
Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

Aoran Wang 1 Xinnan Dai 2 Jun Pang 1 3

Abstract
Existing methods for inferring latent relational
structures struggle to integrate partial prior knowl-
edge, such as known edges, node-degree con-
straints, and global sparsity, without destabilizing
training or conflicting with probabilistic assump-
tions. We propose Soft-Gated Structural Inference
(SGSI), a VAE framework that seamlessly incor-
porates domain constraints via (1) soft gating with
learnable edge masks to preserve gradients, (2)
cloning-clamping of deterministic edges to avoid
distributional conflicts, and (3) adaptive regular-
ization to balance data-driven learning with do-
main constraints. By excluding known edges from
stochastic inference, SGSI reallocates capacity to
uncertain interactions, optimizing the information
bottleneck trade-off. Experiments on 16 datasets
show SGSI improves edge recovery by up to 9%
AUROC over baselines, scales to larger graphs
(94.2% AUROC), and maintains stable training.
SGSI bridges domain expertise with data-driven
learning, enabling interpretable and robust struc-
tural discovery in dynamical systems.

1. Introduction
The ability to infer latent relational structures, such as inter-
actions between particles in physics (Kwapień & Drożdż,
2012; Ha & Jeong, 2021; Wu et al., 2024), agents in
robotics (Brasó & Leal-Taixé, 2020; Li et al., 2022), or
genes in biological systems (Tsubaki et al., 2019; Pratapa
et al., 2020), is critical for modeling complex dynamical sys-
tems (Birkhoff, 1927; Katok & Hasselblatt, 1995). While
recent advances in variational autoencoder (VAE)-based
methods (Kipf et al., 2018; Alet et al., 2019; Chen et al.,
2021; Löwe et al., 2022; Wang & Pang, 2022; Wang et al.,
2023; Wang & Pang, 2024b) have enabled end-to-end learn-

1Department of Computer Science, University of Luxem-
bourg 2ShanghaiTech University 3Institute for Advanced Stud-
ies, University of Luxembourg. Correspondence to: Jun Pang
<jun.pang@uni.lu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

ing and inference of these structures, they often overlook
a key practical reality: domain experts frequently possess
partial prior knowledge on the structure, such as known
interactions in biochemical networks (Pratapa et al., 2020)
or kinematic constraints in multi-agent systems (Brasó &
Leal-Taixé, 2020). These kinds of prior knowledge are ig-
nored, wasting opportunities to guide inference and forcing
models to ”re-discover” known edges, wasting capacity on
irrelevant uncertainty. However, integrating such knowl-
edge into structural inference frameworks is challenging,
as naively overwriting edges or enforcing rigid constraints
risks destabilizing training, contradicting the probabilistic
assumptions of VAEs, and conflicting with the information-
theoretic principles underlying these models.

Existing approaches struggle to reconcile prior knowledge
with data-driven learning. For instance, forcibly clamping
edges to fixed values disrupts gradient flow during back-
propagation, while imposing exact sparsity or node-degree
constraints creates conflicts with the variational informa-
tion bottleneck (VIB) objective (Alemi et al., 2017), which
balances compression of irrelevant information against pre-
dictive accuracy. These issues often manifest as failed con-
vergence or suboptimal inference, limiting the utility of
structural inference in practice.

We address these challenges with Soft-Gated Structural
Inference (SGSI), a framework that integrates partial prior
knowledge through three principal components. First, a
soft gating mechanism, where each edge is assigned a learn-
able parameter αe ∈ [0, 1], smoothly masks interactions
while preserving gradient flow. Second, known edges are
cloned and clamped to deterministic values (1 for present, 0
for absent) during forward passes, avoiding in-place mod-
ifications and excluding them from the Kullback-Leibler
(KL) divergence calculation. Third, global sparsity and
node-degree constraints are enforced via adaptive penalties,
allowing deviations when supported by data. By treating
known edges as deterministic (zero entropy) and uncertain
edges as stochastic, SGSI aligns with the VIB principle: it
compresses irrelevant interactions while preserving predic-
tive capacity for uncertain ones, optimizing the trade-off
between domain priors and data-driven discovery.

Experiments across dynamical systems and biological net-
works demonstrate SGSI’s advantages. When partial prior

1

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

knowledge is available, SGSI improves edge recovery by up
to 9% in ∆AUROC score compared to VAE baselines. It en-
ables smooth scaling to larger graphs with 94.2% AUROC,
and it maintains stable training where naive implementa-
tions diverge. Theoretically, SGSI’s cloning-and-clamping
strategy “frees” information-theoretic capacity for uncertain
edges, avoiding distributional conflicts that plague naive ap-
proaches. Practically, inferred structures align with domain
expectations, enhancing interpretability without sacrificing
predictive accuracy. Our contributions are threefold:

• A novel approach with gating mechanisms, clamp-
cloning operation and adaptive regularization that inte-
grates prior knowledge (known edges, sparsity, node
degrees) into VAEs without gradient instability or dis-
tributional conflicts.

• A theoretical framework linking SGSI to the VIB
principle, showing how deterministic and stochastic
edges optimize the compression-prediction trade-off.

• Empirical validation across physical, biological, and
multi-agent systems, showcasing the performance of
SGSI comparing with baseline methods.

2. Related Work
VAE-based Structural Inference. Many works use vari-
ational autoencoders to learn latent graph structures for
interacting systems (Kipf et al., 2018; Alet et al., 2019;
Chen et al., 2021; Wang & Pang, 2022; Wang et al., 2023).
For example, NRI (Kipf et al., 2018) applies a GNN-based
decoder to predict future states given a learned adjacency.
Key advancements include factorizing interactions for multi-
relational systems systems (Webb et al., 2019), integrating
efficient message-passing (Chen et al., 2021), incorporating
modular meta-learning (Alet et al., 2019), iteratively prun-
ing indirect connections (Wang & Pang, 2022), developing
structural inference with reservoir computing (Wang et al.,
2023), and estimating partial correlation coefficients based
on node embeddings (Wang & Pang, 2024b). Yet, they lack
systematic support for known-absent edges, node-degree
limits, or global sparsity, and often rely on brittle adjacency
overwrites that disrupt training dynamics.

Partial-Knowledge Approaches. Some frameworks can
handle some prior knowledge, e.g., ALaSI (Wang & Pang,
2023) integrates known-present edges via active learning,
or SICSM (Wang & Pang, 2024a) can fix certain present
edges. However, they lack flexible ways to handle absent
edges, node-degree constraints, or global sparsity. Others
rely on naive adjacency overwrites that can break gradient
flow or create contradictory KL signals.

We address these challenges by introducing soft gating, a
mechanism that systematically accommodates known edges,

global sparsity, and node-degree constraints without any
in-place modifications or distributional conflicts.

3. Preliminaries
3.1. Notation

We consider N nodes with observed states {xi(t)|i =
1, . . . , N ; t = 1, . . . , T} over discrete time steps t ∈
{1, . . . , T}, and each xi(t) ∈ Rd. Moreover, we com-
bine all the time steps into a single trajectory for node
i: Xi =

[
xi(1), xi(2), . . . , xi(T)

]
∈ Rd×T . We write

X ∈ X for the collection of all node trajectories, i.e.
X = {X1, . . . , XN}. One typical shape is X ∈ RN×T×d if
we store them in a 3D tensor. We use a latent directed graph,
represented by an adjacency matrix A ∈ {0, 1}N×N , where
Aij = 1 indicates a directed edge from node i to node j (i.e.,
i → j). We define E = N2 potential edges, enumerated
by e ∈ {1, . . . , E}. Moreover, depending on the predic-
tion goals, we separate the time-series X = {x1, . . . ,xT }
into past observations Xpast = {x1, . . . ,xt0}, and future
targets: Xfuture = {xt0+1, . . . ,xT } according to time t0.

3.2. Structural Inference with VAEs

In this work, we aim to learn a latent graph structure that ex-
plains the observed data X for N interacting nodes. Specifi-
cally, we posit a latent adjacency Z capturing which nodes
influence which others, where Z can be discrete ({0, 1}E)
or continuous ([0, 1]E). Each coordinate Ze denotes the
potential presence or weight of edge e among E total edges.
We adopt a standard VAE approach (Kipf et al., 2018; Alet
et al., 2019; Webb et al., 2019; Chen et al., 2021):

We treat Z as a random adjacency in [0, 1]E or {0, 1}E .
A VAE comprises an encoder qϕ(Z|X) and a decoder
pθ(Xfuture | Z,Xpast), along with a KL term that encour-
ages simpler adjacency. The encoder comes with param-
eter ϕ, and it produces parameters {θe} for each edge e,
which can be interpreted as logits in a Bernoulli or Gumbel-
softmax distribution: qϕ(Ze = 1|X) = σ(θe), or more
complex variants. The decoder comes with parameter θ.
Given the learned adjacency Z and the past node states
Xpast, the decoder predicts the future states Xfuture. We
obtain the adjacency from the latent space of the VAE. The
VAE objective for structural inference typically includes a
part for prediction and KL term:

LVAE(ϕ, θ) = Eqϕ(Z|Xpast)

[
− log pθ(Xfuture|Z,Xpast)

]︸ ︷︷ ︸
Prediction Loss

+ β DKL

(
qϕ(Z|Xpast) ∥ p(Z)

)︸ ︷︷ ︸
KL Regularizer

, (1)

where the prediction loss encourages the learned adjacency
to be informative about the next-step states or about recon-
structing the entire sequences, and the KL term encourages

2

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

Node-to-Edge Edge-to-Node Node-to-Edge

Soft Gating Mechanism

Soft Gating Mechanism

Sigmoid

Known-Present Edges
Known-Absent Edges

Decoder

Encoder

Objective Function

Global Sparsity Node Degree
ConstraintsUncertain Edges

Figure 1. (Above) The overview of the whole pipeline. (Bottom) Details about the soft gating and objective functions in this work.

qϕ(Z|Xpast) to remain close to a prior p(Z), typically push-
ing for a simpler or more compressed adjacency. The param-
eter β balances how strongly we emphasize compression
against prediction, drawing parallels with the information
bottleneck principle (Tishby et al., 1999).

While existing methods infer fully unknown adjacency, inte-
grating partial prior knowledge poses challenges: forcibly
overwriting edges disrupts gradient flow, and fixing edges to
deterministic values contradicts latent uncertainty assump-
tions, creating conflicting KL signals. SGSI resolves this
via soft gating, which seamlessly enforces constraints while
preserving gradients and distributional consistency.

3.3. Partial Knowledge and Adjacency Constraints

Real-world systems exhibit diverse edges, including known,
constrained, and uncertain, yet existing methods treat all
edges as uniformly latent, causing conflicts. SGSI integrates
partial knowledge (known present/absent edges, sparsity,
node degrees) to resolve inconsistencies and enhance infer-
ence accuracy. We refer to such knowledge as partial or
prior adjacency constraints in the following forms:

Known-Present Edges: A subset E+ ⊆ {(i → j) | 1 ≤
i ̸= j ≤ N} of edges is deemed definitely present. For
instance, certain couplings are physically guaranteed to exist
(e.g., a gravitational link in a solar system), or certain agent-
to-agent channels are known to be always active. We want to
ensure any latent adjacency variable Zij for (i→ j) ∈ E+
is effectively “on” (or near 1 in a continuous relaxation).

