
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ZERO-SHOT TASK-LEVEL ADAPTATION VIA COARSE-
TO-FINE POLICY REFINEMENT AND HOLISTIC-LOCAL
CONTRASTIVE REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Meta-reinforcement learning offers a mechanism for zero-shot adaptation, en-
abling agents to handle new tasks with parametric variation in real-world envi-
ronments. However, existing methods still struggle with task-level adaptation,
which demands generalization beyond simple variations within tasks, thereby lim-
iting their practical effectiveness. This limitation stems from several challenges,
including the poor task representations and inefficient policy learning, resulting
from the underutilization of hierarchical structure inherent in task-level adapta-
tion. To address these challenges, we propose a Coarse-to-Fine Policy Refinement
combined with a Holistic-Local Contrastive Representation method to enable ef-
fective zero-shot policy adaptation. Specifically, in terms of policy learning, we
use task language instructions as prior knowledge to select skill-specific expert
modules as a coarse policy. This coarse policy is then refined by a fine policy gen-
erated through a hypernetwork, producing a task-aware policy based on task rep-
resentations. Additionally, for task representation, we employ contrastive learning
from both holistic and local perspectives to enhance task representations for more
effective policy adaptation. Experimental results demonstrate that our method
significantly improves learning efficiency and zero-shot adaptation on new tasks,
outperforming previous methods by approximately 42.3% and 45.4% in success
rate on the Meta-World ML-10 and ML-45 benchmarks, respectively.

1 INTRODUCTION

The dynamic and unpredictable nature of the real world presents significant challenges for agents
operating within it. Improving agents’ adaptability in such environments is essential, as their perfor-
mance hinges on effectively managing these changes. Zero-shot adaptation (Shinzaki et al., 2021;
Ball et al., 2021) represents an ideal form of adaptability, allowing agents to excel in new tasks from
the first episode without pre-collecting samples or updating network parameters. However, tradi-
tional reinforcement learning (RL) methods typically do not endow agents with the ability. These
methods are usually tailored to specific tasks, requiring agents to learn from scratch for each new
task, which is inefficient in real-world scenarios.

Context-based meta-reinforcement learning offers a promising approach for improving agents’ zero-
shot adaptation to unseen tasks. This method involves task representation and policy execution. It
first infers task representations from contextual information and then adjusts the policy based on
these representations and the environmental state. However, most existing methods are often meta-
trained on narrow task distributions, where different tasks are merely defined by varying a few
parameters that specify the reward function or environment dynamics. This process is referred to
as variation-level adaptation, as illustrated in Figure 1a. Although the relationship between such
tasks is well-defined, agents gain limited inductive bias from the narrow distribution, leading to
difficulties in generalizing to new tasks with greater diversity, namely task-level adaptation (Zhao
et al., 2022; Team et al., 2024), is illustrated in Figure 1b. Task-level adaptation has two hierarchical
interpretations. The first involves the presence of shared subtasks across different task categories.
These subtasks represent skills that can be reused across multiple tasks, making them common to
a variety of task types. The second interpretation involves two distinct levels of adaptation: at the
higher level, the agent adapts to new tasks across various categories; at the lower level, the agent

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Reach Task

(a) Variation-level Adaptation

Reach Task

Open Window

Assembly Task

(b) Task-level Adaptation

Figure 1: Variation-level Adaptation vs. Task-level Adaptation. Variation-level adaptation refers
to changes that occur within the scope of specific tasks. In contrast, task-level adaptation requires
the agent to adapt not only across multiple task categories but also to different variations of tasks
within specific task categories.

adapt to different instances of tasks within a single category. Consequently, agents need to adapt
both across different task categories and within task variations inside a category, posing a significant
challenge to existing approaches. Moreover, because task-level adaptation more accurately reflects
real-world environments, it is crucial for agents to manage this adaptation effectively.

Several existing approaches have been proposed to address task-level adaptation. SDVT (Lee et al.,
2023) utilizes a Gaussian Mixture VAE to meta-learn the task decomposition process, incorporat-
ing a virtual training procedure to enhance generalization to previously unseen tasks. Meanwhile,
Million (Bing et al., 2023) integrates transformers with task language instruction to improve task
adaptation capabilities. While these methods improve adaptation to new tasks, they encounter cer-
tain challenges. Although SDVT implicitly introduces hierarchy into task representation by using a
Gaussian mixture VAE to model the latent space, the task representations obtained through SDVT
may not generalize well to unseen task categories because it fails to directly constrain task represen-
tations from the perspectives of both different task categories and individual task instances within a
category, thereby reducing its robustness. Additionally, it does not explicitly incorporate hierarchy
into policy execution, thereby failing to leverage shared skills across different task categories, which
results in suboptimal adaptation performance. Conversely, the Million method demands a large vol-
ume of training data due to its reliance on the transformer architecture, which makes it impractical
for online paradigms. Furthermore, like SDVT, it suffers from learning inefficiencies as it does
not effectively leverage the hierarchy inherent in task-level adaptation. Consequently, our intuition
is that introducing hierarchical characteristics of task-level adaptation into task representation and
policy learning can enhance task adaptation performance.

In this paper, we present a novel framework for meta-RL that incorporates Coarse-to-Fine pOlicy
refinement with a Holistic-Local contrastive task Representation (CFOHLR). It utilizes a context-
based meta-RL architecture comprising a task inference module and a conditional policy module.
Based on our intuition, our method is grounded on two key insights. First, effective task-level adap-
tation requires an agent to have a general understanding of task forms and to select appropriate skills
accordingly. To achieve this, we employ language instructions to provide the agent with the nec-
essary comprehension of the tasks. We establish multiple skill-specific expert networks, which are
selected based on these instructions, forming the coarse policy level. However, since different task
attributes can further influence performance, the agent also needs a fine-grained, task-aware policy
that adapts to the specific attributes of each task. Therefore, we utilize a hypernetwork to gener-
ate this policy based on task attributes, forming the fine policy. By combining language-guided
expert skill selection with a hypernetwork-based task-aware policy, we achieve a coarse-to-fine pol-
icy refinement. Second, developing an effective task-aware policy depends on accurately capturing
task attributes through robust task representations. To achieve this, we propose a holistic-local con-
trastive task representation method. This approach is based on the insight that task representations
should first be distinctly separated at the task category level, and then further differentiated among
tasks within the same category. Specifically, we employ contrastive learning to enforce that task

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

representations are distinctly separated in the representation space. This approach refines task repre-
sentations from both holistic and local perspectives, where the holistic view corresponds to general
task categories and the local view addresses task category-specific instances. Consequently, this
results in more robust and informative task representations for generating task-aware policy.

We evaluate our proposed method on the Meta-World ML10 and ML45 benchmarks, which are
widely used to assess task-level adaptation performance across diverse robotic manipulation tasks.
The experimental results demonstrate that our method significantly enhances both learning effi-
ciency and zero-shot adaptation capabilities in new tasks, outperforming previous meta-RL ap-
proaches. In summary, our contributions are as follows:

• We propose a coarse-to-fine policy refinement that integrates language-guided expert skill selec-
tion as the coarse policy with a hypernetwork-based task-aware policy as the fine policy, enhancing
learning efficiency and zero-shot adaptation to new tasks.

