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Abstract001

Despite their remarkable progress across002
diverse domains, Large Language Models003
(LLMs) consistently fail at simple character-004
level tasks, such as counting letters in words,005
due to a fundamental limitation: tokenization.006
In this work, we frame this limitation as a prob-007
lem of low mutual information and analyze008
it in terms of concept emergence. Using a009
suite of 19 synthetic tasks that isolate character-010
level reasoning in a controlled setting, we show011
that such capabilities emerge slowly, suddenly,012
and only late in training. We further show013
that percolation-based models of concept emer-014
gence explain these patterns, suggesting that015
learning character composition is not funda-016
mentally different from learning commonsense017
knowledge. To address this bottleneck, we pro-018
pose a lightweight architectural modification019
that significantly improves character-level rea-020
soning while preserving the inductive advan-021
tages of subword models. Together, our results022
bridge low-level perceptual gaps in tokenized023
LMs and provide a principled framework for024
understanding and mitigating their structural025
blind spots. We make our code publicly avail-026
able.027

1 Introduction028

LLMs have exhibited impressive capabilities in029

solving olympiad math problems (Trinh et al.,030

2024), playing open-world games (Wang et al.,031

2023) and passing bar exams (Achiam et al., 2023).032

However, LLMs often fail at very basic character-033

level manipulation1. A growing body of work034

shows that language models are brittle to mis-035

spellings, struggle with character-level tasks (Shin036

and Kaneko, 2024; Zhang and He, 2024), and fail037

1This can also be regarded as a form of Moravec’s Paradox
(Newell, 1983) - reasoning is easy; perception is hard.

Figure 1: The capability of language models to under-
stand the character composition of tokens was studied in
a strictly controlled setting. We construct 19 tasks that
require low-level manipulation of tokens and their char-
acters and show that capabilities emerge very slowly in
tokenized language models.

even simple reasoning tasks that require access to 038

words’ constituent letters. One such famous prob- 039

lem (dubbed "the strawberry problem") consists 040

of counting the number of "r"s in the word "straw- 041

berry", a problem that most foundational models 042

struggle to consistently answer even today. 043

The cause of this problem resides in text tok- 044

enization, a preprocessing step heavily used in 045

modern language models (Sennrich et al., 2015), in 046

which the raw text is compressed into sequences of 047

multi-character subword tokens. This compression 048

comes at a cost: tokenization severs the connec- 049

tion between words and their characters, limiting 050

the model’s reasoning capabilities about characters 051

and morphology. Paradoxically, while tokenization 052

imposes a structural bottleneck, it also provides 053

critical inductive biases (Rajaraman et al., 2024), 054

and cannot be completely avoided. In the absence 055

of tokenization, models trained directly on charac- 056

ters or bytes (e.g., Xue et al. (2022); Wang et al. 057

(2024)) learn more slowly and require significantly 058

more data to generalize. Thus, there is a funda- 059

mental tension: tokenization improves efficiency 060

and generalization at the cost of losing fine-grained 061
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perceptual access to the underlying text.062

