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Abstract

Spatial graphs — graphs whose nodes are associated with geometric coordinates —
arise in diverse domains including 3d point clouds, molecular structures, chip
circuits and geospatial terrains. Different from generic graphs, learning on spatial
graphs requires capturing both topological structure (graph connectivity) and the
geometric context (spatial layout). We propose TopoGeoNet, a scalable hybrid
architecture that integrates message passing in graph neural networks (GNN5)
with a multi-scale Convolutional U-Net over spatial grids to let information flow
seamlessly both locally (via graph neighborhoods) and over global spatial grids.
This heterogeneous design allows the model to jointly learn topological and geo-
metric information while also decoupling geometric aggregation and topological
propagation. It allows the model to learn multi-scale geometric context and cap-
ture long-range interactions effectively and efficiently. We apply TopoGeoNet to
two challenging large-scale spatial graph problems, chip circuits congestion pre-
diction and terrain shortest path distance prediction, graphs ranging from 100/
to 4 M nodes. We showed that TopoGeoNet achieves state-of-the-art accuracy on
both tasks compared to various SoTA architectures, demonstrating the power of
unified geometric-topological learning in large-scale spatial graphs. Dataset and
codes are available at https://github.com/luckyjackluo/TopoGeoNet.

1 Introduction

Large-scale spatial graphs—where nodes and edges are embedded in R? (e.g., cell placements in
chips; sampled vertices on terrains)—arise across diverse domains. Here large-scale refers to graphs
that each can contain several million of nodes, rather than a large number of small graphs as in
most of the molecular benchmarks. Predictive tasks on such graphs require efficient learning of both
topological structure and geometric context, and often rely on capturing long-range interactions.

While Message Passing Neural Networks (MPNNG5) [1, 2] scale nearly linearly with graph size in
terms of number of nodes |V| and edges |E|, they struggle to propagate information across long
distances due to over-smoothing [3, 4] and over-squashing [5, 6]. Consequently, learning both
global geometric context and local topological interactions in million-node spatial graphs remains
challenging.

Prior approaches. (i) Geometry-aware GNNs (e.g., EGNN, SE(3)-GNN) enforce Euclidean equiv-
ariances and perform well on molecular and point-cloud tasks [7, 8], but still rely on local message
passing or attention and do not scale to million-nodes settings. (ii) Embedding/k-Nearest-Neighbor
methods such as Geom-GCN connect distant nodes via latent neighborhoods [9], while constructing
and updating these neighborhoods becomes prohibitive at million-nodes scale. (iii) Graph Trans-
formers (Graphormer; GraphGPS) use attention mechanisms [10—12] to overcome message-passing
bottlenecks. However, the quadratic attention complexity still restricts them to graphs with millions
of nodes. (iv) In chip design specifically, CNN/UNet-style grid models can scale to million-nodes and
capture spatial patterns [13, 14], but they usually ignore the explicit netlist connectivity compared to
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MPNN and we show that it can have inferior empirical performances compared to graph-learning-
based models.

Scalable MPNNs with virtual nodes. Recent works introduce virtual nodes to improve scalability.
SMPNN [15] replaces global attention with point-wise feedforward layer as virtual nodes to aggregate
global information. However, it is challenging for single-scale virtual nodes (which aggregate global
information) to aggregate in a multi-scale manner. RouteGNN [16] combines hypergraph neural
networks with partition-level grid virtual nodes, but their single-scale design limits on local cross-
partition communication and miss the more global information. DE-HNN [17] introduces hierarchical
virtual nodesbut requires external partitioning and manual tuning of intermediate scales.

This work: TopoGeoNet. We introduce TopoGeoNet, a unified architecture that decouples geometric
multi-scale aggregation from fopological local propagation within each layer. Given any spatial
(hyper)graph G = (V, E) with node coordinates {p, € R%} and arbitrary topology E (e.g., highly
irregular netlists with long-range, non-metric edges), TopoGeoNet performs Node— Grid— Node:
node embeddings are projected to a fixed-resolution auxiliary grid (size (W x H) is a model
hyperparameter), processed by a U-Net to capture hierarchical long-range geometric context, then
reassigned to nodes and propagated along the original (hyper)graph via an MPNN. Crucially, the
grid is a model-side buffer defined only by {p, } and (W, H)—it does not assume or impose grid-
structured inputs; message passing always operates on (V, E') unchanged. This integration yields
global receptive fields (U-Net) and local fidelity (MPNN) without the memory/computation costs of
full attention. On massive spatial graphs, TopoGeoNet is effective and efficient: for terrain SPD (up
to 4M nodes) it reduces Mean Relative Error by 27% vs. SMPNN [15]; for chip congestion prediction
(up to 1M nodes) it improves accuracy by 8.3% over RouteGNN [16] while being 24% faster at
inference. Integrated into a routability-driven placement loop, TopoGeoNet improves a congestion
score by 16% over a no-ML baseline and by 11% over the strongest prior ML-assisted placer [16]. Full
architecture/training details, ablations (grid size/depth), runtime/memory, equivariance diagnostics,
and data release appear in the Appendix.

2 Methodology: TopoGeoNet
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Figure 1: TopoGeoNet framework. Figure 1(a) on the left illustrates the overall architecture of
TopoGeoNet, consisting of multiple TopoGeoNet layers. Each layer contains two stages: (i) Node
embeddings are enriched by a U-Net module. (ii) The enriched embeddings are processed to a MPNN
layer. Figure 1(b) on the right details the U-Net module: node embeddings are projected onto grids,
processed by U-Net to capture multi-scale geometric context, and then reassigned back to nodes.

Spatial (hyper)Graph. We define a spatial graph (or hypergraph) G = (V, E') where each node
v € V, besides other features, is associated with a d-dimensional coordinate vector p, € R4
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representing its spatial location. For simplicity, we assume that all nodes lie within a bounded region:

Q = [Iminy JCmax] X [ymin7 ymax]a (xminaymin) = min P, (Imaxaymax) = Inaxpy.
veV veV

Grids. Before the initial encoding, to better capture the geometric context of the spatial graph, we
partition bounded region €2 into W x H axis-aligned cells, and we represent each cell as a grid € G,
see Figure 1. Before Initial Encoding, our TopoGeoNet will first create grid features by aggregating
the node features from the nodes to grids via UPDATEGRID, see Algorithm 1, in Appendix A. Unlike
clustering-based virtual-node hierarchies (e.g., METIS/K-means + pooling), our grid is a model-side
buffer computed in O(]V|), and thus faster than most of the clustering based methods. We show
empirical results that clustering methods have significantly longer run-time with no accuracy benefit,
see Table 9 in Appendix C.2.

Initial Encoding. Each node coordinate p, is encoded with a Fourier Positional Encoder and
concatenated with other node features. We show the performance improvement with Fourier encoder
in Appendix C.2.1. A MLP maps the concatenated features to initial node embeddings H°(v).
Separate MLPs generate initial edge embeddings H"(e) and initial grid embeddings H(grid) from
the features as described above, see Figure 1.

Node-Grid Communication. Before each MPNN layer, similar to what we did during Initial
Encoding, node embeddings are aggregated to spatial grids G via UPDATEGRID. These grid em-
beddings are processed by a U-Net, which enriches them with multi-scale geometric context before
being reassigned back to nodes via GRIDASSIGN, see details of both functions in Algorithm 1, in
Appendix A. We show that, even without further integration with U-Net, the addition of grid-based
local virtual nodes significantly improves performance, see Table 10, in Appendix C.2.

