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Figure 1: The robot playing in simulation (left) and against a professional coach in real. Green dots
show the ball trajectory.

ABSTRACT

Achieving human-level performance on real world tasks is a north star for the
robotics community. We present the first learned robot agent that reaches amateur
human-level performance in competitive table tennis. Table tennis is a physically
demanding sport that requires humans years to master. We contribute (1) a hierar-
chical and modular policy architecture consisting of (i) low level controllers with
their skill descriptors that model their capabilities and (ii) a high level controller
that chooses the low level skills, (2) techniques for enabling zero-shot sim-to-
real and curriculum building, including an iterative approach (train in sim, deploy
in real), and (3) real time adaptation to unseen opponents. Policy performance
was assessed through 29 robot vs. human matches of which the robot won 45%
(13/29). All humans were unseen players and their skill level varied from begin-
ner to tournament level. Whilst the robot lost all matches vs. the most advanced
players it won 100% matches vs. beginners and 55% matches vs. intermediate
players, demonstrating solidly amateur human-level performance.
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1 INTRODUCTION

Robot learning has made inspiring progress, yet achieving human-level performance in complex
domains, like table tennis, which demand high-speed motion, precise control, and human-robot
interaction, remains challenging Fu et al. (2024); Wu et al. (2023); Li et al. (2023). Table tennis
has served as a valuable benchmark for robotics research since the 1980s, with numerous robots
developed to tackle various aspects of the game Billingsley (1983); Huang et al. (2015); Ding et al.
(2022); Chen et al. (2021); Abeyruwan et al. (2023b); D’Ambrosio et al. (2023). However, no prior
work has addressed playing a full competitive game against a previously unseen human opponent.

This paper presents the first learned robot agent capable of playing competitive table tennis at
a human level (see Figure 1). Control architectures and hierarchies play a critical role in robotics
Brooks (1986); Arkin (1998). We introduce a hierarchical and modular policy architecture, consist-
ing of multiple low-level skill policies and a high-level controller which chooses the best skill to
execute, to address the challenge of combining strategic decision-making with physical skills exe-
cution, and the challenge of learning a model for a diverse skill set. Training is efficient, since all
low-level policies start from a small set of base models and are then specialized. Our work draws
inspiration from previous research on hierarchical robot policies, which traditionally relied on engi-
neered policies and arbitration modules Brooks (1986); Arkin (1998); Rosenblatt & Thorpe (1997);
Kawato et al. (1987); Daniel et al. (2016); Ahn et al. (2022). Our architecture is closest in spirit to
the work in Mülling et al. (2013) in which a gating network is learned to create mixtures of existing
low-level policies. The gating network generates probabilities indicating the likelihood that a policy
is the right one given the current context. We utilize instance-based learning and tree-search over
skill descriptors for low-level policies, enabling real-time learning and adaptation, distinguishing
our approach from prior methodologies.

A hybrid training method is employed, synergistically combining reinforcement learning in sim-
ulation and deployment in real. The robot’s skills are iteratively refined in simulation based on
real-world data, creating an automatic task curriculum and enabling continuous improvement. This
enables efficient training and zero-shot transfer to real hardware Sutton & Barto (2018); Osa et al.
(2018); Caluwaerts et al. (2023); Kumar et al. (2021); Cheng et al. (2023); Stepputtis et al. (2020);
Collaboration et al. (2023); Zhao et al. (2020); Sontakke et al. (2023); Jiang et al. (2021); Peng
et al. (2018); Lee et al. (2018); D’Ambrosio et al. (2023); Todorov et al. (2012); Abeyruwan et al.
(2023b). We improve upon previous iterative approaches by utilizing seed human vs. human play
data, zero-shot policy transfer, and a non-parametric dataset-based ball distribution for better align-
ment between simulation and real-world human play.

Furthermore, the robot adapts to unseen human opponents by tracking match statistics and estimat-
ing preferences online, facilitating real-time learning and adaptation to the environment and oppo-
nent Kumar et al. (2021). This capability is crucial for playing games in the physical world with
humans, a challenging problem with ongoing research in cooperative games and ad-hoc team-play
Stone et al. (2010); Hu et al. (2020); Carroll et al. (2019); Strouse et al. (2021).

