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Abstract

While many solutions for privacy-preserving con-
vex empirical risk minimization (ERM) have been
developed, privacy-preserving nonconvex ERM
remains a challenge. We study nonconvex ERM,
which takes the form of minimizing a finite-sum
of nonconvex loss functions over a training set.
We propose a new differentially private stochastic
gradient descent algorithm for nonconvex ERM
that achieves strong privacy guarantees efficiently,
and provide a tight analysis of its privacy and util-
ity guarantees, as well as its gradient complexity.
Our algorithm reduces gradient complexity while
matching the best-known utility guarantee. Our
experiments on benchmark nonconvex ERM prob-
lems demonstrate superior performance in terms of
both training cost and utility gains compared with
previous differentially private methods using the
same privacy budgets.

1 INTRODUCTION

For many important domains such as health care and medi-
cal research, the datasets used to train machine learning mod-
els contain sensitive personal information. There is a risk
that models trained on this data can reveal private informa-
tion about individual records in that training data [Fredrik-
son et al., 2014, Shokri et al., 2017, Carlini et al., 2019].
This motivates the research on privacy-preserving machine
learning, much of which has focused on achieving differ-
ential privacy [Dwork et al., 2006], a rigorous definition
of privacy that provides statistical data privacy for individ-
ual records. In the past decade, many differentially private
machine learning algorithms for solving the empirical risk
minimization (ERM) problem have been proposed (e.g.,
[Chaudhuri et al., 2011, Kifer et al., 2012, Bassily et al.,
2014, Zhang et al., 2017, Wang et al., 2017, Jayaraman

et al., 2018, Wang and Gu, 2019, 2020]). Almost all of these
are for ERM with convex loss functions, but many important
machine learning approaches, including deep learning, are
formulated as ERM problems with nonconvex loss functions.
Furthermore, these learning problems often involve large
training sets, necessitating the use of stochastic optimization
algorithms such as stochastic gradient descent (SGD).

Several recent studies have advanced the application of
differential privacy in deep learning [Abadi et al., 2016, Pa-
pernot et al., 2016, McMahan et al., 2018, Bu et al., 2019].
While these studies prove differential privacy is satisfied,
they evaluate utility experimentally. Only a few differen-
tially private algorithms for solving nonconvex optimization
problems have proven utility bounds [Zhang et al., 2017,
Wang et al., 2017]. For example, Wang et al. [2017] pro-
posed a differentially private gradient descent (DP-GD) al-
gorithm with both privacy and utility guarantees. However,
each iteration of DP-GD requires computing the full gradi-
ent, which makes it too expensive for use on large training
sets. Zhang et al. [2017] proposed a random round private
stochastic gradient descent (RRPSGD) that can achieve the
same privacy guarantee as DP-GD with reduced runtime
complexity but with slightly worse utility bounds. In this
paper, we propose a differentially private Stochastic Re-
cursive Momentum (DP-SRM) algorithm for nonconvex
ERM. At the core of our algorithm is the stochastic recur-
sive momentum technique [Cutkosky and Orabona, 2019]
that can consistently reduce the accumulated variance of
the gradient estimator. Our approach is more scalable than
stochastic variance-reduced algorithms [Johnson and Zhang,
2013, Reddi et al., 2016a, Allen-Zhu and Hazan, 2016, Lei
et al., 2017, Nguyen et al., 2017, Fang et al., 2018, Zhou
et al., 2018] since it eliminates the periodical computation of
the checkpoint gradient which usually requires a giant batch
size. A recent work [Arora et al., 2022] developed a differ-
entially private variant of the stochastic variance-reduced
algorithm [Wang et al., 2019c] called Private SpiderBoost.
While Private SpiderBoost can achieve the same utility guar-
antee as our proposed DP-SRM algorithm, Private Spider-
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Boost requires periodic full gradient computation, making
it less scalable and results in worse gradient complexity.

Contributions. The main contributions of our paper are
summarized as follows:

• We develop a new differentially private stochastic opti-
mization algorithm for nonconvex ERM and provide a
sharp analysis of the privacy guarantee using Rényi Dif-
ferential Privacy (RDP) [Mironov, 2017].

• Our algorithm improves the previous best-known util-
ity guarantee for nonconvex optimization with lower
computational complexity. The utility guarantee of
our algorithm is O

(
(d log(1/δ))1/3/(nϵ)2/3

)
1, which

is better than the previous best-known results of
O
(
(d log(1/δ))1/4/(nϵ)1/2

)
established in Wang et al.

[2017]. The gradient complexity (i.e., the number of
stochastic gradients calculated in total) of our algorithm is
O
(
(nϵ)2/(d log(1/δ))

)
, which outperforms the best pre-

vious results [Zhang et al., 2017, Wang et al., 2017] when
the problem dimension d is large (see Table 1 for more
details).

• We evaluate our proposed methods on two nonconvex
ERM techniques: nonconvex logistic regression and con-
volutional neural networks. We report on experiments on
several benchmark datasets (Section 7), finding that our
method not only produces models that are the closest to
the non-private models in terms of model accuracy but
also reduces the computational cost.

Notation. We use curly symbol such as B to denote the
index set. For a set B, we use |B| to denote its cardinality.
For a finite sum function F =

∑n
i=1 fi/n, we denote FB

by
∑

i∈B fi/|B|. For a d-dimensional vector x ∈ Rd, we
use ∥x∥2 to denote its ℓ2-norm. Given two sequences {an}
and {bn}, if there exists a constant 0 < C < ∞ such
that an ≤ Cbn, we write an = O(bn). Besides, if there
exist constants 0 < C1, C2 < ∞ such that C1bn ≤ an ≤
C2bn, we write an = Θ(bn). We use n, d to represent the
number of training examples and the problem dimension,
respectively. We also use the standard notation for (ϵ, δ)-DP
where ϵ is the privacy budget and δ is the failure probability.