U-Net as Hierarchical Virtual Nodes. Figure 1(b) shows how U-Net is integrated. The encoder
a}?plies DownCony blocks with MaxPool, progressively coarsening the grid resolution (H xW —
5 X %) while expanding receptive fields. At depth k, features cover regions of size ~ 2* per axis,
culminating in a bottleneck that encodes strong global context [18]. The decoder mirrors this by
successively doubling resolution via UpConv (transposed convolution), and at each scale concatenates
the upsampled features. This top-down pathway with fused multi-scale information similar to feature
pyramids and encoder—decoder refinements [19, 20].

Unlike static hierarchical virtual nodes (e.g., fixed partitions in DE-HNN [17]), U-Net learns which
patterns and structures are most informative at each resolution. This adaptive aggregation allows
the model to emphasize relevant global or local structures depending on the task, yielding more
expressive multi-scale representations for global structures and long-range interactions [21-23]. A
comparison between our grid projection and conventional graph-pooling schemes, as well as ablations
on grid resolution and message-passing depth, can be found in Appendix C.2.

Message Passing.  After node—grid communication, each node embedding ! (v) has already been
enriched with global multi-scale context from the U-Net via GRIDASSIGN. Depending on if the
problem has spatial graph G or spatial hypergraph H as input, we then use different types of MPNN
layer for further node embeddings update with graph topology. For the terrain SPD problem, we use
Graph Attention Network [24] to update node embeddings ' (v) via local graph connectivity between
nodes at each layer /. For the chip congestion problem, we use Directed Equivariant Hypergraph
Neural Network (DE-HNN) [17] to update the node embeddings H'(v) and edge (net) embeddings

H!(e) via connectivity defined by each hyperedge e at each layer [, see Figure 1(a).

Complexity and Scalability. Each TopoGeoNet layer consists of three components with distinct
computational costs:

MPNN: O(|E|d), UPDATEGRID + GRIDASSIGN: O(|V|d), U-Net: O(W Hd),

where d is the embedding dimension, and W x H is the grid resolution. Hence, the total per-layer
cost is

O(|E|d + |V|d+ WHd),
which scales linearly in graph size (|V'|+|E|) and adds a grid term independent of graph topology.
This ensures near-linear scalability across diverse spatial graph structures. See the empirical run-time
comparisons with other baseline models in Table 2 and Table 1.
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Readout. For terrain SPD, we use a Siamese network on the final node embeddings # % (v) for dis-
tance estimation. For chip congestion prediction, we add one more U-Net after the final TopoGeoNet
layer, and pass the output grid embeddings H X! (grid) to a MLP to get final prediction align with
the shape of congestion map.

3 Experiments
3.1 Experiment Setup

Chip Congestion Problem. Following prior works [16, 17, 25], we represent a chip circuit as a
hypergraph H = (V, E') where V is the set of cells and F is the set of hyperedges (nets). Each node
v € V has a 2D placement coordinate (z,y) and size s, = (w,, hy); each hyperedge e € F is a
subset of cells. The task is to predict the scalar congestion value for each spatial cell grid, indicating
routing overflow within that region. We use 12 large designs from the ISPD’16 contest [26], ranging
from 100K to 1M nodes. Ground-truth congestion maps are obtained with modern chip design
tools [27, 28]. We compare against several strong baselines, containing SoTA in terms of both
scalable GNN and for netlists: (i) the image-based pix2pixHD model [29] that uses only grid features;
(i1) RouteGNN [16], the previous SoTA that combines hypergraphs with grid features; and (iii)
SMPNN [15], a scalable model that introduces a pointwise feedforward layer; (iv) full DE-HNN [17],
a hypergraph neural network with hierarchical virtual nodes structure.

Terrain SPD Problem. We also evaluate on shortest-path distance (SPD) prediction over terrains.
Each terrain graph is constructed as a grid graph from LiDAR elevation models. Each node corre-
sponds to a terrain point with (z,y, z) coordinate, and is connected to its 8 neighbors; edges are
weighted by Euclidean distance. We test on three terrains: Norway (4M nodes), Holland (1M),
and Philadelphia (1M). We compare against: (i) GAT [24]; (ii) Coarse-GAT [30], which trains on
downsampled graphs and then evaluates on the full-scale terrain; and (iii) SMPNN [15]. We attempted
Graph Transformers (Graphormer [11], GraphGPS [31]), but both failed with out-of-memory errors
on our million-scale graphs (see device details in Appendix C.1).

We also tested the robustness of our TopoGeoNet on perturbed irregular Norway terrain graphs
and small-graph QM9 appears in App. C.3; TopoGeoNet holds gains on terrain graphs with grid
structures destructed and remains competitive on small graphs.

3.2 Model Training and Prediction

Chip Congestion Problem. We report average performance using three metrics: Normalized
Root-Mean-Square-Error (NRMS, lower better), Structural-Similarity-Index-Measure (SSIM, higher
better), R? (higher better) and inference run-time per placement (in seconds, lower better), see
Table 1. RouteGNN substantially outperforms pix2pixHD, suggesting the importance of combining
the learning of circuit topology and geometric context. Our TopoGeoNet achieves the best overall
performance. Beyond prediction accuracy, we integrate TopoGeoNet with chip design tools [27, 28]
to evaluate its utility in the congestion (routability) driven placement optimization. We observe
consistent improvements: TopoGeoNet reduces congestion scores by 16% on average compared
to non-ML baseline DREAMPlace [27] and by 11% compared to SoTA machine learning based
architecture RoutePlacer [16], while maintaining routed wirelength and place-and-route runtime.
These results (see Appendix B, Table 16) demonstrate that TopoGeoNet can also translates into
practical routability improvements, see more details of how we integrate in Appendix E.

Terrain SPD Problem. We evaluate using Mean Relative Error (MRE, lower better), Accuracy
(higher better) defined as percentage of queries with relative error < 2%, and inference run-time
per endpoint pair (in milliseconds, lower better). Results are shown in Table 2. TopoGeoNet
achieves the best performance on Norway and Holland, and competitive results on Philadelphia. The
improvements are most significant on the challenging Norway dataset, which has unsmooth terrain
landscape and larger size (see visualization of each terrain in Figure 4 in Appendix B), demonstrating
the effectiveness of U-Net for capturing global geometric context and long-range interactions. For
more details of dataset and model, see Appendix B and Appendix C.1.
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Table 1: Average performance of different models for congestion prediction across 12 chip designs.

[ Model | NRMS| [ SSIMT [ R*t [ Run-time(s)| |
pix2pixHD [29] 0.101 0.756 | 0.762 0.026
SMPNN [15] 0.102 0.890 | 0.821 0.097
RouteGNN [16] 0.074 0.948 | 0.898 0.221
DE-HNN[17] 0.098 0918 | 0.849 0.189
TopoGeoNet 0.066 0.963 0.919 0.168

Table 2: Model Performances on Norway (4M nodes), Holland (1M nodes), and Philadelphia (1M
nodes) terrain SPD datasets.