• We introduce a holistic-local contrastive task representation at both the general task category
level and the task category-specific instance level to enhance the robustness of task representations,
thereby enabling the generation of task-aware policy.

• We conduct extensive experiments on the Meta-World benchmarks to validate the effectiveness of
our method, outperforming previous methods by approximately 42.3% and 45.4% in success rate
on the Meta-World ML-10 and ML-45 benchmarks, respectively.

2 PRELIMINARY

2.1 META-REINFORCEMENT LEARNING

In traditional RL, most problems are typically formalized as Markov Decision Processes (MDPs)
(Bellman, 1966). An MDP is defined as a tuple M = (S,A, P, ρ0, R, γ), where S represents the
state space, A denotes the action space, P (s′|s, a) is the transition function, ρ0(s) is the initial state
distribution, R(s, a) is the reward function, and γ is the discount factor. The objective of RL is
to maximize the expected cumulative reward J(π) = Eτ [

∑∞
t=0 γ

tR (st, at)] in order to obtain an
optimal policy π.

When extending RL to meta-RL, a distribution of MDPs is introduced, denoted as p(M), where
each MDP is characterized by distinct reward or transition dynamic functions. MDPs sampled from
this distribution represent individual tasks that share the same state and action spaces but differ in
their respective reward or transition dynamics functions. Meta-RL utilizes meta-knowledge acquired
from prior training tasks to aid agents in tackling new tasks. Notably, in contrast to multi-task RL,
the agent in meta-RL does not have access to explicit task-related information; instead, it must infer
task attributes through interaction with the environment. Meta-RL aims to maximize the expected
cumulative rewards across the training task distribution to obtain optimal policy πθ:

J(πθ) = EM∼p(M)[JM (πθ)]. (1)

2.2 TASK ATTRIBUTES INFERENCE

In the process of adapting to new tasks, an agent must gather contextual information through inter-
actions with the environment to infer task attributes and adjust its policy accordingly to maximize
returns. Regarding task inference, two primary methods currently exist to infer task attributes. The
first method is posterior sampling-based, where the agent samples a single hypothesis MDP from its
posterior distribution. The agent then follows the optimal policy for the sampled MDP until the next
sample is drawn, repeating this process to update the posterior distribution. The second method is
based on the Bayesian Adaptive MDP (BAMDP) (Duff, 2002). The BAMDP-based method is pre-
ferred because it effectively balances exploration (collecting trajectory information that reflects task
attributes) and exploitation (reasoning about task attributes based on the collected trajectory infor-
mation), thereby offering greater efficiency. VariBAD (Zintgraf et al., 2019) employs the BAMDP
framework by meta-training a Variational Auto-Encoder (VAE) (Kingma & Welling, 2013) to ex-
tract task representations from historical trajectories. Similarly, SDVT (Lee et al., 2023) adopts a
comparable approach but distinguishes itself by using a Gaussian mixture distribution to model the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Language Instructions

Dunk the basketball
into the basket

GRU Encoder Decoder

reward
prediction

state
prediction

Latent Space

Coarse Policy

Expert Modules

Weight
Generator

Language
Encoder

Expert 1

Expert 2

Expert k

Fine Policy

HyperNetworks

Actor

Figure 2: CFOHLR architecture. Our framework comprises two modules: task inference and
policy execution. In the task inference module, the encoder first extracts a task representation, z,
from an online consecutive trajectory. Simultaneously, the decoder predicts states and rewards to
compute the reconstruction loss. In the policy execution module, language instructions are utilized
to select skill-specific expert modules as a coarse policy, which is then refined by a fine policy. The
fine policy employs a hypernetwork to generate a task-aware policy based on the task representation.

latent space. This method is particularly well-suited for handling complex tasks. The VAE consists
of an encoder, qϕ(m|τ:t), which generates task representations, and a decoder that forecasts future
rewards and states, contributing to the reconstruction loss used during meta-training. The training
objective of SDVT is

LVAE(ϕ, θ) = Ep(M)

H+∑
t=0

ELBOt(ϕ, θ)

 = Lrecon + LKL, (2)

where
ELBOt =Ep(M)

[
Eqϕ(m|τ:t) [log pθ (τ:H+ | m)]

−KL (qϕ (m | τ:t, yt) ∥qϕ (m | yt))] ,
(3)

H+ is the horizon in the BAMDP, yt represents the mixture proportion of the current task among
different tasks. The objective is to maximize evidence lower bound (ELBO), comprising a recon-
struction term for the trajectory and a KL divergence relative to the previous posterior.

Similarly, we adopt this method to generate task representation at the current time step, utilizing
historical information up to this point. In contrast, we utilize the hierarchical characteristics inherent
in task-level adaptation to enhance the robustness of the task representation.

2.3 VARIATION-LEVEL ADAPTATION AND TASK-LEVEL ADAPTATION

The current meta-RL community typically evaluates algorithms using variations of the same training
tasks, such as modifying dynamic functions (e.g., adjusting friction parameters) or altering reward
functions (e.g., setting different target velocities). These evaluations fall under the category of vari-
ation adaptation. However, variation adaptation alone does not fully assess the effectiveness of
meta-RL algorithms and is not entirely applicable to real-world scenarios. A more challenging form
of adaptation is task-level adaptation, which involves training on a wide variety of tasks and general-
izing to entirely novel tasks during testing. For instance, in the ML10 benchmark of MetaWorld, an
agent might be trained on tasks such as pressing a button, closing a drawer, and picking and placing
objects. However, during testing, the agent’s ability to adapt would be evaluated on entirely unseen
tasks, such as pulling a lever or placing an object on a shelf.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 METHOD

This section introduces our framework, which integrates the joint training of the task inference mod-
ule and the conditional policy module in an online setting. Our framework is designed to facilitate
efficient task-level adaptation. We begin with an overview of our proposed method in Sec.3.1. Sub-
sequently, we detail the coarse-to-fine policy refinement in Sec.3.2, followed by the holistic-local
contrastive task representations in Sec.3.3.

3.1 METHOD OVERVIEW

Our proposed framework consists of two key components: a coarse-to-fine policy refinement and
holistic-local contrastive task representations. As depicted in Figure 2, our method leverage the
hierarchical characteristics inherent in task-level adaptation to enhance adaptation performance. To
achieve this, we introduce a coarse-to-fine policy refinement, which integrates a language-guided
mechanism for selecting specific-skill experts as the coarse policy with a hypernetwork-based task-
aware policy as the fine policy. Additionally, to develop robust and generalizable task representations
for generating task-aware policies, we introduce holistic-local contrastive task representations that
operate at both the task category level and the task category-specific instance level.