In this work, we argue that this tension is best063

modeled through the lens of mutual information064

and theories of emergence (Lubana et al., 2025).065

Learning character composition of words is another066

instantiation of learning commonsense facts (Do067

et al., 2024). Human-written text almost never068

directly mentions the characters inside words, as069

this is self-evident for humans upon reading a text2.070

Thus, a model trained on human texts gets little071

signal about characters and must slowly reconstruct072

this mapping across many training steps.073

To better understand this phenomenon, we con-074

struct a suite of 19 synthetic tasks that require mod-075

els to reason about the character composition of076

tokens in a strictly controlled setting (see Figure 1).077

We show that performance on these tasks emerges078

late in training, is modulated by vocabulary size079

and composition, and aligns with theoretical predic-080

tions from percolation-based models of emergence081

dynamics (Lubana et al., 2025).082

We introduce a straightforward yet effective ar-083

chitectural intervention to address this bottleneck:084

a block cross-attention mechanism that exposes085

character-level information to the model alongside086

token embeddings. Unlike existing byte-level or087

hybrid models (Tay et al., 2022; Neitemeier et al.,088

2025), our approach preserves the inductive ben-089

efits of subword tokenization while mitigating its090

perceptual blindness. We show that this design091

significantly improves character-level reasoning092

with minimal additional cost, and that it effectively093

raises the mutual information between tokens and094

characters during training.095

Our work makes the following contributions:096

1. We develop a benchmark of 19 synthetic tasks097

to train and evaluate character-level under-098

standing in tokenized LMs, revealing slow099

and sudden emergence patterns across train-100

ing. We show that character learning is slow101

and dependent on vocabulary size and number102

of characters per token, even in an idealized103

setting, with the effect being heightened using104

real-world data.105

2A phenomenon that also can be understood as a form of
non-reporting bias (Gordon and Van Durme, 2013; Shwartz
and Choi, 2020), in which the rare and the interesting are
overrepresented at the expense of the trivial.

2. We show that percolation theory explains 106

the emergence of character-level task compe- 107

tence, validating prior work (Lubana et al., 108

2025) on concept-level emergence to sub- 109

word structure. Our results hint that learn- 110

ing character-token correspondences is not 111

fundamentally different from learning other 112

abstract concepts. 113

3. We propose a lightweight character-aware ar- 114

chitecture that increases the mutual informa- 115

tion between tokens and their characters. Our 116

design adds a small cross-attention module 117

that allows each token to attend to its con- 118

stituent characters, while still using tokens 119

as inputs and outputs. We validate our archi- 120

tecture on models using pretrained tokenizers 121

and on real-world data, indicating significant 122

improvements in character-level tasks com- 123

pared to a plain tokenized language model. 124

2 Related Work 125

Internal Character Representation in Language 126

Models. Several recent works (Shin and Kaneko, 127

2024; Zhang and He, 2024) highlight the lim- 128

itations of Language Models in understanding 129

the character-level structure of tokens. Shin and 130

Kaneko (2024) argued that LLMs lack robust in- 131

ternal representations of the character composition 132

of words. In discussing future directions, they 133

propose embedding tokens with character-level in- 134

formation and positional encodings an approach 135

closely aligned with our method. Zhang and He 136

(2024) evaluated LLMs on 15 simple text-editing 137

tasks and found that models struggle without fine- 138

tuning. Supervised fine-tuning substantially im- 139

proved performance without harming general ca- 140

pabilities. Different than these two previous works 141

(Shin and Kaneko, 2024; Zhang and He, 2024), we 142

isolate and analyze character-level capabilities in a 143

tightly controlled synthetic setting, revealing their 144

emergence dynamics during training. 145

Kaplan et al. (2025) argued that LLMs implic- 146

itly combine subword units into full words and ex- 147

ploited this finding to improve efficiency by adding 148

dedicated word-level tokens. In contrast, our focus 149

is the reverse: we investigate how LLMs can be 150

encouraged to decompose tokens into their con- 151

stituent characters. 152
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Character-aware models. There have been mul-153