Known-Absent Edges: Another subset E− ⊆ {(i→ j) |
1 ≤ i ̸= j ≤ N} is known to be absent or forbidden. This
may arise if domain rules forbid certain interactions (e.g.,
node i cannot influence node j under the laws of the system),
or if data from external knowledge confirms no direct link.
Thus, for (i→ j) ∈ E−, the adjacency variable Zij should
be near 0 or exactly zero in a discrete adjacency.

Sparsity or Global Edge Constraints: In many settings,
the number of active edges in a system is expected to be
small (e.g., a physical system with local interactions only,
or a network known to be mostly disjoint). Alternatively,
one might only have an approximate fraction of edges ρ that
remain active. This can be enforced via a penalty on the
sum of gating values or a more rigid constraint on the total
number of edges allowed.

Node-Degree Constraints: Certain nodes might be known
“hubs”, or they might have out-degree (or in-degree) capped
by a known property. For example, in a system where
each node can only maintain three outgoing connections
due to bandwidth limits, or a node might have exactly two
neighbors in a ring-like structure. We might penalize or
clamp the out-degree

∑
j Zij to match a target degree degi.

A naive way to incorporate known edges is to forcibly over-
write the VAE’s Sigmoid or Gumbel-softmax outputs for
(i→ j) ∈ E+ with 1 or for E− with 0. However, this often
leads to in-place modification conflicts in modern autograd
frameworks, as the same tensor is needed for gradient com-
putations. Moreover, if certain edges are forcibly set to 0 or
1 without adjusting the KL term (or removing them from the
latent distribution), the prior-latent assumption that all edges
are random is violated. The model may receive contradic-
tory signals: on one hand, the KL encourages a distribution
on every edge; on the other hand, we are forcibly clamping
some edges to fixed values. To address these issues in a
gradient-friendly manner, our approach uses soft gating and
is discussed in detail in Section 4.

4. Structural Inference with Soft Gating
SGSI builds upon the idea that VAE-based structural infer-
ence can be interpreted through the lens of the VIB. In this
section, we detail how we embed soft gating within a VAE
framework, incorporate partial knowledge, and reconcile it

3

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

with the IB principle. Fig. 1 illustrates the overall pipeline.

4.1. Learned Gating Overview

We start with a VAE-based structural inference setup where
the latent variable Z represents the adjacency among N
nodes. Instead of treating each edge as strictly binary, we in-
troduce a continuous gating parameter θe ∈ R per potential
edge e ∈ {1, . . . , E}. Thus we obtain gating values:

αe = σ(θe), (2)

where σ(·) is the sigmoid function. Each αe ∈ [0, 1] acts as
a soft mask, suppressing irrelevant edges (αe → 0) or acti-
vating critical ones (αe → 1). Besides that, the remaining
part of the network is setup as the following:

Encoder qϕ(Z|X) = softmax(fenc,ϕ(X)), where fenc,ϕ
is implemented by a GNN that acts on the fully
conditioned graph. Given node observations X =
{X1, X2, . . . , Xj , . . . , XN}, it outputs logits ξ for each po-
tential edge of the graph.

Node Embedding: h
(1)
j = f

(1)
embed(Xj) , (3)

Node-to-edge: h
(1)
ij = f1

e ([h
(1)
i ,h

(1)
j]), (4)

Gating 1: e
(1)
ij = h

(1)
ij ⊙ αe , (5)

Edge-to-node: h
(2)
j = fv

(∑
e
(1)
ij

)
, (6)

Node-to-edge: h
(2)
ij = f (2)

e ([h
(2)
i ,h

(2)
j]), (7)

Gating 2: e
(2)
ij = h

(2)
ij ⊙ αe , (8)

where [·, ·] defines concatenation of two tensors. f (1)
embed is

the embedding network for input features, f (1)
e and f

(2)
e

are node-to-edge message-passing networks, and fv is the
edge-to-node operation. Each edge’s message is multiplied
by αe, thus “turning on” edges close to 1 and suppressing
edges near 0. We then model posterior over edges as

qϕ(Z|X) = softmax(e(2)ij), (9)

where ϕ summarizes the parameters of the neural networks
in Eqn. 3-8. Similar to approaches from (Kipf et al., 2018;
Wang & Pang, 2022; Wang et al., 2023), additional random-
ization such as Gumbel-Softmax is used.

Decoder pθ(Xfuture|Z,Xpast) takes in node states and ad-
jacency {e(2)ij } from Eqn. 9 to predict nodes’ subsequent
states, which are influenced by edges scaled by αe. Fol-
lowing (Kipf et al., 2018; Wang & Pang, 2022; Wang et al.,
2023), we use a message-passing framework:

ĥj(t+1) = xj(t)+f
(3)
embed

(∑
zij>0

zijf
(2)
embed([xi(t), xj(t)])

)
,

(10)
where f

(2)
embed and f

(3)
embed are multilayer perceptrons (MLPs)

to embed the features. In a standard VAE setting, we also

add a KL or information bottleneck penalty on ξ, striking a
balance between accurate prediction and minimal adjacency.
However, the details of this are often shaped by the choice
of prior p(Z). In practice, we simply have β-weighted KL
term (Eqn. 1) for the gating distribution.

4.2. Incorporating Partial Knowledge

A central contribution of this work is to allow partial domain
knowledge about edges, global sparsity or node degrees to
be injected into the gating approach without causing in-place
modifications or contradictory distributions. SGSI addresses
this via gradient-safe clamping and adaptive regularization.

Known-Present and Known-Absent Edges. If an edge
e is present according to the domain knowledge or prior
knowledge, i.e. e ∈ E+, we want αe ≈ 1. However,
directly overwriting the Sigmoid output αe in-place can
break gradient flow. Instead, we use the following steps :
1. Compute αe = σ(θe) for all edges.
2. Clone αe into αclamped.
3. Clamp in αclamped: for e ∈ E+, set αclamped[e] = 1.
4. Freeze ξe for e ∈ E− ∪ E+ (e.g., ξe → +∞ for E+).
5. Exclude clamped edges from the KL divergence penalty.
Cloning αe ensures gradient computations use the original
αe, while αclamped enforces domain constraints during for-
ward passes. Skipping KL terms for known edges avoids
conflicting signals between the prior and clamped values.

Global Sparsity. Beyond edge-by-edge knowledge, we
allow global constraints to be inserted via adaptive penalties.
Let αe or the αclamped be the final gating values for each
edge, depending on whether the edges appear in the prior
set or not. We define the penalty for sparsity as:

Lsparsity = λsparsity ·
E∑

e=1

αe, (11)

encouraging the sum of all gating values to be small.
λsparsity is the weight of the sparsity penalty. Sometimes we
want exactly (or approximately) ρE edges active, where E
is the total number of potential edges. For example, ρ = 0.1
means 10% edges. We achieve this by comparing the sum
of gating

∑
e αe to ρE:

Lsparsity = λsparsity ·
∣∣ E∑
e=1

αe − ρE
∣∣. (12)

This is a soft approach as the model is free to deviate if
the data demands a bit more or fewer edges, but it pays a
penalty in proportion to how far it strays from ρE.

Node Degree Constraints. In many real-world settings, we
may know each node i has an exact out-degree ki, or sim-
ilarly, an in-degree constraint. For example, a node might
precisely need 2 out-connections based on domain rules.
We incorporate these constraints in a soft manner rather

4

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

than forcing exact rewrites, which could lead to in-place
modifications and contradictory distributions. Following
the notations in Section 3.1, we interpret αe as how “active”
edge e is. If edge e corresponds to (i→ j), then node i is
the sender. We have the out-degree and in-degree of i:

outdeg(i) =
N∑
j=1

α(i→j). (13)

indeg(i) =
N∑
j=1

α(j→i). (14)

Depending on whether we have an out-degree or in-degree
constraint, we focus on one of these sums or both. Suppose
we want node i to have out-degree exactly ki. We can define:

Ldeg = λdeg ·
M∑
i=1

∣∣∣ outdeg(i)− ki

∣∣∣, (15)

where M represents the set of nodes having out-degree con-
straints and is a subset of all N nodes. Let M ⊆ {1, . . . , N}
be the set of nodes with out-degree constraints, and let
λdeg be the penalty weight. This term softly enforces∑

j αi→j ≈ ki, but allows deviations if supported by
data (at a penalty cost). For in-degree constraints, replace
outdeg(i) with indeg(i). If some nodes have out-degree
constraints and others have in-degree constraints, handle
each node independently and sum the corresponding terms.

4.3. Objective Function

The training objective balances prediction accuracy, model
complexity, and adherence to prior knowledge. The predic-
tion loss is the same as that in Eqn. 1:

Lpred = − log pθ(Xfuture|αclamped,Xpast). (16)

However, the KL term may vary depending on the prior
knowledge. If certain edges are truly fixed, we remove them
from the KL computation, avoiding contradictory signals.
This is straightforward if we treat those edges as having
zero entropy (delta function) in the distribution, or if we
skip them entirely from the random portion. For partially
known constraints (like node degrees), we keep the normal
KL but apply the external penalty. This synergy ensures
a stable co-existence of variational inference and domain
constraints. Therefore, based on the prior knowledge we
have, we update the DKL term in Eqn. 1 accordingly:

DKL =
∑
e∈U

KL
(
qϕ
(
ξe | X

) ∥∥ p(ξe)
)
, (17)

where U =
{
1, . . . , E

}
\
(
E+ ∪ E−

)
represents the set of

uncertain edges, ξ denotes the variables in latent space. We
then combine the penalties for known degrees or global
sparsity with the prediction loss and β-weighted KL:

L = Lpred + βDKL + Lsparsity + Ldeg. (18)

Choosing Hyperparameters.

• KL Weight β: Balances prediction accuracy against
model complexity. We typically begin with β = 1.0
(a balanced trade-off). For very sparse or low-data scenar-
ios, we may reduce β (e.g., 0.1) to prioritize prediction.
Conversely, in settings demanding strong regularization
or interpretability, β can be increased (e.g., 2.0 or 5.0).

• Sparsity Weight λsparsity: Controls adherence to global
sparsity. For exact sparsity (

∑
αe ≈ ρE), set λsparsity ∈

[0.1, 1.0]. For soft encouragement, use smaller values
(10−3 to 10−2).

• Degree Penalty λdeg: Similarly tested in [10−4, 10−2].
Larger λdeg enforces node-degree constraints more
strictly, while smaller values let data cues override the
prior knowledge. We pick a value based on a small vali-
dation set or best AUROC for edge recovery.

