong,
 703 and Zhang Xiong. Knowledge-driven cot: Exploring faithful reasoning in llms for knowledge-
 704 intensive question answering. *arXiv preprint arXiv:2308.13259*, 2023a.

705 Song Wang, Junhong Lin, Xiaojie Guo, Julian Shun, Jundong Li, and Yada Zhu. Reasoning of large
 706 language models over knowledge graphs with super-relations. In *The Thirteenth International
 707 Conference on Learning Representations*, 2025.

708 Xintao Wang, Qianwen Yang, Yongting Qiu, Jiaqing Liang, Qianyu He, Zhouhong Gu, Yanghua
 709 Xiao, and Wei Wang. Knowledgpt: Enhancing large language models with retrieval and storage
 710 access on knowledge bases. *arXiv preprint arXiv:2308.11761*, 2023b.

711 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
 712 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 713 models. In *The Eleventh International Conference on Learning Representations*, 2023c.

714 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 715 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 716 neural information processing systems*, 35:24824–24837, 2022.

717 Yilin Wen, Zifeng Wang, and Jimeng Sun. Mindmap: Knowledge graph prompting sparks graph of
 718 thoughts in large language models. In *Proceedings of the 62nd Annual Meeting of the Association
 719 for Computational Linguistics (Volume 1: Long Papers)*, pp. 10370–10388, 2024.

720 Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu Song, Hanghang Tong, Guang Liu, Jun
 721 Zhao, and Kang Liu. Generate-on-graph: Treat llm as both agent and kg for incomplete knowl-
 722 edge graph question answering. In *Proceedings of the 2024 Conference on Empirical Methods in
 723 Natural Language Processing*, pp. 18410–18430, 2024.

724 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 725 React: Synergizing reasoning and acting in language models. In *International Conference on
 726 Learning Representations (ICLR)*, 2023.

727 Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, and Caiming Xiong. Rng-kbqa: Generation
 728 augmented iterative ranking for knowledge base question answering. In *Proceedings of the 60th
 729 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 730 6032–6043, 2022.

731 Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value
 732 of semantic parse labeling for knowledge base question answering. In *Proceedings of the 54th
 733 Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp.
 734 201–206, 2016.

735 Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
 736 William Yang Wang, Zhiguo Wang, and Bing Xiang. Decaf: Joint decoding of answers and logical
 737 forms for question answering over knowledge bases. In *The Eleventh International Conference
 738 on Learning Representations*, 2022.

739 Lingxi Zhang, Jing Zhang, Yanling Wang, Shulin Cao, Xinmei Huang, Cuiping Li, Hong Chen,
 740 and Juanzi Li. Fc-kbqa: A fine-to-coarse composition framework for knowledge base question
 741 answering. In *The 61st Annual Meeting Of The Association For Computational Linguistics*, 2023.

742 Qinggang Zhang, Junnan Dong, Hao Chen, Daochen Zha, Zailiang Yu, and Xiao Huang. Knowgpt:
 743 Knowledge graph based prompting for large language models. *Advances in Neural Information
 744 Processing Systems*, 37:6052–6080, 2024.

745 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 746 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv
 747 preprint arXiv:2303.18223*, 1(2), 2023.

748 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
 749 mans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
 750 reasoning in large language models. In *The Eleventh International Conference on Learning Rep-
 751 resentations*, 2023.

