The Strawberry Problem:
Emergence of Character-level Understanding in Tokenized Language
Models

Anonymous EMNLP 2025 submission

Abstract

Despite their remarkable progress across
diverse domains, Large Language Models
(LLMs) consistently fail at simple character-
level tasks, such as counting letters in words,
due to a fundamental limitation: tokenization.
In this work, we frame this limitation as a prob-
lem of low mutual information and analyze
it in terms of concept emergence. Using a
suite of 19 synthetic tasks that isolate character-
level reasoning in a controlled setting, we show
that such capabilities emerge slowly, suddenly,
and only late in training. We further show
that percolation-based models of concept emer-
gence explain these patterns, suggesting that
learning character composition is not funda-
mentally different from learning commonsense
knowledge. To address this bottleneck, we pro-
pose a lightweight architectural modification
that significantly improves character-level rea-
soning while preserving the inductive advan-
tages of subword models. Together, our results
bridge low-level perceptual gaps in tokenized
LMs and provide a principled framework for
understanding and mitigating their structural
blind spots. We make our code publicly avail-
able.

1 Introduction

LLMs have exhibited impressive capabilities in
solving olympiad math problems (Trinh et al.,
2024), playing open-world games (Wang et al.,
2023) and passing bar exams (Achiam et al., 2023).
However, LLMs often fail at very basic character-
level manipulation!. A growing body of work
shows that language models are brittle to mis-
spellings, struggle with character-level tasks (Shin
and Kaneko, 2024; Zhang and He, 2024), and fail

IThis can also be regarded as a form of Moravec’s Paradox
(Newell, 1983) - reasoning is easy; perception is hard.

Task Special Token
Single-character Token
@ WMulti-character Token

1 1 Eaad]
GG O
— D Gl &I

Figure 1: The capability of language models to under-
stand the character composition of tokens was studied in
a strictly controlled setting. We construct 19 tasks that
require low-level manipulation of tokens and their char-
acters and show that capabilities emerge very slowly in
tokenized language models.

E—

even simple reasoning tasks that require access to
words’ constituent letters. One such famous prob-
lem (dubbed "the strawberry problem") consists
of counting the number of "r"s in the word "straw-
berry", a problem that most foundational models
struggle to consistently answer even today.

The cause of this problem resides in text tok-
enization, a preprocessing step heavily used in
modern language models (Sennrich et al., 2015), in
which the raw text is compressed into sequences of
multi-character subword tokens. This compression
comes at a cost: tokenization severs the connec-
tion between words and their characters, limiting
the model’s reasoning capabilities about characters
and morphology. Paradoxically, while tokenization
imposes a structural bottleneck, it also provides
critical inductive biases (Rajaraman et al., 2024),
and cannot be completely avoided. In the absence
of tokenization, models trained directly on charac-
ters or bytes (e.g., Xue et al. (2022); Wang et al.
(2024)) learn more slowly and require significantly
more data to generalize. Thus, there is a funda-
mental tension: tokenization improves efficiency
and generalization at the cost of losing fine-grained

perceptual access to the underlying text.

In this work, we argue that this tension is best
modeled through the lens of mutual information
and theories of emergence (Lubana et al., 2025).
Learning character composition of words is another
instantiation of learning commonsense facts (Do
et al., 2024). Human-written text almost never
directly mentions the characters inside words, as
this is self-evident for humans upon reading a text?.
Thus, a model trained on human texts gets little
signal about characters and must slowly reconstruct
this mapping across many training steps.

To better understand this phenomenon, we con-
struct a suite of 19 synthetic tasks that require mod-
els to reason about the character composition of
tokens in a strictly controlled setting (see Figure 1).
We show that performance on these tasks emerges
late in training, is modulated by vocabulary size
and composition, and aligns with theoretical predic-
tions from percolation-based models of emergence
dynamics (Lubana et al., 2025).

We introduce a straightforward yet effective ar-
chitectural intervention to address this bottleneck:
a block cross-attention mechanism that exposes
character-level information to the model alongside
token embeddings. Unlike existing byte-level or
hybrid models (Tay et al., 2022; Neitemeier et al.,
2025), our approach preserves the inductive ben-
efits of subword tokenization while mitigating its
perceptual blindness. We show that this design
significantly improves character-level reasoning
with minimal additional cost, and that it effectively
raises the mutual information between tokens and
characters during training.

Our work makes the following contributions:

1. We develop a benchmark of 19 synthetic tasks
to train and evaluate character-level under-
standing in tokenized LMs, revealing slow
and sudden emergence patterns across train-
ing. We show that character learning is slow
and dependent on vocabulary size and number
of characters per token, even in an idealized
setting, with the effect being heightened using
real-world data.

2A phenomenon that also can be understood as a form of
non-reporting bias (Gordon and Van Durme, 2013; Shwartz
and Choi, 2020), in which the rare and the interesting are
overrepresented at the expense of the trivial.

2. We show that percolation theory explains
the emergence of character-level task compe-
tence, validating prior work (Lubana et al.,
2025) on concept-level emergence to sub-
word structure. Our results hint that learn-
ing character-token correspondences is not
fundamentally different from learning other
abstract concepts.