Model MRE % [ Accuracy %1 [ Run-time ms| |
[ Norway [ Holland [ Phil | Norway [ Holland | Phil | Norway | Holland | Phil |
GAT [24] 0.94 0.21 0.11 90.5 99.6 99.9 0.012 0.008 0.008
Coarse-GAT [30] 1.05 2.06 2.07 89.2 65.1 30.1 0.012 0.008 0.008
SMPNN [15] 0.61 0.20 0.22 95.6 99.8 99.7 0.014 0.009 0.011
TopoGeoNet 0.29 0.09 0.16 994 99.9 99.8 0.018 0.015 0.016

4 Conclusion

In this work, we introduce TopoGeoNet, a heterogeneous Neural Network framework that unifies
graph neural network (GNN) message passing with convolutional U-Net processing over spatial grids.
Through a bi-directional node—grid communication mechanism from U-Net, TopoGeoNet enriches
node embeddings with global geometric context before local message passing, thereby overcoming
the limitations of static virtual nodes and improving the ability to capture long-range interaction. Our
experiments demonstrate that TopoGeoNet achieves state-of-the-art performance on large-scale tasks:
chip congestion prediction on circuits with up to 1M nodes, and shortest-path estimation on terrain
graphs with up to 4M nodes. When integrated into existing chip design tools [27, 28], TopoGeoNet
provides actionable congestion feedback that leads to measurable improvements in downstream
placement quality. Overall, our results show that explicitly decoupling geometric aggregation from
topological propagation within a single end-to-end framework yields both accuracy and scalability,
suggesting a promising direction for future research in scalable spatial graph learning.

Limitations. While TopoGeoNet demonstrates strong scalability and accuracy, several limitations
remain. (i) The current instantiation is not E(n)-equivariant, since we employ vanilla MPNN and
U-Net components without group-convolution constraints; extending TopoGeoNet with equivariant
variants is an important future direction, see more discussion on this in Appendix D. (ii) Despite
linear scaling in |V'| and | E'|, the memory footprint becomes non-trivial on extremely large terrains
(> 4M nodes), where grid tensors dominate GPU usage. (iii) The model explicitly depends on node
coordinates to construct spatial grids, and thus assumes reliable geometric embeddings. (iv) Finally,
the benefits of the Node—Grid—Node coupling are most pronounced when long-range geometric
dependencies are present; on small or purely topological graphs, simpler MPNNs may suffice.
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Appendix

A Node-Grid Communication

Algorithm 1 defines the two core procedures for exchanging information between graph nodes v
and grid cells grid in TopoGeoNet. The overall goal is to construct grid embeddings H'(grid) that
summarize spatial neighborhoods of nodes and then redistribute these enriched features back to the
original nodes.

UpdateGrid. Given node embeddings {#*(v)} and their coordinates {p, }, we partition the spatial
domain Q into W x H axis-aligned cells B with strides (A, A,). Each cell B; ; collects the
subset of nodes whose coordinates fall into its bounding box. Their embeddings are aggregated
with a permutation-invariant operator ¢ over feature functions f € F (e.g., sum, mean, max). The
aggregated vector is then passed through a trainable MLPg;4, producing a grid embedding G (grid).
Empty cells default to a zero vector. This procedure projects node embeddings onto a regular grid
lattice that can be processed efficiently by a U-Net.

GridAssign. After U-Net processing of the grid embeddings, enriched features need to be propagated
back to local graph nodes. For each node v with position (x,,, ¥, ), we compute its grid index (i, j)
by integer division with strides (A, A,). The updated node embedding Hfmm_grid(v) is assigned as

the grid embedding G(grid) at that location. In this way, each node inherits contextual information
gathered from its spatial neighborhood and transformed through the multi-scale U-Net.

Overall. Together, UPDATEGRID and GRIDASSIGN enable bi-directional communication between
the graph domain and the grid domain: node embeddings are pooled into grid cells for multi-scale
geometric encoding, and the enriched grid embeddings are redistributed back to nodes for topological
message passing. This mechanism is crucial for the seamless local-global information flow for
large-scale spatial graph learning.

Algorithm 1 Node—Grid Communication (Axis-Aligned Bounding Boxes)

1: Domain: Bounding box Q = [Zpmin, Tmax) X [Ymins Ymax)

2: Grid spec: Divide into W columns and H rows

3. Strides: Az — wlnaxl;/a:xnin’ Ay — ymaxI;Z/min

4: function UPDATEGRID(Y, {H'(v)}, {pv = (%0, v0)}, W, H)

50 G(grid) « 0

6: fori =0to W—1do

7: for j =0to H—1do

8: Bi,j — [xmin'i_iAmu mmln"‘(z"_l)Am) X [ymin+jAy7 ym1n+(j+1)Ay)
9: ‘/i,j — {’U : (,Iv,yq,) S Bi,j}

10: if V; ; = 0 then

11: agg <+ 0

12: else

13: agg < @fe}- f({’HZ(v) TV E Vi_j})
14: end if

15: G*(grid)[4, j] + MLP,q(agg)

16: end for

17: end for
18:  return G(grid)
19: end function

20: function GRIDASSIGN(Y, {p, = (2v,¥)}, G'(grid), W, H)

21: forall v € V do

22: i | (2o — Tmin) /As |

23: ] — L(yv - ymin)/AyJ

24: 7-lfrom_grid (’U) — gé (grld) [27 ]]
25: end for

26: return {Hfmmigrid(v)}

27: end function
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B Dataset Details

Code and Data Availability: The code and dataset used in this work are all available at our offi-
cial github repo at https://github.com/luckyjackluo/TopoGeoNet.In particular, we provide
extended details about our FPGA chip congestion dataset. Beyond supporting our experiments,
this dataset represents a contribution to the spatial graph learning community: large-scale spatial
graph benchmarks with confirmed long-range interactions are scarce, and our release offers both a
reproducible data generation pipeline and a complete downstream task evaluation framework. We
hope this resource will facilitate future research on scalable learning for spatial graphs.

B.1 Training and Test Dataset Generation.
B.1.1 Chip Congestion Dataset.

We generate 50 distinct legalized placement solutions per design using DREAMPlaceFPGA [27],
as the Vivado [28] router requires legal placements, see Figure 2. To vary routability, we sweep
the density target from 0.5 to 1.0 in 0.1 increments, producing five configurations, lower densities
typically reduce congestion but worsen wirelength. For each configuration, we apply 10 random
seeds to vary net weighting during wirelength optimization, resulting in 5 x 10 = 50 placements for
each design. For the Net-based wirelength regression task, the golden HPWL of each net is reported
by DREAMPlaceFPGA. For the Map-based congestion regression task, we run Vivado in non-timing-
driven mode and extract PIP utilization from INT tiles using the Tcl command “ger_pips”, collecting
50 interconnect utilization maps per design. In order to test the cross-design congestion prediction
(the model will predict on the design that’s not in the training dataset), we do cross-validation training
on the original full dataset with 12 chip designs (graphs). Each time we use 11 designs as training
dataset and use the one design left to test, following previous works practices [16, 29, 32].

DREAMPlaceFPGA \/l\/ADOl
(0.5, 1.0] o Random net :> "route_design"
Density target weights "get pips"

Figure 2: Generate training data.

B.1.2 Terrain SPD Dataset.

The digital elevation models for Holland and Philadelphia were obtained from the US geological
survey [33] and the Norway digital elevation model were obtained from The Norwegian Mapping
Authority (Kartverket) [34]. Holland, Philadelphia, and Norway each come at 1.52, 3, and 10 meters
of grid resolution, respectively. To generate the train sets, we sample 1,000 random sources points per
terrain and then select 500 targets per source to create a train dataset with 50,000 pairs of source and
target nodes and the shortest path distance between them. For the test sets, we again sample 1,000
random source points per terrain, but this time pair each source with 500,000 target nodes. This test
set size ensures that all types of source—target configurations are evaluated, including challenging
cases such as source or target points located on mountain ridges. In total, we evaluate our models on
500M pairs of shortest path distances per terrain.