752

756 Jiajun Zhu, Ye Liu, Meikai Bao, Kai Zhang, Yanghai Zhang, and Qi Liu. Self-reflective planning
757 with knowledge graphs: Enhancing llm reasoning reliability for question answering. 2025.
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
811812 We used OpenAI ChatGPT for writings refinement and correction of typos during the preparation of
813 this manuscript.
814815 B ERROR ANALYSIS OF EXISTING METHODS.
816817 We conduct an error analysis of existing methods (ToG and PoG). Among the failed examples:
818 83.39% of WebQSP questions, 85.34% of GrailQA questions, and 90.14% of CWQ queries
819 fail due to missing answer entities in the retrieval phase. Figure 5 shows the distribution of different
820 query types of the failed examples.
821839 Figure 5: Error Distribution of PoG.
840
841842 C ALGORITHM FOR THE PLAN-ANSWER-REFINE PARADIGM
843844 We summarize the comprehensive algorithmic procedure of Plan-Answer-Refine as shown in Algo-
845 rithm 1.
846847 D DETAILS OF DATASETS
848849 WebQSP consists of 4,737 natural language questions that require single or multi-hop reasoning
850 over Freebase. GrailQA presents a more challenging scenario with 64,331 questions designed to
851 test compositional generalization capabilities. CWQ contains 34,689 complex questions requiring
852 multi-hop reasoning and constraint handling. These datasets collectively provide a robust testbed for
853 evaluating various aspects of KGQA performance, including reasoning complexity, generalization
854 ability, and scalability. The statistics of the datasets are summarized in Table 8.
855858 Table 8: Statistics of datasets.
859

Datasets	#Train	#Test	Max #hop
WebQSP	2,826	1,628	2
CWQ	27,639	3,531	4
GrailQA	44,337	13,231	4

864 **Algorithm 1** PARoG.

865 **Require:** Question Q , Knowledge Graph \mathcal{G} , LLM \mathcal{M} , Planning module $\text{PLAN}(\cdot)$, instruction tem-

866 plates I_A, I_R , initial topic entity set \mathcal{E}_0 (size n_0), max iterations T_{\max}

867 **Ensure:** Final answer a

868 1: $\mathcal{O} \leftarrow \text{PLAN}(Q)$ ▷ Generate sub-objectives with the SPARQL-supervised planner

869 2: $\mathcal{A} \leftarrow \emptyset$

870 3: **for each** sub-objective $o_i \in \mathcal{O}$ **do**

871 4: $\hat{a}_i \leftarrow \mathcal{M}(Q, o_i, I_A)$ ▷ Tentative answer by parametric reasoning

872 5: $\mathcal{P}_0 \leftarrow \{[]\}$ ▷ Initialize reasoning paths

873 6: $\mathcal{E}_0 \leftarrow \{e_1^0, \dots, e_{n_0}^0\}$

874 7: **for** $t = 1$ **to** T_{\max} **do**

875 8: $\mathcal{E}_{t-1} \leftarrow \text{TAILENTITIES}(\mathcal{P}_{t-1})$

876 9: $\mathcal{R}_t^{init} \leftarrow \text{NEIGHBORRELATIONS}(\mathcal{G}, \mathcal{E}_{t-1})$

877 10: $\mathcal{R}_t \leftarrow \mathcal{M}(Q, o_i, \mathcal{O}, \mathcal{R}_t^{init})$ ▷ Filter relations with global plan awareness

878 11: $\mathcal{E}_t^{cand} \leftarrow \text{SPARQLQUERY}(\mathcal{G}, \mathcal{E}_{t-1}, \mathcal{R}_t)$

879 12: $\text{SCORE}(e) \leftarrow \mathcal{M}(Q, o_i, e), \forall e \in \mathcal{E}_t^{cand}$

880 13: $\mathcal{E}_t \leftarrow \text{SELECTRELEVANT}(\mathcal{E}_t^{cand}, \text{SCORE})$ ▷ Select a variable number of most relevant entities

881 14: $\mathcal{P}_t \leftarrow \text{EXTENDPATHS}(\mathcal{P}_{t-1}, \mathcal{E}_t, \mathcal{R}_t)$

882 15: $a_i \leftarrow \mathcal{M}(\mathcal{P}_t, o_i, \hat{a}_i, I_R)$ ▷ Self-refine tentative answer

883 16: **if** $\text{ALIGN}(\mathcal{P}_t, Q) = \text{false}$ **then**

884 17: $a_i \leftarrow \hat{a}_i$ ▷ Fallback if retrieved knowledge is irrelevant

885 18: **end if**

886 19: **if** $\text{SUFFICIENT}(a_i, Q) = \text{true}$ **then**

887 20: **break**

888 21: **end if**

889 22: **end for**

890 23: $\mathcal{A} \leftarrow \mathcal{A} \cup \{a_i\}$

891 24: **end for**

892 25: $a \leftarrow \text{AGGREGATE}(\mathcal{A}, \mathcal{O})$ ▷ Combine refined sub-answers according to \mathcal{O} to form the final answer.