3. We propose a lightweight character-aware ar-
chitecture that increases the mutual informa-
tion between tokens and their characters. Our
design adds a small cross-attention module
that allows each token to attend to its con-
stituent characters, while still using tokens
as inputs and outputs. We validate our archi-
tecture on models using pretrained tokenizers
and on real-world data, indicating significant
improvements in character-level tasks com-
pared to a plain tokenized language model.

2 Related Work

Internal Character Representation in Language
Models. Several recent works (Shin and Kaneko,
2024; Zhang and He, 2024) highlight the lim-
itations of Language Models in understanding
the character-level structure of tokens. Shin and
Kaneko (2024) argued that LLMs lack robust in-
ternal representations of the character composition
of words. In discussing future directions, they
propose embedding tokens with character-level in-
formation and positional encodings an approach
closely aligned with our method. Zhang and He
(2024) evaluated LLMs on 15 simple text-editing
tasks and found that models struggle without fine-
tuning. Supervised fine-tuning substantially im-
proved performance without harming general ca-
pabilities. Different than these two previous works
(Shin and Kaneko, 2024; Zhang and He, 2024), we
isolate and analyze character-level capabilities in a
tightly controlled synthetic setting, revealing their
emergence dynamics during training.

Kaplan et al. (2025) argued that LLMs implic-
itly combine subword units into full words and ex-
ploited this finding to improve efficiency by adding
dedicated word-level tokens. In contrast, our focus
is the reverse: we investigate how LLMs can be
encouraged to decompose tokens into their con-
stituent characters.

Character-aware models. There have been mul-
tiple works attempting to design character-aware
models, such as the works of Tay et al. (2022); Is-
lam et al. (2022); Wang et al. (2024) et alia, by op-
erating directly on characters, bypassing the need
for tokenization. One downside of such models
is that they model directly the input and output
characters, resulting in long generation sequences
and decreased efficiency. In contrast, our model
operates directly on multi-character tokens, utiliz-
ing the inductive bias given by tokenization, while
incorporating character information for each token.

The construction of neural architectures with a
hierarchical structure of representations has been
a common design pattern, generally in problem
domains that require either long contexts (He et al.,
2024; Nawrot et al., 2021; Wu et al., 2021) or high-
detail granularity (Chen et al., 2021). In contrast
to previous works, we design our model for causal
next-token prediction in mind, and not for MLM
or for computing general representations.

Theories of capability emergence. Our work is
also related to recent theoretical perspectives on
capability emergence in models (McKenzie et al.,
2023; Hupkes et al., 2020; Lubana et al., 2025;
Park et al., 2024). Hupkes et al. (2020) designed
controlled tasks to test models’ capability to com-
positionally generalize. While they operated at the
level of tokens, we explore whether similar emer-
gent behaviours arise at the lower level of token
decomposition into characters. McKenzie et al.
(2023) identified tasks in which larger LLMs per-
form worse than their smaller counterparts. Among
these tasks is the "resisting correction" task, in
which the model automatically, but wrongly, cor-
rects a misspelled token. However, the study’s
focus was on model scale and compute allocation,
while we explore the relationship between vocab-
ulary size and performance. Lubana et al. (2025)
proposed a framework for studying emergent ca-
pabilities using context-sensitive grammars and
compositional tasks, under the theory of bipartite
graph percolation. While our scope and domain
are different, we show that the framework of graph
percolation still applies and can explain the learn-
ing dynamics observed in our setup, hinting that
learning token-character correspondence is a simi-
lar problem to learning correspondences between
concepts and their properties.

3 Method

3.1 Tokenization-Induced Information
Bottleneck

Let W be a word token (e.g., "apple"), drawn from
a vocabulary of words. Let C' = (cy,...,cy,) be
the sequence of characters that make up W, where
c; € Y and ¥ is the character alphabet. Let X be
the corpus context (e.g., all surrounding tokens in
training data). We are interested in how much in-
formation the corpus provides about the characters
that make up the word — that is, the mutual infor-
mation I(X;C). However, due to tokenization,
LLMSs do not observe characters directlythey only
observe whole words W split into subword tokens.
This induces statistical independence between to-
kens and their characters, where the model sees
W but not C, and can only infer character-level
structure indirectly.

Humans do not need to explicitly mention the
characters in a word, so the context X provides
very little direct signal about C', which means
the empirical mutual information (X ; C) is low,
even though the theoretical mutual information
I(W;C) is high, since W deterministically de-
termines C' (i.e., I(X;C) < I(W;C)). Thus,
for a language model trained only on tokenized
word sequences, the empirical mutual informa-
tion /(X ;C) ~ 0, unless the model is explicitly
character-aware. Similar to the presence of com-
monsense facts, this data sparsity reflects a form of
reporting bias (Shwartz and Choi, 2020): humans
do not encode character-level details in natural text,
leading to under-representation of this information
in the training signal. However, learning common-
sense knowledge requires explicit data collection
(Speer et al., 2017), whereas learning character-
token correspondences is comparatively simple:
we know at all times what characters comprise a
word, and we can leverage this in the design of a
character-aware architecture.

3.2 Experimental Setup

Word-level and Character-level tasks. Previ-
ous works explored pretrained LLMs’ performance
on several character-level tasks (Shin and Kaneko,
2024; Zhang and He, 2024) and show that their per-
formance is sub-par. In this work, we create a set
of 7 word-level tasks and 12 character-level tasks

Task Name

Example Param.