tiple works attempting to design character-aware154

models, such as the works of Tay et al. (2022); Is-155

lam et al. (2022); Wang et al. (2024) et alia, by op-156

erating directly on characters, bypassing the need157

for tokenization. One downside of such models158

is that they model directly the input and output159

characters, resulting in long generation sequences160

and decreased efficiency. In contrast, our model161

operates directly on multi-character tokens, utiliz-162

ing the inductive bias given by tokenization, while163

incorporating character information for each token.164

The construction of neural architectures with a165

hierarchical structure of representations has been166

a common design pattern, generally in problem167

domains that require either long contexts (He et al.,168

2024; Nawrot et al., 2021; Wu et al., 2021) or high-169

detail granularity (Chen et al., 2021). In contrast170

to previous works, we design our model for causal171

next-token prediction in mind, and not for MLM172

or for computing general representations.173

Theories of capability emergence. Our work is174

also related to recent theoretical perspectives on175

capability emergence in models (McKenzie et al.,176

2023; Hupkes et al., 2020; Lubana et al., 2025;177

Park et al., 2024). Hupkes et al. (2020) designed178

controlled tasks to test models’ capability to com-179

positionally generalize. While they operated at the180

level of tokens, we explore whether similar emer-181

gent behaviours arise at the lower level of token182

decomposition into characters. McKenzie et al.183

(2023) identified tasks in which larger LLMs per-184

form worse than their smaller counterparts. Among185

these tasks is the "resisting correction" task, in186

which the model automatically, but wrongly, cor-187

rects a misspelled token. However, the study’s188

focus was on model scale and compute allocation,189

while we explore the relationship between vocab-190

ulary size and performance. Lubana et al. (2025)191

proposed a framework for studying emergent ca-192

pabilities using context-sensitive grammars and193

compositional tasks, under the theory of bipartite194

graph percolation. While our scope and domain195

are different, we show that the framework of graph196

percolation still applies and can explain the learn-197

ing dynamics observed in our setup, hinting that198

learning token-character correspondence is a simi-199

lar problem to learning correspondences between200

concepts and their properties.201

3 Method 202

3.1 Tokenization-Induced Information 203

Bottleneck 204

Let W be a word token (e.g., "apple"), drawn from 205

a vocabulary of words. Let C = (c1, . . . , cn) be 206

the sequence of characters that make up W , where 207

ci ∈ Σ and Σ is the character alphabet. Let X be 208

the corpus context (e.g., all surrounding tokens in 209

training data). We are interested in how much in- 210

formation the corpus provides about the characters 211

that make up the word – that is, the mutual infor- 212

mation I(X;C). However, due to tokenization, 213

LLMs do not observe characters directlythey only 214

observe whole words W split into subword tokens. 215

This induces statistical independence between to- 216

kens and their characters, where the model sees 217

W but not C, and can only infer character-level 218

structure indirectly. 219

Humans do not need to explicitly mention the 220

characters in a word, so the context X provides 221

very little direct signal about C, which means 222

the empirical mutual information Î(X;C) is low, 223

even though the theoretical mutual information 224

I(W ;C) is high, since W deterministically de- 225

termines C (i.e., Î(X;C) � I(W ;C)). Thus, 226

for a language model trained only on tokenized 227

word sequences, the empirical mutual informa- 228

tion Î(X;C) ≈ 0, unless the model is explicitly 229

character-aware. Similar to the presence of com- 230

monsense facts, this data sparsity reflects a form of 231

reporting bias (Shwartz and Choi, 2020): humans 232

do not encode character-level details in natural text, 233

leading to under-representation of this information 234

in the training signal. However, learning common- 235

sense knowledge requires explicit data collection 236

(Speer et al., 2017), whereas learning character- 237

token correspondences is comparatively simple: 238

we know at all times what characters comprise a 239

word, and we can leverage this in the design of a 240

character-aware architecture. 241

3.2 Experimental Setup 242

Word-level and Character-level tasks. Previ- 243

ous works explored pretrained LLMs’ performance 244

on several character-level tasks (Shin and Kaneko, 245

2024; Zhang and He, 2024) and show that their per- 246

formance is sub-par. In this work, we create a set 247

of 7 word-level tasks and 12 character-level tasks 248
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Task Name Example Param. Example Input Example Output
W

or
d-

L
ev

el
Remove word red Strawberries are red and sweet. Strawberries are and sweet.
Remove word every K 2 Strawberries are red and sweet. Strawberries red sweet.
Swap every K words (clean) 5 Strawberries are red and sweet. sweet. are red and Strawberries
Swap every K words (dirty) 5 sweet. are red and Strawberries Strawberries are red and sweet.
Replace words are, red Strawberries are red and sweet. Strawberries red red and sweet.
Reverse the words (clean) N/A Strawberries are red and sweet. sweet. and red are Strawberries
Reverse the words (dirty) N/A sweet. and red are Strawberries Strawberries are red and sweet.