We build upon previous research in table tennis robotics that covers various aspects such as ac-
tion and motion generation, state estimation, and human strategy identification Andersson (1988);
Hashimoto et al. (1987); Knight & Lowery (1986); Schweitzer & Wen (1994); Mülling et al. (2013);
Tebbe et al. (2018); Büchler et al. (2022); D’Ambrosio et al. (2023); Muelling et al. (2010); Huang
et al. (2015); Koç et al. (2018); Zhu et al. (2018); Tebbe et al. (2021); Ding et al. (2022); Liu et al.
(2013); Abeyruwan et al. (2023b); Matsushima et al. (2003); Sun et al. (2011); Chen et al. (2021);
Büchler et al. (2022); Nakashima et al. (2011); Gao et al. (2019); Blank et al. (2017); Gossard et al.
(2024); Muelling et al. (2014); Wang et al. (2013; 2017); Guist et al. (2024). To date, the Om-
ron Forpheus robot Kyohei et al. (2019); Liu et al. (2013) has the closest capabilities to the agent
presented in this work, demonstrating sustained rallies. A key point of difference is that our agent
learns the control policies and perception system, whereas the Forpheus agent uses a model-based
approach. Also, our agent is able to play full matches. Our work also contributes to the growing
body of sports research tackling complex, dynamic tasks involving human interaction. While most
work focuses on sub-aspects or simplified settings, we aim to achieve competitive gameplay against
humans in realistic conditions, similar to the RoboCup competition and other robot sports Kitano
et al. (1997); Röfer et al. (2023); Stone et al. (2005); Behnke et al. (2006); Suriani et al. (2024);
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Figure 2: Method overview. We train a skill library of low-level controllers (LLCs), including
serving and rallying, and sim-to-sim adapters from a dataset of ball states. Using the same ball states,
we train a high level controller (HLC) for style selection. The policies are trained in simulation and
transferred zero-shot to the physical world. When deployed, the HLC decides which LLC should
return the ball by first applying a style policy to the current ball state to determine forehand or
backhand. If the ball is a service, it will classify the spin and pick the corresponding LLC. Otherwise
it must determine which of the many rallying LLCs will perform best by finding the most similar
ball state within the corresponding set of LLC skill tables and getting the return statistics. Heuristic
strategies are applied to these statistics to produce a shortlist of candidate LLCs. The final LLC is
chosen based on preferences per LLC learned online.

Wang et al. (2024); Haarnoja et al. (2024); Yang et al. (2021; 2022); Petric et al. (2012); Zaidi et al.
(2023); Abeyruwan et al. (2023a); Mori et al. (2019); Kaufmann et al. (2023).

In summary, this paper introduces a novel robot learning system that achieves amateur human-level
performance in competitive table tennis against unseen opponents. We make four main technical
contributions; (1) a hierarchical and modular policy architecture, (2) techniques for zero-shot sim-
to-real transfer and automatic curriculum, (3) real-time adaptation to opponents, and (4) a user study
to evaluate the system’s performance and engagement.

2 METHOD

2.1 HARDWARE AND ENVIRONMENT

Figure 1 depicts the physical robot. The table tennis robot is a 6 DoF ABB IRB 1100 arm mounted
on top of two Festo linear gantries, enabling motion in the 2d plane. The x gantry, which moves side
to side across the table, is 4m long and the y gantry, which moves towards and away from the table,
is 2m long. A 3D printed paddle handle and paddle with short pips rubber Glo (2024) is attached
to the ABB arm. A pair of Ximea MQ013CG-ON cameras operating at 125Hz capture images of
the ball and these are used as input into a neural-perception system which produces ball positions at
the same frequency. We use a PhaseSpace motion capture system consisting of 20 cameras mounted
around the play area to track the human opponent’s paddle.

We model table tennis as a single-agent sequential decision making problem in which the human
opponent is modeled as part of the environment using the Markov Decision Process (MDP) Puter-
man (2014) formalization. In what follows we describe changes to this system that were made to
enable real-time competitive play with humans.

2.2 LLC TRAINING

The table tennis agent shown in Figure 2 consists of two levels of control which we refer to as the
high level controller (HLC) and the low level controllers (LLCs). LLCs provide a library of skills
that our HLC can choose from.