893 26: **return** a

894 **E DETAILS OF COMPARED BASELINES**

895 We compare PARoG with 17 LLM-based approaches from 3 categories: (1) LLM prompting meth-

896 ods, (2) LLM reasoning over KGs ($LLM \otimes KG$), and (3) end-to-end fine-tuned KG-augmented

897 LLMs. The details of the compared approaches are described as follows.

901 **E.1 LLM PROMPTING**

902 • **Input-Output Prompting** (Brown et al., 2020): A standard few-shot prompting approach without

903 explicit reasoning guidance, serving as a basic LLM QA baseline.

904 • **Chain-of-Thought** (Wei et al., 2022): Chain-of-Thought prompting encourages the LLM to ex-

905 plicitly generate intermediate reasoning steps, improving logical consistency on complex queries.

906 • **Self-Consistency** (Wang et al., 2023c): Self-consistency prompting samples multiple reasoning

907 chains and aggregates their results, reducing random errors and improving answer stability.

908 **E.2 LLM \otimes KGs**

909 • **Think-on-Graph** (Sun et al., 2024): Think-on-Graph models reasoning as an agent-based explo-

910 ration, where the LLM iteratively traverses the knowledge graph to build interpretable paths.

911 • **Reasoning-on-Graph** (Luo et al., 2024): Reason-on-Graph constrains LLM outputs to faithful

912 graph-grounded reasoning paths, improving interpretability and correctness of answers.

913 • **KG-Agent** (Jiang et al., 2025): An autonomous agent framework that formalizes multi-hop rea-

914 soning as program execution with KG queries, external tool use, and memory updates.

- 918 • **StructGPT** (Jiang et al., 2023a): A structured generation framework where LLMs are guided by
919 schema-constrained prompts to produce reasoning paths over structured data.
- 920 • **Plan-on-Graph** (Chen et al., 2024b): Plan-on-Graph decomposes complex queries into struc-
921 tured sub-goals and adaptively plans reasoning paths on the KG, enabling better compositional
922 reasoning.
- 923 • **ReKnowS** (Wang et al., 2025): ReKnowS introduces the concept of super-relations to connect
924 multiple relational paths, allowing bidirectional reasoning and improving retrieval efficiency.
- 925 • **KB-BINDER** (Li et al., 2023a): KB-BINDER bridges LLM reasoning with KG facts using a
926 binding mechanism that grounds parametric knowledge in structured evidence.
- 927 • **Debate-on-Graph** (Ma et al., 2025): Debate-on-Graph models reasoning as a multi-agent debate,
928 where different agents generate and critique reasoning paths to improve reliability.

E.3 END-TO-END FINE-TUNED KG-AUGMENTED LLMs

- 932 • **RnG-KBQA** (Ye et al., 2022): A generation-augmented KBQA model that iteratively ranks can-
933 didate answers, combining generative reasoning with retrieval.
- 934 • **TIARA** (Shu et al., 2022): A multi-grained retrieval framework designed to strengthen robustness
935 of KBQA systems against noisy or incomplete evidence.
- 936 • **FC-KBQA** (Zhang et al., 2023): Fine-to-Coarse composition framework that first retrieves broad
937 candidates and then refines answers hierarchically for complex KBQA.
- 938 • **Pangu** (Gu et al., 2023): An end-to-end KBQA model that emphasizes compositional general-
939 ization, allowing it to handle more complex query structures.
- 940 • **FlexKBQA** (Li et al., 2024b): A flexible, LLM-powered KBQA framework designed for few-
941 shot learning and adaptable to low-resource settings.
- 942 • **GAIN** (Shu & Yu, 2024): A KBQA method optimized for distribution shifts, making reasoning
943 more robust across different domains and data splits.