Example Input

Example Output

Strawberries are red and sweet.
Strawberries are red and sweet.
Strawberries are red and sweet.
sweet. are red and Strawberries
Strawberries are red and sweet.
Strawberries are red and sweet.
sweet. and red are Strawberries

Strawberries are and sweet.
Strawberries red sweet.

sweet. are red and Strawberries
Strawberries are red and sweet.
Strawberries red red and sweet.
sweet. and red are Strawberries
Strawberries are red and sweet.

Remove word red
_. Remove word every K 2
% Swap every K words (clean) 5
= Swap every K words (dirty) 5
-g Replace words are, red
2 Reverse the words (clean) N/A
Reverse the words (dirty) N/A
Remove letter r
Rewrite uppercase every K letters 3
Replace letters e, s
S Rewrite with every K letter 3
2 Swap every K letters (clean) 2
P Swap every K letters (dirty) 2
}3 Remove letter every K 4
E Rewrite uppercase every K words 2
O Reverse words (clean) N/A
Reverse words (dirty) N/A
Reverse (clean) N/A
Reverse (dirty) N/A

Strawberries are red and sweet.
Strawberries are red and sweet.
Strawberries are red and sweet.
Strawberries are red and sweet.
Strawberries are red and sweet.
tSarbwreirsea err dea dns ewte.
Strawberries are red and sweet.
Strawberries are red and sweet.
Strawberries are red and sweet.
seirrebwartS era der dna .teews
Strawberries are red and sweet.
.teews dna der era seirrebwartS

Stawbeies ae ed and sweet.

StrAwbErrles arE rEd And swEet.

Strawbsrriss ars rsd and swsst.
Saei eea e.

tSarbwreirsea err dea dns ewte.
Strawberries are red and sweet.
Strwberie ar re an swet.

STRAWBERRIES are RED and SWEET.

seirrebwartS era der dna .teews
Strawberries are red and sweet.
.teews dna der era seirrebwartS
Strawberries are red and sweet.

Table 1: Tasks used in our work. The generated tasks can be either word-level or character-level and optionally

require input parameters.

to systematically explore emergent capabilities for
character manipulation across training. Compared
to previous works, our tasks do not involve count-
ing or multi-hop reasoning (e.g., count vowels of
every even word). Table 1 shows our tasks along-
side examples for parameters, inputs, and desired
outputs. By design, the tasks have input-output
combinations tokenized either as words <> words
(all word-level tasks), characters <> words (dirty-
input character tasks), words <+ characters (clean-
input character tasks), or a mix of tokenizations
(e.g., "Rewrite uppercase" / "Replace letters"). As
such, for character-level tasks, multi-character to-
kens might be imperfectly split into characters (e.g.,
"Remove letter"), and models are forced to indi-
rectly learn token-character correspondence across
many training steps. Tasks are evaluated using
an exact match between the model output and the
desired output. While using exact match metrics
impacts evaluation curves (Schaeffer et al., 2023),
they are correlated with other softer metrics, and in-
flection points between memorization and general-
ization phases match (Lubana et al., 2025) between
the two. Furthermore, an exact match enables us to
compare performance unambiguously across dif-
ferent tokenizers and vocabulary sizes.

Vocabulary construction. We opted for a
strictly controlled experimental environment to rig-
orously test the capability of tokenized language

models to learn character-level tasks and to elim-
inate as many confounding factors as possible.
We generate a fixed-length vocabulary of words
V', which is comprised of all single-character let-
ters, including uppercase, numbers, and a space
character. Multi-character tokens are all com-
prised of the same number of characters, K, uni-
formly sampled. In our work, K € {4,6,8} and
|V| € {28,...,2%}. To encode a task, we use a
special task token for each task, which is option-
ally followed by parameters (see Table 1). Conse-
quently, our tokenizer is comprised of single char-
acters, numbers, and multi-character words, each
with its unique ID. As such, if a multi-character
word is corrupted, it will be represented through in-
dividual characters as a fallback tokenization, with
no intermediate subwords.

For our analysis, we ignore language grammar,
since none of the tasks require grammar manipu-
lation, only token and character manipulation. To
construct sentences, words are sampled uniformly
from the tokenizer vocabulary, ignoring the Zip-
fian distribution of real-world languages (Pianta-
dosi, 2014). However, we also test performance
on randomly sampled sentences from Wikipedia,
using two pretrained tokenizers (i.e., GPT-2 (Rad-
ford et al., 2019) and LLaMA-2 (Touvron et al.,
2023)). It is expected that real-world texts would
not qualitatively change learning dynamics; still,
they would make learning even harder due to the

"roations EHEDED
Positions

Inter-Token n a :
Positions s

Output

Next-Token Prediction

[Block-Causal Cross-Attention

Block-Causal Self-Attention

:

==
e LN
-
n
wa

Input Tokens

Self-Attention

b

- O
-0

-
- L .

Block-Causal Block-Causal
Self-Attention Cross-Attention
Mask Mask

[T]

Self-Attention
Mask

Figure 2: Overall diagram of our character-aware language model. During inference, each token attends to its
corresponding characters using a block-causal cross-attention operation. Characters are encoded alongside their
positions within their corresponding tokens using a small 1-block Transformer decoder, using a block-causal
self-attention mechanism. MLPs are omitted in the figure for brevity.

imbalanced distribution of characters per word and
different word lengths.