Siamese Network. In machine learning, learning shortest path distance queries are related to metric
learning, where one trains a model to learn a distance function between over some metric space X
from a set of pairwise distances. Oftentimes, metric is learning is done via a Siamese network where
given some z,y € X and a desired distance function d(z, y), we train a neural network ¢ such that
lo(z) — o(y)|lp =~ d(z,y) [35]. In the case of terrain shortest paths, we take x, y to be two vertices
in the terrain graph and d(x, y) to be the shortest path distance between them. In our training set-up,
given some instantiation of ¢ (with TopoGeoNet, GAT, or SMPNN), we estimate the terrain shortest
path distance between two vertices x and y as ||¢(z) — ¢(y)||1. Note that ¢ is then trained using the
mean squared error between the neural network approximation and the true shortest path distance.
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B.2 ML Dataset Convert.

We then collect all the raw generated data and convert them into ML-friendly format as pytorch-
geometric [36] (heterogeneous) graph data objects. The corresponding feature name and the de-
scription of each feature we used in chip congestion dataset can be found in Table 3, and similar
information for terrain SPD dataset can be found in Table 4.

Table 3: Chip Congestion Dataset: List of cell (v), net (e), and grid (g) features. Grid features at
initialization are computed as the sum of all node features within the same spatial grid cell.

| Feature Name

[ Description

|

Node Features (v € V)

node_type

in_degree

out_degree

src2net_inst_deg
node_size_x
node_size_y
eig_vec
Pv

Discrete ID indicating cell type
# nodes driving v through nets
# nodes driven by v through nets
# nets connected to v when v is a source
Width of v
Height of v
Top-5 non-trivial Laplacian eigenvectors
(z,y) coordinates of v

Net(hyperedge) Features (e € F)

src2net_net_deg
sink2net_net_deg

Pe
edge_attr

# source nodes connected to e
# sink nodes connected to e
(x,y) coordinates of e
L, distance between p,, and p.

Grid Features (g € G)

grid_agg_feat

| Element-wise sum of all node features in grid cell g

Table 4: Terrain SPD Dataset: List of node (v) and net (e), and grid (g) features.

| Feature Name |

Description

|

Node Features (v € V)

Pv \ (z,y, z) coordinates of v
Edge Features (¢ € F)
edge_attr \ L, distance between p,, and p,,

Grid Features (g € G)

grid_agg_feat | Element-wise sum of all node features in grid cell g

B.3 Dataset Statistics.

See the Node and Net degree distributions of generated chip designs in Table 5 and in Figure 3. For
terrain SPD dataset, for nodes at corner have degree = 2 while other nodes in graph all have degree
= 4. The Norway terrain graph has (2000 x 2000) 4 million nodes, Holland and Philadelphia terrain
graphs both have (1000 x 1000) 1 million nodes.
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Density

FPGAO1
N:105,273, E:105,220

Node and Net Degree Distributions

FPGA02
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Figure 3: Degree Distribution: The degree distribution of all the FPGA Designs.

Table 5: Graph Statistics for Chip Congetion Dataset: Node and net degree statistics for each
FPGA design.

. Node Deg. Net Deg.
Design #Nodes #Nets Mean (std) [ Range | Mean (std) | Range
FPGAO1 105273 105220 | 1.99 (0.71) 0-7 | 2.00 (0.00) 2-2
FPGAO02 | 166374 | 167821 | 2.01(1.79) 0-73 | 2.00 (0.00) 2-2
FPGAO3 | 421448 | 428845 | 2.03(2.21) 0-73 | 2.00 (0.00) 2-2
FPGAO4 | 423064 | 430461 | 2.03 (2.14) 0-72 | 2.00 (0.00) 2-2
FPGAOS | 425834 | 433231 | 2.03(2.13) | 0-71 | 2.00 (0.00) 1-2
FPGAO6 | 704494 | 713291 | 2.02(1.71) 0-70 | 2.00 (0.00) 1-2
FPGAO7 707412 716209 | 2.02 (1.82) 0-72 | 2.00 (0.00) 1-2
FPGAO8 | 717773 | 725170 | 2.02(1.83) 0-73 | 2.00 (0.00) 2-2
FPGA09 867954 876751 | 2.02 (1.64) 0-72 | 2.00 (0.00) 1-2
FPGA10 | 952386 | 961183 | 2.01 (1.54) 0-71 | 2.00 (0.01) 1-2
FPGAI11 845225 851022 | 2.04 (1.45) 0-71 | 2.00 (0.00) 1-2
FPGA12 | 1103901 | 1111298 | 2.01 (1.33) 0-71 | 2.00 (0.00) 1-2
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Norway Philadelphia, PA, USA Holland, IN, USA
Number of nodes: 4,000,000 Number of nodes: 1,000,000 Number of nodes: 1,000,000
Resolution: 10 meters Resolution: 0.9 meters Resolution: 0.5 meters

Figure 4: Terrain Maps: Comparisons of different terrain landscapes.

C Experimental Results

We show the full results for chip congestion prediction for each design(graph) in the Table 7, and the
comparison visualization of congestion map prediction for one of the designs in Figure 5. We show
the full results for chip congestion dataset in 7. For the terrain SPD prediction, we showed the full
results in the main body of this extended abstract, and we also put the same table here as well for
easier reading, see Table 6.

C.1 Experiment Setup

Our TopoGeoNet model is implemented in PyTorch Geometric and integrated into the open-source
placer DREAMPlaceFPGA [27], which is PyTorch-based with custom C++/CUDA kernels. All
experiments are conducted on a server equipped with an AMD EPYC 7462 32-core CPU and an
NVIDIA RTX A100 (80 GB). Memory usage varies by dataset, and TopoGeoNet requires up to
52 GB GPU RAM. We attempted to train Graphomer [37] and GraphGPS [31], but even with small
hidden dimensions (d=16) they could not scale to our million-node spatial graphs.

Model configuration. Unless otherwise noted, all models use four message-passing layers (L=4)
and hidden dimension d=32 for the chip congestion task, and =3 for terrain SPD. For the large
Norway terrain, we reduce d to 16 for memory efficiency. The U-Net module follows a 4-level
encoder—decoder design with residual blocks and skip connections: Encoder: MaxPool2d + Resid-
ualBlock, doubling channels per level (d — 2d — 4d — 8d — 16d); Decoder: ConvTranspose2d +
ResidualBlock, halving channels symmetrically. This design provides efficient multi-scale aggrega-
tion with stable gradients and complements message passing without requiring deep GNN stacks. We
found L=4 to offer the best accuracy—runtime trade-off, see Table 11.

Chip Congestion Prediction. We evaluate on 12 FPGA designs from ISPD’16 benchmarks using
DREAMPIlaceFPGA [27]. Baselines include Pix2PixHD [29], SMPNN [15], RouteGNN [16], and
DE-HNN [17]. All share identical input features and training settings for fairness. Ablations on grid
resolution, pooling methods are reported in Appendix C.2.2 and Appendix C.2.2. All datasets and
preprocessing scripts will be released publicly for reproducibility.