3



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Training algorithm and LLC architecture All LLCs were trained in simulation with Blackbox
Gradient Sensing (BGS) Abeyruwan et al. (2023b), an evolutionary strategies (ES) algorithm, on
the task described in Section 2.1. The training task distribution of initial ball states is sampled from
a real world dataset, gathered iteratively through multiple cycles of policy training and real world
evaluations (discussed in Section 2.4). BGS was chosen because it produced policies with relatively
smooth actions and has been shown to have strong sim-to-real transfer performance D’Ambrosio
et al. (2023). Each policy is a 1D dilated-gated CNN Oord et al. (2016) with 10k parameters fol-
lowing Gao et al. (2020) plus an optional FILM adapter layer of 2.8k parameters to aid sim-to-real
transfer. The observation space is (8, 16) consisting of 8 consecutive timesteps of ball position and
velocity (6), robot joint position (8), and one-hot style; forehand or backhand (2). The action space
is (8, ) representing joint velocities. All policies are run at 50Hz.

Training generalist base LLCs First we trained generalist base LLCs for each style (forehand,
backhand). To train for a particular style, each ball state in the dataset was annotated with forehand,
backhand, or center based on where the ball trajectory intersected with the back of the table on the
robot side. Forehand LLCs were trained on only forehand + center balls, backhand on backhand +
center. This created an overlap in the center where policies of either style are capable of returning
the same balls. The policy was also rewarded for moving towards a reference pose (either forehand
or backhand) at the beginning of the shot. These base LLCs are important, not only to have a strong
starting polices capable of returning a wide range of balls to branch from, but also to anchor play in
specific styles for efficient returns.

Training specialists Next we specialized LLCs to different skills by adding reward function com-
ponents and / or adjusting the training data mix and fine-tuning a new policy initialized from one of
the existing LLCs. We experimented with the types of skills to train for based on advice from a table
tennis coach and general game intuition, including targeting specific return locations, maximizing
return velocity, and specializing to return serves of either topspin or underspin, fast balls, and lobs.
We found we did not need a specialist for lobs, and were unable to train a specialist on fast balls due
to lack of data and hardware limitations. We therefore focused on developing serving, targeting and
fast hitting specialists in addition to the generalists.

Determining the total set of skill policies The final system contained 17 LLCs. 4 were specialized
for returning serves, 13 for rallying. 11 played with a forehand style, 6 with a backhand style.
Importantly, each policy had the same initial robot pose, enabling straightforward sequencing of
LLC choices, since the initial robot pose will be in-distribution for all LLCs. We kept training LLCs
until we had covered our target set of skills. Due the modular architecture, there was little downside
in including additional LLCs. If we had a strong LLC, we included it, even if there was already an
LLC covering that particular skill.

2.3 THE HIGH LEVEL CONTROLLER (HLC)

The HLC is responsible for making strategic decisions. Concretely, the HLC is responsible for
selecting which LLC should be run for each incoming ball. The HLC does not have a fixed control
frequency but instead is triggered to act, once, every time the opponent hits the ball. Within the
HLC, there are six components that are combined to produce the choice of LLC — style policy, spin
classifier, LLC skill descriptors, match statistics, strategies, LLC preferences (H-values). Figure 2
(RHS) presents an overview of the control flow depicting how each of these elements is combined.

Style policy The style policy determines if the robot should return the ball with a forehand or back-
hand style. The architecture is similar to the LLCs but with only 4.5k parameters and has a (8, 128)
observation space. We flatten the LLC (8, 16) observation (described in Section 2.2) and stack the
latest 8 observations to form the observation. The action space is (2,) representing a one-hot cate-
gorical choice between forehand and backhand. To train this policy, we selected a general-purpose
forehand and backhand LLC and froze their weights, then trained the style policy to maximize the
expected ball landing rate using all available ball states (including reflections). We found the policy
generalized to serving ball states so used a single style policy for both serving and rallying phases
of the game.

Spin classifier The spin classifier is a binary classifier that determines if the incoming serve was hit
by the humans as a topspin or an underspin. To train the model, we built a dataset of paddle and ball
states from the serving dataset (see Section 2.4). Specifically, we record a history of the 6 timestamps
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of ball and paddle states directly before the paddle made contact with the ball. The observation space
is (18,) the policy is a 2-layer MLP which outputs the probability that the incoming ball is topspin
or underspin.