C
ha

ra
ct

er
-L

ev
el

Remove letter r Strawberries are red and sweet. Stawbeies ae ed and sweet.
Rewrite uppercase every K letters 3 Strawberries are red and sweet. StrAwbErrIes arE rEd And swEet.
Replace letters e, s Strawberries are red and sweet. Strawbsrriss ars rsd and swsst.
Rewrite with every K letter 3 Strawberries are red and sweet. Saei eea e.
Swap every K letters (clean) 2 Strawberries are red and sweet. tSarbwreirsea err dea dns ewte.
Swap every K letters (dirty) 2 tSarbwreirsea err dea dns ewte. Strawberries are red and sweet.
Remove letter every K 4 Strawberries are red and sweet. Strwberie ar re an swet.
Rewrite uppercase every K words 2 Strawberries are red and sweet. STRAWBERRIES are RED and SWEET.
Reverse words (clean) N/A Strawberries are red and sweet. seirrebwartS era der dna .teews
Reverse words (dirty) N/A seirrebwartS era der dna .teews Strawberries are red and sweet.
Reverse (clean) N/A Strawberries are red and sweet. .teews dna der era seirrebwartS
Reverse (dirty) N/A .teews dna der era seirrebwartS Strawberries are red and sweet.

Table 1: Tasks used in our work. The generated tasks can be either word-level or character-level and optionally
require input parameters.