In practice, we find a brief grid search or Bayesian opti-
mization on (β, λsparsity, λdeg) is sufficient to find hyperpa-
rameters that yield both high-fidelity adjacency and stable
training for the experiments in this work.

4.4. Interpretation via VIB

SGSI formalizes the IB principle by explicitly separating
known and uncertain edges in the latent adjacency Z. Let
X denote observed node trajectories, and Z represent the
latent graph with three disjoint subsets:

• E+: Known-present edges (fixed to 1).
• E−: Known-absent edges (fixed to 0).
• U : Uncertain edges (learned from data).

Posterior and Prior Factorization. The encoder qϕ(Z|X)
and prior p(Z) factorize as:

qϕ(Z|X) =∏
e∈U

qϕ(Ze|X) ·
∏
e∈E+

δ(Ze = 1) ·
∏

e∈E−

δ(Ze = 0), (19)

p(Z) =
∏
e∈U

p(Ze) ·
∏
e∈E+

δ(Ze = 1) ·
∏

e∈E−

δ(Ze = 0),

(20)

where δ(·) enforces deterministic values for known edges.
This factorization ensures:

• Known edges (E+, E−) are excluded from the stochastic
portion of Z, avoiding contradictory signals between data
and prior knowledge.

• Uncertain edges (U) remain random, allowing the model
to learn their distributions.

KL Divergence Simplification. The KL divergence be-

5

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

10 20 30 40 50
Known Presence in %

−10

−5

0

5

10

ΔA
UR

OC
Springs Simulations

10 20 30 40 50
Known Presence in %

NetSims

10 20 30 40 50
Known Presence in %

LI

10 20 30 40 50
Known Presence in %

LL

10 20 30 40 50
Known Presence in %

CY

10 20 30 40 50
Known Presence in %

BF

10 20 30 40 50
Known Presence in %

TF

10 20 30 40 50
Known Presence in %

BF-CV

10 20 30 40 50
Known Presence in %

−10

−5

0

5

10

ΔA
UR

OC

VN_SP_15

10 20 30 40 50
Known Presence in %

VN_SP_30

10 20 30 40 50
Known Presence in %

VN_SP_50

10 20 30 40 50
Known Presence in %

VN_SP_100

10 20 30 40 50
Known Presence in %

VN_NS_15

10 20 30 40 50
Known Presence in %

VN_NS_30

10 20 30 40 50
Known Presence in %

VN_NS_50

10 20 30 40 50
Known Presence in %

VN_NS_100

NRI ACD MPM iSIDG RCSI ALaSI SICSM SGSI

Figure 2. The average ∆ AUROC values of ten runs of baselines and SGSI on the datasets with different percentages of known present
edges. The shadings represent the standard deviations.

10 20 30 40 50
Known Absence in %

−10

−5

0

5

10

ΔA
UR

OC

Springs Simulations

10 20 30 40 50
Known Absence in %

NetSims

10 20 30 40 50
Known Absence in %

LI

10 20 30 40 50
Known Absence in %

LL

10 20 30 40 50
Known Absence in %

CY

10 20 30 40 50
Known Absence in %

BF

10 20 30 40 50
Known Absence in %

TF

10 20 30 40 50
Known Absence in %

BF-CV

10 20 30 40 50
Known Absence in %

−10

−5

0

5

10

ΔA
UR

OC

VN_SP_15

10 20 30 40 50
Known Absence in %

VN_SP_30

10 20 30 40 50
Known Absence in %

VN_SP_50

10 20 30 40 50
Known Absence in %

VN_SP_100

10 20 30 40 50
Known Absence in %

VN_NS_15

10 20 30 40 50
Known Absence in %

VN_NS_30

10 20 30 40 50
Known Absence in %

VN_NS_50

10 20 30 40 50
Known Absence in %

VN_NS_100

NRI ACD MPM iSIDG RCSI ALaSI SGSI

Figure 3. The average ∆AUROC values of ten runs of baselines and SGSI on the datasets with different percentages of known absent
edges. The shadings represent the standard deviations.

tween posterior and prior reduces to:

DKL

(
qϕ(Z|X)∥p(Z)

)
=

∑
e∈U

DKL

(
qϕ(Ze|X)∥p(Ze)

)
,

(21)
since DKL(δ∥δ) = 0 for known edges, aligning with IB:

• Compression (I(X;Z)): The KL term penalizes extrane-
ous information stored in uncertain edges. Known edges
consume no ”bits” due to their deterministic nature.

• Prediction (I(Z;Y)): The prediction loss ensures Z re-
tains edges critical for predicting Xfuture.

Theoretical Implications. By delta-encoding known edges,
SGSI achieves two key properties:

1. No Contradictory Signals: Known edges are excluded
from the random latent space, preventing conflicts be-
tween prior assumptions (e.g., a uniform prior) and do-
main knowledge.

2. Freed Capacity: The model allocates information-
theoretic “bits” only to uncertain edges, optimizing the

IB trade-off:

min
Z

[
I(X;Z)︸ ︷︷ ︸

Uncertain edges

−β I(Z;Y)︸ ︷︷ ︸
Prediction

]
.

The soft gating αe = σ(θe) directly implements this IB-
driven compression as the known edges (αe = 1 or 0)
are deterministic, contributing nothing to I(X;Z). Besides,
uncertain edges (αe ∈ (0, 1)) are regularized by the KL term
and sparsity penalties, limiting their information content.

5. Experimental Results
In this section, we evaluate the proposed soft gating ap-
proach on various datasets. We aim to investigate accuracy,
graph quality, robustness, flexibility and the information
bottleneck perspective of SGSI.

5.1. General Settings

Datasets. Our study first evaluates the SGSI model on
two established structural inference datasets: the Spring

6

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

Simulations dataset (Kipf et al., 2018), which simulates
dynamic interactions of balls connected by springs within
a symmetric setting, and the NetSim dataset (Smith et al.,
2011b), which consists of simulated blood-oxygen-level-
dependent imaging data from various brain regions in an
asymmetric network. Both datasets include 10 nodes, with
Spring Simulations offering four-dimensional features and
NetSim one-dimensional features at each timestep, initially
sampled at 49 regular intervals.

Furthermore, we examined six directed synthetic biological
networks (Linear, Linear Long, Cycle, Bifurcating, Trifur-
cating, and Bifurcating Converging) as outlined in (Pratapa
et al., 2020), with abbreviations LI, LL, CY, BF, TF and BF-
CV, respectively. These networks simulate developmental
trajectories in differentiating cells using BoolODE (Pratapa
et al., 2020), capturing one-dimensional mRNA expression
levels over 49 timesteps.

We also incorporated data from the StructInfer Bench-
mark (Wang et al., 2024), focusing on ‘Vascular Networks’
(VN) with node counts ranging from 15 to 100. These
datasets, named under the categories Springs (SP) and Net-
Sims (NS), were selected for their complex and varying
underlying graph structures, providing a robust platform to
validate the efficacy of the SGSI model.

Baselines. To evaluate the performance of SGSI, we com-
pared it against a suite of state-of-the-art models:

• NRI (Kipf et al., 2018): a VAE-based model for unsuper-
vised relational inference.

• MPM (Chen et al., 2021): employs a VAE framework with
a relational interaction mechanism and spatio-temporal
message passing.

• ACD (Löwe et al., 2022): utilizes shared dynamics to
infer causal relations within datasets.

• iSIDG (Wang & Pang, 2022): iteratively refines adjacency
matrices to enhance directional inference.

• RCSI (Wang et al., 2023): integrates reservoir computing
for efficient structural inference.

• ALaSI (Wang & Pang, 2023): a structural inference
method based on deep active learning.

• SICSM (Wang & Pang, 2024a): a conjoined state space
model for complex input data modeling.

Since NRI, MPM, ACD, iSIDG and RCSI do not provide
an official way of integrating prior knowledge, we just
rewrite the adjacency matrix in their latent spaces to in-
tegrate known present/absent edges. ALaSI can have known
present/absent edges integrated by default, and SICSM can
only have known present edges integrated. Yet we did not
find a possible way of having global sparsity and node de-
gree constraints to be integrated into any of these baselines.

Metrics. Similar to prior work, the comparative effective-
ness of these methods was quantitatively assessed using

the area under the receiver operating characteristic (AU-
ROC) curve, focusing on the accuracy of the inferred adja-
cency matrix. All experiments were conducted on a single
NVIDIA Ampere 40GB HBM graphics card, paired with 2
AMD Rome CPUs (32 cores@2.35 GHz). For more details
about the experiments, please refer to Appendix E.

5.2. Varying Amount of Known Edges

To assess how partial knowledge impacts structural infer-
ence, we evaluate each method under varying percentages of
known-absent (10%–50%) and known-present (10%–50%)
edges, and demonstrate the results in Fig. 2 and Fig. 3. We
measure improvements in structural inference quality via
∆AUROC, representing the change in AUROC relative to
the same method without any prior knowledge. Higher
∆AUROC indicates a stronger benefit from partial adja-
cency constraints. Across all baselines that rely on naive
overwrites, improvements in ∆AUROC typically are neg-
ative. The forcibly pinned edges begin to contradict the
latent distributions expected by these frameworks. Methods
that forcibly zero out edges often find it easier to eliminate
false positives, leading to negative ∆AUROC gains. For
known-present edges, certain baselines, especially ones that
strongly rely on a random adjacency distribution such as
NRI, ACD, iSIDG and RCSI, struggle to fully accommodate
forced 1s if that set grows large.

While we leave global sparsity or node-degree constraints
for the next section, it is already clear that naive in-place
overwrites for known edges do not scale gracefully. In con-
trast, SGSI with the soft gating approach, which skips or
reduces KL for clamped edges, consistently reassigns ca-
pacity to the uncertain edges without harming gradient flow.
This synergy yields higher ∆AUROC at higher knowledge
fractions, which is a point we underscore once additional
constraints come into play. These results confirm that most
baselines (NRI, MPM, ACD, iSIDG, RCSI) can not handle
any partial adjacency knowledge via overwrites and exhibit
remarkable negative gains at higher known-edge fractions.
ALaSI and SICSM integrate partial knowledge more di-
rectly, yet remain bound by their inability to handle large
sets of forced edges or forcibly absent edges (in the case of
SICSM). Overall, this points to the need for a more system-
atic, gradient-friendly method that properly excludes known
edges from the random portion of the adjacency, which is a
motivation leading directly to our soft gating solution.

5.3. Global Sparsity and Node Degree Constraints

In Table 1, we compare the baselines, which lack any official
support for partial knowledge, to SGSI under four variants:
(1) SGSI w. Sparsity: A mild penalty on the total adjacency
sum against the known sparsity. (2) SGSI w. In-deg.: Each
node’s in-degree is softly constrained by domain knowledge.

7

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

Table 1. Baseline AUROC results without prior knowledge compared to SGSI variants: SGSI w. Sparsity (global sparsity), SGSI w.
In-deg. (known in-degrees), SGSI w. Out-deg. (known out-degrees), and SGSI w. Both-deg. (both in- and out-degrees).