LLC skill descriptors To excel in interactive sports, it is crucial to understand one’s own capabili-
ties. This motivated the development of LLC skill descriptors which provide detailed metrics to the
HLC on the estimated performance of each LLC for a given incoming ball. To create the descriptors,
we evaluated each LLC in simulation on all 28k ball states averaged over ten repetitions, recording
the following policy metadata — initial ball position and velocity, median hit velocity, ball landing
location, ball landing rate. This metadata was used to construct lookup tables (we used KD-Trees
Bentley (1975)) with keys representing initial ball position and velocity. Given any ball in play, the
table can be queried for information about the likely performance of each LLC were it to be selected
by averaging performance of similar balls it has seen in the past. We used n=1 nearest neighbors
due to inference time constraints.

We observed a sim-to-real gap remained in LLC performance. LLC hit rates in the real world were
high, however ball return rates, whilst good, were lower than the > 80% we typically observed
in simulation. This meant that building skill descriptors using only simulated data was likely to
lead to errors. To address this we updated each LLC’s skill descriptor using real-world data. Four
researchers played with the robot and gathered 91 - 257 real world ball throws per LLC. For each
LLC and for each ball collected, the 25 nearest neighbors in the relevant LLC-specific tree were
updated, weighting the simulated metrics and real world metrics for a single ball throw equally.

Strategies and LLC shortlist Every time the HLC acts, five hand-coded heuristics were used to
generate a shortlist (one per heuristic) of the most promising LLC candidates, given the output from
the style policy and information collected by the HLC about the opponent on their ability to return
balls both in total and broken down by forehand, backhand, and center returns. This opponent
information is persisted between games with the same opponent. Note, not all heuristics use all
available information.

The set of heuristics we utilized are as follows — random selection, prioritization of hit velocity,
prioritization of landing distance farthest from the initial ball state, exploitation of opponent’s weak
side, consideration of opponent’s skill by selecting LLCs with the farthest landing position for the
given ball state if the opponent’s hit rate exceeds 75%.

From the shortlist we select the LLC that will be used to return the ball with weighted sampling (to
make the robot less predictable) described below.

LLC preferences (H-value) & choosing an LLC Another key aspect of playing competitive sports
is understanding the opponent’s capabilities and being able to adapt in response. This motivated
learning online preferences for each LLC which, as well as helping to bridge the remaining sim-to-
real gap, provide a rudimentary model of the human opponent.

We learned a numerical preference using a simple gradient bandit algorithm Sutton & Barto (2018)
for each LLC, H(LLC) ∈ R, based on the LLC’s online performance. The agent selects LLCs
more often if their preference is higher.

For a given ball, each LLC in the shortlist is associated with an offline return rate. We combined the
offline return rate and the online preferences (H-values) to select an LLC. We found that combining
learned H-values with information from the skill descriptor tables played an important role in im-
proving performance. These H-values serve two major purposes. (1) Online sim-to-real correction;
even though efforts were made through the offline updates to the skill descriptor tables, a sim-to-real
gap remained, likely because the sample of real world balls used to update the tables was small and
generated by a small number of players. H-values allow the policy to quickly switch away from
poor-performing LLCs to more stable ones. (2) To learn player-specific strengths and weaknesses;
if the current opponent is able to easily send shots that one LLC struggles to return, the HLC can
shift weight to another the opponent can less easily exploit.

Each time an LLC was selected the H-value was updated using the binary ball land signal as the
reward function. For each new opponent, these values were initialized to a set of known baseline
preferences, to ensure everyone played against the same initial agent. These preferences were up-
dated and persisted across games for the same opponent.
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Figure 3: Visualization of the task distribution dataset. TSNE van der Maaten & Hinton (2008) was
used to project from 9-D ball states to 2-D.

2.4 TECHNIQUES FOR ENABLING ZERO-SHOT SIM-TO-REAL

There are two core challenges in simulating robotic table tennis. First, faithfully modeling the robot,
paddle, and ball dynamics. Second, accurately modeling the task distribution, i.e. the distribution
over initial states of real-world incoming ball trajectories toward the robotic player.