to systematically explore emergent capabilities for249

character manipulation across training. Compared250

to previous works, our tasks do not involve count-251

ing or multi-hop reasoning (e.g., count vowels of252

every even word). Table 1 shows our tasks along-253

side examples for parameters, inputs, and desired254

outputs. By design, the tasks have input-output255

combinations tokenized either as words ↔ words256

(all word-level tasks), characters ↔ words (dirty-257

input character tasks), words ↔ characters (clean-258

input character tasks), or a mix of tokenizations259

(e.g., "Rewrite uppercase" / "Replace letters"). As260

such, for character-level tasks, multi-character to-261

kens might be imperfectly split into characters (e.g.,262

"Remove letter"), and models are forced to indi-263

rectly learn token-character correspondence across264

many training steps. Tasks are evaluated using265

an exact match between the model output and the266

desired output. While using exact match metrics267

impacts evaluation curves (Schaeffer et al., 2023),268

they are correlated with other softer metrics, and in-269

flection points between memorization and general-270

ization phases match (Lubana et al., 2025) between271

the two. Furthermore, an exact match enables us to272

compare performance unambiguously across dif-273

ferent tokenizers and vocabulary sizes.274

Vocabulary construction. We opted for a275

strictly controlled experimental environment to rig-276

orously test the capability of tokenized language277

models to learn character-level tasks and to elim- 278

inate as many confounding factors as possible. 279

We generate a fixed-length vocabulary of words 280

V , which is comprised of all single-character let- 281

ters, including uppercase, numbers, and a space 282

character. Multi-character tokens are all com- 283

prised of the same number of characters, K, uni- 284

formly sampled. In our work, K ∈ {4, 6, 8} and 285

|V | ∈ {28, . . . , 215}. To encode a task, we use a 286

special task token for each task, which is option- 287

ally followed by parameters (see Table 1). Conse- 288

quently, our tokenizer is comprised of single char- 289

acters, numbers, and multi-character words, each 290

with its unique ID. As such, if a multi-character 291

word is corrupted, it will be represented through in- 292

dividual characters as a fallback tokenization, with 293

no intermediate subwords. 294

For our analysis, we ignore language grammar, 295

since none of the tasks require grammar manipu- 296

lation, only token and character manipulation. To 297

construct sentences, words are sampled uniformly 298

from the tokenizer vocabulary, ignoring the Zip- 299

fian distribution of real-world languages (Pianta- 300

dosi, 2014). However, we also test performance 301

on randomly sampled sentences from Wikipedia, 302

using two pretrained tokenizers (i.e., GPT-2 (Rad- 303

ford et al., 2019) and LLaMA-2 (Touvron et al., 304

2023)). It is expected that real-world texts would 305

not qualitatively change learning dynamics; still, 306

they would make learning even harder due to the 307
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Figure 2: Overall diagram of our character-aware language model. During inference, each token attends to its
corresponding characters using a block-causal cross-attention operation. Characters are encoded alongside their
positions within their corresponding tokens using a small 1-block Transformer decoder, using a block-causal
self-attention mechanism. MLPs are omitted in the figure for brevity.

imbalanced distribution of characters per word and308

different word lengths.309

In this most simplified version of the problem,310

the only factor influencing model performance is311

its ability to connect tokens with their characters,312

which appear fragmented and inconsistent across313

training. Such a strictly controlled environment314

is similar to other concurrent works (Allen-Zhu315

and Li, 2023) aiming to clearly explain model ca-316

pabilities without real-world confounders. In this317

setup, the model is forced to learn the algorithm be-318

hind each task, through so-called "induction heads"319

(Olsson et al., 2022) or "name mover heads" (Wang320

et al., 2022), since the tasks only require token-321

level manipulations and not semantic understand-322

ing (Shin and Kaneko, 2024).323

3.3 Generating tokens by attending to324

characters.325

We design a lightweight character-aware module326

that complements the main Transformer decoder327

to increase the mutual information between tokens328

and their constitutive characters. In our design, we329

were guided by several criteria: (i) the character-330

aware module must be lightweight (ii) the model331

output type must remain unchanged (i.e., still out-332

put multi-character tokens), (iii) there is an unam-333

biguous correspondence between tokens and their334

characters, and (iv) there is an unambiguous order335

of characters inside a token.336

Figure 2 showcases our architecture. Given337

these criteria, we designed a small, 1-layer338

Transformer block that uses a Block-Causal Self- 339

Attention mask to process characters. Since the 340

main model operates on multi-character tokens, 341

whenever a new token is generated, the charac- 342

ter model has access to all its characters, remov- 343

ing the need for a diagonal attention matrix. The 344

block-causal attention mask enables the module 345

to attend to all characters in the current token, 346

as well as previous characters from previous to- 347

kens, but does not "cheat" by attending to the 348

characters of future tokens. The order of char- 349

acters inside a token is encoded using learnable 350

Intra-Token Position embeddings, similar to Aba- 351

cus Embeddings (McLeish et al., 2024). The 352

dimensionality of the character encoder can be 353

made smaller than the main module (in our case, 354

dchars = 1
2dtokens = 256). We also experiment 355

with even smaller dimensionalities for the character 356

module (i.e., dchars ∈ {64, 128, 256}, correspond- 357

ing to ratios dchars
dtokens

∈ {1
4 ,

1
8 ,

1
16}). After encod- 358

ing characters, the resulting embeddings interact 359

with the token embeddings through a Block-Causal 360

Cross-Attention operation at each layer of the main 361

model. We also experiment with adding the charac- 362

ter embeddings at a single layer of the main model, 363

at different positions. The cross-attention opera- 364

tion prevents tokens from attending to future char- 365

acters and ensures that each token attends to its cor- 366

responding characters alongside characters from 367

previous tokens. Character-token correspondence 368

is ensured through learnable Inter-Token Position 369

embeddings. 370
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Overview. The model is efficient by operating on371

