
Published as a Tiny Paper at ICLR 2023

ANALYTICAL SOLUTIONS FOR A FAMILY OF SINGLE
LAYER NEURAL NETWORK REGRESSION PROBLEMS

Siddharth Krishna Kumar
Upwork Inc.
siddharthkumar@upwork.com

ABSTRACT

In this paper, we analyze a family of penalized single layer neural network re-
gression problems wherein the response variable has all non-negative entries. We
show analytically that the optimal weights of the problem lie at the vector of zeros,
which is a point of non-differentiability.

INTRODUCTION

Theoretical advancements in the field of neural networks Ahn et al. (2022); Arora et al. (2022);
Reddi et al. (2019); Ziyin et al. (2021) have made substantial contributions to our comprehension
of these models. However, most of these studies have focused on neural networks that are contin-
uously differentiable, while neural networks often incorporate non-differentiable components. In
this paper, we extend the existing literature by constructing a family of neural network regression
problems where the optimal solution aligns with the vector of zeros – a point of non-differentiability.
By examining these problems, we aim to further explore the impact of non-differentiability within
neural networks.

PROBLEM SETUP

Consider the penalized single layer neural network which regresses a vector y, on a data matrix X,
using a single layer neural network with RELU non-linearities is given by

f(β) = ||y − max(0,Xβ)||22 + λ1||β||1 + λ2||β||22, (1)

where X is an arbitrary data matrix, y is a non-positive vector (i.e., y[i] = −αi with αi ≥ 0 for
all i), λ1 ≥ 0 and λ2 ≥ 0. In this paper, we show analytically that when at least one of λ1 or λ2 is
strictly greater than 0, then β∗ = [0, 0, . . . , 0, 0]T is the unique minimizer of (1)

PROOF

With the ith row of X given by Xi,: = xT
i , and y[i] = −αi with αi ≥ 0 as described above, define

hi(β) = (αi + max(0, xT
i β))

2 (2)

and
g(β) = λ1||β||1 + λ2||β||22. (3)

With a minor re-arrangement of the terms, equation (1) can be rewritten as

f(β) =

i=N∑
i=1

hi(β) + g(β) (4)

Our proof proceeds in two parts. First, we show that f(β) is a convex function of β, and
therefore, every local optimal solution is also a global optimal solution. Next, we show that
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Figure 1: The infinity norm of the gradient descent trajectory for the loss function described in (1).
The entries in the data matrix are randomly sampled from [−1, 1], and the entries in the response
vector are sampled from [−1, 0]

β∗ = [0, 0, . . . , 0, 0]T minimizes f(β), and that for every β′ ̸= β∗, f(β′) > f(β∗). As a re-
sult, β∗ is the unique minimizer of f(β). We omit proofs for the well established facts that g(β) is
a convex function of β, and that β∗ = [0, 0, . . . , 0, 0]T is the unique minimizer of g(β) whenever
λ1 > 0 and/or λ2 > 0.

Proposition 1 f(β) is a convex function of β

Proof Using example 3.5 (page 80) and section 3.2.1 (page 79) in Boyd & Vandenberghe (2004), we
have that (αi+max(0, xT

i β)) is a convex function of β. Furthermore, since (αi+max(0, xT
i β)) ≥ 0

for all values of β, (2) implies hi(β) is a convex function of β for every i (bullet point 4 in example
3.13 (page 86) of Boyd & Vandenberghe (2004)). Finally, since g(β) is a convex function of β, (4)
implies that f(β) is a convex function of β. Therefore, any locally optimal point in f(β) is also
globally optimal

Proposition 2 β∗ = [0, 0, . . . , 0, 0]T is the unique global minimizer of f(β)

Proof From (2), hi(β) attains its minimum value whenever max(0, xT
i β) = 0. Since β∗ satisfies

this condition, β∗ minimizes hi(β) for every i. Furthermore, since β∗ also minimizes g(β), (4)
implies β∗ = argminβ f(β).

To prove the uniqueness of the solution, we note that when λ1 > 0 and/or λ2 > 0, β∗ is the unique
minimizer of g(β). Therefore for any β′ ̸= β∗, we have g(β′) > g(β∗) and hi(β

′) ≥ hi(β
∗) for

every i. Combining the inequalities, we have
∑i=N

i=1 hi(β
′) + g(β′) >

∑i=N
i=1 hi(β

∗) + g(β∗), i.e.,
f(β′) > f(β∗).

EXPERIMENTS

To validate our claim, we first generate an arbitrary X of dimension 20 × 500 whose entries are
uniformly sampled in [−1, 1]. Next, we generate a 20 × 1 vector y with entries uniformly sampled
on [−1, 0]. Finally, we initialize weights uniformly on [−1, 1], and run gradient descent on (1) with
λ1 = 0.01 and λ2 = 0.001 for different values of α. We observe that in every scenario, the infinity
norm of the solution consistently remains close to 0, aligning with our expectations.
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