E.4 GRAPH-RETRIEVAL METHODS

- 947 • **GNN-RAG** (Mavromatis & Karypis, 2025): A deep learning method uses graph neural networks
948 to retrieve the most relevant nodes and subgraphs for LLM reasoning.
- 949 • **SubgraphRag** (Li et al., 2025): A method builds and retrieves localized subgraphs to provide
950 structured graph context for LLMs.

F STATISTICAL ANALYSIS OF MAJOR COMPONENTS

954 We conduct analysis to measure the proportion of questions for which the search process prematurely
955 prunes the correct path (reported as truncation rate). The results are as follows.

958 Table 9: Truncation Rate.

959 Method	960 Truncation Rate (%)
960 PoG	38.82
961 PARoG	19.48

963 Moreover, to better understand how often the tentative answers produced by the LLM are incorrect,
964 we list the correctness rate (%) in the initial answers generated by LLM as shown in Table 10.

966 Table 10: Correctness rate of initial answers (%).

967 Dataset	968 WebQSP	969 CWQ	GrailQA
969 Correctness rate of initial answers (%)	61.7	28.9	43.4

971 These numbers verify that LLM parametric knowledge is often incomplete or unreliable, highlighting
972 the necessity of a refinement stage grounded in KG execution.

972 **G STABILITY AND SENSITIVITY ANALYSIS**
973974 To analyze the stability of the proposed method, we run the experiments under three seeds and report
975 the mean \pm 95% CI for different settings. The results are shown in Table 11, 12 and 13.
976978 **Table 11: Stability Analysis on main datasets.**
979

Method	WebQSP	GrailQA	CWQ
<i>GPT-3.5</i>			
ToG	76.4 ± 1.9	68.9 ± 1.5	57.2 ± 1.8
PoG	82.1 ± 2.2	76.5 ± 2.1	63.2 ± 1.2
PARoG	89.0 ± 1.3	82.7 ± 1.5	73.1 ± 0.9
<i>GPT-4</i>			
ToG	80.7 ± 1.7	80.9 ± 1.4	65.6 ± 2.2
PoG	87.3 ± 1.5	84.3 ± 1.8	75.0 ± 1.4
PARoG	91.2 ± 0.9	87.1 ± 1.3	79.3 ± 1.1

991 **Table 12: Stability analysis on w/ or w/o Self-Refinement (SR).**
992

Method	WebQSP	GrailQA	CWQ
<i>GPT-3.5</i>			
w/o SR	88.0 ± 1.6	78.9 ± 1.4	69.2 ± 1.2
w/ SR	89.0 ± 1.3	82.7 ± 1.5	73.1 ± 0.9
<i>GPT-4</i>			
w/o SR	89.7 ± 1.1	85.5 ± 1.4	77.2 ± 1.0
w/ SR	91.2 ± 0.9	87.1 ± 1.3	79.3 ± 1.1

1003 **Table 13: Stability and Sensitivity analysis on different planners.**
1004

Method	# Para	WebQSP	GrailQA	CWQ
<i>General LLMs</i>				
GPT-3.5	$\sim 20B$	83.1 ± 1.4	76.7 ± 1.6	65.4 ± 1.2
Deepseek-R1	$671B$	88.2 ± 1.5	80.2 ± 1.3	68.7 ± 1.1
<i>Ours</i>				
llama3.1-8B	8B	89.0 ± 1.3	82.7 ± 1.5	73.3 ± 0.9
llama3.2-1B	1B	87.2 ± 1.2	79.1 ± 1.6	68.5 ± 1.1
llama2-13B	$13B$	88.4 ± 1.4	81.9 ± 1.2	70.3 ± 1.0

1014 Notably, PARoG shows higher accuracy and consistently smaller confidence intervals than all base-
1015 lines. Moreover, the smaller planner outperforms larger general LLMs. Even the smallest 1B planner
1016 still achieves comparable performance compared to Deepseek-R1, confirming that SPARQL-guided
1017 training provides a stronger planning signal than scaling model size alone. These results prove the
1018 stability and reproducibility of the SPARQL-guided planner and the Answer-Refine mechanism.
10191020 **H EFFICIENCY TRADE-OFFS.**
10211022 To better characterize the efficiency–accuracy trade-off, we conducted an additional study varying
1023 the maximum planning iterations in PARoG as shown in Figure 6. Unlike existing methods, PARoG
1024 does not use a fixed beam width. Instead, it maintains a dynamic beam, while the overall search
1025 budget is controlled by the maximum number of planning iterations.