In this most simplified version of the problem,
the only factor influencing model performance is
its ability to connect tokens with their characters,
which appear fragmented and inconsistent across
training. Such a strictly controlled environment
is similar to other concurrent works (Allen-Zhu
and Li, 2023) aiming to clearly explain model ca-
pabilities without real-world confounders. In this
setup, the model is forced to learn the algorithm be-
hind each task, through so-called "induction heads"
(Olsson et al., 2022) or "name mover heads" (Wang
et al., 2022), since the tasks only require token-
level manipulations and not semantic understand-
ing (Shin and Kaneko, 2024).

3.3 Generating tokens by attending to
characters.

We design a lightweight character-aware module
that complements the main Transformer decoder
to increase the mutual information between tokens
and their constitutive characters. In our design, we
were guided by several criteria: (i) the character-
aware module must be lightweight (ii) the model
output type must remain unchanged (i.e., still out-
put multi-character tokens), (iii) there is an unam-
biguous correspondence between tokens and their
characters, and (iv) there is an unambiguous order
of characters inside a token.

Figure 2 showcases our architecture.
these criteria, we designed a small,

Given
1-layer

Transformer block that uses a Block-Causal Self-
Attention mask to process characters. Since the
main model operates on multi-character tokens,
whenever a new token is generated, the charac-
ter model has access to all its characters, remov-
ing the need for a diagonal attention matrix. The
block-causal attention mask enables the module
to attend to all characters in the current token,
as well as previous characters from previous to-
kens, but does not "cheat" by attending to the
characters of future tokens. The order of char-
acters inside a token is encoded using learnable
Intra-Token Position embeddings, similar to Aba-
cus Embeddings (McLeish et al., 2024). The
dimensionality of the character encoder can be
made smaller than the main module (in our case,
dehars = %dwkens = 256). We also experiment
with even smaller dimensionalities for the character
module (i.e., depars € {64, 128,256}, correspond-
ing to ratios gehers € {1 %, 1—16}). After encod-
ing characters, the resulting embeddings interact
with the token embeddings through a Block-Causal
Cross-Attention operation at each layer of the main
model. We also experiment with adding the charac-
ter embeddings at a single layer of the main model,
at different positions. The cross-attention opera-
tion prevents tokens from attending to future char-
acters and ensures that each token attends to its cor-
responding characters alongside characters from
previous tokens. Character-token correspondence
is ensured through learnable Inter-Token Position
embeddings.

Overview. The model is efficient by operating on
multi-character tokens and not directly predicting
characters, which leverages the tokenizer compres-
sion and has explicit knowledge of the character
composition of each token. In principle, this de-
sign can be extended hierarchically, for example,
having tokens attend to their constituent subwords
and each subword attending to its constituent char-
acters. While the character module is significantly
smaller than the main module, it still suffers from
the quadratic complexity of the attention operation.
Presumably, the character encoder can be made
more efficient to avoid quadratic attention by utiliz-
ing, for example, local attention patterns (Beltagy
et al., 2020) or by using more specialized mod-
ules such as linear recurrent units (Orvieto et al.,
2023). Our model is reminiscent of other works
in computer vision, such as CrossViT (Chen et al.,
2021), and is part of a larger pattern of designing
architectures that use hierarchical representations
(Nawrot et al., 2021; Chalkidis et al., 2022; He
et al., 2024). Nevertheless, this pattern is more
common in computer vision than in NLP. This hier-
archical character-to-token cross-attention design
addresses the problem of "perception" of current
LLMs, which capture high-level semantic mean-
ing, but struggle at "high-resolution", in terms of
perceiving individual characters of each token.

3.4 Training configuration &
hyperparameters

All models were trained for 750k iterations, using
a batch size of 64, and a learning rate of 0.00001,
annealed using a cosine decay scheduler. The base-
line model has 10M parameters, excluding embed-
ding matrices, across 8 layers, with a model dimen-
sionality of 512. Similarly, our model has 11M
parameters, with 1M being allocated to the charac-
ter encoder. The character encoder is a lightweight,
single-block Transformer with a dimensionality
of 256. One important advantage of our experi-
mental setup is that it is readily reproducible on
a single A100 GPU. Training took approximately
one day per run for all ~60 runs. Models were
trained with "infinite" data, since input sentences
and tasks were generated on-the-fly. In the case of
training on Wikipedia, we pre-generated SM sen-
tences. In our experiments, every hyperparameter
is kept fixed, except for the vocabulary and the

tokenizer.

4 Experiments & Results

e |V|=256
o V=512

e |V|=1024
o |V =2048

o V| = 4096
o |V =8192

VI = 16384
V| = 32768

Characters per
Token: 4

Characters per
Token: 6

Characters per
Token: 8

Y 1.00 1.00
P4
Y075 0.75 - 0.75 -
© 3
=P
T 5 0.50 0.50 - 0.50 -
g5
[}
2025 0.25 - 0.25 -
2 v /v
G 0.00 /0.00- ~0.00 -

i .00 -+ 0
500000 0 500000

@ 0 500000 0
39 1.00- 1.00 - 1.00 -
c<
22075 "0.75 - 0.75 -
c [}
g
25 050 0.50 - 0.50 -
>
R
87 0.25 0.25- 0.25 -
Q2
S0 0.00 - ' .00 - ' 0.00 -)
2 0 500000 0 500000 0 500000

Training Steps

Figure 3: Evolution of average accuracy across charac-
ter tasks. Our architecture (bottom) has a striking effect
on character-level tasks, enabling rapid learning and
eliminating the differences in emergence points across
vocabulary sizes.