2 RELATED WORK

Over the past decade, many differentially private ma-
chine learning algorithms for convex ERM have been pro-
posed. There are three main approaches to achieve differ-
ential privacy in such settings, including output perturba-
tion [Wu et al., 2017, Zhang et al., 2017], objective perturba-
tion [Chaudhuri et al., 2011, Kifer et al., 2012, Iyengar et al.,
2019], and gradient perturbation [Bassily et al., 2014, Wang

1A recent work [Arora et al., 2022] also achieves this utility
guarantee with a worse gradient complexity.

et al., 2017, Jayaraman et al., 2018]. However, other than
the methods using gradient perturbation, it is very hard to
generalize these methods to nonconvex ERM because of the
difficulty in computing the sensitivity for nonconvex ERM.
Thus, most differentially private algorithms for nonconvex
ERM are based on the gradient perturbation, including our
work. The problem with gradient perturbation approaches is
that their iterative nature quickly consumes any reasonable
privacy budget. Hence, the main challenge is to develop
algorithms for nonconvex ERM that can provide sufficient
utility while maintaining privacy with high computational
efficiency.

Several recent works [Abadi et al., 2016, Papernot et al.,
2016, Xie et al., 2018] studied deep learning with differen-
tial privacy. Abadi et al. [2016] proposed a method called
moments accountant to keep track of the privacy cost of
stochastic gradient descent algorithm during the training
process, which provides a strong privacy guarantee. Pa-
pernot et al. [2016] established a Private Aggregation of
Teacher Ensembles (PATE) framework to improve the pri-
vacy guarantee of deep learning for classification tasks. Xie
et al. [2018] and Yoon et al. [2019] investigated the differ-
entially private Generative Adversarial Nets (GAN) with
different distance metrics. However, none of these works
provide utility guarantees for their algorithms.

Table 1 summarizes differentially private nonconvex op-
timization algorithms that provide utility guarantees for
nonconvex ERM. The Random Round Private Stochastic
Gradient Descent (RRPSGD) method developed by Zhang
et al. [2017] is the first differentially private nonconvex opti-
mization algorithm with the utility guarantee. This method
performs the perturbed SGD (adding Gaussian noise to
the stochastic gradients), for a random number of itera-
tions [Ghadimi and Lan, 2013]. The gradient complexity
of RRPSGD is O(n2), which makes it impractical for most
settings. Zhang et al. [2017] showed that RRPSGD is able
to find a stationary point in expectation with a diminishing
error O

(
(d log(n/δ) log(1/δ))1/4/(nϵ)1/2

)
. Their analysis

of the privacy guarantee is based on the standard privacy-
amplification by subsampling result and strong composition
theorem [Bassily et al., 2014]. Although such an analysis
can be easily adapted to the nonconvex setting with stochas-
tic optimization algorithms, it results in a large bound on
the variance of the added noise compared with relaxed defi-
nitions such as the moments accountant [Abadi et al., 2016]
and Gaussian differential privacy [Dong et al., 2019].

Wang et al. [2017] proposed the Differentially Private
Gradient Descent (DP-GD) algorithm for nonconvex op-
timization. DP-GD achieves an improved utility guar-
antee of O

(
(d log(1/δ))1/4/(nϵ)1/2

)
compared to that

of RRPSGD, with a reduced gradient complexity of
O
(
n2ϵ/(d log(1/δ))1/2

)
. The reason DP-GD can achieve

this factor of O
(
(log(n/δ))1/4

)
improvement, is that it uses

the full gradient rather than the stochastic gradient. This



Table 1: Comparison of different (ϵ, δ)-DP algorithms for nonconvex optimization. We report the utility bound in terms of
E∥∇F (θp)∥2, where θp is the output of the differentially private algorithm, E is taken over the randomness of the algorithm.
We only present results in terms of n, d, ϵ, δ and ignore other parameters for simplicity. *Although Private SpiderBoost and
DP-SRM have the same utility guarantee, Private SpiderBoost requires periodic full gradient computation, which makes it
less scalable and results in worse gradient complexity.

Algorithm Utility Gradient Complexity

RRPSGD [Zhang et al., 2017] O
(

(d log(n/δ) log(1/δ))1/4

(nϵ)1/2

)
O
(
n2

)
DP-GD [Wang et al., 2017] O

(
(d log(1/δ))1/4

(nϵ)1/2

)
O
(

n2ϵ
(d log(1/δ))1/2

)
Private SpiderBoost [Arora et al., 2022] O

(
(d log(1/δ))1/3

(nϵ)2/3

)
O
(

(nϵ)2

d log(1/δ) +
n5/3ϵ2/3

(d log(1/δ))1/3

)
DP-SRM

O
(

(d log(1/δ))1/3

(nϵ)2/3

)
O
(

(nϵ)2

d log(1/δ)

)
(This paper)

makes DP-GD computationally very expensive or even in-
tractable for large-scale machine learning problems (n is
big). Recently, Wang et al. [2019a] also proposed a differen-
tially private stochastic algorithm for nonconvex optimiza-
tion. Their goal is to find the local minima, while we aim to
find the stationary point. In addition, their utility guarantee
is asymptotic—it provides the desired utility guarantee only
if an infinite number of iterations could be run. In contrast,
our utility guarantee holds for a finite number of iterations.