3.2 COARSE-TO-FINE POLICY REFINEMENT.

Achieving superior performance in task-level adaptation requires an agent to possess a foundational
understanding of the task’s general structure and to refine this understanding through interactions
with the environment. Similar to how humans execute tasks, individuals typically begin with an
initial comprehension of the overall task and the approximate skills needed for completion. This
understanding is progressively deepened through continuous interaction, enabling a more nuanced
grasp of the task’s attributes. To emulate this human-like task execution process, we propose a
method that leverages language instructions to provide an initial understanding of the task, which
is subsequently refined through interactions with the environment. Specifically, our approach be-
gins by using language instructions to select a set of skill-specific expert modules, forming a coarse
policy that captures the general outline of the required actions. This coarse policy is then refined
by a subsequent stage that adapts the policy based on interactions with the environment. For im-
plementation, we have developed multiple skill-specific expert modules. Language instructions are
used to softly select among these experts, effectively composing the coarse policy. The output from
the coarse policy is then fed into a refinement stage that employs a hypernetwork to generate a
task-adaptive policy. This hypernetwork adjusts the policy parameters in response to task-specific
attributes observed during interaction, enabling the agent to fine-tune its actions and achieve superior
performance.

Coarse Policy. To design a coarse policy for the language-guided selection of skill-specific ex-
perts, we employ a fixed pre-trained DistilBERT sentence encoder (Sanh et al., 2019) to encode
natural language task descriptions into fixed-length vectors in R768. The encoded vector, denoted
as zinstr, is then used as input to an expert weight generation network, which outputs the weights
α1, . . . , αk for the skill-specific expert modules. This process is formalized as follows:

α1, . . . , αk = softmax (W (zinstr)) , (4)

where W is a fully connected layer, and softmax ensures that the weights αi sum to 1.

The final coarse policy, denoted as πcoarse, is computed as a weighted sum of the k expert-specific
policy modules, where each expert policy is represented by πj

expert. The weights αj , derived from
the attention mechanism, determine the contribution of each expert policy:

πcoarse =

k∑
j=1

αj · πj
expert. (5)

This formulation allows the coarse policy to combine multiple skill-specific expert policies based
on the task instruction.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Expected Latent Space

As
se

m
bly

Basketball

Pick Place

Stick Push

Button Press

Draw
er

Close

(a) Expected Latent Space

Latent Space Visualization

Task Categories
Drawer-open
Door-close
Shelf-place
Sweep-into
Level-pull

(b) Real Latent Space

Figure 3: Expected Latent Space and Real Latent Space. Left: Our intuition is that task repre-
sentations should first be distinctly separated at the task category level and then further differentiated
among tasks within the same category. Right: The t-SNE visualization of the learned task repre-
sentation space for the ML-10 testing tasks is presented. We sampled three tasks from each task
category of the test tasks, with each color scheme representing a different task category. Each point
in the visualization corresponds to a task representation vector extracted from transitions and is
color-coded according to the task properties.

Fine policy. While language instructions guide the initial selection of relevant skill-specific expert
modules, relying solely on the coarse policy may be insufficient for tasks in environments with
dynamic attributes like varying object positions. To address this, we capture a task representation zt
that reflects these environmental attributes and refine the policy accordingly. Specifically, followed
by R2PGO (Li et al., 2024), we employ a hypernetwork H to generate a task-aware control policy
πH(zt) in real time, based on the task representation obtained through a task inference module. This
fine policy enhances the agent’s ability to adapt to different task attributes.

In summary, to improve the agent’s performance in task-level adaptation, we combine the strengths
of both the coarse and fine policies. We first use language instructions to select and weight the skill-
specific expert modules, forming the coarse policy. We then refine this policy using the task-aware
control policy generated by the hypernetwork H, which takes the task representation zt as input.

3.3 HOLISTIC-LOCAL CONTRASTIVE REPRESENTATION

While the coarse-to-fine control framework enhances task adaptation performance, generating a
task-aware policy heavily relies on robust and generalizable task representations. Therefore, it is
essential to develop a method to produce these robust representations. In task-level adaptation, one
inevitably encounters various task categories, as well as multiple task instances within each cate-
gory. For example, in the push task of the Meta-World benchmark, pushing items to different goal
locations within the push task category can be considered as distinct task instances. Inspired by
the hierarchical characteristics of task-level adaptation, we propose that task representations should
capture both inter-category distinctiveness and intra-category differentiation, as shown in Fig 3a. To
achieve this, we employ contrastive learning to derive robust task representations from two perspec-
tives: the holistic, which addresses the task category level, and the local, which focuses on the task
category-specific instance level. The real latent space is visualized in Fig 3b.

Holistic Contrastive Representation. From a holistic perspective, our focus is on the task cat-
egory level, aiming to make task representations from different categories distinguishable. While
contrastive learning is typically employed to obtain robust representations at the instance level within
specific task categories (Li et al., 2021; Wang et al., 2023), we apply it at the task category level to
achieve robust and discriminative representations across categories.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To reduce computational complexity, we represent each task category by averaging the task repre-
sentations within that category. Specifically, we compute the task representations ci for each task
type i by averaging the representations of all tasks within that category. The formula is expressed as
follows:

ci =
1

Ni

Ni∑
n=1

cni , (6)

here, Ni denotes the number of tasks associated with category i. Given a query task representation
vector z from task category i, we treat the pair (z, ci) as a positive pair. The averaged task repre-
sentations from the remaining task categories serve as negative samples. The objective function for
holistic contrastive representations, denoted as LHCR ,is then defined as follows:

LHCR = − 1

Ncategory

Ncategory∑
i=1

log

 exp
(
ci · x+

i /τ
)

Ncategory∑
j=1 j ̸=i

N−
j∑

k=1

exp
(
ci · x−

ijk/τ
)
 , (7)

here, Ncategory represents the number of task categories, Nj− denotes the total number of negative
samples corresponding to a specific task category, x+

i is the positive sample for task category i, and
x−
ijk is the k-th negative sample from task category j corresponding to task category i.

Local Contrastive Representation. From a local perspective, our focus is on task category-
specific instance levels. Within a given task category, we aim for representations of the same task
to be closely clustered, while representations of different tasks remain distinct. To achieve this
structure, we apply contrastive learning to shape the latent space of task representations.