In Figure 3, we show the evolution of average
accuracy across character tasks for both the base
language model and our model that incorporates
character information. The emergence point for
character understanding tasks is progressively off-
set as a function of vocabulary size and number of
characters per token. In contrast, the emergence
points are stable across vocabulary sizes and num-
ber of characters per token for our model, hav-
ing reasonable performance gain even in scenarios
where the base model has accuracy equal to 0. This
effect is also present, although not as prominently,
for token understanding tasks (Figure 5), since to-
ken manipulation tasks can be easily learned by the
base model. In Figure 4 we show the emergence
step across vocabulary sizes — increasing vocabu-
lary size is correlated with a later emergence point.

4.1 Evaluation on real-world data

In Figure 6, we trained the baseline language
model and our model on sentences sourced from
Wikipedia, using two pretrained tokenizers (i.e.,
GPT-2 (Radford et al., 2019) and LLaMa-2 (Tou-
vron et al., 2023)), with vocabulary sizes of S0K
and 32K tokens, respectively. Our results show that
incorporating characters has a significant effect on

Reverse Reverse Swap every Remove letter Swap every Rewrite upper Rewrite upper
word (clean) (clean) k letters (clean) every k k letters (dirty) every k words k letter
2 750000 - - - - - + - -
& . N
£ g 500000 - - - - - #+ - '
H o 52 - el : 3 st
£ 5 250000 -, .;3/' o ¥ - ! Ene 4 ey -4
g kS o -
e T L 14 T o 1 T o 14 14 T LM 14 TS 1a 10 14
3
o 750000~ 2 2 o2 2 o2 2 2 o2 2 o2 2 2 2
S8 + k=4
£ 500000 - ¢ k=5 - - - _ B -
= ® k=8 +
3 © 250000 - - - - - e - ot -
g H I e B R & S e] e 8 QL QL PEVEYLY —C Rl O A]
vl - i ' - ' ' - ' i - ' - i ' - ' ' - ' '
M
E 210 214 210 214 210 214 214 210 214 210 214 210 214
@ Vocabulary Size
Rewrite Reverse Reverse Swap every Swap every Replace Remove
every k words the words (clean) the words (dirty) k words (clean) k words (dirty) words word
2 750000 - .- A . - - - -
p / /
&3 500000 - / - d - J - . - . - . .
§2 250000 - /: - ro- ;oo S ’ ,¥/ - r/‘:/
80T e T g g T g ok R A b gk
3
<5 750000- 2 2 -2 2 -2 2 2 o2 2) 21 2 2
& + k=4 pl
§g 500000 - - - @ k=6 - - - -
E- ® k=8 i oo
» © 250000 - - Z - VI i - / o - -4
g S04 - o oY o S &
g8 P e omgonene] —ompepmentne oy ‘ ot RS o ‘
g 2]0 214 210 214 210 ZlA 214 210 214 2]0 2]A 2]0 214
@

Vocabulary Size

Figure 4: Emergence point for character-level and word-level tasks across vocabulary sizes, for the "vanilla" model
and our character-infused model. Across vocabulary sizes, capabilities emerge early on in training for our model,
and do not depend on the vocabulary sizes or the number of characters per token.

e |V =256 e |V|=1024 o |V|=4096 e |V|=16384
e |V =512 e |V|=2048 ° V| =8192 V| = 32768
Characters per Characters per Characters per
0 1.00 Token: 4 00 Token: 6 00 Token: 8
1.00 - 1.00 - 1.
< = — =
< 0.75- 0.75 - 0.75 -
© ©
=F
g 0.50 - 0.50 - 0.50 -
23
] _ _ -
3 0.25 0.25 0.25
o
= 0.00 -i ' . 0.00 - '
n 500000 500000 0 500000
3
oY 1.00 - ——1.00 - w=1.00 - —
S¥075- 0.75 - 0.75 -
o
£ 050- 0.50 - 0.50 -
>
v o
£3025- 0.25 - 0.25 -
95
5= 0.00 -] . 0.00 -1]
g 0 500000 500000 0 500000

Trammg Steps

Figure 5: Evolution of average accuracy across word
tasks. Word-level tasks are not significantly impacted
by our architecture, as it targets the character-token
associations.

learning dynamics for both tokenizers, with the
base model being unable to learn character com-
position of words across training. As our results
point to, this effect will be heightened with larger
vocabularies: current LLMs tend to benefit from
having progressively larger vocabularies (Huang
et al., 2025), with models such as Gemma 3 (Team
et al., 2025) operating on a vocabulary of 256K
tokens, which also implies more characters per
token. Our results indicate that character under-
standing tasks in tokenized language models are a
form of "inverse scaling" (McKenzie et al., 2023):

Character-Level Word-Level
Tasks Tasks
S 0.03- o oOurs
=X . -
gg 0.02 e Vanilla 0.10
=l
NS 0.01- 0.05 -
5
O 0.00- - 0.00 - ; ’
0 500000 0 500000
Training Step Training Step
@
N
=
§§ 0.02 - 0.10 -
2y
2 = 0.01 - 0.05 -
=
5 o0.00- 0.00 -;

0 500000
Training Step

0 500000
Training Step

Figure 6: The effect of using real sentences sourced
from Wikipedia in evaluating character understanding
tasks, across two pretrained tokenizers.

the larger the tokenizer vocabulary, the slower and
poorer the model learns.