Figure 6: Efficiency Trade-offs.

I CASE STUDY

To better understand the reasoning improvements brought by our proposed method, we analyze two representative failure cases from the baseline method Planning-on-Graph (PoG) and contrast them with the corresponding inference paths of our model (PARoG), as shown in Table 14.

Table 14: Examples of reasoning conducted by PARoG. **Red** denotes incorrect reasoning paths and answers, while **green** denotes correct ones.

Case 1: Composition plan error

Question	What is considered modern in the country where Bilady, Bilady, Bilady language is the national anthem?
Answer	Modern Standard Arabic
PoG	<pre># Plan: [Identify the country where "Bilady, Bilady, Bilady" is the national anthem, Red-search the definition of "modern" in the context of countries] # Reasoning Path: m.0478lhx → government.national_anthem_of_a_country.anthem → Bilady, Bilady, Bilady m.0478lhx → government.national_anthem_of_a_country.country → Egypt # Answer: Egypt</pre>
PARoG	<pre># Plan: [Identify the country where "Bilady, Bilady, Bilady" is the national anthem, Red-search modern cultural, social, or technological aspects in that country] # Reasoning Path: m.0478lhx → government.national_anthem_of_a_country.anthem → Bilady, Bilady, Bilady m.0478lhx → government.national_anthem_of_a_country.country → Egypt Egypt → location.country.languages_spoken → Modern Standard Arabic # Answer: Modern Standard Arabic</pre>

Case 2: Parametric Knowledge Bridging KG Gaps

Question	What movies did Adam Sandler play in and is about Christmas?
Answer	Eight Crazy Nights
PoG	<pre># Reasoning Path: Adam Sandler → film.actor.film → {Eight Crazy Nights, The Chanukah Song, Reign Over Me, Funny People, The Meyerowitz Stories, The Week Of} # Answer: The Chanukah Song</pre>
PARoG	<pre># Reasoning Path: Adam Sandler → film.actor.film → {Eight Crazy Nights, Funny People, Reign Over Me, etc.} LLM answers:Eight Crazy Nights is about Christmas # Answer: Eight Crazy Nights</pre>