Specifically, for a given task category, we designate the task representation zt at a particular timestep
as the query sample x and select the task representation from the same task at a different time step
as the positive sample x+. Task representations from other tasks within the same category serve
as negative samples {x−

i }
N−1
i=1 . Accordingly, we define the objective function for local contrastive

representations, denoted as LLCR, is then defined as follows:

LLCR = − 1

Ncategory

Ncategory∑
i=1

1

Ntasks

Ntasks∑
j=1

log

 exp
(
xij · x+

ij/τ
)

Ntasks∑
k=1 k ̸=j

exp
(
xij · x−

ijk/τ
)
 , (8)

where Ncategory represents the number of task categories, Ntasks denotes the total number of sampled
tasks, x+

ij is the positive sample corresponding to the query sample xij , and x−
ijk is the k-th negative

sample from task j corresponding to task i. Consequently, we adopt a composite loss function that
combines reconstruction and contrastive learning objectives: Ltask inference = LVAE + λHCR · LHCR +
λLCR · LLCR.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Environments. We evaluate our proposed method using the Meta-World benchmarks (Yu et al.,
2020), which assess the generalization capabilities of agents across a wide range of task distribu-
tions. This benchmark contains 50 qualitatively distinct robotic manipulation tasks, each with 50
parametric variants that incorporate randomized goals and initial object positions. Specifically, the
Meta-Learning 10 (ML-10) benchmark consists of Ntrain = 10 training tasks and Ntest = 5 test
tasks. Likewise, the Meta-Learning 45 (ML-45) benchmark comprises Ntrain = 45 training tasks
and Ntest = 5 test tasks. Notably, task IDs are not provided as input; agents need to identify task at-
tributes from experience while maximizing their return within a meta-episode of H+ = 1000 steps,
which consists of nroll = 2 rollout episodes of horizon H = 500 steps each.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Steps 1e8

0.0
0.2
0.4
0.6
0.8

Su
cc

es
s

R
at

e

ML-10

0.0 0.5 1.0 1.5
Steps 1e8

0.0

0.2

0.4

0.6

ML-45

0.0 0.5 1.0 1.5 2.0
Steps 1e8

0

1000

2000

3000

4000

Av
er

ag
e

R
et

ur
n

ML-10

0.0 0.5 1.0 1.5
Steps 1e8

500
1000
1500
2000
2500
3000

ML-45

Ours Million SDVT LDM VariBADOurs Million SDVT LDM VariBADOurs Million SDVT LDM VariBAD

Figure 4: Meta-World Success Rates and Returns in Test Tasks. The success rates and corre-
sponding average returns of our methods and baselines, averaged across the test tasks of ML-10 and
ML-45 in the second rollout, are presented. The individual maximum success rates and correspond-
ing returns for all tasks are reported in Appendix D.1.

Baselines. To demonstrate the effectiveness of our method, we compare it with the following
methods: (1) VariBAD (Zintgraf et al., 2019) leverages a VAE consisting of an RNN-based encoder
and a prediction decoder as a task inference module to obtain task representations, which are then
used for decision-making. (2) LDM (Lee & Chung, 2021) utilizes synthetic tasks generated from
mixtures of learned latent dynamics to enhance the generalization ability of agents. (3) SDVT (Lee
et al., 2023) employs a Gaussian mixture VAE to meta-learn the task decomposition process and
leverages a virtual training procedure to enhance generalization to unseen tasks. (4) Million (Bing
et al., 2023) introduces a meta-RL paradigm comprising an instruction phase and a trial phase, inte-
grating transformers with language instructions to improve task adaptation capabilities. To guarantee
a fair comparison, each method is evaluated under the same experimental settings.

4.2 COMPARISON UNSEEN TASKS ADAPTATION PERFORMANCE

To evaluate the performance of our method, we compare it with other approaches. In Figure 4,
we present the mean and standard deviation of returns and success rates across five random seeds.
Performance is assessed based on the success rate and average return across all test tasks.

Figure 4 illustrates that our method outperforms other baselines in both the ML-10 and ML-45
tasks. This success can be attributed to two central aspects of our approach: First, we implement a
coarse-to-fine policy refinement strategy, allowing the agent to initially utilize skill-specific expert
modules, followed by further refinement using a task-aware policy informed by task representations.
Second, we apply contrastive learning to structure the latent space at both holistic and local levels,
thereby producing more robust task representations for generating task-aware policies. As a result,
our methodology significantly improves learning efficiency and adaptive performance, representing
an advancement over previous state-of-the-art approaches.

4.3 COMPARISON ZERO-SHOT ADAPTATION PERFORMANCE

To evaluate the zero-shot adaptation performance of our method, we compared it with other ap-
proaches on the ML10 and ML45 tasks during the initial episodes.

Table 1 demonstrates that our method achieves respectable performance within the first episode
when adapting to new tasks, outperforming other baselines across all environments. This demon-
strates the strong zero-shot adaptation capabilities of our method, which are essential for agents
functioning in dynamic and open-ended environments. While methods such as SDVT and LDM
exhibit relatively good performance, they do not attain the highest performance in the first episode.

4.4 ABLATION

To validate each proposed component of our method, we conducted a series of ablation experi-
ments. The coarse-to-fine policy refinement and the holistic-local contrastive task representations
are crucial elements of our approach. We compared our method with variants that excluded either
the coarse-to-fine policy refinement or the holistic-local contrastive task representations to evaluate

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Success Rate and Return on ML-10 and ML-45 Benchmarks. To demonstrate their
adaptability to unseen tasks, the meta-trained policies were rolled out over two episodes. We present
the maximum success rate averaged across five random seeds, along with the corresponding returns.

ML-10 ML-45
Methods Episode 1 Episode 2 Episode 1 Episode 2

Success Rate (%)
Ours 83.9± 2.9 85.7 ± 4.9 72.4 ± 3.0 71.4± 3.5
VariBAD 23.0± 10.9 25.7± 7.5 13.8± 4.4 15.0± 6.5
LDM 34.6± 17.6 35.4± 17.1 11.6± 5.5 13.2± 6.0
SDVT 41.6± 11.0 43.4± 9.4 24.9± 7.6 27.0± 8.9
Million 25.1± 7.7 25.8± 9.1 11.5± 7.2 11.6± 7.1

Return
Ours 3697.5± 201.9 3733.5 ± 164.9 2925.0 ± 82.2 2893.3± 107.5
VariBAD 864.4± 244.3 929.1± 208.1 545.6± 89.0 631.0± 202.8
LDM 1173.3± 723.7 1151.3± 692.0 507.6± 156.9 597.2± 153.7
SDVT 1489.8± 507.9 1563.4± 418.1 723.9± 193.8 769.9± 140.0
Million 1368.7± 243.3 1248.6± 205.4 563.2± 58.5 562.9± 60.3

the contribution of each component. The maximum success rates, averaged over five random seeds,
along with the corresponding return values, are displayed in Table 2. In both benchmarks, the ab-
sence of these components led to a reduction in average return. In contrast, incorporating either the
coarse-to-fine policy or the holistic-local contrastive representation resulted in an increase in aver-
age return and task success rate. Notably, combining the holistic-local contrastive representations
(HLR) with the coarse-to-fine policy refinement (CFO) significantly enhanced both success rate and
average return across all environments. This improvement can be attributed to our innovative task
representations, which structure the latent space at both holistic and local levels, producing more ro-
bust task representations. These robust representations enable the generation of effective task-aware
policies, thereby enhancing adaptability to new tasks.

Table 2: Ablation study performed on the ML-10 and ML-45 benchmarks, comparing CFOHLR
with methods that omit Coarse-to-Fine Policy Refinement (CFO) and Holistic-Local Contrastive
Representation (HLR).