4.2 The effect of downsizing the character
encoder

In Figure 7, we show results for varying the po-
sition of the cross-attention operation in the main
model by incorporating character information ei-
ther at the beginning, the middle, or the end of the
language model. Similarly, we reduce the dimen-
sionality of the character encoder to 12.5% of that
of the main model, making the character model fast
and lightweight in terms of memory consumption.

Infusing character information in the middle of the
model yields the best results, and downsizing the
character encoder does not significantly alter the
training curves, suggesting that only the presence
of characters and their association with tokens is
sufficient.

Character-Level Word-Level
Tasks Tasks
1.00 - 1.00 -
o 0.75 - 0.75 - Intervention
© ayer
5 0.50 - 0.50 - — 3
Iv] —0
O —_—7
< 0.25- 0.25 - —— Vanilla
= all
0.00 - 0.00 - !
0 500000 0 500000
Training Step Training Step
1.00 - 1.00 -
> 0.75 - 0.75 -
@©
5 0.50 - 0.50 - dehars/droks
] —
< 0.25- 0.25 - — 0125
= Vanilla
0.00 - 0.00 - !
0 500000 0 500000

Training Step Training Step
Figure 7: The effect of the position of the block-cross
attention in the main model (top) and that of downsizing
the character encoder (bottom). Here, |V| = 8192 and
K =4.

4.3 A percolation model of character
understanding.

In the interest of explaining the offset emergence
points for character understanding, we applied a
percolation model of capability emergence, as de-
scribed by Lubana et al. (2025). Readers are re-
ferred to the original work for a detailed explana-
tion of this framework, which the authors applied
in the context of learning concept-property relation-
ships. In that scenario, emergence points coincided
with a critical threshold p. in which the bipartite
graph of concepts and their respective properties
(K) is fully connected: across training, the model
progressively learns edges between concepts and
properties until reaching a certain threshold, pro-
portional to /| K], after which the model enters a
sudden generalization phase. In our scenario, we
have a direct analogy to concept learning: our "con-
cepts" are multi-character tokens, and their "prop-
erties" are the set of characters they are composed
of. As such, the emergence point should be pro-
portional to the number of edges (Newman et al.,
2001; Cohen et al., 2002; Lubana et al., 2025),

in our case equaling +/|V|* k. In Figure 8 we
show the emergence points for the base language
model. Scaling the training steps by /|V| * k re-
sults in the collapse of the emergence points. This
result indicates no conceptual difference between
learning concept-property mappings and learning
token-character mappings.

o |V =256
® |V|=512

° |V|=1024
® |V|=2048

Characters per
Token:4

® |V|=4096
® |V =8192
Characters per

o |V|=16384
|V = 32768
Characters per

Token:8

|V = 65536

Token:6

5 L00- 1.00 - 1.00 -
Eﬁ 0.75- 0.75- 0.75-
£ 050- 0.50 - 0.50 -
% [}
E ©0.25- 0.25- 0.25 -
© 0.00- . 0.00- . 0.00- .
10t 103 10t 103 10t 10°
1.00 - 1.00 - 1.00 -
Ty 0.75- 0.75 - 0.75 -
<
Ty 050~ 0.50 - 0.50 -
S®0.25- 0.25 - 0.25-
0.00 - 0.00- —— , 0o00-—+ ,
10! 10° 10! 103
Step / (v |V]*k)

Figure 8: Graph percolation explains emergence points
for character understanding tasks, similar to concept
learning (Lubana et al., 2025).

5 Conclusions

Tokenization is crucial in language modeling, en-
abling long context and aiding generalization (Ra-
jaraman et al., 2024). In this paper, we show that
for a class of problems that require fine-grained
understanding of character composition of tokens,
models acquire such information very slowly, pre-
dictably dependent on the vocabulary size and num-
ber of characters per token. We argued that this is
due to non-reporting bias and that this phenomenon
is similar to learning commonsense facts from gen-
eral text. There is a design mismatch in the way in
which humans hierarchically perceive written text
(from lines, characters, words and phrases) and the
way LLMs process text.

To this end, we proposed a lightweight and
straightforward architectural modification that
eliminates this dependence on vocabulary size and
showed that capabilities emerge faster and con-
sistently. Lastly, we applied a theory of capabil-
ity emergence in concept learning (Lubana et al.,
2025) and showed that it applied to our setting,
equating the phenomena of learning concepts with
learning characters’ composition in tokens.