1080 I.1 CASE 1: COMPOSITION PLAN ERROR
10811082 This example investigates the question:
10831084 What is considered modern in the country where Bilady, Bilady, Bilady language is the national anthem?
10851086 The question requires a two-hop reasoning process: (1) identify the country given the national an-
1087 them, and (2) determine the language that is considered “modern” in that country. The baseline PoG
1088 fails in the planning stage by misinterpreting the intent of “modern” as referring to the country itself
1089 rather than a language. As a result, it outputs “Egypt” as the final answer, which is incomplete and
1090 incorrect.
10911092 In contrast, PARoG correctly preserves the linguistic intent of the original question during the plan-
1093 ning phase. Unlike PoG, which misinterprets “modern” as referring to a modern country, PARoG
1094 correctly interprets it as referring to a modern language spoken in the identified country.
10951096 It first identifies Egypt as the country where “Bilady, Bilady, Bilady” is the national anthem—same
1097 as PoG—but goes a step further by reasoning that Modern Standard Arabic is the relevant modern
1098 language spoken in Egypt. This is captured in the following reasoning path:
10991100 Egypt → languages spoken → Modern Standard Arabic
11011102 By grounding the abstract query term “modern” into a specific linguistic attribute, PARoG success-
1103 fully answers the question with Modern Standard Arabic, demonstrating its ability to disambiguate
1104 vague terms and construct semantically aligned plans that lead to correct, complete answers.
11051106 This case highlights the strength of the Plan-Answer-Refine framework in maintaining semantic
1107 consistency and avoiding reasoning drift during multi-hop KGQA.
11081109 I.2 CASE 2: PARAMETRIC KNOWLEDGE BRIDGING KG GAPS
11101111 We also examine the following question:
11121113 What movies did Adam Sandler play in and is about Christmas?
11141115 The PoG baseline retrieves several films involving Adam Sandler—such as The Chanukah Song,
1116 Reign Over Me, and Funny People—but it fails to search whether these movies are related to Christ-
1117 mas, ultimately yielding the incorrect result The Chanukah Song. In contrast, PARoG follows a
1118 similar retrieval process and also identifies several films involving Adam Sandler through its agent
1119 module. However, despite failing to retrieve any explicit evidence from the knowledge graph re-
1120 garding the “Christmas” constraint, PARoG demonstrates a more robust and semantically grounded
1121 refinement process. By leveraging the parametric knowledge encoded within the LLM, it suc-
1122 cessfully infers that Eight Crazy Nights is a Christmas-themed film. This case illustrates the strength of
1123 the plan-answer-refine paradigm in producing correct answers even when symbolic evidence from
1124 the KG is absent, showcasing the complementary power of LLM-based reasoning.
11251126 J FAILURE CASE ANALYSIS
11271128 Table 15 presents representative failure cases of PARoG and highlights the underlying causes across
1129 three major error categories. Case 1 illustrates a relation-selection error, where the planner or ex-
1130 ploration stage selects a relation chain which is semantically plausible but ultimately incorrect(e.g.,
1131 directed_by instead of actor-performance relations), diverting the search away from the gold path.
1132 Case 2 shows an instance of incomplete multi-branch retrieval, where the system successfully re-
1133 covers the film-related path but misses an additional TV-series branch required to produce the full
1134 multi-answer set. This demonstrates that although PARoG effectively handles compositional con-
1135 straints, multi-source answer aggregation remains challenging when evidence spans heterogeneous
1136 subgraphs. Case 3 shows a failure case caused by KG incompleteness: when numerical attributes
1137 or relational paths needed to instantiate a constraint are absent from the underlying KG, PARoG
1138 is unable to retrieve the gold entity and must instead rely on parametric knowledge, often leading
1139 to incorrect final predictions. Overall, these cases reveal that remaining errors primarily stem from
1140 (i) subtle relation disambiguation, (ii) multi-branch retrieval coverage, and (iii) missing or incom-
1141

1134

1135

Table 15: Failure cases of PARoG and corresponding error causes.

1136

1137

Case 1: Relation selection error

1138

1139

Question	What movie did Ron Howard do with cinematography was by Mark Irwin?
----------	---

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

Ground truth	Osmosis Jones
error cause	<p># PARoG Reasoning Path: Mark Irwin → film.cinematographer.film → Scream Ron Howard" → <code>film.film.directed_by</code> → Apollo 13 Answer: Scream</p> <p># Ground truth path: Ron Howard → film.actor.film → m.03g24 m.03g24 → film.performance.film → Osmosis Jones Osmosis Jones → film.film.cinematography → Mark Irwin</p> <p># Cause: Incorrect relation selection (choosing <code>film.film.directed_by</code> and <code>film.cinematographer.film</code> instead of the actor–performance relations) diverts exploration to irrelevant paths, thereby missing the gold answer.</p>

Case 2: Incomplete multi-answer retrieval (partial answer set)

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Question	who plays blaine in batman
error cause	<p># PARoG reasoning path (only one branch retrieved): # Film path retrieved: Blaine → film.film_character.portrayed_in_films → film.performance.actor → Tom Hardy, Carlos Alazraqui, Matthew Wagner Missing actor from the TV branch: Danny Trejo.</p> <p># Ground truth path (union of two branches): # Film path: Blaine → film.film_character.portrayed_in_films → film.performance.actor → Tom Hardy, Carlos Alazraqui, Matthew Wagner # TV path: Blaine → tv.tv_character.appeared_in_tv_program → tv.regular_tv_appearance.actor → Danny Trejo</p> <p># Cause: The ground-truth answer set is formed by the union of a film path and a TV path, but PARoG identifies only one branch (film) and overlooks the tv_program branch, resulting in an incomplete multi-answer retrieval.</p>

Case 3: Path absence due to KG incompleteness.