Recently, Arora et al. [2022] developed a Private
SpiderBoost algorithm for noncovex optimization,
which achieves an improved utility guarantee of
O
(
(d log(1/δ))1/3/(nϵ)2/3

)
with gradient complex-

ity of O
(
(nϵ)2/(d log(1/δ)) + n5/3ϵ2/3/(d log(1/δ))1/3

)
.

Although Private SpiderBoost attains the same improved
utility guarantee as our method, it requires periodic full
gradient computation, making it less scalable and results in
worse gradient complexity when d ≥ O

(√
nϵ2/ log(1/δ)

)
.

3 PRELIMINARIES

We consider the empirical risk minimization (ERM) prob-
lem: given a training set S = {(x1, y1), . . . , (xn, yn)}
drawn from some unknown but fixed data distribution with
xi ∈ RD, yi ∈ Y ⊆ R, we aim to find a solution θ̂ ∈ Rd

that minimizes the following empirical risk

min
θ∈Rd

F (θ) :=
1

n

n∑
i=1

fi(θ), (3.1)

where F (θ) is the empirical risk function (i.e., training
loss), fi(θ) = ℓ(θ;xi, yi) is the loss function defined on
the i-th training example (xi, yi), and θ ∈ Rd is the model
parameter we want to learn.

Here, we provide some definitions and lemmas that will be
used in our theoretical analysis.

Definition 3.1. θ ∈ Rd is an ζ-approximate stationary point
if ∥∇f(θ)∥2 ≤ ζ.

Definition 3.2. A function f : Rd → R is G-Lipschitz, if
for all θ1,θ2 ∈ Rd, we have

|f(θ1)− f(θ2)| ≤ G∥θ1 − θ2∥2.

Definition 3.3. A function f : Rd → R has L-Lipschitz
gradient, if for all θ1,θ2 ∈ Rd, we have

∥∇f(θ1)−∇f(θ2)∥2 ≤ L∥θ1 − θ2∥2.

Differential privacy provides a formal notion of privacy,
introduced by Dwork et al. [2006]:

Definition 3.4 ((ϵ, δ)-DP [Dwork et al., 2006]). A random-
ized mechanism M : Sn → R satisfies (ϵ, δ)-differential
privacy if for any two adjacent data sets S, S′ ∈ Sn differ-
ing by one element, and any output subset O ⊆ R, it holds
that P[M(S) ∈ O] ≤ eϵ · P[M(S′) ∈ O] + δ.

To achieve (ϵ, δ)-DP for a given function q : Sn → R,
we can use Gaussian mechanism [Dwork and Roth, 2014]
M = q(S) + u, where u is a standard Gaussian random
vector with variance that is proportional to the ℓ2-sensitivity
of the function q, ∆(q), which is defined as follows.

Definition 3.5 (ℓ2-sensitivity[Dwork and Roth, 2014]). For
two adjacent datasets S, S′ ∈ Sn differing by one element,
the ℓ2-sensitivity ∆(q) of a function q : Sn → R is defined
as ∆(q) = supS,S′ ∥q(S)− q(S′)∥2.

Rényi differential privacy. Although the notion of (ϵ, δ)-
DP is widely used in the output and objective perturbation
methods, it suffers from the loose composition and privacy-
amplification by subsampling results, which makes it unsuit-
able for the stochastic iterative learning algorithms. In this



work, we will make use of the notion of Rényi Differential
Privacy (RDP) [Mironov, 2017] which is particularly useful
when the dataset is accessed by a sequence of randomized
mechanisms [Wang et al., 2019b].

Definition 3.6 (RDP [Mironov, 2017]). For α > 1, ρ > 0,
a randomized mechanism M : Sn → R is (α, ρ)-Rényi
Differential Privacy, if for all adjacent datasets S, S′ ∈ Sn

differing by one element, we have Dα

(
M(S)||M(S′)

)
:=

logE
[(
M(S)/M(S′)

)α]
/(α− 1) ≤ ρ.

By Definition 3.6, RDP measures the ratio of probability dis-
tributions M(S) and M(S′) by α-order Renyi Divergence
with α ∈ (1,∞). As α → ∞, RDP reduces to ϵ-DP.

To further improve the privacy guarantee when using the
Gaussian mechanisms to satisfy RDP, we establish the fol-
lowing privacy-amplification by subsampling result, which
is derived based on the result in [Wang et al., 2019b].

Lemma 3.7. Given a function q : Sn → R, the Gaussian
Mechanism M = q(S) + u, where u ∼ N(0, σ2I), satis-
fies (α, α∆2(q)/(2σ2))-RDP. In addition, if we apply the
mechanism M to a subset of samples using uniform sam-
pling without replacement with sampling rate τ , M satisfies
(α, 3.5τ2∆2(q)α/σ2)-RDP given σ′2 = σ2/∆2(q) ≥ 0.7,
α ≤ 2σ2 log(1/

(
τα

(
1 + σ′2)

))
/3 + 1.

Remark 3.8 (Comparison with moment accountant). Sup-
pose ∆(q) = 1, Lemma 3.7 suggests that to achieve
(α, 3.5τ2α/σ2)-RDP of the subsampled Gaussian mech-
anism, we require σ2 ≥ 0.7. For the moment accoun-
tant based method [Abadi et al., 2016], it can achieve
the asymptotic privacy guarantee of

(
α, τ2α/(1− τ)σ2 +

O(τ3α3/σ3)
)
-RDP when τ goes to zero and σ2 ≥ 1,

α ≤ σ2 log(1/(τσ)). In contrast to moment accountant,
our result has a closed-form bound on the privacy guarantee
and a relaxed requirement of σ2.