Modeling ball and robot dynamics We recreated the simulation environment described in
D’Ambrosio et al. (2023) and Abeyruwan et al. (2023b) within MuJoCo Todorov et al. (2012).
This enhances the prior simulated work by leveraging a more advanced solid state fluid dynamics
for ball trajectory simulation, refining model and system identification, and improving the represen-
tation of paddle rubber. System identification was performed for each actuator-joint pair following
the methodology presented in Haarnoja et al. (2024).

The paddle rubber was explicitly modeled using two orthogonal passive joints representing a spring-
damper system to approximate a rubber surface. Ball-rubber contact solver parameters (softness,
slip, friction) were determined empirically, while joint stiffness, damping, and armature were estab-
lished through parameter sweeps optimizing for sim-to-real transfer. Analogously, ball-table contact
solver parameters were also measured. We observed a bimodal distribution in contact solver param-
eters for the paddle rubber restitution when we completed system ID for topspin and underspin ball
contacts. Underspin balls exhibit a damping coefficient of−103, while topspin balls have a damping
coefficient of approximately −0. Consequently, during the topspin correction phase of policy train-
ing (described below), the simulator dynamically selects the appropriate solver parameters based
on the ball’s pre-contact spin. This bimodality was not observed in the ball-table contact solver
parameters.

We utilized domain randomization, observation noise, and latency similar to D’Ambrosio et al.
(2023). We randomized table and paddle damping, and friction parameters during training. We
employed two shaping rewards, net height reward and a target for the last ABB joint at ball-paddle
contact, to mitigate a sim-to-real gap observed due to robot returns overshooting the opponent’s side.
This approach not only addressed the intended criteria but also promoted competitive robot returns.

Spin “correction” and sim-to-sim adapter layers The simulation for paddle rubber has two sets of
physical parameters, one for topspin and another for underspin. This causes a significant discrepancy
between simulation and reality when using LLCs for topspin balls. We developed two solutions to
mitigate this issue: topspin correction and sim-to-real adapter layers. First, we fine-tuned an LLC
in simulation, dynamically selecting the appropriate ball-spin-dependent solver parameters, with
additional rewards for low net clearance and target joint angle. This reduced the gap for specialized
skills and increased ball return speed. However, a gap persisted for generalized skills on high topspin
balls. To address this, we augmented the topspin-corrected policy with a FiLM layer Perez et al.
(2018) with with 2.8k parameters and trained the adapter using just topspin balls for 5k steps. This
closed the sim-to-real gap while preserving underspin return ability. Similar techniques could be
applied to heavy underspin or side spin, but we leave this for future work.

Iteratively grounding the training task in the real world A seed dataset of 40 minutes of human
vs. human play was collected along with 480 varied ball throws from a ball thrower. The sequence of
ball positions was segmented into trajectories consisting of single ball hits and an offline optimiza-
tion process (see Abeyruwan et al. (2023b)) was used to extract the initial ball state —– position,
velocity, and angular velocity —– from each trajectory such that a simulated ball trajectory starting
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Figure 4: Match statistics and player sentiment measured by responses to “To what degree do these
words describe your experience with playing table tennis with this robot?” on a five point Likert
scale.

at that state matches the real ball trajectory as closely as possible. The output of this process re-
sulted in a dataset of 2.6k initial ball states. An independent initial serving dataset of 0.9k balls was
gathered separately. We extracted initial ball states from the serving trajectories using optimization
methods described in Triggs et al. (2000).

Policies were trained in simulation with the objective of returning all balls in the dataset. During
training, we sampled a ball state from the dataset, added small random perturbations, and validated
the resulting trajectory. We then initialized the MuJoCo internal state with the ball state and started
an episode. Since no training cycles were expended on unrealistic balls, model capacity was used
more effectively, leading to faster training and higher return rates compared to the approach in
Abeyruwan et al. (2023b). The resulting policies were deployed zero-shot to the real-world and
evaluated against human opponents. Following the process outlined above, all evaluations were
converted into a set of initial ball states and added to the dataset.

This iterative cycle of training models in simulation on the latest dataset, evaluating it in the real
world, and using the annotated evaluation data to extend the dataset, can be repeated as many times
as needed. We completed 7 cycles for rally balls and 2 cycles for serving balls over the course of 3
months with over 50 different human opponents, leading to a final dataset size of 14.2k initial ball
states for rallies and 3.4k for serves. A summary of the dataset evolution is presented in Figure 3.
One advantage of this approach is if the policy is repeatedly evaluated against diverse opponents,
gaps in capabilities are automatically identified and filled. Performance had not plateaued after 7
cycles and we think further cycles could have continued to yield improvements.