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Question	What countries in Oceania, that have the emissions per capita in dated metric ton of 0.091351?
error cause	<p>PARoG Reasoning: Cook Islands is a country in Oceania that has emissions per capita of 0.091351 metric tons</p> <p>Path absence due to KG incompleteness. The KG does not contain a valid relational path that instantiates the numeric condition 0.091351 (i.e., this value is missing/not represented), so PARoG cannot retrieve the exact matching entity and is forced to Use the LLM internal Knowledge.</p>

plete KG facts—providing actionable directions for future improvements such as stronger relation grounding, expanded query branching, and KG-aware confidence estimation.

K SEARCH SPARQL

we define several SPARQL queries for Freebase queries, which can be executed to search the relation and entity in the Knowledge graph

```

1188
1189 PREFIX ns: <http://rdf.freebase.com/ns/>
1190 SELECT ?relation
1191 WHERE {
1192     ns:mid ?relation ?x .
1193 }
1194

```

```

1194 PREFIX ns: <http://rdf.freebase.com/ns/>
1195 SELECT ?relation
1196 WHERE {
1197     ?x ?relation ns:mid .
1198 }
1199

```

1200 K.1 ENTITY SEARCH

```

1202 PREFIX ns: <http://rdf.freebase.com/ns/>
1203 SELECT ?tailEntity
1204 WHERE {
1205     ns:mid ns:relation ?tailEntity .
1206 }
1207

```

```

1208 PREFIX ns: <http://rdf.freebase.com/ns/>
1209 SELECT ?tailEntity
1210 WHERE {
1211     ?tailEntity ns:mid ns:relation .
1212 }
1213

```

1214 K.2 ENTITY NAME

```

1216 PREFIX ns: <http://rdf.freebase.com/ns/>
1217 SELECT DISTINCT ?tailEntity
1218 WHERE {
1219     {
1220         ?entity ns:type.object.name ?tailEntity .
1221         FILTER(?entity = ns:mid)
1222     }
1223     UNION
1224     {
1225         ?entity <http://www.w3.org/2002/07/owlsameAs> ?tailEntity .
1226         FILTER(?entity = ns:mid)
1227     }
1228

```

1229 L PROMPT TEMPLATES FOR LLM AGENTS

1230 We introduce the full prompting strategy used in our framework, which can be divided into two main
1231 stages:

- 1234 • **Data Generation Stage:** Generating training data from SPARQL queries.
- 1235 • **Agent Reasoning Stage:** Guiding the LLM through the full Plan-Answer-Refine reasoning pro-
1236 cedure based on decomposed subgoals and retrieved knowledge.

1238 L.1 DATA GENERATION STAGE:

1240 For each input question, GPT-4o produces a set of decomposed sub-questions that reflect the logical
1241 structure of the underlying SPARQL query. Here we display the prompt we use to generate the sub-
question.

1242 L.1.1 DATA GENERATE

1243

1244 Please break down the process of answering the question into as few
1245 subobjectives as possible based on semantic analysis and sparql
12461247 Now you need to directly output subobjectives of the following question
1248 in list format like the example above. The output format should be [
1249 subobjective1, subobjective2,...]

1250 Q: \{Query\}

1251

1252 Sparql: \{Sparql Query\}

1253

1254 Output:

1255

1256

1257 L.2 AGENT REASONING STAGE:

1258

1259 We detail the complete prompt templates used in our iterative reasoning framework, including an-
1260 swer initialization, relation/entity pruning, state updating, and self-refinement.

1261

1262 L.3 INIT ANSWERING

1263

1264 ased on your own knowledge, output the current known information required
1265 to achieve the subobjectives.

1266 \texttt{In-Context Few-shot}

1267

1268 Q: \{Query\}

1269

1270 Subobjectives:\{list of sub questions\}

1271

1272 Now you need to directly output the results of the following question in
1273 JSON format without other information or notes.