ML-10 ML-45
Methods Train Test Train Test

Success Rate (%)
Ours 85.1 ± 3.5 85.7 ± 4.9 71.4 ± 4.3 71.4 ± 3.5
Ours w/o CFO 82.4± 7.7 45.4± 13.7 66.0± 5.8 33.1± 3.0
Ours w/o HLR 82.9± 4.8 49.0± 5.5 69.8± 4.1 33.0± 6.3
Ours w/o CFO&HLR 76.4± 22.8 39.4± 13.9 61.4± 11.7 22.6± 7.8

Return
Ours 3724.8 ± 219.7 3733.5 ± 164.9 2960.9 ± 149.0 2911.7 ± 105.1
Ours w/o CFO 3651.7± 289.2 1476.4± 224.2 2796.7± 211.6 871.3± 117.3
Ours w/o HLR 3717.1± 112.4 1585.3± 289.8 2879.0± 201.0 899.8± 226.3
Ours w/o CFO&HLR 3445.0± 859.5 1449.1± 184.2 2666.6± 422.4 725.0± 115.0

5 RELATED WORK

Meta Reinforcement Learning. Meta-reinforcement learning (Meta-RL) aims to enable agents
to quickly adapt to new tasks by leveraging meta-knowledge gained from training on a diverse set

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

of similar tasks. Meta-RL approaches can be broadly categorized into two types: gradient-based
methods (Finn et al., 2017) and context-based methods (Rakelly et al., 2019; Zintgraf et al., 2019).
Gradient-based meta-RL methods focus on developing models capable of rapid adaptation to new
tasks through a few gradient updates but do not support zero-shot adaptation. In contrast, context-
based meta-RL methods comprise a task inference module and a conditional policy module. The
task inference module infers task representations from trajectory information, while the conditional
policy module guides the agent’s action selection based on the environmental state and the inferred
task representation. In this paper, we adopt the context-based meta-RL architecture.

Task-level Adaptation in Meta-RL. Most studies in meta-RL focus on narrow task distributions,
where different tasks are defined by varying only a few parameters related to the reward function
or environment dynamics (Duan et al., 2016; Zintgraf et al., 2019; Rakelly et al., 2019). However,
these approaches do not accurately reflect real-world scenarios and limit the agent’s ability to adapt
to a wide range of tasks, particularly at the task level. Consequently, recent research efforts are
directed toward addressing the challenge of task-level adaptation. For example, SDVT (Lee et al.,
2023) employs a Gaussian mixture VAE to meta-learn task representations and proposes a virtual
training procedure to improve generalization to unseen tasks. Similarly, Million (Bing et al., 2023)
integrates transformers with task language instruction to enhance task adaptation capabilities. How-
ever, both approaches fail to fully leverage hierarchical characteristic of task-level adaptation in task
representations and policy learning, thereby obtain limited gains in adaptation performance.

Mixture of Expert. To enhance performance in completing complex tasks, a promising approach
is the use of compositional modules, specifically the mixture of experts (MoE) method (Masoudnia
& Ebrahimpour, 2014). The core idea of MoE is to integrate multiple expert models, each special-
ized in processing a distinct type of input or a specific aspect of a task. These expert models can
learn independently and develop specialized capabilities during the training process. For instance,
Routing Networks (Rosenbaum et al., 2017) consist of a router and a set of neural network modules;
the router selects a module based on the given input and repeats this process iteratively. In contrast,
soft modularization (Yang et al., 2020) employs an attention network to generate weights for each
module. In this paper, we adopt the mechanism of soft module selection to construct a coarse policy
within the coarse-to-fine policy refinement process.

Contrastive Learning To structure the latent space of task representations and enhance their ro-
bustness, we employ contrastive learning to improve the task inference process. Previous studies (Li
et al., 2020; 2021; Yuan & Lu, 2022; Wang et al., 2023; Gao et al., 2023) have also utilized con-
trastive learning for this purpose. For instance, FOCAL (Li et al., 2021) introduced a loss function
that uses negative-power distance metrics to constrain the task representation space. Similarly, Moss
(Wang et al., 2023) employs contrastive learning to differentiate between distinct tasks while cluster-
ing similar ones. However, these methods focus exclusively on task instance-level contrastive repre-
sentation learning, neglecting task category-level contrastive representation learning. This oversight
results in a failure to structure the task representation space from a global perspective, thereby re-
ducing the robustness of task representations. To the best of our knowledge, our work is the first
to combine the strengths of both instance-wise and category-level contrastive representation meth-
ods in meta-RL to achieve robust task representation in task-level adaptation, thereby improving
adaptation performance.

6 CONCLUSION

In this study, we have introduced a novel method that significantly improves zero-shot performance
in task-level adaptation within meta-RL. This enhancement is achieved by integrating a coarse-to-
fine policy refinement with a holistic-local contrastive task representation. Specifically, we leverage
language instructions to select skill-specific expert modules as a coarse policy. This coarse policy
is then refined by a fine policy employing a hypernetwork to generate a task-aware policy based
on task representations. To derive robust task representations, we utilize contrastive learning to
refine them from both holistic and local perspectives. Experimental results demonstrate that our
method substantially boosts learning efficiency and zero-shot adaptation to new tasks, outperforming
previous approaches on the Meta-World ML-10 and ML-45 benchmarks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Philip J Ball, Cong Lu, Jack Parker-Holder, and Stephen Roberts. Augmented world models fa-
cilitate zero-shot dynamics generalization from a single offline environment. In International
Conference on Machine Learning, pp. 619–629. PMLR, 2021.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Zhenshan Bing, Alexander Koch, Xiangtong Yao, Kai Huang, and Alois Knoll. Meta-reinforcement
learning via language instructions. In 2023 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 5985–5991. IEEE, 2023.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Michael O’Gordon Duff. Optimal Learning: Computational procedures for Bayes-adaptive Markov
decision processes. University of Massachusetts Amherst, 2002.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Yunkai Gao, Rui Zhang, Jiaming Guo, Fan Wu, Qi Yi, Shaohui Peng, Siming Lan, Ruizhi Chen,
Zidong Du, Xing Hu, et al. Context shift reduction for offline meta-reinforcement learning. arXiv
preprint arXiv:2311.03695, 2023.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Suyoung Lee and Sae-Young Chung. Improving generalization in meta-rl with imaginary tasks from
latent dynamics mixture. Advances in Neural Information Processing Systems, 34:27222–27235,
2021.

Suyoung Lee, Myungsik Cho, and Youngchul Sung. Parameterizing non-parametric meta-
reinforcement learning tasks via subtask decomposition. Advances in Neural Information Pro-
cessing Systems, 36:43356–43383, 2023.

Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Henrik Christensen, and Hao Su.
Multi-task batch reinforcement learning with metric learning. Advances in Neural Information
Processing Systems, 33:6197–6210, 2020.

Lanqing Li, Rui Yang, and Dijun Luo. FOCAL: Efficient fully-offline meta-reinforcement learning
via distance metric learning and behavior regularization. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=8cpHIfgY4Dj.

Zhengwei Li, Zhenyang Lin, Yurou Chen, and Zhiyong Liu. Efficient offline meta-reinforcement
learning via robust task representations and adaptive policy generation. In Kate Larson (ed.), Pro-
ceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24,
pp. 4524–4532. International Joint Conferences on Artificial Intelligence Organization, 8 2024.
doi: 10.24963/ijcai.2024/500. URL https://doi.org/10.24963/ijcai.2024/500.
Main Track.

Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial Intelli-
gence Review, 42:275–293, 2014.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection of
non-linear functions for multi-task learning. arXiv preprint arXiv:1711.01239, 2017.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

11

https://openreview.net/forum?id=8cpHIfgY4Dj
https://doi.org/10.24963/ijcai.2024/500

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Masao Shinzaki, Yusuke Koda, Koji Yamamoto, Takayuki Nishio, Masahiro Morikura, Yushi Shi-
rato, Daisei Uchida, and Naoki Kita. Zero-shot adaptation for mmwave beam-tracking on over-
head messenger wires through robust adversarial reinforcement learning. IEEE Transactions on
Cognitive Communications and Networking, 8(1):232–245, 2021.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Mingyang Wang, Zhenshan Bing, Xiangtong Yao, Shuai Wang, Huang Kai, Hang Su, Chenguang
Yang, and Alois Knoll. Meta-reinforcement learning based on self-supervised task representation
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 10157–
10165, 2023.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. Advances in Neural Information Processing Systems, 33:4767–4777, 2020.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Haoqi Yuan and Zongqing Lu. Robust task representations for offline meta-reinforcement learning
via contrastive learning. In International Conference on Machine Learning, pp. 25747–25759.
PMLR, 2022.

Mandi Zhao, Pieter Abbeel, and Stephen James. On the effectiveness of fine-tuning versus meta-
reinforcement learning. Advances in neural information processing systems, 35:26519–26531,
2022.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-
learning. arXiv preprint arXiv:1910.08348, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A TRAINING APPROACH AND PSEUDOCODE

We utilize Proximal Policy Optimization (PPO) (Schulman et al., 2017) to train our policy network.
PPO is an on-policy, actor-critic deep RL algorithm. The optimization objective for the policy is as
follows:

Lpolicy(θ) = Ê
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(9)

Here, Ât denotes the estimation of the advantage function, and rt(θ) represents the probability ratio,
defined as rt(θ) =

πθ(at|st)
πθold (at|st) , where πθ represents the new policy and πθold represents the old policy.

In optimizing the conditional policy module, we utilize the Lpolicy loss function. Notably, similar
to the approach utilized in VariBAD (Zintgraf et al., 2019), the optimization of the task inference
module does not rely on the Lpolicy loss function. Instead, we adopt a composite loss function that
combines reconstruction and contrastive learning objectives. The specific pseudo-code is shown in
Algorithm 1.

Algorithm 1 CFOHLR

Require: Encoder qϕ and Decoder pθ of VAE; Coarse policy πθ; Fine policy πω; Weight generator
Wα Skill-specific expert models MoEi=0,...,K

θi
; Hypernetworks Hϕ; VAE buffer DVAE; Policy

buffer DPolicy; The number of meta-episodes nmeta; The number of rollout episodes per meta-
episode nroll; Language instruction U .
while i=0,...,Nupdate do

Sample K training tasks Mi
i=0,...,K ∼ Mtrain

for timestep t = 0,...,nroll ∗H − 1 do
if t mod H = 0 then

Reset rollout episode for each task, obtain St = {st,1, st,2, . . . , st,n}
end if
for j=0,. . . ,K do

Obtain weights α1,j , . . . , αk,j = Wα(Uj) for each skill-specific expert module.
Obtain the output of the coarse policy πθ, denoted as OMOE =

∑K
i=0 αi · MoEθi .

Leverage Hϕ to generate the network parameters of the fine policy, πω = Hϕ(z
j
t).

Obtain the action at,j = πω(OMOE).
end for
Finally, obtain actions for each task At = {at,1, at,2, . . . , at,n}.
Take an environment step, obtaining St+1 = {st+1,1, st+1,2, . . . , st+1,n} and Rt =
{rt+1,1, rt+1,2, . . . , rt+1,n}.
Add the transition (St, At, Rt+1, St+1) to DVAE and DPolicy.
Update task representations Zt+1 = {zt+1,n = qϕ(τ:t+1,n)}i=0,...,n.

end for
Update VAE by minimizing L = LVAE + Lcontra
Update policy θ, ω and weight generator α by minimizing Lactor + Lcritic.

end while

B LIMITATIONS AND FUTURE WORK

Despite the significant progress, our method has limitations that were not addressed in this study.
Notably, it is not directly applicable to the cross-entity adaptation problem, which involves general-
izing a policy from one robotic entity to another. This limitation affects the overall generalizability
of the policy. Future research will focus on tackling the challenge of cross-entity adaptation in a
zero-shot manner, thereby enhancing the policy generalization.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C IMPLEMENTATION DETAILS

C.1 REFERENCE IMPLEMENTATIONS

SDVT, LDM, and VariBAD We adapt the SDVT (Lee et al., 2023), LDM (Lee & Chung, 2021),
and VariBAD (Zintgraf et al., 2019) algorithms to the Meta-World benchmark. These algorithms
are all based on the VariBAD method, which itself is grounded in the Bayesian Adaptive MDP
(BAMDP) framework. VariBAD employs a VAE architecture consisting of a recurrent encoder and
a dynamics decoder to obtain task representations. LDM introduces a virtual training procedure to
VariBAD to address out-of-distribution challenges. Building on LDM, SDVT uses a Gaussian mix-
ture distribution to model the latent space of the VAE. Notably, the virtual training steps of the LDM
and SDVT methods are included in the total count of training steps, as these virtual processes neces-
sitate agent interaction with the environment to obtain real states for generating imagined samples.
We used open-source code to reproduce the results of the SDVT, LDM, and VariBAD methods, re-
spectively, available at https://github.com/suyoung-lee/SDVT, https://github.
com/suyoung-lee/LDM, and https://github.com/lmzintgraf/varibad.

Million Million (Bing et al., 2023) introduces a meta-RL paradigm comprising an instruction
phase and a trial phase, integrating transformers with language instruction to improve task adap-
tation capabilities. We used open-source code to reproduce the results of the Million methods,
respectively, available at https://github.com/yaoxt3/MILLION.

C.2 HYPERPARAMETERS

C.2.1 SDVT

We used the default hyperparameters from the paper, which are shown in Table 3.

C.2.2 LDM AND VARIBAD

We used the default hyperparameters from the paper, which are shown in Table 4.

C.2.3 MILLION

We used the default hyperparameters from the paper, which are shown in Table 5.

C.2.4 OURS

C.3 NETWORK ARCHITECTURE

Our method utilizes a context-based architecture, comprising a task inference module and a condi-
tional policy module. For the task inference module, similar to SDVT, we also employ a Gaussian
mixture VAE to model the latent space. This module consists of an RNN-based encoder and a
prediction decoder. Before being input into the encoder or decoder, all state, action, and reward
inputs pass through embedding networks. Regarding the conditional policy module, it includes
language-selected, skill-specific expert modules and a hypernetwork-based, task-aware policy. Sim-
ilarly, before being input into the conditional policy module, all state, action, and reward inputs pass
through embedding networks.