Method Dataset

VN SP 15 VN SP 30 VN SP 50 VN SP 100 VN NS 15 VN NS 30 VN NS 50 VN NS 100

NRI 94.58± 0.01 95.12± 0.01 94.65± 0.02 89.17± 0.02 90.31± 0.01 74.64± 0.04 69.78± 0.03 68.80± 0.02

MPM 96.56± 0.01 89.71± 0.04 85.07± 0.02 84.56± 0.03 91.18± 0.01 83.37± 0.03 72.66± 0.04 70.34± 0.03

ACD 94.34± 0.01 93.73± 0.01 87.54± 0.03 90.49± 0.03 80.32± 0.02 65.36± 0.06 69.01± 0.03 68.72± 0.03

iSIDG 96.59± 0.02 95.66± 0.01 95.72± 0.02 85.07± 0.02 91.20± 0.02 78.08± 0.06 73.68± 0.02 68.81± 0.02

RCSI 97.03± 0.01 95.31± 0.01 94.48± 0.02 90.72± 0.03 91.53± 0.02 82.27± 0.04 74.08± 0.02 70.29± 0.03

ALaSI 96.27± 0.02 95.30± 0.01 96.43± 0.02 91.05± 0.03 89.03± 0.04 80.35± 0.06 75.31± 0.04 73.54± 0.04

SICSM 97.70± 0.03 96.88± 0.02 90.24± 0.03 94.78± 0.04 95.38± 0.03 94.21± 0.05 79.24± 0.05 80.21± 0.07

SGSI 95.29± 0.02 92.76± 0.01 90.92± 0.03 88.17± 0.04 93.25± 0.04 88.06± 0.03 79.05± 0.03 77.90± 0.02

SGSI w.Sparsity. 97.80± 0.02 96.90± 0.01 96.43± 0.03 93.91± 0.04 96.26± 0.03 94.01± 0.02 82.92± 0.02 81.54± 0.02

SGSI w.In-deg. 97.42± 0.02 96.82± 0.02 95.90± 0.03 93.05± 0.04 95.83± 0.02 94.76± 0.02 80.80± 0.03 80.34± 0.02

SGSI w.Out-deg. 97.43± 0.02 96.80± 0.02 95.87± 0.03 93.01± 0.04 95.62± 0.02 94.87± 0.02 81.05± 0.03 80.55± 0.02

SGSI w.Both-deg. 97.90± 0.02 96.95± 0.03 96.46± 0.04 94.81± 0.03 96.32± 0.03 95.00± 0.02 83.56± 0.03 82.08± 0.02

(3) SGSI w. Out-deg.: Similarly, each node’s out-degree is
guided by known limits or exact values. (4) SGSI w. Both-
deg.: Combining in-degree and out-degree constraints for
all nodes. The table shows average AUROC results of ten
runs each on multiple datasets.

As we can see from the table, having sparsity typically
raises final AUROC by 2–6% (e.g., from 92.76% to 96.90%
on VN SP 30), reflecting how reducing unnecessary edges
lets the model focus on essential interactions. Meanwhile,
in-/out-degree constraints further boost accuracy wherever
domain rules about node connectivity align with the true
graph. For instance, specifying in-degrees on VN SP 50
increases AUROC from 90.92% to 95.90%. Enforcing both
in- and out-degrees usually yields the top or near-top scores;
on VN NS 50, performance jumps from 79.05% (uncon-
strained) to 83.56%.

Overall, these results confirm that SGSI not only integrates
partial adjacency knowledge on edge presence/absence but
also extends smoothly to global sparsity and node-degree
constraints. The method can gracefully deviate if data de-
mands it, leading to state-of-the-art performance across
diverse domains and underscoring the flexibility of SGSI.

5.4. Ablation Studies

In Fig. 4, we show the average loss curves of SGSI and its
two variants: without KL regularization of uncertain edges
and without cloning of the gating variables, on VN SP 50
dataset. As shown, Default SGSI converges to the lowest
final loss with minimal oscillation, whereas failing to skip
known edges in the KL or omitting the cloning step each
lead to higher loss and greater instability. Moreover, both
of the two variants yield lower or “matching” adjacency ac-
curacy relative to each other and well below default SGSI’s
performance. From an IB perspective, not skipping known

0 200 400 600 800 1000
Epoch

0

500

1000

1500

2000

2500

3000

To
tal

 L
os

s

Default SGSI
SGSI w/o KL Regu.
SGSI w/o Cloning

Figure 4. Average loss curves for three variants of SGSI: Default
SGSI (blue), SGSI without KL regularization of uncertain edges
(SGSI w/o KL Reg., red), and SGSI without cloning of the gating
variables (SGSI w/o Cloning, green).

edges in the KL term (the red curve) forces the encoder to
“spend bits” on edges that are forcibly pinned, while not
cloning gating (the green curve) disrupts stable gradient
updates altogether. This aligns with the broader rationale
behind VAE-based structural inference (e.g., ACD (Löwe
et al., 2022), iSIDG (Wang & Pang, 2022), RCSI (Wang
et al., 2023)), in which the Variational Information Bottle-
neck concept helps explain why prioritizing uncertain edges
yields more effective adjacency discovery. Hence, these re-
sults strongly validate the soft-gating pipeline, in which both
skipping known edges’ KL costs and cloning before clamp-
ing are vital for stable optimization and maximal benefit
from partial knowledge.

5.5. Robustness to Inaccurate Prior Knowledge

SGSI leverages soft penalties and cloned gating to inte-
grate partial knowledge while preserving flexibility. Be-
cause these constraints are applied softly, via mild penalties
and by clamping only a cloned copy of the gating vector,

8

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

Table 2. Performance under Various Perturbations on VN SP 100 and VN NS 100. “Raw” denotes the unperturbed baseline. “F. 20%
known-present” and “F. 50% known-present” indicate that 20% and 50% of the known-present edges (within a 30% prior knowledge
set) are randomly flipped, respectively; similarly for “F. 20% known-absent” and “F. 50% known-absent.” “10%/20% E. Sparsity”
represent 10%/20% errors on the global sparsity, while “10%/20% E. In-Deg.” and “10%/20% E. Out-Deg.” denote errors on in-degree
and out-degree estimates, respectively.

Raw F. 20% KP F. 50% KP F. 20% KA F. 50% KA 10% E. Sparsity 20% E. Sparsity 10% E. In-Deg. 20% E. In-Deg. 10% E. Out-Deg. 20% E. Out-Deg.

VN SP 100 88.17 90.03 89.70 91.45 90.16 92.61 91.08 92.70 90.94 92.66 90.82
VN NS 100 77.90 80.18 78.76 81.06 79.68 80.09 79.35 79.36 78.18 79.80 78.23

the model can deviate from incorrect priors when the data
strongly contradicts them. In SGSI, the soft gating mask
is applied after the Node-to-Edge operation (but not after
Edge-to-Node), which helps preserve residual connectivity
and prevents over-reliance on potentially flawed edges.

To further validate this, we conducted “noisy prior” experi-
ments on VN SP 100 and VN NS 100, where we randomly
flipped 20% or 50% of the known-present/absent edges
(with the overall prior knowledge set to 30%) and intro-
duced 10% or 20% errors in global sparsity and degree
constraints. Table 2 summarizes our preliminary results.

These results indicate that even with moderate noise, SGSI
remains significantly more accurate than a no-knowledge
baseline with at least 1 2% margin. Although performance
gains naturally diminish as noise increases, the model ro-
bustly leverages available prior knowledge without catas-
trophic failure. For more experimental results, including
on real-world data, downstream tasks, and time complexity,
please refer to Appendix E.

6. Conclusion
This paper introduces SGSI, a soft-gating approach for VAE-
based structural inference that enables partial adjacency
knowledge (known-present/absent edges, global sparsity
and node degree constraints) to be integrated smoothly and
without in-place gradient conflicts. Empirically, SGSI sur-
passes existing baselines in structural fidelity, particularly
at higher fractions of known edges. By skipping KL on
forcibly clamped edges and cloning before clamping, SGSI
preserves stable gradient flow and effectively “frees capac-
ity” for uncertain edges, whose insights align well with an
information bottleneck perspective.

Beyond relational discovery, these ideas of selectively ex-
cluding known factors from a latent distribution can gener-
alize to broader contexts. Potential future directions include
dynamic graph inference, reinforcement learning where par-
tial environment transitions are known, or even multimodal
data fusion tasks such as integrating known sensor links
with learned ones. In each domain, soft gating and care-
ful KL management may unlock synergy between domain
constraints and data-driven latent representations.

Impact Statement
This work’s soft-gating approach to knowledge-aware struc-
tural inference enables more trustworthy and transparent
graph discovery by seamlessly integrating partial domain
expertise. Beyond scientific modeling, it may influence
fields like social network analysis or medical diagnostics,
where partial relationships are known a prior. By clarifying
latent structures in these sensitive domains, the technique
has potential ethical benefits—reducing spurious inferences
and fostering safer, more explainable models. However, it
also carries the societal consequence that misuse or over-
reliance on domain knowledge could amplify biases in the
data, underscoring the need for careful, context-informed
deployment.

Acknowledgements
The experiments presented in this paper were carried out us-
ing the HPC facilities of the University of Luxembourg (Var-
rette et al., 2022) (see hpc.uni.lu). Besides that, author
Jun Pang acknowledges financial support of the Institute for
Advanced Studies of the University of Luxembourg through
an Audacity Grant (AUDACITY-2021).

References
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.

Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2019.

Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K. Deep
variational information bottleneck. In Proceedings of the
5th International Conference on Learning Representa-
tions (ICLR), 2017.

Alet, F., Weng, E., Lozano-Pérez, T., and Kaelbling,
L. P. Neural relational inference with fast modular meta-
learning. In Advances in Neural Information Processing
Systems 32 (NeurIPS), 2019.

Bengio, Y., Lahlou, S., Deleu, T., Hu, E. J., Tiwari, M., and
Bengio, E. Gflownet foundations. Journal of Machine
Learning Research, 24(210):1–55, 2023.

9

http://hpc.uni.lu

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

Birkhoff, G. D. Dynamical systems, volume 9. American
Mathematical Soc., 1927.

Brasó, G. and Leal-Taixé, L. Learning a neural solver for
multiple object tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6247–6257, 2020.

Chen, C., Petty, K., Skabardonis, A., Varaiya, P., and Jia, Z.
Freeway performance measurement system: mining loop
detector data. Transportation Research Record, 1748(1):
96–102, 2001.

Chen, S., Wang, J., and Li, G. Neural relational inference
with efficient message passing mechanisms. In Proceed-
ings of the 35th AAAI Conference on Artificial Intelli-
gence (AAAI), pp. 7055–7063, 2021.

Chu, L.-F., Leng, N., Zhang, J., Hou, Z., Mamott, D.,
Vereide, D. T., Choi, J., Kendziorski, C., Stewart, R.,
and Thomson, J. A. Single-cell rna-seq reveals novel
regulators of human embryonic stem cell differentiation
to definitive endoderm. Genome biology, 17:1–20, 2016.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Ha, S. and Jeong, H. Unraveling hidden interactions in
complex systems with deep learning. Scientific Reports,
11(1):1–13, 2021.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems 30 (NIPS), 2017.