It is worth noting that there exist some other works [Mironov
et al., 2019, Zhu and Wang, 2019] also studying the privacy-
amplification by subsampling results. However, they con-
sider the Poisson subsampling approach, which is different
from our uniform subsampling method.

Based on Lemma 3.7, we can establish a strong privacy
guarantee of our method in terms of RDP, and then transfer
it to (ϵ, δ)-DP using the following lemma.

Lemma 3.9 (Mironov [2017]). If a randomized mechanism
M : Sn → R satisfies (α, ρ)-RDP, then M satisfies (ρ +
log(1/δ)/(α− 1), δ)-DP for all δ ∈ (0, 1).

4 ALGORITHM

Our proposed algorithm for differentially private nonconvex
ERM, is illustrated in Algorithm 1.

Algorithm 1 Differentially Private Stochastic Recursive
Momentum (DP-SRM)

input θ0, T,G, L, γ, β, n0, privacy parameters ϵ, δ, accu-
racy for the first-order stationary point ζ

1: Uniformly sample b0 examples without replacement
indexed by B0

2: Compute v0 = ∇FB0
(θ0), where ∇FB0

(θ0) =∑
i∈B0

∇fi(θ
0)/b0, draw u0 ∼ N(0, σ2

0Id) with σ2
0 =

14TG2α/(βn2ϵ), α = log(1/δ)/
(
(1− β)ϵ

)
+ 1

3: Release the differentially private gradient estimator
v0
p = v0 + u0

4: for t = 0, 1, 2, . . . , T − 1 do
5: θt+1 = θt − ηtv

t
p, where ηt =

min
{
ζ/(n0L∥vt

p∥2), 1/(2n0L)
}

6: Uniformly sample b examples without replacement
indexed by Bt+1

7: Compute vt+1 = ∇FBt+1
(θt+1) + (1 − γ)

(
vt
p −

∇FBt+1(θ
t)
)
, draw ut+1 ∼ N(0, σ2Id) with

σ2 = 14T
(
(1 − γ)ζ/n0 + γG

)2
α/(βn2ϵ), α =

log(1/δ)/
(
(1− β)ϵ

)
+ 1

8: Release the differentially private gradient estimator
vt+1
p = vt+1 + ut+1

9: end for
output θ̃ chosen uniformly at random from {θt}T−1

t=0

The main idea is to construct the differentially private gra-
dient estimator vt

p iteratively based on the information ob-
tained from the previous updates. We initialize v0 to be the
mini-batch stochastic gradient ∇FB0

(θ0) and inject Gaus-
sian noise, u0, with covariance matrix σ2

0Id (lines 2, 3),
to make it differentially private. Then, we recursively up-
date vt (line 7) as vt = ∇FBt(θ

t) + (1 − γ)
(
vt−1
p −

∇FBt
(θt−1)

)
, where ∇FBt

(θt), ∇FBt
(θt−1) are mini-

batch stochastic gradients and vt−1
p is the private gradient

estimator released at the last iteration. The momentum pa-
rameter, γ, is used to control the decay rate of the prior
information, vt−1

p −∇FBt
(θt−1). This is called stochastic

recursive momentum [Cutkosky and Orabona, 2019], which
can lead to fast convergence. After updating vt, we again
inject Gaussian noise ut with covariance matrix σ2Id (line
8), to provide differential privacy. The variance σ2

0 , σ2 of the
Gaussian random vectors are determined by our RDP-based
analysis. We choose an adaptive step size (line 5) to bound
the sensitivity of the gradient estimator vt

p, which is the key
to establish the tight privacy and utility guarantees (Section
6) of our algorithm.

5 MAIN THEORETICAL RESULTS

In this section, we establish formal privacy and utility guar-
antees for Algorithm 1.

Theorem 5.1. Suppose that each component function fi



is G-Lipschitz and has L-Lipschitz gradient. Given the to-
tal number of iterations T , the momentum parameter γ
and the accuracy for the first-order stationary point ζ, for
any δ > 0 and the privacy budget ϵ, Algorithm 1 satisfies
(ϵ, δ)-differential privacy with σ2

0 = 14TG2α/(βn2ϵ) and
σ2 = 14T

(
(1− γ)ζ/n0 + γG

)2
α/(βn2ϵ) if we have α−

1 = log(1/δ)/
(
(1−β)ϵ

)
≤ 2σ′2 log

(
1/
(
τα(1+σ′2)

))
/3

with β ∈ (0, 1) and σ′2 = min{b2σ2/
(
4((1 − γ)ζ/n0 +

γG)2
)
, b20σ

2
0/(4G

2)} ≥ 0.7, where b0 and b are batch sizes,
and τ = max{b0/n, b/n}.

Remark 5.2. According to Theorem 5.1, there exists a
constraint on the parameter α, which is due to the privacy-
amplification by subsampling result in Lemma 3.7, and is
similar to the constraint given by the moments accountant
[Abadi et al., 2016] and other RDP-based analyses with
subsampling approaches [Mironov et al., 2019, Zhu and
Wang, 2019]. Furthermore, as we mentioned in Remark
3.8, our result relaxes the requirement of the variance σ′2

compared with the moments accountant based analysis.

Following the previous work [Bassily et al., 2019], we can
get rid of the constraints in Theorem 5.1 by using a larger
mini-batch size, as states in the following corollary.