Limitations

The main limitation of our work is that we con-
ducted most of our experiments in a strictly con-
trolled and idealized setup to better understand the
phenomena of character understanding of tokens,
without confounding factors. Nonetheless, our pro-
posed architecture showed very good results when
training on real data, but its impact to real-world
scenarios needs to be validated at larger scales.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, and 1 oth-
ers. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Zeyuan Allen-Zhu and Yuanzhi Li. 2023. Physics of
language models: Part 1, learning hierarchical lan-
guage structures. arXiv preprint arXiv:2305.13673.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodro-
mos Malakasiotis, and Desmond Elliott. 2022. An
exploration of hierarchical attention transformers for
efficient long document classification. arXiv preprint
arXiv:2210.05529.

Chun-Fu Richard Chen, Quanfu Fan, and Rameswar
Panda. 2021. Crossvit: Cross-attention multi-scale
vision transformer for image classification. In Pro-
ceedings of the IEEE/CVF international conference
on computer vision, pages 357-366.

Reuven Cohen, Daniel Ben-Avraham, and Shlomo
Havlin. 2002. Percolation critical exponents in scale-
free networks. Physical Review E, 66(3):036113.

Quyet V Do, Junze Li, Tung-Duong Vuong, Zhaowei
Wang, Yanggiu Song, and Xiaojuan Ma. 2024. What
really is commonsense knowledge? arXiv preprint
arXiv:2411.03964.

Jonathan Gordon and Benjamin Van Durme. 2013. Re-
porting bias and knowledge acquisition. In Proceed-
ings of the 2013 Workshop on Automated Knowl-
edge Base Construction, AKBC ’13, page 2530, New
York, NY, USA. Association for Computing Machin-
ery.

Haoyu He, Markus Flicke, Jan Buchmann, Iryna
Gurevych, and Andreas Geiger. 2024. HDT: Hierar-
chical document transformer. In First Conference on
Language Modeling.

Hongzhi Huang, Defa Zhu, Banggu Wu, Yutao Zeng,
Ya Wang, Qiyang Min, and Xun Zhou. 2025. Over-
tokenized transformer: Vocabulary is generally worth
scaling. Preprint, arXiv:2501.16975.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and
Elia Bruni. 2020. Compositionality decomposed:
How do neural networks generalise? volume 67,
pages 757-795.

Md Mofijul Islam, Gustavo Aguilar, Pragaash Pon-
nusamy, Clint Solomon Mathialagan, Chengyuan
Ma, and Chenlei Guo. 2022. A vocabulary-free mul-
tilingual neural tokenizer for end-to-end task learn-
ing. arXiv preprint arXiv:2204.10815.

Guy Kaplan, Matanel Oren, Yuval Reif, and Roy
Schwartz. 2025. From tokens to words: On the inner
lexicon of LLMSs. In The Thirteenth International
Conference on Learning Representations.

Ekdeep Singh Lubana, Kyogo Kawaguchi, Robert P.
Dick, and Hidenori Tanaka. 2025. A percolation
model of emergence: Analyzing transformers trained
on a formal language. In The Thirteenth Interna-
tional Conference on Learning Representations.

Ian R. McKenzie, Alexander Lyzhov, Michael Martin
Pieler, Alicia Parrish, Aaron Mueller, Ameya Prabhu,
Euan McLean, Xudong Shen, and 1 others. 2023. In-
verse scaling: When bigger isn’t better. Transactions
on Machine Learning Research. Featured Certifica-
tion.

Sean Michael McLeish, Arpit Bansal, Alex Stein,
Neel Jain, John Kirchenbauer, Brian R. Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and 1 others.
2024. Transformers can do arithmetic with the right
embeddings. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems.

Piotr Nawrot, Szymon Tworkowski, Michat Tyrolski,
Lukasz Kaiser, Yuhuai Wu, Christian Szegedy, and
Henryk Michalewski. 2021. Hierarchical trans-
formers are more efficient language models. arXiv
preprint arXiv:2110.13711.

Pit Neitemeier, Bjorn Deiseroth, Constantin Eichenberg,
and Lukas Balles. 2025. Hierarchical autoregressive
transformers for tokenizer-free language modelling.
In The Thirteenth International Conference on Learn-
ing Representations.

Allen Newell. 1983. Intellectual issues in the history of
artificial intelligence, page 187294. John Wiley &
Sons, Inc., USA.

Mark EJ Newman, Steven H Strogatz, and Duncan J
Watts. 2001. Random graphs with arbitrary degree
distributions and their applications. Physical review
E, 64(2):026118.

https://doi.org/10.1145/2509558.2509563
https://doi.org/10.1145/2509558.2509563
https://doi.org/10.1145/2509558.2509563
https://openreview.net/forum?id=dkpeWQRmlc
https://openreview.net/forum?id=dkpeWQRmlc
https://openreview.net/forum?id=dkpeWQRmlc
https://arxiv.org/abs/2501.16975
https://arxiv.org/abs/2501.16975
https://arxiv.org/abs/2501.16975
https://arxiv.org/abs/2501.16975
https://arxiv.org/abs/2501.16975
https://openreview.net/forum?id=328vch6tRs
https://openreview.net/forum?id=328vch6tRs
https://openreview.net/forum?id=328vch6tRs
https://openreview.net/forum?id=0pLCDJVVRD
https://openreview.net/forum?id=0pLCDJVVRD
https://openreview.net/forum?id=0pLCDJVVRD
https://openreview.net/forum?id=0pLCDJVVRD
https://openreview.net/forum?id=0pLCDJVVRD
https://openreview.net/forum?id=DwgRm72GQF
https://openreview.net/forum?id=DwgRm72GQF
https://openreview.net/forum?id=DwgRm72GQF
https://openreview.net/forum?id=aIyNLWXuDO
https://openreview.net/forum?id=aIyNLWXuDO
https://openreview.net/forum?id=aIyNLWXuDO

Catherine Olsson, Nelson FElhage, Neel Nanda,
Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, and 1 others. 2022. In-
context learning and induction heads. arXiv preprint
arXiv:2209.11895.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan
Fernando, Caglar Gulcehre, Razvan Pascanu, and
Soham De. 2023. Resurrecting recurrent neural net-
works for long sequences. In International Con-
ference on Machine Learning, pages 26670-26698.
PMLR.