Katok, A. and Hasselblatt, B. Introduction to the Modern
Theory of Dynamical Systems. Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press,
1995.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel,
R. Neural relational inference for interacting systems.
In Proceedings of the 35th International Conference on
Machine Learning (ICML), pp. 2688–2697. PMLR, 2018.

Kwapień, J. and Drożdż, S. Physical approach to complex
systems. Physics Reports, 515(3):115–226, 2012.

Li, J., Ma, H., Zhang, Z., Li, J., and Tomizuka, M. Spatio-
temporal graph dual-attention network for multi-agent
prediction and tracking. IEEE Transactions on Intelligent
Transportation Systems, 23(8):10556–10569, 2022.

Löwe, S., Madras, D., Shilling, R. Z., and Welling, M.
Amortized causal discovery: Learning to infer causal
graphs from time-series data. In Proceedings of the 1st
Conference on Causal Learning and Reasoning (CLeaR),
pp. 509–525. PMLR, 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems 32 (NeurIPS),
2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A., and
Murali, T. Benchmarking algorithms for gene regulatory
network inference from single-cell transcriptomic data.
Nature Methods, 17(2):147–154, 2020.

Shalek, A. K., Satija, R., Shuga, J., Trombetta, J. J., Gennert,
D., Lu, D., Chen, P., Gertner, R. S., Gaublomme, J. T.,
Yosef, N., et al. Single-cell rna-seq reveals dynamic
paracrine control of cellular variation. Nature, 510(7505):
363–369, 2014.

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster,
M., Beckmann, C. F., Nichols, T. E., Ramsey, J. D., and
Woolrich, M. W. Network modelling methods for FMRI.
Neuroimage, 54(2):875–891, 2011a.

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster,
M., Beckmann, C. F., Nichols, T. E., Ramsey, J. D., and
Woolrich, M. W. Network modelling methods for FMRI.
Neuroimage, 54(2):875–891, 2011b.

Song, C., Lin, Y., Guo, S., and Wan, H. Spatial-temporal
synchronous graph convolutional networks: A new frame-
work for spatial-temporal network data forecasting. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), volume 34, pp. 914–921, 2020.

Tishby, N., Pereira, F., and Biale, W. The information
bottleneck method. In Proceedings of the 37th Annual
Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 368–377. IEEE, 1999.

Tsubaki, M., Tomii, K., and Sese, J. Compound–protein
interaction prediction with end-to-end learning of neural
networks for graphs and sequences. Bioinformatics, 35
(2):309–318, 2019.

Varrette, S., Cartiaux, H., Peter, S., Kieffer, E., Valette, T.,
and Olloh, A. Management of an Academic HPC & Re-
search Computing Facility: The ULHPC Experience 2.0.
In Proc. of the 6th ACM High Performance Computing

10

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

and Cluster Technologies Conf. (HPCCT 2022), Fuzhou,
China, July 2022. Association for Computing Machinery
(ACM). ISBN 978-1-4503-9664-6.

Wang, A. and Pang, J. Iterative structural inference of
directed graphs. In Advances in Neural Information Pro-
cessing Systems 35 (NeurIPS), 2022.

Wang, A. and Pang, J. Active learning based structural
inference. In Proceedings of the 40th International Con-
ference on Machine Learning (ICML), pp. 36224–36245.
PMLR, 2023.

Wang, A. and Pang, J. Structural inference of dynamical
systems with conjoined state space models. In Advances
in Neural Information Processing Systems 37 (NeurIPS),
2024a.

Wang, A. and Pang, J. Structural inference with dynamics
encoding and partial correlation coefficients. In Proceed-
ings of the 12th International Conference on Learning
Representations (ICLR), 2024b.

Wang, A., Tong, T. P., and Pang, J. Effective and efficient
structural inference with reservoir computing. In Proceed-
ings of the 40th International Conference on Machine
Learning (ICML), pp. 36391–36410. PMLR, 2023.

Wang, A., Tong, T. P., Mizera, A., and Pang, J. Benchmark-
ing structural inference methods for interacting dynamical
systems with synthetic data. In The Thirty-eight Confer-
ence on Neural Information Processing Systems Datasets
and Benchmarks Track, 2024.

Webb, E., Day, B., Andres-Terre, H., and Lió, P. Factorised
neural relational inference for multi-interaction systems.
arXiv preprints arXiv:1905.08721, 2019.

Wu, H., Liang, Y., Xiong, W., Zhou, Z., Huang, W., Wang,
S., and Wang, K. Earthfarsser: Versatile spatio-temporal
dynamical systems modeling in one model. In Proceed-
ings of the 38th AAAI Conference on Artificial Intelli-
gence (AAAI), pp. 15906–15914, 2024.

11

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

Appendix of Guided Structural Inference:
Leveraging Priors with Soft Gating Mechanisms

A. More Details about SGSI
A.1. Sparsity Penalty

Alternative. Besides the form Eqn. 11-12, we could also do an L2 penalty:

Lsparsity

(∑
e

αe − ρE
)2
, (22)

which more strongly penalizes large deviations. Either L1 or L2 works in practice, though L1 typically yields sparser
solutions.

Combining with Known Edges. If a subset E+ of edges is forcibly clamped to αe = 1, these edges are effectively
non-negotiable. Since we want the final fraction ρE to be in addition to these forced edges, we do:∑

unknown

αe =
∑
e/∈E+

αe, Lsparsity = λsparsity

∣∣∣ ∑
unknown

αe −
(
ρE − |E+|

)∣∣∣. (23)

That ensures the known edges are not “counted” against the target fraction.

Practical Considerations. Besides the functioning and technical parts mentioned above, we provide practical instructions
for the implementation of sparsity penalty:

A. Initialization: If gating parameters θe are initialized around −2.0 or −4.0, the initial σ(θe) is near 0. This already starts
the network off with mostly “off” edges, which can help if we strongly suspect sparsity.

B. Tuning: The hyperparameter λsparsity is crucial. If we see the final adjacency ignoring the fraction ρ, increase λsparsity.
If it prunes edges too aggressively, decrease λsparsity.

C. Influence on KL: The KL or IB penalty also encourages smaller gating on uncertain edges. Combining the KL with
an explicit global-sparsity penalty can lead to very pruned solutions, so please watch out for over-pruning if both β (KL
weight) and λsparsity are large.

A.2. Node Degree Penalty

Maximum Degree Penalty. As we only mentioned the exact degree penalty in Section 4.2, it is feasible of setting up
penalty for maximum node degrees. Suppose we want node i to have out-degree at most ki. We can define:

Ldeg = λdeg

N∑
i=1

[
max

(
0, outdeg(i)− ki

)]
. (24)

This means as soon as outdeg(i) is above ki, we pay a cost proportional to the surplus. If outdeg(i) ≤ ki, penalty is zero.
Similarly, for in-degree, we replace outdeg(i) with indeg(i).

Combining with Known Edges. If node i has some edges forcibly set to 1 (known present) or 0 (known absent), they
naturally contribute to or omit from the sum in outdeg(i). That means:

• Known Present edges from i→ j each add 1 to i’s out-degree. If the domain says “these edges must exist,” we might
decide not to penalize them if they push out-degree above ki. Alternatively, we still keep them in the sum. If the node
has to not exceed ki total, known edges reduce the “budget” for the uncertain edges.

• Known Absent edges contribute 0. No penalty conflict arises there, since they do not increase out-degree.

12

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

Practical Considerations. Besides the functioning and technical parts mentioned above, we provide practical instructions
for the implementation of node degree penalty:

Tuning the Degree Penalty. Hyperparameter λdeg controls how strongly the network tries to meet node-degree constraints:

• If λdeg is too low, the model may ignore the desired degree in favor of better reconstruction.

• If λdeg is too high, we risk overshadowing the data-driven cues, forcing all or most nodes to match ki even if that
mismatches the observation signals.

We start with a small value (like 10−3 or 10−2) and see how the final out-degree distribution looks, adjusting from there.

Interplay with KL/IB: The IB or KL cost also encourages compression, possibly making edges smaller or fewer.
Combining it with node-degree constraints might reinforce each other or conflict if the data strongly wants more edges for
certain nodes.

Interplay with Global Sparsity: We can have both a global L1 penalty (pushing overall fewer edges) and a node-degree
penalty. Typically, each node’s out-degree constraint is more specific, while the global penalty is broad.

If the node-degree sum across all nodes is contradictory to the desired global fraction ρE, the model will struggle. For
instance, if each node is forced to have out-degree 2 but ρ implies only ≈ 10% edges overall, yet 2N might exceed that
fraction. Ensuring consistency in the constraints is crucial.

A.3. Implementation of SGSI

The overall pipeline of SGSI can be described in Algorithm 1. The implementation pseudocode of encoder can be found in
Algorithm 2. The decoder of SGSI is same as the MLPDecoder of NRI (Kipf et al., 2018).

Algorithm 3 Two-Layer MLP with ELU and Batch Normalization
Require: Input dim nin, hidden dim nhid, output dim nout, dropout rate d
Ensure: Output tensor y with shape [batch, seq, nout]

1: Initialize parameters:
2: W1 ← XavierNormal(nin, nhid) ▷ Layer 1 weights
3: b1 ← 0.1 ▷ Layer 1 bias
4: W2 ← XavierNormal(nhid, nout) ▷ Layer 2 weights
5: b2 ← 0.1 ▷ Layer 2 bias
6: γ ← 1, β ← 0 ▷ Batch norm params
7: Forwardx ▷ Input shape: [batch, seq, nin]
8: h← ELU

(
xW⊤

1 + b1
)

9: h← Dropout(h, d) ▷ Active only in training
10: h← ELU

(
hW⊤

2 + b2
)

11: h← BatchNorm
(
h, γ, β

)
▷ Sequence-wise

12: Return: h

Algorithm 4 Node-to-Edge Mapping with Gating
Require: Node embeddings V ∈ Rb×N×d, relation matrices Rrec,Rsend ∈ RE×N ,

gating vector g ∈ [0, 1]E

Ensure: Gated edge features Emasked ∈ Rb×E×2d

1: Transpose V to V⊤ ∈ Rb×d×N

2: Expand R⊤
send, R⊤

rec to batch size b
3: Compute S← V⊤ ×R⊤

send
4: Compute R← V⊤ ×R⊤

rec
5: Concatenate E← Concat(S,R) along feature dim
6: Apply gating: Emasked ← E⊙ (g ⊗ 12d)
7: Return:Emasked

13

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

Algorithm 1 Soft-Gated Structural Inference (SGSI) Training
Require: Dataset {X}, known edges E+ (present), E− (absent), node-degree/sparsity constraints (optional), hyperparams

(β, λdeg, λsparsity, . . .)
Ensure: Learned parameters (ϕ, θ) and final gating {αe}