multi-character tokens and not directly predicting372

characters, which leverages the tokenizer compres-373

sion and has explicit knowledge of the character374

composition of each token. In principle, this de-375

sign can be extended hierarchically, for example,376

having tokens attend to their constituent subwords377

and each subword attending to its constituent char-378

acters. While the character module is significantly379

smaller than the main module, it still suffers from380

the quadratic complexity of the attention operation.381

Presumably, the character encoder can be made382

more efficient to avoid quadratic attention by utiliz-383

ing, for example, local attention patterns (Beltagy384

et al., 2020) or by using more specialized mod-385

ules such as linear recurrent units (Orvieto et al.,386

2023). Our model is reminiscent of other works387

in computer vision, such as CrossViT (Chen et al.,388

2021), and is part of a larger pattern of designing389

architectures that use hierarchical representations390

(Nawrot et al., 2021; Chalkidis et al., 2022; He391

et al., 2024). Nevertheless, this pattern is more392

common in computer vision than in NLP. This hier-393

archical character-to-token cross-attention design394

addresses the problem of "perception" of current395

LLMs, which capture high-level semantic mean-396

ing, but struggle at "high-resolution", in terms of397

perceiving individual characters of each token.398

3.4 Training configuration &399

hyperparameters400

All models were trained for 750k iterations, using401

a batch size of 64, and a learning rate of 0.00001,402

annealed using a cosine decay scheduler. The base-403

line model has 10M parameters, excluding embed-404

ding matrices, across 8 layers, with a model dimen-405

sionality of 512. Similarly, our model has 11M406

parameters, with 1M being allocated to the charac-407

ter encoder. The character encoder is a lightweight,408

single-block Transformer with a dimensionality409

of 256. One important advantage of our experi-410

mental setup is that it is readily reproducible on411

a single A100 GPU. Training took approximately412

one day per run for all ∼60 runs. Models were413

trained with "infinite" data, since input sentences414

and tasks were generated on-the-fly. In the case of415

training on Wikipedia, we pre-generated 5M sen-416

tences. In our experiments, every hyperparameter417

is kept fixed, except for the vocabulary and the418

tokenizer. 419

4 Experiments & Results 420

Figure 3: Evolution of average accuracy across charac-
ter tasks. Our architecture (bottom) has a striking effect
on character-level tasks, enabling rapid learning and
eliminating the differences in emergence points across
vocabulary sizes.

In Figure 3, we show the evolution of average 421

accuracy across character tasks for both the base 422

language model and our model that incorporates 423

character information. The emergence point for 424

character understanding tasks is progressively off- 425

set as a function of vocabulary size and number of 426

characters per token. In contrast, the emergence 427

points are stable across vocabulary sizes and num- 428

ber of characters per token for our model, hav- 429

ing reasonable performance gain even in scenarios 430

where the base model has accuracy equal to 0. This 431

effect is also present, although not as prominently, 432

for token understanding tasks (Figure 5), since to- 433

ken manipulation tasks can be easily learned by the 434

base model. In Figure 4 we show the emergence 435

step across vocabulary sizes – increasing vocabu- 436

lary size is correlated with a later emergence point. 437

4.1 Evaluation on real-world data 438

In Figure 6, we trained the baseline language 439

model and our model on sentences sourced from 440

Wikipedia, using two pretrained tokenizers (i.e., 441

GPT-2 (Radford et al., 2019) and LLaMa-2 (Tou- 442

vron et al., 2023)), with vocabulary sizes of 50K 443

and 32K tokens, respectively. Our results show that 444

incorporating characters has a significant effect on 445
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Figure 4: Emergence point for character-level and word-level tasks across vocabulary sizes, for the "vanilla" model
and our character-infused model. Across vocabulary sizes, capabilities emerge early on in training for our model,
and do not depend on the vocabulary sizes or the number of characters per token.