C.4 TASK DESCRIPTIONS

In Table 11, we provide the language instructions for each of the 50 Meta-World tasks.

D DETAILED EXPERIMENTAL RESULTS

We adhere to the success criterion established by Meta-World. A timestep is considered successful
when the distance between the task-relevant object and the target falls within an acceptable range.
Furthermore, an entire rollout episode is deemed successful if the agent achieves success at any
timestep during the episode.

14

https://github.com/suyoung-lee/SDVT
https://github.com/suyoung-lee/LDM
https://github.com/suyoung-lee/LDM
https://github.com/lmzintgraf/varibad
https://github.com/yaoxt3/MILLION

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 3: Hyperparameters used for Garage experiments with SDVT

Description ML10 ML45
Meta-Task Hyperparameters

Meta-batch size 10 10
Tasks sampled per epoch 10 10

General Hyperparameters

Batch size 1,000 1,000
Path length per roll-out 1,000 1,000
Discount factor 0.99 0.99

Algorithm-Specific Hyperparameters

Policy hidden sizes (256, 256) (256, 256)
Activation function tanh tanh
Policy learning rate 7× 10−4 7× 10−4

PPO epochs num 5 5
VAE learning rate 1× 10−3 1× 10−3

Latent dimension 5 5
PPO num minibatches 10 10
PPO clip param 0.1 0.1
Policy num steps 5 5
Size of VAE buffer 1,000 1,000
KL weight 0.1 0.1
VAE mixture num 10 10
Gaussian loss coefficient 1.0 1.0
Action embedding size 16 16
State embedding size 32 32
Reward embedding size 16 16
Virtual ratio increment 0.05 0.05
Number of virtual skills 3 3
RL loss through encoder False False
VAE loss coefficient 1.0 1.0

D.1 PERFORMANCE ON INDIVIDUAL TASKS

D.1.1 ML-10

D.1.2 ML-45

D.2 LEARNING CURVES

In Figure 5, we present the mean and standard deviation of returns and success rates across five
random seeds.

E ADDITIONAL RESULTS

E.1 VISULIZATIONS

To demonstrate the quality of the learned task representations, we employed t-SNE Van der Maaten
& Hinton (2008) to map the task representation vectors into a 2D space, enabling the visualization
of these representations. For each testing task, 150 transitions from the meta-testing phase were
sampled to visualize the task representations. As depicted in Figure 6, our method effectively distin-
guishes task representations from different categories, with additional separation observed among
tasks within the same category.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: The hyperparameters used in experiments with LDM and VariBAD are consistent across
both models in the general and policy categories of SDVT, as outlined in Table 3. The only difference
lies in the modeling of the latent space: SDVT utilizes a Gaussian mixture model, while both LDM
and VariBAD employ a Gaussian model.

Description ML10 ML45
Meta-Task Hyperparameters

Meta-batch size 10 10
Tasks sampled per epoch 10 10

General Hyperparameters

Batch size 1,000 1,000
Path length per roll-out 1,000 1,000
Discount factor 0.99 0.99

Algorithm-Specific Hyperparameters

VAE learning rate 1× 10−3 1× 10−3

Latent dimension 5 5
Size of VAE buffer 1,000 1,000
KL weight 0.1 0.1
Gaussian loss coefficient 1.0 1.0
VAE loss coefficient 1.0 1.0

Table 5: Hyperparameters used in experiments with Million.

Description ML10 ML45
Meta-Task Hyperparameters

Meta-batch size 10 10
Tasks sampled per epoch 10 10

General Hyperparameters

Batch Timesteps 1,000 1,000
Action repeat 1,000 1,000
Demonstration action
repeat

1,000 1,000

Max trials per episode 750 750
Discount factor 0.99 0.99

Algorithm-Specific Hyperparameters

Learning rate 1e− 4 1e− 4
GAE lambda 0.97 0.97
Epsilon eta 1× 10−2 1× 10−2

Epsilon alpha 1× 10−2 1× 10−2

Epsilon alpha mu 0.0075 0.0075
Epsilon alpha sigma 1e− 5 1e− 5

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Hyperparameters used in experiments with Ours.

Description ML10 ML45
Meta-Task Hyperparameters

Meta-batch size 10 10
Tasks sampled per epoch 10 10

General Hyperparameters

Batch size 1,000 1,000
Path length per roll-out 1000
Discount factor 0.99

Algorithm-Specific Hyperparameters

Policy hidden sizes (256, 256) (256, 256)
Activation function tanh tanh
Policy learning rate 7× 10−4 7× 10−4

PPO epochs num 5 5
VAE learning rate 1× 10−3 1× 10−3

Latent dimension 5 5
PPO num minibatches 10 10
PPO clip param 0.1 0.1
Policy num steps 5 5
RL loss through encoder False False
Action embedding size 16 16
State embedding size 32 32
Reward embedding size 16 16
Size of VAE buffer 1,000 1,000
KL weight 0.1 0.1
VAE mixture num 10 10
Gaussian loss coefficient 1.0 1.0
VAE loss coefficient 1.0 1.0
Decode reward True True
Decode state True True
Weight of holistic
contrastive

0.01 0.01

Weight of local contrastive 0.01 0.01

0.0 0.5 1.0 1.5 2.0
Steps 1e8

0.0
0.2
0.4
0.6
0.8

Su
cc

es
s

R
at

e

ML-10

0.0 0.5 1.0 1.5
Steps 1e8

0.0

0.2

0.4

0.6

ML-45

0.0 0.5 1.0 1.5 2.0
Steps 1e8

0

1000

2000

3000

Av
er

ag
e

R
et

ur
n

ML-10

0.0 0.5 1.0 1.5
Steps 1e8

0
500

1000
1500
2000
2500
3000

ML-45

Ours Million SDVT LDM VariBADOurs Million SDVT LDM VariBADOurs Million SDVT LDM VariBAD

Figure 5: Learning Curves on ML-10 and ML-45. The maximum success rates and corresponding
returns of our methods, along with baseline comparisons, are presented. The plot shows the mean
and standard deviation of returns across five random seeds.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: ML-10 of Meta-World success rate (%). We present the final success rates of our method
and baseline approaches on both the training and test tasks of the Meta-World ML-10 benchmark.
All results are reported as the mean success rate ±95% confidence interval of five seeds.