Terrain SPD Prediction. We follow the setup of Chen et al. [30] and use the same terrain graphs
from Norway, Holland, and Philadelphia (1IM—4M nodes). Metrics include Mean Relative Error
(MRE ), Accuracy (T; fraction of predictions with <2% relative error), and inference runtime per
endpoint pair (ms ). We additionally test robustness on irregular terrains by randomly removing and
perturbing nodes (Appendix C.3). Full architecture ablations and small-graph results on QM9 [38]
are provided in Appendix C.3. Results show TopoGeoNet consistently outperforms all baselines
across tasks (Tables 6-7), achieving strong scalability and generalization.
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Table 6: Model Performances on Norway (4M nodes), Holland (1M nodes), and Philadelphia (1M
nodes) terrain SPD datasets. (Same table as the one in main body paper)

Model MRE % Accuracy %t Run-time ms|
Norway | Holland | Phil [ Norway [ Holland | Phil | Norway [ Holland | Phil
GAT [24] 0.94 021 | 0.11 90.5 99.6 | 99.9 0.012 0.008 | 0.008
Coarse-GAT [30] 1.05 2.06 | 2.07 89.2 65.1 | 30.1 0.012 0.008 | 0.008
SMPNN [15] 0.61 020 | 0.22 95.6 99.8 | 99.7 0.014 0.009 | 0.011
TopoGeoNet 0.29 0.09 | 0.16 99.4 99.9 | 99.8 0.018 0.015 | 0.016

Table 7: A comparison of accuracy between different models for congestion prediction.

[owien | ! | | w7 |
i [ pix2pixHD[29] | SMPNNITS] | RouteGNNIT6] | DE-HNNITT] | Ours | [29] [ [15] [ [16] | (171 | Ouss | 297 [ 1151 | [16] [ [17] [ Ouss |
FPGAOI 0.068 0.064 0.074 0.058 | 0.057 | 0913 | 0.892 | 0.964 | 0936 | 0.964 | 0.899 | 0.840 | 0.928 | 0.899
FPGA02 0.100 0.102 0.063 0.097 | 0065 | 0768 | 0.897 | 0.973 | 0.886 | 0971 | 0.839 | 0.890 | 0.942 | 0818
FPGAO3 0.096 0.125 0.100 0.088 | 0.008 | 0.846 | 0.907 | 0917 | 0.953 | 0947 | 0.821 | 0.803 | 0.840 | 0.905
FPGAO4 0.117 0.105 0.068 0.093 | 0.060 | 0721 | 0.921 | 0966 | 0951 | 0975 | 0.770 | 0.870 | 0.934 | 0.900
FPGAOS 0.111 0.108 0.067 0105 | 0.066 | 0767 | 0.846 | 0972 | 0.888 | 0.974 | 0.825 | 0.826 | 0.945 | 0.791
FPGAO6 0.129 0.116 0.073 0.094 | 0.060 | 0.605 | 0.906 | 0.950 | 0.940 | 0.970 | 0.623 | 0.813 | 0.897 | 0878
FPGAO7 0.146 0.126 0.085 0.094 | 0.080 | 0.600 | 0.901 | 0929 | 0934 | 0.940 | 0516 | 0.773 | 0.863 | 0873
FPGAOS 0.045 0.059 0.041 0122 | 0.041 | 0961 | 0905 | 0.975 | 0864 | 0970 | 0.931 | 0.854 | 0.950 | 0.733
FPGA09 0.128 0.119 0.070 0.094 | 0.068 | 0531 | 0.880 | 0.972 | 0925 | 0972 | 0779 | 0.773 | 0944 | 0859
FPGAI0 0.110 0.107 0.084 0102 | 0.057 | 0832 | 0.871 | 0926 | 0919 | 0968 | 0718 | 0.795 | 0.861 | 0.798
FPGAL1 0.102 0.108 0.074 0105 | 0.061 | 0.851 | 0.883 | 0.951 | 0905 | 0.968 | 0.792 | 0.872 | 0.907 | 0815
FPGAI2 0.112 0.111 0.108 0108 | 0.097 | 0.813 | 0.871 | 0.884 | 0.892 | 0.940 | 0.734 | 0759 | 0782 | 0.801

[ Geomean | 0.101 ] 0.102 ] 0.074 ] 0.098 | 0.066 | 0.756 | 0.890 | 0.948 | 0918 | 0.963 | 0.762 | 0.821 | 0.898 | 0.849 | 0.919 |

GroundTruth

Pix2PixHD [19] RouteGNN

Figure 5: Congestion Maps: Comparisons of different predicted congestion maps and the ground
truth, design FPGAOS.

C.2 Ablation Study for TopoGeoNet

We conducted an ablation study to analyze the effects of different components used in our Topo-
GeoNet. For practicable run-time we did not run ablation study on all datasets we have, but select
four chip design graphs with scales range from 100k nodes to 1M nodes to form a smaller dataset to
test all variants of models, see Table 10.

C.2.1 Different Variants of TopoGeoNet

We use DE-HNN [17] as base MPNN without any additional components as our baseline and build
different variants by adding the important components Fourier Positional Encoder, Grid Nodes and
U-Net [39] to the baseline, and gradually build the final fu/l TopoGeoNet which has all components.

Base DE-HNN. The base DE-HNN model contains only the Message Passing mechanism with the
node features m(v), net features M (e), and FPGA design netlist H (V, E)) as input. The p,, and p,
are directly input with the other node/net features without any special encoding process. To enable
the model to predict the congestion map, at the readout layer we still map the node embeddings to the
grid embeddings and process the final MLP output layer. The difference between this baseline and
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the DE-HNN + Grid version is that there are no grid nodes and corresponding communications in the
intermediate layers.

Base DE-HNN + Fourier Positional Encoder. To enrich raw spatial coordinates with high-
frequency information, we augment the base DE-HNN with a fixed random Fourier positional
encoder applied to node coordinates only. Given d-dimensional coordinate vector p, € R%, we
pre-sample a Gaussian projection matrix B € R4*("™/2) once at initialization with Bij ~ N(0,0?),
where m is the target embedding dimension and o is a scaling factor. The encoded representation is
computed as

¥(py) = [sin(27p,B), cos(27p,B)] € R™,

We replace raw coordinates by their encoded versions in the node features and concatenate:
m(v) = [m() [ v(p.)]-

An input MLP maps m(v) to the initial node embeddings, after which the pipeline is identical to the
base DE-HNN: standard message passing over H(V, E') with no grid nodes or U-Net modules in
intermediate layers, and a readout that projects node embeddings to grid embeddings followed by an
MLP to predict the congestion map. Random Fourier features inject multi-frequency sinusoidal bases
that improve coordinate expressivity with negligible overhead; (m, o) are selected by validation, and
B is sampled once and kept fixed for reproducibility.

DE-HNN (+ Fourier Encoder) + Grid. Starting from this variant, we will always include the
Fourier Positional Encoder but we will no longer explicitly mention that. The DE-HNN + Grid
version has Grid Nodes grid at all layers that allow communication between nodes (instances) V' and
the corresponding grids through functions UPDATEGRID and GRIDASSIGN. This communication
allows the model to capture spatial-based intermediate grid embeddings G* at each layer £ and pass
that information to the node embeddings H*(v). We also include the ablation study on grid sizes in
C.2.2.

TopoGeoNet: DE-HNN (+ Fourier Encoder) + Grid + U-Net. The full version model Topo-
GeoNet has all components. Compared to the DE-HNN + Grid version, TopoGeoNet has two
additional U-Net models at the first layer and at the last layer. Each U-Net model performs hierarchi-
cal encoding and decoding for the grid embeddings G, and this process allows the model to capture
spatial geometric information from different resolutions/scales. Additionally, Message Passing is
known to have issues such as over-smoothing [3, 4] and over-squashing [5, 6]. The U-Net added
to the first layer of DE-HNN also serves as a spatial hierarchical virtual node structure that allows
long-range global interactions. We show that compared to other variants, TopoGeoNet achieves the
best prediction accuracy. See Section C.2.2. We call this as our full TopoGeoNet.