Two further modifications to the training data distribution were important for boosting performance.
(1) Reflecting the data along the y axis which doubled the final dataset size to 28k ball states. (2)
Manually segmenting the dataset into 7 non-mutually exclusive categories — Fast, Normal speed,
Slow, Topspin, No spin, Underspin, and Lob. During training, balls were selected by first sam-
pling a category inversely proportional to the policy’s return rate within that category, then an initial
ball state was sampled uniformly from within that category. This focused training on harder cate-
gories while still maintaining performance on “easier” balls within those categories and across all
categories.

3 EXPERIMENTS AND RESULTS

User study design To evaluate the skill level of our agent, we ran competitive matches against 29
unseen table tennis players of varying skill levels – beginner, intermediate, advanced, and advanced+
as determined by a survey and evaluation by a professional table tennis coach (who is also an author
on this paper, henceforth referred to as ”the coach”). The robot and human played three games, in
which the first player to reach 11 points by a margin of two points (or a score of 20 points) won
the game. The player that won the majority of games won the match. Unlike a real “best-of-three”
match, all three games were played to ensure consistent data among participants. The coach acted
as a referee to determine scoring and rules violations. Human players were given a minimum two-
minute break between games to rest and fill out a short survey.

One major deviation from normal table tennis rules is that the robot cannot serve the ball. Serving
conveys a strong advantage Katsikadelis et al. (2013) and is thus typically rotated every two points.
To compensate for this limitation the human cannot win or lose points on the serve; the robot must
return the ball and then points may be scored. This rule did lead to some more skilled players re-
peatedly attempting risky serves however we felt this was a necessary compromise to accommodate
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players of lower skill who may not be used to official serving rules. Two other limitations of the
robot were accounted for. If the robot entered a protective stop state, the point was considered a
“let” (no one scores). Similarly if the ball was hit very high (roughly 2 meters above the table) the
point was also a let due to the limited field of view of the cameras. Applications of all rules were up
to the referee’s discretion.

Match results Figure 4 breaks down the matches between the humans and the robot. Overall the
robot was solidly in the middle of the participants, winning 45% of matches, 46% of games, and
49% of points. When we break down matches by skill level, a clear pattern emerges. The robot
won 100% of matches against beginner opponents, 55% of matches against intermediate opponents,
and no matches against more skilled opponents. The implication is that the robot’s skill level is
intermediate; it can easily beat the previous skill level, is unable to win against higher skill levels
and has roughly even odds to win against this skill level. That is not to say that the robot completely
dominates or is dominated by other skills levels. Looking at the breakdown of points scored, the
robot won 72% of points against beginners, 50% of points against intermediate players, and 34%
of points against advanced and advanced+ players. Thus, the robot can still provide an interesting
game to all levels of skills.

In addition to the quantitative match results, we also wanted to understand the qualitative side of
this study; what was it actually like to play against a robot? Table tennis already has many so-
called “robots” to aid in training, but these are essentially ball launchers whereas our system has the
potential to be more dynamic, is better able to mimic the playstyles of a human, and carry on a full
game. Analyzing the post-game surveys we see that most players did not employ a specific strategy
in game 1 or were mostly focused on probing the robot’s capabilities. During the second and third
games, skilled players were able to identify gaps in the robot’s capabilities, which correlated with
higher win rates: players that mentioned “downspin”, “backspin”,“chops”, or “underspin” (a known
weakness in the serving policies) in their game 2 and 3 comments were significantly more likely to
have won their match (p < 0.05) and also to be of a higher skill level (p < 0.001).

We also wanted to ensure that playing with the robot was actually something people would want to
do. Based on player feedback, we think this goal was achieved. Figure 4 (right) shows that across
all skill groups players agreed that playing with the robot was “fun” and “engaging” based on a five
point Likert scale. Novelty may play some role in this assessment, but the score tends to increase
slightly over games and when players were offered additional time to freely play with the robot,
26/29 of them accepted and played for a mean of 4:06 and median of 5:00 out of a maximum of five
minutes, implying that there is some lasting appeal to playing with the robot. Additionally, when
asked “Would you be interested in playing with this robot again?”, on a scale of one to five, the
average response was 4.87 and the median response was 5.