Core Francisco Park, Maya Okawa, Andrew Lee,
Ekdeep Singh Lubana, and Hidenori Tanaka. 2024.
Emergence of hidden capabilities: Exploring learn-
ing dynamics in concept space. In The Thirty-eighth
Annual Conference on Neural Information Process-
ing Systems.

Steven T Piantadosi. 2014. Zipf’s word frequency law
in natural language: a critical review and future di-
rections. Psychon Bull Rev, 21(5):1112-1130.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Nived Rajaraman, Jiantao Jiao, and Kannan Ramchan-
dran. 2024. Toward a theory of tokenization in llms.
arXiv preprint arXiv:2404.08335.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.
2023. Are emergent abilities of large language mod-
els a mirage? In Thirty-seventh Conference on Neu-
ral Information Processing Systems.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Andrew Shin and Kunitake Kaneko. 2024. Large lan-
guage models lack understanding of character com-
position of words. In ICML 2024 Workshop on LLMs
and Cognition.

Vered Shwartz and Yejin Choi. 2020. Do neural lan-
guage models overcome reporting bias? In Pro-
ceedings of the 28th International Conference on
Computational Linguistics, pages 6863—6870.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 31.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon
Baumgartner, and 1 others. 2022. Charformer: Fast
character transformers via gradient-based subword
tokenization. In International Conference on Learn-
ing Representations.

10

Gemma Team, Aishwarya Kamath, Johan Ferret,
Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre
Ramé, Morgane Riviere, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean bastien Grill,
Sabela Ramos, Edouard Yvinec, Michelle Cas-
bon, Etienne Pot, Ivo Penchev, and 197 others.
2025. Gemma 3 technical report. Preprint,
arXiv:2503.19786.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, and 1 others. 2023. Llama
2: Open foundation and fine-tuned chat models.
Preprint, arXiv:2307.09288.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He,
and Thang Luong. 2024. Solving olympiad ge-
ometry without human demonstrations. Nature,
625(7995):476-482.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan
Yan, and Alexander M Rush. 2024. Mambabyte:
Token-free selective state space model. In First Con-
ference on Language Modeling.

Kevin Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2022. In-
terpretability in the wild: a circuit for indirect ob-
ject identification in gpt-2 small. arXiv preprint
arXiv:2211.00593.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xi-
aojian Ma, Yitao Liang, and Team CraftJarvis. 2023.
Describe, explain, plan and select: interactive plan-
ning with large language models enables open-world
multi-task agents. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing
Systems, NIPS 23, Red Hook, NY, USA. Curran
Associates Inc.

Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng
Huang. 2021. Hi-transformer: Hierarchical inter-
active transformer for efficient and effective long
document modeling. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 848—853.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. ByTS5: Towards a token-free
future with pre-trained byte-to-byte models. Trans-
actions of the Association for Computational Lin-
guistics, 10:291-306.

Yidan Zhang and Zhenan He. 2024. Large language
models can not perform well in understanding and
manipulating natural language at both character and
word levels? In Findings of the Association for
Computational Linguistics: EMNLP 2024, pages
11826-11842.

https://openreview.net/forum?id=owuEcT6BTl
https://openreview.net/forum?id=owuEcT6BTl
https://openreview.net/forum?id=owuEcT6BTl
https://openreview.net/forum?id=ITw9edRDlD
https://openreview.net/forum?id=ITw9edRDlD
https://openreview.net/forum?id=ITw9edRDlD
https://openreview.net/forum?id=oP5FXcPAeG
https://openreview.net/forum?id=oP5FXcPAeG
https://openreview.net/forum?id=oP5FXcPAeG
https://openreview.net/forum?id=oP5FXcPAeG
https://openreview.net/forum?id=oP5FXcPAeG
https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=X1xNsuKssb
https://openreview.net/forum?id=X1xNsuKssb
https://openreview.net/forum?id=X1xNsuKssb
https://doi.org/10.18653/v1/2021.acl-short.107
https://doi.org/10.18653/v1/2021.acl-short.107
https://doi.org/10.18653/v1/2021.acl-short.107
https://doi.org/10.18653/v1/2021.acl-short.107
https://doi.org/10.18653/v1/2021.acl-short.107
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461

	Introduction
	Related Work
	Method
	Tokenization-Induced Information Bottleneck
	Experimental Setup
	Generating tokens by attending to characters.
	Training configuration & hyperparameters

	Experiments & Results
	Evaluation on real-world data
	The effect of downsizing the character encoder
	A percolation model of character understanding.

	Conclusions