Corollary 5.3. Given the total number of iterations T , the
momentum parameter γ and the accuracy for the first-order
stationary point ζ. Under the same conditions of Theorem
5.1 on fi, σ

2
0 , σ

2, for any δ > 0 and the privacy budget
ϵ, Algorithm 1 satisfies (ϵ, δ)-differential privacy if we
choose b20 = b2 = n2ϵ/T , β = 1/2, and T is larger than
O
(
log4(1/δ)/ϵ3

)
.

Theorem 5.1 and Corollary 5.3 require that each component
function fi is G-Lipschitz and has L-Lipschitz gradient
which will be used to derive the sensitivity of the underlying
query function (i.e., the gradient estimator vt in Algorithm
1) and thus determine the variance of the Gaussian noise.
The G-Lipschitz condition has been widely assumed in the
literature of differential privacy [Abadi et al., 2016, Wang
et al., 2017, Jayaraman et al., 2018, Bassily et al., 2019], and
the L-Lipschitz gradient condition has also been made in
several previous works [Zhang et al., 2017, Feldman et al.,
2020]. In practice, we can use the clipping technique [Abadi
et al., 2016] to ensure that at each iteration, ∥∇fi(θ

t)∥2 ≤
C1 and ∥∇fi(θ

t)−∇fi(θ
t−1)∥2 ≤ C2, where C1, C2 are

some predefined constants. As a result, we can guarantee
that the sensitivity of vt is bounded by 2

(
(1 − γ)C2 +

γC1

)
/b (see (6.1)). Then, we can replace G and ζ/n0 with

C1 and C2 in Algorithm 1 to establish the same privacy
guarantee.

The following theorem shows the utility guarantee and
the gradient complexity, which is the total number of the
stochastic gradients we need to estimate during the training
process, of Algorithm 1.

Theorem 5.4. Under the same conditions of Theorem
5.1 on fi, σ

2, σ2
0 , σ

′2, α, if we choose the number of
iterations T = C1(nϵLDF )

4/3/
(
G8/3(d log(1/δ)2/3

)
,

where DF = F (θ0) − F (θ∗) and F (θ∗) is a global
minimum of F , the accuracy for the first-order stationary
point ζ = C2

(
GLDF d log(1/δ)

)1/3
/(nϵ)2/3, batch sizes

b0 = C3G
3/(ζLDF ), b = C4G/(n0ζ), n0 = LDF /G

2,
the momentum parameter γ2 = C5ζ

2/(n2
0G

2) and nϵ ≥
C6 max{G8 log2(1/δ)/(LDF d)

4,
√

G4d log(1/δ)/(LDF )},
then the output θ̃ of Algorithm 1 and satisfies the following

E∥∇F (θ̃)∥2 ≤ C7

(√
GLDF d log(1/δ)

nϵ

) 2
3

,

where {Ci}7i=1 are absolute constants, and the expectation
is taken over all the randomness of the algorithm, i.e., the
random Gaussian noise and the subsample gradient. Since
T = O

(
(nϵLDF )

4/3/
(
G8/3(d log(1/δ)2/3

)
, b0 = b =

O
(
G8/3(nϵ)2/3/(LDF )

4/3(d log(1/δ))1/3
)
, the total gra-

dient complexity of Algorithm 1 is O
(
(nϵ)2/(d log(1/δ))

)
.

Remark 5.5 (Comparison with existing methods). Accord-
ing to Theorem 5.4, our method can achieve the following
utility guarantee O

((
GLDF d log(1/δ)

)1/3
/(nϵ)

2
3

)
. This

result is better than the previous best-known result for dif-
ferentially private nonconvex optimization method [Wang
et al., 2017]. Furthermore, their method is based on gradient
descent, which is computationally very expensive in large-
scale machine learning problems. Furthermore, the gradient
complexity of our method is O

(
(nϵ)2/

(
d log(1/δ)

))
. This

result is smaller than O(n2) gradient complexity provided
by Zhang et al. [2017] and O

(
n2ϵ/(d log(1/δ))1/2

)
gra-

dient complexity provided by Wang et al. [2017] when d
is large. Compared with Private SpiderBoost [Arora et al.,
2022], our method has better gradient complexity when
d ≥ O

(√
nϵ2/ log(1/δ)

)
.

Theorem 5.4 shows that our method only requires the com-
putation of minibatch gradients with batch size at the order
of O

(
(nϵ)2/3/(d log(1/δ)1/3

)
(ignoring the dependence

on other parameters). Therefore, our method is more scal-
able than existing differentially private stochastic variance-
reduced algorithms, such as DP-SVRG [Wang et al., 2017]
for convex optimization and Private SpiderBoost [Arora
et al., 2022] for nonconvex optimization, which often re-
quire the periodic computation of the checkpoint gradient
with a giant batch size (full batch in DP-SVRG and Private
SpiderBoost).

6 PROOF OUTLINE OF THE MAIN
RESULTS

In this section, we present the proof outline of the main
results in Section 5. Our proof involves new techniques for
the privacy and utility guarantees that are of general use for



variance reduction-based algorithms. The detailed proof can
be found in Section B in Appendix.

6.1 PRIVACY GUARANTEE

According to Algorithm 1, the mechanism at t-th itera-
tion is Mt, which is a composition of t Gaussian mech-
anisms: G0, . . . ,Gt, where G0 = ∇FB0

(θ0) + u0 and
Gt = ∇FBt

(θt) − (1 − γ)∇FBt
(θt−1) + ut. Therefore,

we want to show that Mt is differentially private. For the
given dataset S, we use S′ to denote its neighboring dataset
with one different example indexed by i′

There are two main challenges in providing a tight privacy
analysis. The first one is to deal with the subsampled mecha-
nisms {Gi}T−1

i=0 . The second one is to control the sensitivity
of Gt when t > 0. The first challenge can be addressed by
our privacy-amplification by subsampling result (Lemma
3.7), which gives us a tight closed-form bound on the privacy
guarantee. We can overcome the second challenge by using
an adaptive stepsize, enabling us to use a small amount of
random noise to achieve differential privacy.