HLC strategy analysis During each match, the HLC adapts to each opponent by learning numerical
preferences (H-values) for the LLCs based on their online performance. The change in H-values
during a match measures the extent of adaptation. For the forehand LLCs we consistently observe
large changes in H-values of +/- 50% or more, and this trend holds across skill levels. However for
the backhand LLCs the change in H-values was much smaller and often just a few percentage points.
This indicates the HLC adapted when it played a forehand style but not the backhand. Qualitatively
this is consistent with the observation from the coach that the backhand play was not at the level
of the forehand during the matches. Since all matches began with the same initial H-values, the
final H-values can be compared across skill groups to assess if the strategy differed. While there
were some LLCs that were greatly preferred regardless of skill group, there were three LLCs that
were preferred for beginners and one LLC that was preferred for the intermedate-advanced+ groups,
indiciating that the HLC was able to adapt differently to different players.

4 CONCLUSIONS, DISCUSSION AND FUTURE WORK

We present the first robot agent capable of playing an interactive sport with humans at human level,
representing a milestone in robot learning and control. It is a small step towards a long-standing
goal in robotics of achieving human-level performance on many useful real world tasks.

Despite achieving amateur human-level performance, several limitations exist in our agent such as
struggling against very low balls (due to safety constraints to avoid collision with the table), high
balls (above the field of view of the cameras), and fast balls (due to system latency and lack of
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data). Additionally, it cannot detect the spin amount accurately and is limited to a short pip paddle
that is easier to model. Advanced and advanced+ players were able to find and exploit these holes.
We hypothesize our iterative learning method would fill the gaps and adapt to these players with
more training rounds, within the physical capabilities of the robot. Further, the limitations may
be addressed by exploring predictive models of ball trajectories, self-play techniques, learned reset
pose or removing the reset, sophisticated collision avoidance algorithms, etc.

We also hope our research makes useful contributions beyond table tennis. Four aspects have broader
implications:

(1) Hierarchical policy A library of low level skills (each specialized over a common model) and a
high level controller that understands their strengths (via skill descriptors) and orchestrates them is
a promising paradigm for efficient training on complex multi-task problems.

(2) Sim-real synergy and iterative train-eval flywheel We train in sim and deploy in real. Evalu-
ation data is then added to the task distribution in sim. This enables automatic curriculum building
and efficient continuous learning while bridging the sim-real gap from a task-distribution perspec-
tive. We believe this hybrid method is a fruitful area for future research.

(3) Real time adaptation Our agent tracks the human’s strengths and also updates each of its own
skills’ performance online. This approach of online modeling of the agent and opponent’s capa-
bilities, and choosing the best suited skill for that context allows the agent to be robust and adapt
efficiently to distribution shifts.

(4) System design To develop capable and robust controllers for complex real world tasks, system
design may be as important as the algorithms, policy architectures and datasets. Every aspect of the
system went through multiple rounds of optimization and redesign. This played a central role in the
robustness and sim-to-real performance of the controller sustained over hours of gameplay.

These four components may help in building generalist robots that are capable of performing useful
tasks at human-level, and interacting with humans in the real world.
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Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov, Dorsa Sadigh, Ed-
ward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao, Felipe Vieira Fru-
jeri, Freek Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan, Gilbert Feng,
Giulio Schiavi, Glen Berseth, Gregory Kahn, Guangwen Yang, Guanzhi Wang, Hao Su, Hao-Shu
Fang, Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I Christensen, Hiroki Furuta, Homer
Walke, Hongjie Fang, Huy Ha, Igor Mordatch, Ilija Radosavovic, Isabel Leal, Jacky Liang, Jad
Abou-Chakra, Jaehyung Kim, Jaimyn Drake, Jan Peters, Jan Schneider, Jasmine Hsu, Jeannette
Bohg, Jeffrey Bingham, Jeffrey Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun,
Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra
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Grüninger, Michael Muehlebach, Jonathan Fiene, Bernhard Schölkopf, and Dieter Büchler. Safe
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Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Koray
Kavukcuoglu. Conditional image generation with pixelcnn decoders. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, NIPS’16, pp. 4797–4805,
Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN 9781510838819.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.
An algorithmic perspective on imitation learning. Foundations and Trends R© in Robotics, 7(1-2):
1–179, 2018.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE international conference on robotics
and automation (ICRA), pp. 3803–3810. IEEE, 2018.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. In Sheila A. McIlraith and Kilian Q. Weinberger
(eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pp. 3942–3951. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.11671.