1: Initialize encoder parameters ϕ, decoder parameters θ, gating logits {θe}Ee=1

2: for each training iteration do
3: Sample mini-batch Xbatch = {Xj}Nj=1 from the dataset
4: (A) Encoder Forward
5: Compute θe = fenc(Xbatch) (e.g., via MLP or GNN)
6: Obtain soft adjacency gating (size E): α← σ(θ)
7: Cloning/Clamping:
8: αclamped ← α.clone()
9: for e ∈ E+: αclamped[e]← 1.0

10: for e ∈ E−: αclamped[e]← 0.0

11: Node Embedding: for each node j, h(1)
j ← f

(1)
embed(Xj)

12: Node-to-Edge (Round 1): h(1)
ij = f

(1)
e ([h

(1)
i ,h

(1)
j])

13: Gating 1: e(1)ij ← h
(1)
ij ⊙ αclamped[e]

14: Edge-to-Node: h(2)
j ← fv

(∑
i e

(1)
ij

)
15: Node-to-Edge (Round 2): h(2)

ij ← f
(2)
e ([h

(2)
i ,h

(2)
j])

16: Gating 2: e(2)ij ← h
(2)
ij ⊙ αclamped[e]

17: Posterior Distribution: qϕ(Z | X)← softmax
(
e
(2)
ij

)
(Gumbel-Softmax)

18: (B) Decoder Forward and Loss
19: Use αclamped (or the distribution over ZU) in a GNN decoder X̂future ← pθ(Xbatch, αclamped)
20: Prediction Loss: Lpred = − log pθ(Xfuture | αclamped,Xbatch)
21: KL Term: skip pinned edges, sum only over e ∈ U : KL =

∑
e∈U DKL

(
qϕ(ξe)∥ p(ξe)

)
22: Optional Constraints: Lsparsity = λsparsity ∥αclamped∥1, Ldeg = λdeg

∑
i

∣∣outdeg(i)− ki
∣∣, . . .

23: Total Loss: L = Lpred + βKL + Lsparsity + Ldeg

24: Backprop & update (ϕ, θ, {θe})
25: end for
26: (C) Final Adjacency Extraction
27: Get adjacency from the Gumbel-Softmax (Step 17)
28: return Learned parameters (ϕ, θ) and final adjacency

Algorithm 5 Edge-to-Node Aggregation with Gating
Require: Edge features E ∈ Rb×E×d, relation matrix Rrec ∈ RE×N

Ensure: Aggregated node features V ∈ Rb×N×d

1: Transpose E to E⊤ ∈ Rb×d×E

2: Expand R⊤
rec to batch b: R⊤

rec ∈ Rb×E×N

3: Aggregate: Vagg ← E⊤ ×R⊤
rec ▷ Shape: [b× d×N]

4: Transpose Vagg to [b×N × d]

5: Compute in-degree: D←
∑E

e=1 Rrec[e, :] ▷ D ∈ RN

6: Normalize: V← Vagg ⊘ (D+ ϵ) ▷ ⊘ = element-wise division
7: Return: V

The model of SGSI is implemented with PyTorch (Paszke et al., 2019), while Scikit-learn package was leveraged
for the calculation of metrics (Pedregosa et al., 2011). Please refer to the attached link in supplementary mate-
rials for the exact implementation. The implementation of SGSI is at: https://github.com/wang422003/
SGSI-Guided-Structural-Inference-Leveraging-Priors-with-Soft-Gating-Mechanisms.

14

https://github.com/wang422003/SGSI-Guided-Structural-Inference-Leveraging-Priors-with-Soft-Gating-Mechanisms
https://github.com/wang422003/SGSI-Guided-Structural-Inference-Leveraging-Priors-with-Soft-Gating-Mechanisms

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

Algorithm 2 Encoder of SGSI – Forward Pass
Require: inputs of shape [b,N, t, d], adjacency index matrices rel rec, rel send, known-present edges E+, known-absent

edges E−
Ensure: out of shape [b, E, nout], and gating ∈ [0, 1]E

1: Flatten Inputs:
2: x← inputs.view(b, N, −1) {shape: [b,N, in features]}
3: Node-level MLP:
4: x← mlp1(x) {shape: [b,N, nhid]}
5: Gating Initialization:
6: gating raw← learnedAdj.gating param
7: gating← σ(gating raw.clone())
8: gating clamped← gating.clone()
9: for e = 1 . . . E:

10: if (s, r) ∈ E+: gating clamped[e]← 1.0
11: else if (s, r) ∈ E−: gating clamped[e]← 0.0

12: Node2Edge w/ Gating, MLP2:
13: edges← node2edge with gating(x, rel rec, rel send, gating clamped) {shape: [b, E, 2nhid]}
14: edges← mlp2(edges) {shape: [b, E, nhid]}
15: x skip← edges

16: Factor Option (Edge2Node, MLP3, Node2Edge, MLP4):
17: x node← edge2node4gating(edges, rel rec)
18: x node← mlp3(x node)
19: edges 2← node2edge with gating(x node, rel rec, rel send, gating clamped)
20: edges 2← cat(edges 2, x skip, dim = 2)
21: edges 2← mlp4(edges 2)
22: edges← edges 2

23: Final Edge Logits:
24: out← fc out(edges) {shape: [b, E, nout]}
25: Return:
26: out, gating {Note that gating clamped is used in the message passing.}

A.4. Guidance of Hyperparameter Tuning

Besides the discussion about the hyperparameter values above, here we provide general guidance on how to perform search.
For very sparse graphs (e.g., local interactions in physical systems), higher λsparsity values are tested. When node-degree
constraints are precise (e.g., “exactly 2 neighbors”), we set a higher λdeg. If the prior knowledge is approximate, lower
penalty weights prevent overshooting data evidence. These ranges avoid abrupt changes in adjacency, ensuring that SGSI
functions as a softly guided VAE rather than a rigidly constrained model.

B. Formal Statement of SGSI
In this section, we discuss why and how one skips the KL term for edges that are fully known present or absent concisely
and formally. While we don’t do an exhaustive derivation of every latent detail, this proof sketch clarifies why the KL can
be omitted for clamped edges without contradicting the VAE’s overall variational principle.

B.1. Setup

Let X be the observed data (e.g., node trajectories), and Z be the latent adjacency, with E potential edges total. A subset E+
of edges is known-present (definitely 1) and a subset E− of edges is known-absent (definitely 0). The remaining uncertain
edges form U = {1, . . . , E} \ (E+ ∪ E−).

15

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

We assume the posterior (encoder) factorizes as:

qϕ(Z | X) =qϕ(ZE+ , ZE− , ZU | X)

=
∏
e∈U

qϕ(Ze | X)× δ(Ze = 1, e ∈ E+)× δ(Ze = 0, e ∈ E−), (25)

where δ(·) denotes a delta distribution that fixes the edge to 1 or 0 if it belongs to E+ or E−. Similarly, we define the prior:

p(Z) =
∏
e∈U

p(Ze)× δ(Ze = 1, e ∈ E+)× δ(Ze = 0, e ∈ E−), (26)

assuming that the fully known edges are also considered “delta” under the prior, or equivalently that we have no uncertainty
for those edges.

B.2. KL Divergence Factorization (Proof)

The KL divergence between the factorized posterior (Eqn. 19) and prior (Eqn. 20) is:

DKL

(
qϕ(Z | X) ∥ p(Z)

)
=

∑
e∈U

DKL

(
qϕ(Ze | X) ∥ p(Ze)

)
,

since DKL(δ∥δ) = 0 for known edges. This shows that only uncertain edges contribute to the compression term I(X;Z).

B.3. Interpretation: Skipping the KL for Known Edges

In practice, we omit pinned edges from the encoder’s random portion, or equivalently set their posterior distribution to a δ.
Because DKL(δ∥δ) = 0, no bits are required to store these known edges. Only the uncertain edges in U appear in the KL
summation:

DKL

(
qϕ(Z | X) ∥ p(Z)

)
=

∑
e∈U

DKL

(
qϕ(Ze | X) ∥ p(Ze)

)
. (27)

This formalizes why forcibly pinned edges do not need a random distribution or KL cost.

In conclusion, by delta-encoding fully known edges in both posterior and prior, the KL for those edges is zero. Implementing
this in code means we skip them in the KL summation. The uncertain edges remain random, paying a usual KL cost. This
ensures:

1. No Contradictory Signals: The pinned edges do not conflict with a prior-latent assumption of randomness.

2. Freed Capacity: The model invests “bits” only in uncertain edges, aligning with the information bottleneck goal of
minimal yet sufficient adjacency.

Hence, skipping known edges’ KL is justified by the factorization of δ-like edges in the posterior and prior.

C. More Details about Datasets
In this section, we provide more details about the datasets used in this work apart the description in Section 5.

C.1. Springs Simulations

To generate these Springs Simulations datasets, we follow the description of the data in (Kipf et al., 2018) but with
fixed connections and with 10 nodes, in order to simulate spring-connected particles’ motion in a 2D box using the
Springs simulation. In this setup, nodes represent particles, and edges correspond to springs governed by Hooke’s
law. The Springs simulation’s dynamics are described by a second-order ordinary differential equation: mi · x′′

i (t) =∑
j∈Ni

−k ·
(
xi(t)− xj(t)

)
. Here, mi represents particle mass (assumed as 1), k is the fixed spring constant (set to 1), and

Ni is the set of neighboring nodes with directed connections to node i, which is sub-sampled from the graphs generated in
the StructInfer in previous steps. We integrate this equation to compute x′

i(t) and subsequently xi(t) for each time step t.
The resulting values of x′

i(t) and xi(t) create 4D node features at each time step. To be specific, at the beginning of the data
generation for each springs dataset, we randomly generate a ground truth graph and then simulate 12000 trajectories on the
same ground truth graph, but with different initial conditions. The rest settings are the same as that mentioned in (Kipf et al.,

16

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

2018). We collect the trajectories and randomly group them into three sets for training, validation and testing with the ratio
of 8: 2: 2, respectively.

C.2. NetSims

It is firstly mentioned in (Smith et al., 2011a), which offers simulations of blood-oxygen-level-dependent (BOLD) imaging
data in various human brain regions. Nodes in the dataset represent spatial regions of interest from brain atlases or functional
tasks. Interaction graphs from the previous section determine connections between these regions. Dynamics are governed by
a first-order ODE model: x′

i(t) = σ ·
∑

j∈Ni
xj(t)− σ · xi(t) + C · ui, where σ controls temporal smoothing and neural

lag (set to 0.1 based on (Smith et al., 2011a), and C regulates external input interactions (set to zero to minimize external
input noise) (Smith et al., 2011a). 1D node features at each time step are obtained from the sampled xi(t).