C.2.2 Experimental Results for Ablation Study

We selected four representative FPGA designs (FPGAO1, FPGA04, FPGAOS, FPGA12) to conduct
systematic ablations across all variants. These designs span diverse complexity profiles (netlist size,
placement density, and congestion patterns). See the detailed results in Table 10.

Effect of Fourier positional encoder. Augmenting DE-HNN with the (fixed) random Fourier
encoder on node coordinates yields consistent gains over the base model. On the geometric mean
across the four designs (“Geo.” row), NRMS drops by 5.7%, SSIM increases by 1.4%, and R?
improves by 2.5%. Per-design, the largest NRMS reductions occur on FPGAO05 (] 8.1%) and
FPGAI2 (] 5.8%), with smaller but consistent improvements on FPGAOI (| 5.6%) and FPGA04
(1 1.8%); SSIM improves slightly on all four (up to 1 2.3% on FPGA12), and R? gains are most
pronounced on FPGAI2 (1 5.2%).

Effect of Grid Nodes. Introducing Grid Nodes into DE-HNN leads to substantially improvements
than Fourier encoding alone. Relative to the base DE-HNN, NRMS decreases by 15.2%, SSIM rises
by 3.7%, and R? increases by 6.6% on average (Geo.). Compared to the Fourier variant, Grid Nodes
provide an additional 9.7% NRMS reduction, a further 2.2% SSIM increase, and a 4.0% gain in R2.
Improvements are strongest on FPGAOI and FPGAOS, while FPGA04 shows more modest gains.
As we discussed in the main body of this extended abstract, grids G, as local virtual nodes can help
capture limited long-range interactions and learn local geometric context. The results both from this
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variant and also from RouteGNN [16] suggest adding grids are helpful for spatial graph learning
besides manual designed geometric positional encoding (e.g. Fourier Positional Encoding).

Grid Resolution Study. We analyze the effect of grid resolution (W, H) on model accuracy and
efficiency. In TopoGeoNet, the grid resolution determines how finely the spatial field is discretized
for U-Net aggregation, controlling the balance between geometric fidelity and computational cost.
Table 8 compares three settings on four representative FPGA designs: (120x42), (240x84), and
(480x168). Coarser grids substantially degrade performance in both structural similarity (SSIM)
and R?, as they lose local geometric details; finer grids recover these patterns with minimal runtime
increase due to U-Net’s high GPU parallelism. Empirically, the (480x 168) grid achieves the optimal
trade-off between accuracy and runtime and is used as the default configuration for all chip-design
experiments. This result validates that TopoGeoNet benefits from denser geometric aggregation
without suffering significant computational overhead.

Table 8: Ablation on grid resolution for TopoGeoNet. Finer grids yield higher accuracy with minimal
runtime overhead.

Grid Size NRMSE | | SSIM 1 R?1 | Runtime (s) |
120x42 0.112 0.860 | 0.756 0.147
240x84 0.092 0.894 | 0.818 0.152
480x 168 0.068 0.963 | 0.914 0.164

Full TopoGeoNet (Fourier Encoder + Grid + U-Net). Adding U-Net at input/output on top of
Grid Nodes delivers the best results across all configurations. Against base DE-HNN, TopoGeoNet
achieves 31.3% lower NRMS, 9.2% higher SSIM, and 14.4% higher in R? on Geo. Relative to the
Grid-only variant, TopoGeoNet further improves NRMS by 19.1%, SSIM by 5.2%, and R? by 7.3%.
Compared directly to the Fourier variant, the gains are 26.9% NRMS reduction, 7.6% SSIM increase,
and 11.6% R? boost, highlighting that U-Net as learnable hierarchical spatial processing provides
substantial benefits in multi-scale geometric context learning and in capturing long-range interactions.

Pooling Baseline Comparison. We further evaluate TopoGeoNet against hierarchical pooling
variants to analyze the benefits of our grid-based aggregation. Pooling methods such as Metis or
K-means rely on precomputed partitions of the graph and static virtual nodes, whereas TopoGeoNet’s
learnable U-Net performs adaptive, data-driven aggregation on a continuous grid domain. Table 9
reports quantitative results on four representative FPGA designs (FPGAO1, FPGA04, FPGAOS,
FPGA12). While clustering-based pooling improves scalability over naive message passing, it incurs
significant preprocessing cost and cannot adapt to geometric features. Our grid-based U-Net not only
achieves the highest accuracy across all metrics but also maintains competitive runtime by completely
eliminating partitioning overhead. These results confirm that dynamic, grid-level convolutional
hierarchies provide both greater flexibility and efficiency compared to static partition-based pooling.

Table 9: Comparison of pooling baselines. Runtime decomposed into (partitioning + model infer-
ence).

Model NRMSE | SSIM 1 R%Z 7t Runtime (s) |
Metis + Pooling (DE-HNN) 0.091 0917 | 0.848 | 0.187 (0.071 +0.116)
K-means + Pooling 0.090 0.920 | 0.851 0.685 (0.580 + 0.105)
Grids + Pooling 0.081 0932 | 0.865 | 0.131(0.021 +0.110)
Grids + U-Net (TopoGeoNet) 0.068 0.963 | 0914 | 0.164 (0.020 + 0.144)

Ablation on message-passing depth. We further varied the number of MPNN layers L. Results
show that L = 4 achieves the best empirical balance between expressivity and efficiency. Reducing
L to 3 harms both NRMSE and SSIM significantly, indicating insufficient topological propagation.
Increasing L to 5 offers no gain—Ilikely due to redundant long-range modeling already captured by
the U-Net’s hierarchical aggregation, see results in Table 11.

C.3 Experimental Results for Additional Tasks

Irregular Terrain Robustness. To further assess the robustness of TopoGeoNet under irregular
topologies, we constructed a new terrain graph from the Norway Digital Elevation dataset by
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Table 10: Ablation Study: Performances of TopoGeoNet with/without components. Variants
DE-HNN + Grid and DE-HNN + Grid + U-Net (TopoGeoNet) both include Fourier positional
encoder.

NRMS ()
Design | base DE-HNN | DE-HNN+Fourier Enc. | DE-HNN+Grid |  TopoGeoNet
FPGAOT 0.074 0.070 15.6%) | 0.069 (16.7%) | 0.057 (123.0%)
FPGAO4 0.094 0.092 ({1.8%) 0.086 (18.5%) 0.060 (136.2%)
FPGAO5 0.125 0.115 (18.1%) | 0.104 (116.8%) | 0.066 (147.2%)
FPGA12 0.109 0.103 (15.8%) 0.100 (48.3%) 0.097 ({11.0%)
Geo 0.099 0.093 (15.7%) | 0.084 (115.2%) | 0.068 (131.3%)
SSIM (1)
Design | base DE-HNN [ DE-HNN+Fourier Enc. | DE-HNN+Grid |  TopoGeoNet
FPGAOT 0.862 0.876 (11.6%) | 0900 (15.5%) | 0.964 (111.7%)
FPGAO4 0.948 0.957 (11.0%) 0.958 (11.1%) 0.975 (12.8%)
FPGAOS 0.843 0.852 (11.1%) | 0.896 (16.3%) | 0.974 (115.5%)
FPGA12 0.877 0.897 (12.3%) 0.899 (12.5%) 0.940 (17.2%)
Geo 0.882 0.895 (11.4%) 0.915 (13.7%) 0.963 (19.2%)
R” (1)
Design | base DE-HNN | DE-HNN+Fourier Enc. | DE-HNN+Grid |  TopoGeoNet
FPGAO1 0.836 0.855 (12.3%) | 0903 (18.0%) | 0.936 (112.0%)
FPGAO4 0.899 0.908 (11.0%) 0.916 (11.9%) 0.948 (15.5%)
FPGAOS 0.706 0715 (11.2%) | 0.794 (112.5%) | 0.945 (133.9%)
FPGA12 0.769 0.809 (15.2%) | 0.804 (14.6%) | 0.833 (18.3%)
Geo 0.799 0.819 (12.5%) 0.852 (16.6%) 0.914 (114.4%)

Table 11: Ablation on the number of message-passing (MPNN) layers (L).