Tadej Petric, Luka Peternel, Andrej Gams, Bojan Nemec, and Leon Zlajpah. Navigation methods
for the skiing robot. International Journal of Humanoid Robotics, 10, 01 2012. doi: 10.1142/
S0219843613500291.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Thomas Röfer, Tim Laue, Arne Hasselbring, Jo Lienhoop, Yannik Meinken, and Philip Reichenberg.
B-human 2022 – more team play with less communication. In Amy Eguchi, Nuno Lau, Maike
Paetzel-Prüsmann, and Thanapat Wanichanon (eds.), RoboCup 2022: Robot World Cup XXV, pp.
287–299, Cham, 2023. Springer International Publishing. ISBN 978-3-031-28469-4.

Julio K. Rosenblatt and Charles E. Thorpe. A Behavior-based Architecture for Mobile Naviga-
tion, pp. 19–32. Springer US, Boston, MA, 1997. ISBN 978-1-4615-6325-9. doi: 10.1007/
978-1-4615-6325-9 2.

13

https://ieeexplore.ieee.org/abstract/document/5686298
https://ieeexplore.ieee.org/abstract/document/5686298


Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Gerhard Schweitzer and Jianyong Wen. Where neural nets make sense in robotics. In Prerational
Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Volume 1,
Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and
Artificial Systems, Volume 3, pp. 530–560. Springer, 1994.

Nitish Sontakke, Hosik Chae, Sangjoon Lee, Tianle Huang, Dennis W. Hong, and Sehoon Hal.
Residual physics learning and system identification for sim-to-real transfer of policies on buoy-
ancy assisted legged robots. In 2023 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 392–399, 2023. doi: 10.1109/IROS55552.2023.10342062.

Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta Baral, and Heni
Ben Amor. Language-conditioned imitation learning for robot manipulation tasks. Advances
in Neural Information Processing Systems, 33:13139–13150, 2020.

Peter Stone, Richard S Sutton, and Gregory Kuhlmann. Reinforcement learning for robocup soccer
keepaway. Adaptive Behavior, 13(3):165–188, 2005.

Peter Stone, Gal Kaminka, Sarit Kraus, and Jeffrey Rosenschein. Ad hoc autonomous agent teams:
Collaboration without pre-coordination. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 24, pp. 1504–1509, 2010.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating
with humans without human data. Advances in Neural Information Processing Systems, 34:
14502–14515, 2021.

Yichao Sun, Rong Xiong, Qiuguo Zhu, Jun Wu, and Jian Chu. Balance motion generation for
a humanoid robot playing table tennis. In 2011 11th IEEE-RAS International Conference on
Humanoid Robots, pp. 19–25, 2011. doi: 10.1109/Humanoids.2011.6100826.

Vincenzo Suriani, Emanuele Musumeci, Daniele Nardi, and Domenico Daniele Bloisi. Play ev-
erywhere: A temporal logic based game environment independent approach for playing soccer
with robots. In Cédric Buche, Alessandra Rossi, Marco Simões, and Ubbo Visser (eds.), RoboCup
2023: Robot World Cup XXVI, pp. 3–14, Cham, 2024. Springer Nature Switzerland. ISBN 978-
3-031-55015-7.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

Jonas Tebbe, Yapeng Gao, Marc Sastre-Rienietz, and Andreas Zell. A Table Tennis Robot System
Using an Industrial KUKA Robot Arm. GCPR, 2018.

Jonas Tebbe, Lukas Krauch, Yapeng Gao, and Andreas Zell. Sample-efficient reinforcement learning
in robotic table tennis. In 2021 IEEE international conference on robotics and automation (ICRA),
pp. 4171–4178. IEEE, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. Bundle adjust-
ment - a modern synthesis. In Proceedings of the International Workshop on Vision Algorithms:
Theory and Practice, ICCV ’99, pp. 298–372, London, UK, UK, 2000. Springer-Verlag. ISBN
3-540-67973-1.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605, 2008.
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