C.3. Synthetic Biological Networks

The six directed Boolean networks (LI, LL, CY, BF, TF, BF-CV) are the most often observed fragments in many gene
regulatory networks, each has 7, 18, 6, 7, 8 and 10 nodes, respectively. Thus by carrying out experiments on these networks,
we can acknowledge the performance of the chosen methods on the structural inference of real-world biological networks.
We collect the six ground-truth directed Boolean networks from (Pratapa et al., 2020) and simulate the single-cell evolving
trajectories with BoolODE (Pratapa et al., 2020) (https://github.com/Murali-group/BoolODE) with default
settings mentioned in that paper for every network. We first sample a total number of 12000 raw trajectories. We then
sample different numbers of trajectories from raw trajectories and randomly group them into three datasets: for training, for
validation, and for testing, with a ratio of 8 : 2 : 2. After that, we sample different numbers of snapshots according to the
requirements of experiments in Section 5.1 with equal time intervals in every trajectory and save them as ‘.npy’ files for data
loading.

C.4. StructInfer Benchmark

The StructInfer benchmark (Wang et al., 2024) evaluated 12 structural inference methods in a comprehensive way on
a synthetic dataset. The dataset covers 11 types of different underlying interaction graphs and two types of dynamical
simulations. (https://structinfer.github.io/) As there are so many trajectories, we chose the ones under the
name ‘Vascular Networks’, or in short ‘VN’, whose underlying interaction graphs approximate the real-world vascular
networks in biology systems. As the data is already split into three sets: for training, for validation, and for testing, we keep
this setting. In the following paragraphs, we describe more details about the Springs and NetSims simulations utilized by the
StructInfer benchmark.

For Springs simulation, it follows the approach by (Kipf et al., 2018), to simulate spring-connected particles’ motion in a
2D box using the Springs simulation. In this setup, nodes represent particles, and edges correspond to springs governed by
Hooke’s law. But different from Springs Simulations mentioned above, StructInfer generates ground-truth interaction graphs
with the graph properties of the real-world graphs or network. The ground-truth interaction graphs are used to determine the
connectivity between the nodes. The Springs simulation’s dynamics are described by a second-order ordinary differential
equation: mi · x′′

i (t) =
∑

j∈Ni
−k ·

(
xi(t)− xj(t)

)
. Here, mi represents particle mass (assumed as 1), k is the fixed spring

constant (set to 1), and Ni is the set of neighboring nodes with directed connections to node i, which is sub-sampled from
the graphs generated in the StructInfer in previous steps. We integrate this equation to compute x′

i(t) and subsequently xi(t)
for each time step t. The resulting values of x′

i(t) and xi(t) create 4D node features at each time step.

For NetSims simulation, it is firstly mentioned in NetSim dataset (Smith et al., 2011a), which offers simulations of blood-
oxygen-level-dependent (BOLD) imaging data in various human brain regions. Nodes in the dataset represent spatial
regions of interest from brain atlases or functional tasks. But different from NeiSim mentioned above, StructInfer generates
ground-truth interaction graphs with the graph properties of the real-world graphs or network. The ground-truth interaction
graphs are used to determine the connectivity between the nodes. Dynamics are governed by a first-order ODE model:
x′
i(t) = σ ·

∑
j∈Ni

xj(t)−σ ·xi(t)+C ·ui, where σ controls temporal smoothing and neural lag (set to 0.1 based on (Smith
et al., 2011a), and C regulates external input interactions (set to zero to minimize external input noise) (Smith et al., 2011a).
1D node features at each time step are obtained from the sampled xi(t).

17

https://github.com/Murali-group/BoolODE
https://structinfer.github.io/

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

D. More Details about Baselines
For the experiments without prior knowledge, we follow the official implementation of the baselines. As for the integrating
of the prior knowledge, we leverage different strategies. For the methods based on VAEs, (e.g. NRI, MPM, ACD, iSIDG,
RCSI), we directly perform overwriting of latent variables corresponding to known edges, while keep the rest following the
original implementation.

D.1. NRI

NRI (Kipf et al., 2018) is a VAE-based model for unsupervised relational inference. We use the official implementation
code by the author from https://github.com/ethanfetaya/NRI with a customized data loader for our chosen
datasets. We add our metric evaluation in the ‘test’ function, after the calculation of accuracy in the original code. Besides,
after carefully comparison, we used the NRI version with sparsity regularization, yielding higher performance, which was
also implemented by the authors.

D.2. MPM

MPM (Chen et al., 2021) employs a VAE framework with a relational interaction mechanism and spatio-temporal mes-
sage passing. We use the official implementation code by the author from https://github.com/hilbert9221/
NRI-MPM with a customized data loader for our chosen datasets. We add our metric evaluation for AUROC in the
‘evaluate()’ function of class ‘XNRIDECIns’ in the original code.

D.3. ACD

ACD (Löwe et al., 2022) utilizes shared dynamics to infer causal relations within datasets. We follow the
official implementation code by the author as the framework for ACD (https://github.com/loeweX/
AmortizedCausalDiscovery). We run the code with a customized data loader for the datasets in this work. We
implement the metric-calculation pipeline in the ‘forward pass and eval()’ function.

D.4. ISIDG

iSIDG (Wang & Pang, 2022) iteratively refines adjacency matrices to enhance directional inference. We follow the
official implementation code by the author as the framework for iSIDG (https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/iSIDG). We disable the metric evaluations for the AUPRC and Jaccard index in the original
implementation of iSIDG for faster computation.

D.5. RCSI

RCSI (Wang et al., 2023) integrates reservoir computing for efficient structural inference. We follow the offi-
cial implementation code by the author as the framework for RCSI (https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/RCSI). Same as iSIDG, we disable the metric evaluations for AUPRC and Jaccard index in
the original implementation of RCSI for faster computation.

D.6. ALaSI

ALaSI (Wang & Pang, 2023) leverages deep active learning for scalable structural inference. We thank the authors for
communicating and providing the code. We use the evaluation metrics implemented by the authors.

D.7. SICSM

SICSM (Wang & Pang, 2024a) leverages MAMBA(Gu & Dao, 2023) and generative flow network (Bengio et al., 2023) for
structural inference on irregularly sampled trajectories, but can still work on more broader case like uniformly sampled
data. We thank the authors for communicating and providing the code, which is based on PyTorch and diverges from the
implementation mentioned in their paper. We use the evaluation metrics implemented by the authors.

18

https://github.com/ethanfetaya/NRI
https://github.com/hilbert9221/NRI-MPM
https://github.com/hilbert9221/NRI-MPM
https://github.com/loeweX/AmortizedCausalDiscovery
https://github.com/loeweX/AmortizedCausalDiscovery
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/iSIDG
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/iSIDG
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/iSIDG
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/RCSI
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/RCSI
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/RCSI

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

E. More Details about Experiments
E.1. More General Settings

All experiments mentioned in Section 5 were conducted on a single NVIDIA Ampere 40GB HBM graphics card, paired
with 2 AMD Rome CPUs (32 cores@2.35 GHz). During training, we set batch size as 128 for datasets which have less than
30 nodes, for those having 30 or 50 nodes, we set batch size as 64. For the rest of the data sets, we set the batch size to be 16.
The learning rate is set to be 5× 10−4. We train SGSI model with 1000 epochs on every dataset.

The choice of the hyperparameters in the loss function play a non-neglect role in training SGSI, and the their values are
searched via Bayesian Optimization toolbox Optuna (Akiba et al., 2019). We set the bounds for β, λsparsity, and λdeg as
[1.0, 2.5], [10−3, 10−2], and [10−4, 10−2], respectively. The values of the hyper-parameters are summarized in Table 3.

Table 3. Hyper parameter choices for every dataset.
DATASET β λsparsity λdeg

Springs 1 0.011 5× 10−4

NetSims 1 0.008 5× 10−4

LI 1 0.005 10−2

LL 1.1 0.008 5× 10−3

CY 1 0.005 10−2

BF 1 0.005 10−2

TF 1 0.005 10−2

BF-CV 1 0.006 10−2

VN SP 15 1.1 0.005 10−2

VN SP 30 1.3 0.004 10−2

VN SP 50 1.5 0.004 10−2

VN SP 100 1.8 0.003 10−2

VN NS 15 1.1 0.005 10−2

VN NS 30 1.3 0.004 10−2

VN NS 50 1.5 0.004 10−2

VN NS 100 1.8 0.003 10−2

E.2. Experimental Results on PEMS

In addition to the data sets mentioned in Section 5, we selected another sets of datasets, which are derived from the
California Caltrans Performance Measurement System (PeMS) (Chen et al., 2001), comprise data aggregated into 5-minute
intervals. The adjacency matrix of the nodes is constructed by the distance of the road network with a Gaussian kernel
thresholded (Song et al., 2020). Table 4 summarizes these datasets. We resampled the data such that constructing 49 time

Table 4. Statistics of PEMS datasets.

Dataset # Nodes # Edges # Time Steps Missing Ratio

PEMS03 358 547 26, 208 0.672%
PEMS04 307 340 16, 992 3.182%
PEMS07 883 866 28, 224 0.452%

steps of points for each trajectory, and obtained 12000 trajectories for each with overlapping snapshots. It’s important to
note that these datasets’ adjacency matrices only connect sensors on the same road, omitting alternative connecting paths,
which could impact results.

After that, we investigate onto the performance of SGSI having 20% of known present edges, 20% of known absent edges,
global sparsity and node degree constraints (including in-degree and out-degree) as prior knowledge, respectively. In order
to run on these datasets with more than 300 nodes, we use mini-batching technique similar to GraphSAGE (Hamilton et al.,
2017). Yet we have to utilize 5-10 GPUs to train SGSI on PEMS datasets. We report the average AUROC results of ten runs
in Table 5.

19

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

Table 5. Average AUROC results (%) on PEMS datasets.

Dataset Prior Knowledge

No Prior 20% Kn. Present 20% Kn. Absent Sparsity In-Degree Out-Degree In-/Out-Degree

PEMS03 70.82± 0.08 77.15± 0.05 76.33± 0.05 76.85± 0.05 76.06± 0.05 76.07± 0.06 77.01± 0.06

PEMS04 74.20± 0.09 79.07± 0.06 78.63± 0.07 75.38± 0.06 77.52± 0.06 77.54± 0.06 77.98± 0.06

PEMS07 73.94± 0.07 76.18± 0.09 75.62± 0.08 75.54± 0.08 75.03± 0.05 75.04± 0.04 75.12± 0.04

Table 6. Average training time (in hour) of ten runs of SGSI and baseline methods on VN NS datasets.