Model NRMSE | | SSIMT | R21 | Runtime (s)J.
3-layer 0.076 0.948 | 0.8%6 0.115
4-layer (default) 0.068 0.963 | 0.914 0.164
5-layer 0.069 0.961 | 0.913 0.192

randomly dropping nodes and perturbing their (x, i) coordinates by up to 30% of the grid spacing.
This process destroys grid regularity while preserving the overall geometric structure, producing a
highly irregular spatial graph with lower mean degree and higher variance (Table 12). We evaluated
GAT, SMPNN, and our TopoGeoNet on this dataset using identical training settings (L=3, d=64, grid
size 250x250). As shown in Table 13, TopoGeoNet maintains superior accuracy across all metrics,
achieving over twofold lower mean squared error compared to SMPNN. These results highlight that
TopoGeoNet’s grid-based geometric aggregation generalizes well even when spatial regularity is
disrupted, confirming its adaptability to continuous and non-uniform node distributions.

Table 12: Graph statistics before and after destroying grid regularity.

Graph Type Nodes Edges | Mean Deg. Median Std Min Max
Regular Grid (1000 x 1000) 1,000,000 1,998,000 3.996 4.0 | 0.063 2 4
Destructed Grid 456,249 579,486 2.54 3.0 0.89 1 4

Table 13: Performance comparison on irregular terrain graphs.

Model Test Loss | MSE | MAE | Rel. Err. |
GAT 0.0590 0.0590 0.1382 0.0259
SMPNN 0.0244 0.0244 0.0932 0.0186
TopoGeoNet 0.0113 0.0113 0.0607 0.0120

Small-Graph (Molecular) Evaluation. Although TopoGeoNet primarily targets large-scale spatial
graphs, we also evaluate its flexibility on the small-molecule benchmark QM9 [38]. Each molecule
is represented as a spatial graph whose nodes correspond to atoms with 3D coordinates, and edges
encode chemical bonds. We predict molecular properties using three models—GAT, SMPNN, and
our TopoGeoNet (GAT backbone)—under identical training configurations. As shown in Table 14,
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TopoGeoNet achieves slightly lower mean squared and mean absolute errors and a marginally higher
R? score, indicating competitive accuracy even on small graphs. However, the improvement is modest
because long-range geometric dependencies and large-scale structural hierarchies, which TopoGeoNet
is designed to model, are largely absent in QM9. These findings suggest that TopoGeoNet generalizes
well across graph sizes while being most beneficial on large spatial graphs with complex geometry.

Table 14: Performance on the QM9 molecular dataset. While gains are minor, TopoGeoNet maintains
competitive accuracy.

Model MSE | | MAE | RZ
GAT 0.1731 0.2901 0.9250
SMPNN 0.1698 0.2883 0.9251
TopoGeoNet (GAT base) 0.1695 0.2881 0.9273

D Geometric Equivariance

Equivariance in Hybrid Graph-Grid Models. A model is said to be geometrically equivariant
if its outputs transform predictably under spatial transformations such as rotations or translations.
In TopoGeoNet, equivariance can in principle arise from both components: the message-passing
network (topological propagation) and the U-Net (geometric aggregation). However, in our current
implementation we use a vanilla MPNN [40] and a standard convolutional U-Net, neither of which
guarantees E'(n)-equivariance. We discuss more details below with possible improvements and future
work.

Graph component. While standard MPNNSs are not inherently E(n)-equivariant, variants such
as E(n)-GNNs [41] and SE(3)-Transformers enforce this property by constructing messages using
relative positions and rotation-invariant distances. Replacing the MPNN in TopoGeoNet with an
E(n)-equivariant GNN would yield rotation- and translation-consistent node embeddings without
altering the Node—Grid—Node interface.

Grid component. Standard U-Nets employ planar convolutions that are translation-equivariant
but not rotation-equivariant. Group-equivariant convolutions [42, 43] extend CNNs to respect
specific transformation groups (e.g., p4, SO(2), or E(2)). Integrating such group convolutions into
TopoGeoNet’s U-Net could enable geometric consistency under rotations and reflections of the spatial
field.

Coupling and Future Work. Achieving full geometric equivariance in TopoGeoNet requires both
the node-to-grid and grid-to-node mappings to preserve coordinate transformations consistently.
Future directions include (i) replacing the MPNN with an E/(n)-equivariant variant, (ii) substituting
the U-Net with a group-equivariant convolutional backbone, and (iii) enforcing transformation-
consistent interpolation between graph and grid domains. We expect this line of development
to produce an Equivariant TopoGeoNet capable of learning geometry-aware representations that
generalize across rotated or reflected spatial graphs.

E DREAMPlaceFPGA Integration for Routability-driven Placement flow.

We evaluate our model in a routability-driven placer using the flow illustrated in Fig. 6. Two strategies
leverage the congestion predictions introduced earlier. Both congestion-aware strategies are activated
only when the placement overflow condition is met, i.e., max(OV FLpyr, OVFLpp) < 0.15.

E.1 Config 1: Two-stage placement with a predicted congestion map

A common practice in academic FPGA placement is a two-stage area inflation procedure [27, 44—47]:
an estimated congestion map is generated, and cell areas in congested regions are manually inflated
to reduce placement density. This method is not differentiable and relies on the accuracy of the
congestion estimation. When the overflow condition is met, LUT and FF cells in congested regions
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are inflated according to

congestioncigmp = fgwpone”t.clamp(o.f), 2)

increment = max congestioncamp(T,y)
(z,y)EG,

node_size_x(v) = node_size_x(v) X Vincrement
node_size_y(v) = node_size_y(v) X Vincrement.

Here, exponent= 2.0, and G, denotes the set of grid cells overlapped by cell v. If the total cell area
changes by less than 1% in an iteration, the placer move on to next legalization stage. In our flow, the
model performs inference on the current placement to generate a congestion map, which replaces the
heuristic-based RUDY [48] estimation in the baseline DREAMPlaceFPGA [27] while preserving the
same two-stage optimization and inflation procedure.

Random Initial Placement

WL & Density
Gradients

‘ Update Pin Positions 1

Overflow Condition Met?

Y
Model Prediction RUDY Model Congestion | |
Congestion Map Congestion Map Gradients

‘ Instance Area Inflation ‘

’ Legalization ‘

Figure 6: Routability-driven Placement flow.