According to Algorithm 1, Gt is the application of the fol-
lowing Gaussian mechanism G̃t to a subset of uniformly
sampled examples, indexed by Bt

G̃t =

{
1
b

∑n
i=1 ∇fi(θ

0) + u0, t = 0
1
b

∑n
i=1

(
∇fi(θ

t)− ϕ∇fi(θ
t−1)

)
+ ut, t > 0,

where ϕ = 1 − γ. For q̃0 =
∑n

i=1 ∇fi(θ
0)/b0 in G̃0, the

sensitivity ∆(q̃0) is determined by

∥q̃0(S)− q̃0(S
′)∥2 ≤ 1

b
∥∇fi(θ

0)−∇fi′(θ
0)∥2 ≤ 2G

b0
,

where the last inequality is due to G-Lipschitz of each
component function. For q̃t =

∑n
i=1 ∇fi(θ

t)/b − (1 −
γ)

∑n
i=1 ∇fi(θ

t−1)/b in G̃t when t > 0, the sensitivity
∆(q̃t) = ∥q̃t(S)− q̃t(S

′)∥2 is determined by

1− γ

b
∥∇fi(θ

t)−∇fi(θ
t−1) +∇fi′(θ

t)−∇fi′(θ
t−1)∥2

+
γ

b
∥∇fi(θ

t)−∇fi′(θ
t)∥2. (6.1)

Therefore, we have

∥qt(S)− qt(S
′)∥2 ≤ 2L(1− γ)

b
∥θt − θt−1∥2 +

2γG

b

=
2L(1− γ)

b
ηt−1∥vt−1

p ∥2 +
2γG

b

≤ 2(1− γ)ζ

n0b
+

2γG

b
,

where the first inequality is due to L-Lipschitz continu-
ous gradient and G-Lipschitz of each component func-
tion. The last inequality comes from the adaptive stepsize

ηt = min
{
ζ/(n0L∥vt

p∥2), 1/(2n0L)
}

. Note that the pro-
posed adaptive stepsize ηt is the key to control the sensitivity
of q̃t. If we choose a fixed stepsize such as ηt = 1/(2L), the
sensitivity of q̃t will be in the order of O(G2/b), which will
lead to a much larger random noise to achieve differential
privacy and thus deteriorate the utility of our method.

According to Lemma 3.7, if the noise u0 and ut satisfy
σ2
0 = 14TαG2/(βn2ϵ) and σ2 = 14Tα

(
(1 − γ)ζ/n0 +

γG
)2
/(βn2ϵ), the Gaussian mechanism G̃t satisfies(

α, βϵn2/
(
7b20T

))
-RDP, and the privacy-amplification by

subsampling result shows that Gt satisfies (α, βϵ/T )-RDP.
Therefore, by the composition rule of RDP Mironov [2017],
after T ′ iterations, Algorithm 1 satisfies (α, βT ′ϵ/T )-RDP.
According to Lemma 3.9 and α = log(1/δ)/

(
(1−β)ϵ

)
+1,

we have that after T ′ iterations, Algorithm 1 satisfies
(T ′ϵ/T, δ)-DP.

6.2 UTILITY GUARANTEE

According to the definition of θ̃, we have

E∥∇F (θ̃)∥2 =
1

T

T−1∑
t=0

E∥∇F (θt)∥2

≤ 1

T

T−1∑
t=0

E
∥∥vt

p

∥∥
2
+

1

T

T−1∑
t=0

E
∥∥∇F (θt)− vt

p

∥∥
2
,

where the expectation is taken over all the randomness
of the algorithm. The key challenge in establishing a
tight utility guarantee is to derive tight upper bounds for∑T−1

t=0 E
∥∥vt

p

∥∥
2
/T and

∑T−1
t=0 E

∥∥∇F (θt)−vt
p

∥∥
2
/T when

we have adaptive stepsize ηt and the random noise ut in vt
p.

First of all, by taking into account the adaptive stepsize ηt,
we can upper bound the term

∑T−1
t=0 E

∥∥vt
p

∥∥
2
/T as follows

4n0LDF

Tζ
+

1

Tζ

T−1∑
t=0

E
∥∥∇F (θt)− vt

p

∥∥2
2
+ 2ζ,

where DF = F (θ0)− F (θ∗). Furthermore, we can obtain
the upper bound for

∑T−1
t=0 E

∥∥vt
p−∇F (θt)

∥∥2
2
/T as follows

2(1− γ)2ζ2

n2
0γb

+
2γG2

b
+

G2

Tγb0
+

Tdσ2 + dσ2
0

Tγ
,

where the first term is determined by ηt, and the last term
is determined by the random noise ut in vt

p. The last term
in this bound is dominated by dσ2/γ, which validates the
necessity of using the adaptive stepsize to control the sensi-
tivity of vt and thus enable a small σ2.

Finally, combining these two new bounds and plugging the
value of parameters in Theorem 5.4, we can obtain that

E∥∇F (θ̃)∥2 ≤ C1ζ + C2

√
GLDF d log(1/δ)

nϵ
√
ζ

.