Figure 5: Evolution of average accuracy across word
tasks. Word-level tasks are not significantly impacted
by our architecture, as it targets the character-token
associations.

learning dynamics for both tokenizers, with the446

base model being unable to learn character com-447

position of words across training. As our results448

point to, this effect will be heightened with larger449

vocabularies: current LLMs tend to benefit from450

having progressively larger vocabularies (Huang451

et al., 2025), with models such as Gemma 3 (Team452

et al., 2025) operating on a vocabulary of 256K453

tokens, which also implies more characters per454

token. Our results indicate that character under-455

standing tasks in tokenized language models are a456

form of "inverse scaling" (McKenzie et al., 2023):457

Figure 6: The effect of using real sentences sourced
from Wikipedia in evaluating character understanding
tasks, across two pretrained tokenizers.

the larger the tokenizer vocabulary, the slower and 458

poorer the model learns. 459

4.2 The effect of downsizing the character 460

encoder 461

In Figure 7, we show results for varying the po- 462

sition of the cross-attention operation in the main 463

model by incorporating character information ei- 464

ther at the beginning, the middle, or the end of the 465

language model. Similarly, we reduce the dimen- 466

sionality of the character encoder to 12.5% of that 467

of the main model, making the character model fast 468

and lightweight in terms of memory consumption. 469
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Infusing character information in the middle of the470

model yields the best results, and downsizing the471

character encoder does not significantly alter the472

training curves, suggesting that only the presence473

of characters and their association with tokens is474

sufficient.475

Figure 7: The effect of the position of the block-cross
attention in the main model (top) and that of downsizing
the character encoder (bottom). Here, |V | = 8192 and
K = 4.

4.3 A percolation model of character476

understanding.477

In the interest of explaining the offset emergence478

points for character understanding, we applied a479

percolation model of capability emergence, as de-480

scribed by Lubana et al. (2025). Readers are re-481

ferred to the original work for a detailed explana-482

tion of this framework, which the authors applied483

in the context of learning concept-property relation-484

ships. In that scenario, emergence points coincided485

with a critical threshold pc in which the bipartite486

graph of concepts and their respective properties487

(K) is fully connected: across training, the model488

progressively learns edges between concepts and489

properties until reaching a certain threshold, pro-490

portional to
√
|K|, after which the model enters a491

sudden generalization phase. In our scenario, we492

have a direct analogy to concept learning: our "con-493

cepts" are multi-character tokens, and their "prop-494

erties" are the set of characters they are composed495

of. As such, the emergence point should be pro-496

portional to the number of edges (Newman et al.,497

2001; Cohen et al., 2002; Lubana et al., 2025),498

in our case equaling
√
|V | ∗ k. In Figure 8 we 499

show the emergence points for the base language 500

model. Scaling the training steps by
√
|V | ∗ k re- 501

sults in the collapse of the emergence points. This 502

result indicates no conceptual difference between 503

learning concept-property mappings and learning 504

token-character mappings. 505

Figure 8: Graph percolation explains emergence points
for character understanding tasks, similar to concept
learning (Lubana et al., 2025).

5 Conclusions 506

Tokenization is crucial in language modeling, en- 507

abling long context and aiding generalization (Ra- 508

jaraman et al., 2024). In this paper, we show that 509

for a class of problems that require fine-grained 510

understanding of character composition of tokens, 511

models acquire such information very slowly, pre- 512

dictably dependent on the vocabulary size and num- 513

ber of characters per token. We argued that this is 514

due to non-reporting bias and that this phenomenon 515

is similar to learning commonsense facts from gen- 516

eral text. There is a design mismatch in the way in 517

which humans hierarchically perceive written text 518

(from lines, characters, words and phrases) and the 519

way LLMs process text. 520

To this end, we proposed a lightweight and 521

straightforward architectural modification that 522

eliminates this dependence on vocabulary size and 523

showed that capabilities emerge faster and con- 524

sistently. Lastly, we applied a theory of capabil- 525

ity emergence in concept learning (Lubana et al., 526

2025) and showed that it applied to our setting, 527

equating the phenomena of learning concepts with 528

learning characters’ composition in tokens. 529
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Limitations530

The main limitation of our work is that we con-531

ducted most of our experiments in a strictly con-532

trolled and idealized setup to better understand the533

phenomena of character understanding of tokens,534

without confounding factors. Nonetheless, our pro-535

posed architecture showed very good results when536

training on real data, but its impact to real-world537

scenarios needs to be validated at larger scales.538
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