1274

1275 Output:

1276

1277

1278 L.4 RELATION PRUNE

1279

1280

1281 Please provide as few highly relevant relations as possible to the
1282 question and its subobjectives [from](#) the following relations.

1283 \texttt{In-Context Few-shot}

1284

1285 Q: \{Query\}

1286

1287 Subobjectives:\{list of sub questions\}

1288

1289 Topic Entity: \{Topic Entity\}

1290

1291 Relations: \{list of relations\}

1292

1293 output:

1294

1295 The LLM is instructed to directly select a subset of candidate relations(No thresholds), we do not
set a fixed thresholds, and this discrete selection is used as the pruned relation set; we do not apply
any additional numeric thresholds on LLM scores.

1296
1297

L.5 ENTITY PRUNE

1298

For each triple pattern (e,r,?)(e, r, ?)(e,r,?), we construct a prompt of the form.

1299

Which entities in the following list ([] in Triples) can be used to
1300 answer question? Please provide the minimum possible number of
1301 entities, and strictly adhering to the constraints mentioned in the
1302 question.1303
1304Now you need to directly output the entities `from` [] in Triplets for the
following question in list format without other information or notes.

1305

\texttt{In-Context Few-shot}

1306

Q: \{Query\}

1308

Subobjectives:\{list of sub questions\}

1309

Relation: \{Current Relation\}

1310

Entites: \{list of entities\}

1311

output:

1315

The LLM is prompted to directly choose a subset of the provided candidate entities that are most
1316 relevant for answering the question(no thresholds).similarly,we do not set a fixed threshold.

1317

L.6 UPDATE THE KG REASONING STATE

1318

Based on the provided information to revise the memory,if the memory has
1322 conflict with the provided information,use the provided information
1323 to revise the memory.If the provided information is not enough to
1324 revise the memory, keep the memory unchanged.

1325

\texttt{In-Context Few-shot}

1326

Now you need to directly output the results of the following question in
1328 JSON format without other information or notes.

1329

Q: \{Query\}

1330

Memory: \{the status of the sub-questions\}

1331

Knowledge triples: \{Explored Paths\}

1332

output:

1333

Q: \{Query\}

1334

Knowledge triples: \{Explored Paths\}

1335

Output:

1336

1337

1338

1339

1340

Given the question and the associated retrieved knowledge `graph` triples (entity, relation, entity), you are asked to
1346 self-refine the initial answers based on them. if the initial answers
1347 have conflict with the provided information,use the provided
1348 information to refine them.If the provided information is not enough
1349 to refine the answers, keep the answers unchanged.

```

1350
1351 \texttt{In-Context Few-shot}
1352
1353 Q: \{Query\}
1354
1355 Knowledge triples: \{Explored Paths\}
1356
1357 Inital answers:\{The inital answers generated by the llm\}
1358
1359 Output:
1360
1361

```

L.8 ANSWER

PARoG runs an iterative plan–answer–refine loop with two complementary stopping conditions. First, we cap the planning horizon by a fixed maximum number of iterations. Second, at each iteration we call a final-answer head that takes the original question, the currently explored KG paths, and the refined result of resolved sub-questions as input.

```

1366
1367 Please answer the question based on the memory, related knowledge
1368 triplets and your knowledge.
1369

```

```

1370 Now you need to directly output the results of the following question in
1371 JSON format (must include "A" and "R") without other information or
1372 notes.
1373

```

```

1374 \texttt{In-Context Few-shot}
1375
1376 Q: \{Query\}
1377
1378 Knowledge triples: \{Explored Paths\}
1379
1380 Memory: \{the status of the sub-questions\}
1381
1382 Output:
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

```

The model is required to output a JSON object with keys "A" (final answer) and "R" (short rationale). If the predicted answer field "A" is non-empty and not an "unknown" placeholder, we accept it and terminate the whole process early, without further KG exploration. Otherwise, we continue to the next iteration until either a satisfactory answer is produced or the maximum iteration is reached, in which case we fall back to answering based on the LLM's own parametric knowledge plus the accumulated triples in the context.