By solving the smallest ζ, we can obtain ζ =
(GLDF d log(1/δ))

1/3/(nϵC1/C2)
2/3. Thus we have

E∥∇F (θ̃)∥2 ≤ C3ζ, where C1, C2, C3 are some constants.

7 EXPERIMENTS

This section presents results from experiments that evaluate
our method’s performance on different nonconvex ERM
problems and different datasets. All experiments are im-
plemented in Pytorch platform version 1.2.0 within Python
3.7.6. on a local machine which comes with Intel Xeon 4214
CPUs and NVIDIA GeForce RTX 2080Ti GPU (11G GPU
RAM).

7.1 NONCONVEX LOGISTIC REGRESSION

We first consider the binary logistic regression problem with
a nonconvex regularizer [Reddi et al., 2016b]

minθ∈Rd
1
n

∑n
i=1yi log ϕ(x

⊤
i θ) + (1− yi) log

[
1− ϕ(x⊤

i θ)
]

+ λ

d∑
i=1

θ2j/(1 + θ2j ),

where ϕ(x) = 1/
(
1+exp(−x)

)
is the sigmoid function, θj

is the j-th coordinate of θ, and λ > 0 is the regularization
parameter. We set λ = 0.001 in this experiment. Here, we
consider two commonly-used binary classification bench-
mark datasets: a9a dataset, which contains 32561 training
examples, 16281 test examples, 123 features, and ijcnn1
dataset with 49990 training examples, 91701 test examples,
22 features. We report the results for the a9a dataset in the
main paper and defer the results for the ijcnn1 dataset to
Appendix A.

Baseline methods. We compare our method (DP-SRM)
with random round private stochastic gradient descent
(RRPSGD) proposed by Zhang et al. [2017], differentially
private gradient descent (DP-GD) proposed by Wang et al.
[2017], and differentially private adaptive gradient descent
(DP-AGD) proposed by Lee and Kifer [2018]. We do not
compare our method with Private SpiderBoost [Arora et al.,
2022] since it is unclear how to practically determine the
privacy guarantee-related parameters of their algorithm.

Gradient clipping and privacy tracking. We use the
gradient clipping technique of Abadi et al. [2016] to en-
sure that at t-th iteration of Algorithm 1, ∥∇fi(θ

t)∥2 and
∥∇fi(θ

t)−∇fi(θ
t−1)∥2 are upper bounded by some pre-

defined values C1 and C2, respectively. This will ensure that
the sensitivity of the gradient estimator vt is upper bounded
by 2

(
(1− γ)C1 + γC2

)
(see equation (6.1)), and gives us

the desired privacy protection. At each iteration, we add
the Gaussian noise with variance σ2, and keep track of the
RDP according to Lemma 3.7 and transfer it to (ϵ, δ)-DP
according to Lemma 3.9.

Parameters. For all the algorithms, the step size is tuned
around the theoretical values to give the fastest convergence
using grid search. For our method, we tune the batch size b
by searching the grid {50, 100, 200}. We set C1 = 1, C2 =
0.01 and γ = C2. We choose ϵ ∈ {0.2, 0.5} and δ = 10−5.

Results. Due to the randomized nature of all the algorithms,
the experimental results are obtained by averaging the re-
sults over 30 runs. Figures 1 shows the objective function
value and the gradient norm of different algorithms for pri-
vacy budgets ϵ ∈ {0.2, 0.5} on a9a datasets. We also report
the 95% confidence interval of these results. We can see
from the plots that our DP-SRM algorithm outperforms the
other three baseline algorithms in terms of the objective
loss, gradient norm, and convergence rate by a large margin.
Tables 2 summarizes the test error of different algorithms
as well as the CPU time (in seconds) of the training process.
The results also corroborate the advantages of our method
in terms of accuracy and efficiency.

7.2 CONVOLUTIONAL NEURAL NETWORKS

We compare our algorithm with the differentially private
stochastic gradient descent (DP-SGD) algorithm proposed
by Abadi et al. [2016] on training convolutional neural
networks for image classification on both MNIST [LeCun
et al., 1998] and CIFAR-10 [Krizhevsky and Hinton, 2009]
datasets.

Architecture for MNIST. For MNIST dataset, we consider
a 4 layer CNN 2, which can achieve 99% classification
accuracy on the test dataset after training with SGD.

Parameters for MNIST. We choose privacy budgets ϵ ∈
{1.2, 3.0, 7.0}, and set δ = 10−5. To ensure the pri-
vacy guarantee (see (6.1)), we set the clipping parame-
ter C1 = 1.5 for the term ∥∇fi(θ

t)∥2. For the term
∥∇fi(θ

t)−∇fi(θ
t−1)∥2, we choose the clipping parame-

ter C2 from the grid {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. For
both DP-SGD and DP-SRM, we tune the batch size b by
searching the grid {256, 512, 1024} and the step size by
{0.01, 0.05, 0.1, 0.25, 0.5}. For DP-SRM, we tune the batch
size b0 by {b, 2b, 4b}. In addition, we set the momentum
parameter γ = C2.

Results for MNIST. Figures 2 illustrates the average test
error and the corresponding 95% confidence interval of
different methods versus the number of iterations as well
as the training time (in seconds) under the privacy budgets
ϵ = 1.2 and ϵ = 3.0 over 30 trials. We see similar results
under the privacy budget ϵ = 7.0, and thus defer them in
Section A in Appendix. The CNN trained by the non-private
SGD can achieve 1% test error after 20 epochs. Figure 2(a)

2https://github.com/facebookresearch/
pytorch-dp.

https://github.com/facebookresearch/pytorch-dp
https://github.com/facebookresearch/pytorch-dp


Table 2: Comparison of different algorithms on a9a dataset when ϵ ∈ {0.2, 0.5} and δ = 10−5. We use the STORM
algorithm [Cutkosky and Orabona, 2019] as the non-private baseline.