E.2 Config 2: Differentiable congestion optimization through model forward and backward

Because routing congestion is considered highly non-convex and discrete, prior work rarely treats
it as a relaxed, differentiable constraint that can be optimized with gradient descent. The overall
placement objective is

mll’lz We(x7y) +A- D(l‘,y) +n- £($,y>7
eckE

where W and D are wirelength and density objectives, and L penalizes predicted congestion. We
observe that our TopoGeoNet model predicts congestion accurately even without RUDY [48] as
inputs, implying that the architecture can implicitly learn the spatial information that RUDY [48]
provides. Consequently, gradients of the congestion loss with respect to cell coordinates can be
obtained directly by back-propagation, provided the computational graph is defined properly (see
Fig. 1). In practice, we mark the initial cell positions pos(v) with requires_grad before computing
any derived quantities such as net positions pos(e) or edge L, distances, so that gradients propagate
all the way back to pos(v):

Vol = Ju(fa) Jie(L),
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where f is the predicted congestion map. We define the congestion loss as, £(z,y) = H folz,y) —
2 . .
farget (%, Y) H2, where the target map farget(, %) is specified as

0~5fG(33>y)’ if fG<x7y) S [eminyemax]a

0, otherwise.

ftarget(w7 y) = {

And the thresholds 60,,,;, and 6,,,,, define the clipping range corresponding to the top 75% to 99% of
congestion values. We scale 7 by the ratio of the wirelength and congestion loss gradients:

_ M YWe(@y) |2
I VL(,y) 27

where c is a constant. The congestion loss term is updated every ten iterations only when the overflow
condition described above is satisfied.

E.3 Experimental Results for Routability-driven FPGA Placement

In this work, we apply TopoGeoNet to DREAMPlaceFPGA [27] (denoted as DMP) through the two
configurations mentioned. However, since pix2pixHD [29] is not directly differentiable with respect
to cell locations, it is excluded from the Config 2 experiments. This section first defines the metrics
used to evaluate placement routability, and then presents routability-driven placement results under
both configurations.

E.3.1 Routability Metrics

* Routed Wirelength. While placement minimizes half-perimeter wirelength (HPWL), the routed
wirelength reported captures extra detours required in congested regions.

* Routability Score (p). Introduced in the MLCAD’2023 FPGA macro placement contest [49],
lower scores indicate better routability. The Routability score [49] (see Equation (E.3.1))
comprises two components: the initial routing-congestion score Sr; and the final routing-
congestion score Sry. The first term St; reflects the short- and global-congestion levels,

Lshort and Lfl(’ba], reported by Vivado’s initial routing phase for each of the four directions
(i € {N,S,E,W}). The second term Sr; is measured as the number of outer iterations
executed by the detailed router. We sum up the two scores as:

4
Sry =1+ (max(0,L;""" - 3)* + max(0, LI — 3))
i=1
p=Sr;+ Sry

* Place-and-route Runtime. The sum of placement and routing runtimes reflects overall
turnaround.

E.3.2 Routability-driven Results

Config 1: For a fair comparison, we enforce deterministic for both pix2pixHD [29] and TopoGeoNet.
However, since certain Deep Graph Library operations used by RouteGNN [16] are inherently
non-deterministic, we run the placer 10 times and report average routability metrics, and the same
procedure is applied in Config 2. Recall that Config 1 uses a two-stage flow where the predicted
congestion map guides instance-area inflation prior to legalization. Table 15 summarizes the results
for Config 1. The baseline placer (DMP) is DREAMPlaceFPGA with a RUDY-based congestion map;
DMP + [29], DMP + [16], and DMP + Ours denote the same placer using congestion maps from
pix2pixHD [29], RouteGNN [16], and our model, respectively. None of the learned maps degrade the
overall routed wirelength. On the most congested design, FPGAOS5, the learned maps avoid routing
failures and reduce routed wirelength by 2%. Regarding congestion score, our model outperforms
others on 7 out of 12 designs, achieving an overall 15.7% improvement over the RUDY [48] baseline.
Since place-and-route runtime is largely dominated by routing, our model also leads in this metric,
most notably reducing total runtime for FPGAOS5 by 28%.

Config 2: Results from Config 2 in Table 16 show that applying our model’s gradients to the baseline
placer yields a 3.4% improvement in congestion score, compared to 1.3% from RouteGNN [16].
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Table 15: A comparison of routability between different models applied in placer with Config 1.

Desion | Routed Wirelength (x 10%) [ Congestion Score [ Place-and-Route Runtime (in sec) |

Y8" | DMP | DMP+[29] | DMP+[16] | DMP+Ours | DMP | DMP+29] | DMP+[16] | DMP +Ours | DMP | DMP+[29] | DMP+[16] | DMP +Ours |
FPGAOT 333 33 333 333 5 5 6 5 65 76 77 69
FPGA02 594 595 599 594 6 4 4 5 103 123 124 117
FPGA03 2957 2949 2952 2951 5 7 6 7 187 219 212 197
FPGAO4 | 4907 4917 4962 4930 7 6 6 7 216 240 229 222
FPGAOS 9376 9138 9297 9188 51 57 39 39 | 2004 3605 1120 1451
FPGAO6 | 5862 5876 5838 5856 8 7 8 7| 375 416 405 397
FPGAOT 8856 8861 8960 8989 18 20 14 12| 652 774 490 490
FPGAOS 7538 7533 7533 7524 6 5 6 6 | 306 324 316 296
FPGA09 | 10711 10722 10722 10712 31 27 24 21 721 836 690 701
FPGAI0 | 6253 6220 6188 6221 11 12 10 1 530 589 499 481
FPGAIl | 10424 10442 10685 10758 20 2 15 14 | 479 559 493 468
FPGA12 6657 6659 6653 6635 23 17 13 12| 570 606 511 517
[ Geomean | 1.00 | 0.998 | 1003 | 1001 | 1.000 | 0953 | 0852 | 0.843 ] 1.000 | 1180 | 0973 | 0.954

Although the backward pass adds placer runtime overhead, the overall turnaround time still improves
by 2.9%. However, both models achieve smaller gains in congestion score than in Config 1, consistent
with observations from [16]. While gradient-based integration appears natural in analytical placement,
we observe that the learned congestion gradients sometimes misaligned with expected density gradient
directions, which is from more to less congested regions, suggesting that the model might struggle to
fully capture congestion dynamics in relation to placement.

Table 16: A comparison of routability between different model gradients applied in placer with
Config 2.

Design ‘ Routed Wirelength (x 103) ‘ Congesiton Score ‘ Place-and-Route Runtime (in sec) ‘

| DMP [ DMP +[16] | DMP +Ours | DMP | DMP +[16] [ DMP +Ours | DMP [ DMP +[16] [ DMP + Ours |
FPGAO1 333 334 333 5 5 5 65 74 73
FPGA02 594 594 592 6 5 4 103 119 104
FPGAO03 2957 2948 2954 5 5 5 187 208 185
FPGA04 4907 4906 4910 7 7 7 216 230 208
FPGAO5 9376 9379 9379 51 55 53 2004 2167 1912
FPGAO06 5862 5864 5854 8 8 9 375 403 370
FPGAO7 8856 8864 8864 18 19 19 652 673 609
FPGAO08 7538 7535 7534 6 6 5 306 312 286
FPGA09 10711 10706 10703 31 30 30 721 730 686
FPGA10 6253 6236 6235 11 13 15 530 556 493
FPGA11 10424 10413 10412 20 21 21 479 509 477
FPGA12 6657 6665 6663 23 17 16 570 541 514

‘ Geomean ‘ 1.00 ‘ 1.000 ‘ 0.999 ‘ 1.000 ‘ 0.987 ‘ 0.966 ‘ 1.000 ‘ 1.061 ‘ 0.971 ‘
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