Methods VN NS 15 VN NS 30 VN NS 50 VN NS 100

NRI 24.5 33.5 40.6 47.2
MPM 45.3 60.4 79.2 83.6
ACD 40.1 53.1 67.6 81.6
iSIDG 43.8 56.0 88.5 97.8
RCSI 44.5 57.8 91.7 102.8
ALaSI 25.0 26.8 27.9 46.2
SICSM 56.3 69.2 91.2 117.1

SGSI 24.6 33.5 40.5 47.1

Across all PEMS datasets, embedding prior knowledge (20% known edges or constraints) improves over the “No Prior”
baseline. For instance, on PEMS03, the AUROC rises from 70.82% to around 76–77%, and on PEMS04 from 74.20%
to roughly 78–79%. Known Present typically yields a slightly higher final AUROC than Known Absent (e.g., PEMS03:
77.15% vs. 76.33%), which suggests that confidently forcing certain edges to 1 helps SGSI focus on the uncertain regions
more effectively. By contrast, clamping edges to 0 can eliminate potential connections but still offers some benefit over no
prior knowledge. Applying a sparsity penalty sometimes yields moderate improvements, but does not always outperform
known-edge constraints. On PEMS04, for example, Lsparsity leads to 75.38%, which is less than the near 78–79% range
seen for known-present/absent edges. This indicates that while encouraging fewer total edges helps, the advantage is smaller
than providing explicit knowledge of which edges exist or do not. Enforcing in-degree or out-degree alone yields modest
improvements (PEMS04 from 74.20% to 77.52–77.54%). Combining both in- and out-degree is particularly helpful on
PEMS03 (77.01% vs. 76% for each alone), though on PEMS07, the difference is smaller (75.12% vs. 75.03–75.04%).

In summary, Table 5 demonstrates that SGSI meaningfully improves adjacency recovery when equipped with partial
knowledge or constraints, even for mid-sized road sensor networks like PEMS. The interplay of known edges, node-degree
constraints, and a potentially incomplete adjacency can all influence final performance, but partial knowledge nearly always
raises AUROC beyond the no-prior baseline.

E.3. Training Time Comparison

Table 6 presents the average training time (in hours) for ten runs of each method on the VN NS datasets, as the number of
nodes grows from 15 to 100. A surprising standout is ALaSI, requiring only 25–28 hours on node sets of size 15–50, which
is markedly faster than other baselines of comparable complexity (e.g., MPM, ACD, iSIDG). Even on the largest dataset
(VN NS 100), ALaSI takes 46.2 hours, on par with SGSI at 47.1 hours and below many baselines exceeding 80–100 hours.
This suggests that ALaSI’s active learning approach may yield high computational efficiency for moderate node counts. NRI
and SGSI remain quite close in run times from VN NS 15 (24.5 vs. 24.6 hours) up to VN NS 100 (47.2 vs. 47.1 hours).
This indicates that soft gating and partial-knowledge integration do not add major overhead to the NRI pipeline, keeping
SGSI’s training cost roughly equivalent to NRI’s. Methods such as MPM, ACD, iSIDG, RCSI, and SICSM typically require
significantly more training time, especially at node sizes beyond 30 or 50. For instance, iSIDG and RCSI each exceed 90
hours on VN NS 50 and surpass 97–100 hours on VN NS 100, while SICSM scales the slowest (56–117 hours). These
results imply that both SGSI and ALaSI maintain strong scalability, with SGSI’s gating and KL-skipping design incurring
little additional cost compared to NRI. By contrast, iterative refinement or heavier GFlowNet sub-space expansions (e.g.,
iSIDG, RCSI, SICSM) show more pronounced slowdowns as node counts climb.

Besides, we provide the training-time comparison across our main datasets (Springs, NetSims, LI, LL, and the 100-node

20

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

Table 7. Training-Time Comparison (in hours) across Main Datasets for SGSI with 20% known-present edges, NRI, and iSIDG.

Methods Springs NetSims LI LL VN SP 100 VN NS 100

NRI 20.1 16.0 14.3 18.2 49.0 47.2
iSIDG 42.2 36.9 48.1 50.6 100.6 97.8
SGSI 20.4 15.6 14.7 18.1 49.2 47.1

Table 8. ∆ AUROC values on a toy dataset with 5k nodes generated from Springs Simulations.

K.P. 10% K.P. 20% K.P. 30% K.A. 10% K.A. 20% K.A. 30% w. Spar. w. In-deg. w. Out-deg. w. Both-deg.

SGSI 0.56 2.40 4.93 0.77 3.08 5.73 7.46 6.90 7.13 7.68

VN datasets) and show results in Table 7. SGSI consistently matches NRI’s training time (e.g., 20.4h vs. 20.1h on Spring
Simulations and 47.1h vs. 47.2h for VN NS 100), while methods such as iSIDG require 1.5–2× longer. Yet recall that SGSI
achieves 79.7% AUROC on Springs, which is higher than NRI. Overall, these results confirm that SGSI’s partial-knowledge
gating imposes minimal additional cost while providing meaningful accuracy gains in structural inference.

Overall, SGSI and ALaSI stand out for balancing competitive speed with strong adjacency inference performance, making
them appealing for larger or more demanding relational inference tasks.

E.4. Scalability to Larger, Heterogeneous Graphs

SGSI is designed to scale via mini-batching and subgraph sampling, approaches similar to GraphSAGE, which allow SGSI’s
gating parameters to be computed or stored per subgraph rather than across the full edge space. For extremely large graphs,
we can either (i) restrict gating to local neighborhoods, or (ii) compute gating logits on the fly from node embeddings,
thereby avoiding a parameter explosion.

In this paper, we demonstrate scalability on the PEMS datasets (approximately 300 nodes) by leveraging multi-GPU
mini-batching (in Appendix E.2). To further validate SGSI on larger graphs, we generated a toy dataset with 5,000 nodes
using Springs Simulations. Table 8 shows the AUROC values under various levels of prior knowledge. These results
indicate that SGSI, when using mini-batching, remains effective even at the 5k-node scale with prior knowledge, and with
meaningful improvements in AUROC from 0.56 to 7.68.

SGSI’s flexible architecture inherently supports heterogeneous graphs. By adopting per-relation gating parameters and
applying the clone-and-clamp strategy to each edge type, SGSI can differentiate among various relations and node types while
maintaining stable gradient flow and effective KL skipping. Although our current domain primarily involves homogeneous
datasets, we recognize SGSI’s potential in applications such as multi-modal social networks, biomedical systems, and
multi-layer transportation networks, and plan to explore these in future work.

E.5. Prior Knowledge in Real-world Scenarios

In order to validate SGSI with prior knowledge under real-world scenarios, we’ve conducted additional experiments on
real-world single-cell RNA-seq datasets: (1) hESC (human embryonic stem cells) (Chu et al., 2016) and (2) mDC (mouse
dendritic cells) (Shalek et al., 2014). These biological systems represent scenarios where reliable prior knowledge, such as
known interactions or absent regulatory connections, often exists due to extensive experimental validations in literature.

In Table 9, we summarize the AUROC (%) of SGSI without prior knowledge (SGSI (Raw)), along with SGSI leveraging
partial prior knowledge (10% or 15% known-present (K.P.) and known-absent (K.A.) edges).

From these results, even modest incorporation (10-15%) of experimentally validated knowledge consistently improves
structural inference, demonstrating that SGSI can practically leverage partial prior knowledge in real biological settings.
While absolute improvements may appear modest, such incremental gains are significant in real-world domains like biology,
where even slight improvements in inferred networks can lead to more meaningful biological interpretations and robust
downstream analyses.

21

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

Table 9. AUROC values on real-world datasets with different prior knowledge.

hESC(AUROC %) mDC(AUROC %)

SGSI (Raw) 50.18 52.63
SGSI + 10% K.P. 51.35 53.91
SGSI + 15% K.P. 51.70 54.14
SGSI + 10% K.A. 51.41 53.96
SGSI + 15% K.A. 52.26 54.65

Table 10. Mean Squared Error (MSE) for 10-Step Future Prediction on Springs Simulations and VN SP/VN NS Datasets. We compare
NRI, SGSI without prior knowledge (raw), and SGSI with 20% known-present edges.

Springs VN SP 30 VN SP 50 VN NS 30 VN NS 50

NRI 5.78e-6 3.24e-5 7.81e-5 4.08e-4 1.20e-3
SGSI raw 5.77e-6 3.26e-5 7.73e-5 4.06e-4 1.17e-3
SGSI w. Prior 4.92e-6 2.01e-5 6.13e-5 1.83e-4 9.60e-4

E.6. Evaluation on Downstream Tasks

Although our primary goal is to infer the underlying interacting structure of dynamical systems, SGSI is also applicable
to time-series forecasting. For instance, we report Mean Squared Error (MSE) for predicting 10 future steps on several
datasets. The results are shown in Table 10. We compare NRI, SGSI without prior knowledge (SGSI raw), and SGSI with
20% known present edges.

Our results demonstrate that incorporating partial prior knowledge (SGSI with 20% known-present edges) significantly
enhances predictive accuracy compared to both SGSI without prior knowledge and the established baseline method NRI. For
example, on the Springs Simulations dataset, SGSI with prior knowledge reduces the MSE to 4.92×10−6 from 5.78×10−6

achieved by NRI. Similar consistent improvements are observed on VN SP and VN NS datasets, confirming that leveraging
domain knowledge about known connections helps the model make more precise future state predictions.

These findings reinforce the value of our soft-gating mechanism, highlighting that even modest incorporation of known
edges substantially enhances model performance beyond structural inference alone. This indicates the broader applicability
and practical relevance of SGSI in realistic predictive scenarios.

F. Limitations of SGSI
Despite its advantages in integrating partial knowledge and providing flexible structural inference, SGSI is subject to several
limitations:

Dependence on Accurate Prior Knowledge. SGSI heavily relies on the quality of user-specified constraints (e.g.,
known-present/absent edges, node degrees). If these constraints are inconsistent with the true system or contain significant
errors, the gating mechanism may learn a compromised adjacency. In some domains, partial knowledge itself might be
limited or noisy, negating the expected accuracy gains.

Complex Constraint Setup. Incorporating domain knowledge (e.g., specifying exact node degrees or defining known
edges) requires substantial manual effort or domain expertise. If a user cannot confidently specify these constraints, SGSI
defaults to a purely data-driven approach, which amounts to standard VAE-based inference. Consequently, the method’s
performance improvements become less pronounced or revert to baseline levels.

Scalability for Very Large Graphs. Although SGSI can scale better than naive adjacency enumeration by skipping or
clamping known edges, extremely large graphs (e.g., hundreds of thousands of nodes) still pose significant computational
challenges. In such scenarios, subgraph sampling or approximate adjacency factorization is necessary; implementing these
strategies demands additional code modifications (e.g., mini-batching or sparse message passing), potentially complicating

22

Guided Structural Inference: Leveraging Priors with Soft Gating Mechanisms

the pipeline.

Additional Hyperparameter Tuning. Soft gating and constraint integration introduce extra hyperparameters (λsparsity,
λdeg, etc.) beyond the typical VAE setting. Finding suitable values for these penalties often requires a small grid search or
heuristic tuning. This overhead can be minor, but in practice may complicate experimentation.

Despite these drawbacks, SGSI remains a robust framework for knowledge-aware structural inference, offering strong
performance boosts where partial adjacency constraints are reliable and computational resources allow. Future improvements
may target adaptive constraint weighting, more automated constraint specification, and extended scalability mechanisms for
extremely large or densely connected graphs.

23