Privacy Non-private Method Test Error Data CPU time (s) Gradient NormBudget Baseline Passes

ϵ = 0.2 0.3346

DP-GD 0.4155 (0.0107) 20 1.245 0.0953 (0.0212)
DP-AGD 0.3713 (0.0043) 360 96.21 0.0437 (0.0020)
RRPSGD 0.4019 (0.0033) 8 39.61 0.2175 (0.0116)

(0.007) DP-SRM 0.3579 (0.0009) 4 0.6007 0.0528 (0.0042)

ϵ = 0.5 0.3346

DP-GD 0.3859 (0.0057) 20 1.261 0.0866 (0.0129)
DP-AGD 0.3627 (0.0038) 365 95.45 0.0402 (0.0022)
RRPSGD 0.3861 (0.0028) 10 52.32 0.1454 (0.0126)

(0.007) DP-SRM 0.3506 (0.0011) 5 0.7383 0.0502 (0.0061)
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(d) ϵ = 0.5

Figure 1: Results for nonconvex logistic regression on a9a dataset. (a), (b) illustrate the objective loss versus the number of
epochs. (c), (d) present the gradient norm versus the number of epochs.
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Figure 2: Results on MNIST dataset. (a), (b) depict the test error under the privacy budget ϵ = 3.0. (c), (d) illustrate the test
error under the privacy budget ϵ = 1.2.
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(c) ϵ = 4.0
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Figure 3: Results for CNN6 on CIFAR-10 dataset. (a), (b) depict the test error under the privacy budget ϵ = 2.0. (c), (d)
illustrate the test error under the privacy budget ϵ = 4.0

and Figure 2(c) show that our proposed method can achieve
3.62% and 4.49% test errors when ϵ = 3.0 and ϵ = 1.2,
which are better than DP-SGD with 3.81% and 5.33% test
errors. Besides, our method converges faster than DP-SGD.

Figure 2(a) and Figure 2(b) demonstrate that compared with
DP-SGD, our method only takes 0.3× iterations and 0.4×
training time to achieve comparable performances under the
privacy budget ϵ = 3.0.



Architecture for CIFAR-10. We consider two convolu-
tional neural networks for CIFAR-10. The first one is a five
layer CNN with two convolutional layers and three fully
connected layers, and we call it CNN5 3. For CNN5, we
train it from the scratch using our DP-SRM method and the
DP-SGD method [Abadi et al., 2016] and compare their per-
formances in terms of the model accuracy, iteration numbers
and the training time. For the second one, we consider a sim-
ilar architecture as in Abadi et al. [2016], which has three
convolutional layers with 32, 64, 128 filters in each convo-
lution layer and three fully connected layers, and we denote
it by CNN6. For CNN6, we follow the same experiment
setting as in Abadi et al. [2016]: we use CIFAR-100 dataset
as a public dataset, and first train a network with the same
architecture on this dataset as the pretrained model. Then,
we initialize the convolutional layers of CNN6 using the
cnvolutional layers of the pretrained model, and only train
the fully connected layers of CNN6 on CIFAR-10 dataset
using different private methods.

Parameters for CNN6. We choose three different pri-
vacy budgets ϵ ∈ {2.0, 4.0, 8.0} and δ = 10−5.
We set the clipping parameter C1 = 2 for the term
∥∇fi(θ

t)∥2. For the term ∥∇fi(θ
t) − ∇fi(θ

t−1)∥2, we
choose the clipping parameter C2 by searching the
grid {0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}. For DP-
SGD, we tune the step size by searching the grid
{0.01, 0.02, 0.05, 0.1, 0.15, 0.2} and the batch size by
{64, 128, 256}. For DP-SRM, we tune the batch size
b by searching the grid {64, 128, 256}, step size by
{0.01, 0.02, 0.05, 0.1, 0.15, 0.2}, and b0 by {b, 2b, 4b}. In
addition, we set the momentum parameter γ = C2.

Results for CNN6. Figure 3 presents the average test error
and the corresponding 95% confidence interval of differ-
ent methods versus the number of iterations as well as the
training time (in seconds) over 30 trials. The CNN6 trained
by the non-private SGD will have 18.5% test error after
150 epochs. The results show that our proposed method can
achieve 33.2% and 31.0% test errors given ϵ = 2.0 and
ϵ = 4.0, which are comparable to the results of DP-SGD
with 33.2% and 31.2% under the same privacy budgets.
However, we can see from the plots that our method can
significantly reduce the iteration numbers and the training
time. For example, when ϵ = 4.0, DP-SGD takes 1.3× 104

iterations and 1115 seconds to achieve 31.2% test error. In
sharp contrast, our method only takes 6.8× 103 iterations
and 643 seconds to achieve 31.0% test error. We can observe
similar results for CNN5, which are presented in Section A
in Appendix.

3https://pytorch.org/tutorials/beginner/
blitz/cifar10_tutorial.html.

8 CONCLUSIONS

We propose an efficient differentially private algorithm for
nonconvex ERM. We prove both privacy and utility guar-
antees for our method. Both theoretical analyses and exper-
iments demonstrate the advantage of our algorithms com-
pared with the state-of-the-art. It would be very interesting
to study our method’s performances in super large or even
industrial-level neural networks. It would also be very inter-
esting to study the optimization lower bound for the differ-
entially private nonconvex stochastic optimization problem.
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