Index. Task Ours w/o C2F w/o
HLC

SDVT Million LDM VariBAD

1. Reach 85.2±3.6 53.2±4.6 44.0±7.3 53.6±14.4 10.4±11.3 50.4±7.9 78.0±5.7
2. Push 86.0±3.0 70.4±9.8 74.8±3.0 74.0±3.8 44.5±17.8 31.2±11.2 2.4±2.0
3. Pick-place 85.2±4.5 66.0±6.9 66.0±2.9 53.2±6.0 48.1±29.8 37.2±20.0 0.8±0.7
4. Door-open 81.2±1.9 99.6±0.6 97.2±3.9 100.0±0.0 81.1±25.1 99.6±0.6 74.8±25.4
5. Drawer-close 86.8±1.4 100.0±0.0 100.0±0.0 100.0±0.0 56.1±32.1 100.0±0.0 100.0±0.0
6. Button-press 84.4±3.1 100.0±0.0 100.0±0.0 99.6±0.6 80.0±27.7 98.4±1.0 88.4±4.1
7. Peg-insert-side 88.0±2.5 48.8±18.6 62.0±13.1 52.0±5.0 21.5±18.3 26.4±15.3 0.0±0.0
8. Window-open 86.4±4.4 99.6±0.6 100.0±0.0 100.0±0.0 80.0±27.7 99.6±0.6 96.8±1.1
9. Sweep 89.6±2.7 93.2±2.1 93.2±3.5 89.2±3.8 77.6±24.0 92.4±3.3 0.0±0.0
10. Basketball 82.8±4.5 93.6±4.0 92.0±5.6 72.8±15.5 36.1±31.0 89.2±4.0 0.0±0.0
Train mean 85.6±3.9 82.4±7.7 82.9±4.8 79.4±7.1 53.5±40.0 72.4±11.4 44.1±7.9

11. Drawer-open 86.4±3.4 78.0±24.1 80.0±12.6 72.8±28.5 0.0±0.0 92.8±8.1 51.6±21.1
12. Door-close 87.2±3.8 74.4±25.7 81.6±15.7 76.4±19.7 97.5±2.8 26.0±37.7 71.6±22.4
13. Shelf-place 82.4±5.5 1.6±3.1 0.4±0.8 0.0±0.0 0.3±0.5 0.4±0.8 0.0±0.0
14. Sweep-into 90.0±5.1 67.6±34.0 82.8±8.8 64.8±12.2 17.5±5.0 57.6±31.9 4.8±3.2
15. Lever-pull 82.4±3.4 5.2±7.4 0.4±0.8 3.2±3.2 13.7±26.9 0.4±0.8 0.4±0.8
Test mean 85.7±4.9 45.4±13.7 49.0±5.5 43.4±9.4 25.8±9.1 35.4±17.1 25.7±7.5

Table 8: ML-10 of Meta-World returns. We present the performance metrics of our method and
baseline approaches on both the training and test tasks of the Meta-World ML-10 benchmark. All
results are reported as the mean return ±95% confidence interval of five seeds.

Index. Task Ours w/o C2F w/o
HLC

SDVT Million LDM VariBAD

1. Reach 3704±149 3778±128 3520±141 3763±296 2324±447 3668±285 4054±138
2. Push 3769±135 3338±342 4094±90 3675±272 2225±750 1795±812 63±28
3. Pick-place 3742±127 2089±254 2420±116 1712±125 1678±803 1258±709 7±1
4. Door-open 3740±91 4503±51 4313±78 4439±26 2790±980 4442±47 2978±470
5. Drawer-close 3708±75 4857±7 4811±30 4852±10 2505±1302 4809±67 4637±77
6. Button-press 3622±144 3489±93 3250±108 3372±60 1337±734 3226±60 2028±155
7. Peg-insert-side 3703±113 2359±678 2827±421 2443±266 1179±697 1364±773 9±1
8. Window-open 3787±157 4479±49 4398±49 4476±51 2331±942 4384±61 3692±202
9. Sweep 3786±147 4093±85 3963±100 3801±208 2849±932 3997±189 92±28
10. Basketball 3705±185 3532±196 3576±202 2937±618 1624±774 3433±196 9±2
Train mean 3727±221 3652±289 3717±112 3547±203 2084±1365 3238±613 1757±178

11. Drawer-open 3796±112 2477±393 2477±190 2660±396 1876±384 2697±475 2036±329
12. Door-close 3740±119 2489±566 2887±769 3087±944 3302±415 1272±1538 2113±558
13. Shelf-place 3746±157 492±246 607±115 341±99 141±204 309±272 0±0
14. Sweep-into 3751±128 1619±786 1705±434 1444±564 716±264 1200±793 172±96
15. Lever-pull 3634±197 305±44 251±29 285±60 208±44 278±59 324±41
Test mean 3734±165 1476±224 1585±290 1563±418 1249±205 1151±692 929±208

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: ML-45 of Meta-World success rate (%). We present the final success rates of our method
and baseline approaches on both the training and test tasks of the Meta-World ML-45 benchmark.
All results are reported as the mean success rate ±95% confidence interval of five seeds.

Index. Task Ours w/o
C2F

w/o
HLC

SDVT Million LDM VariBAD

1. Assembly 68.0±2.0 0.5±0.3 0.5±0.3 0.5±0.3 0.0±0.0 0.0±0.0 0.0±0.0
2. Basketball 67.5±1.3 22.0±5.7 21.5±1.7 38.0±5.2 0.0±0.0 0.0±0.0 0.0±0.0
3. Button-press-topdown 65.0±3.2 99.0±0.6 98.5±0.3 98.0±0.7 0.0±0.0 9.5±2.8 27.5±6.7
4. Button-press-topdown-wall 72.0±2.3 96.0±2.3 98.5±0.6 99.0±0.3 0.0±0.0 9.5±2.7 17.0±4.6
5. Button-press-wall 75.5±3.0 94.0±2.1 95.0±1.8 100.0±0.043.2±10.830.0±3.9 27.0±6.1
6. Button-press-wall 71.0±2.4 88.0±3.1 76.0±4.8 80.5±4.2 49.2±6.0 41.0±9.7 32.0±4.8
7. Coffee-button 65.0±2.8 100.0±0.0100.0±0.098.5±0.9 42.3±14.755.5±11.033.5±8.7
8. Coffee-pull 73.5±2.9 62.5±1.3 70.0±3.6 37.0±5.8 0.2±0.1 1.0±0.3 0.0±0.0
9. Coffee-push 76.5±1.5 57.5±10.769.5±5.5 37.5±4.9 30.8±9.7 11.5±3.3 7.5±2.1
10. Dial-turn 73.5±2.6 73.0±6.1 75.0±4.9 77.5±2.6 62.2±2.4 8.5±1.7 26.0±6.4
11. Disassemble 74.0±3.2 69.5±13.679.0±5.3 78.0±4.3 0.0±0.0 0.5±0.3 4.5±2.6
12. Door-close 72.5±1.3 100.0±0.099.5±0.3 100.0±0.051.0±11.998.5±0.9 65.0±13.8
13. Door-open 74.5±2.8 92.0±3.3 94.0±2.7 95.5±0.9 0.0±0.0 0.0±0.0 0.0±0.0
14. Drawer-close 70.5±1.7 96.0±1.4 100.0±0.099.5±0.3 100.0±0.099.0±0.6 100.0±0.0
15. Drawer-open 68.0±2.4 99.5±0.3 95.0±1.5 98.5±0.6 0.0±0.0 15.0±6.1 10.0±2.4
16. Faucet-open 71.0±2.7 98.0±0.5 96.0±2.0 98.5±0.9 11.2±3.8 30.5±1.5 54.0±9.7
17. Faucet-close 77.0±1.0 98.5±0.9 87.5±3.8 99.5±0.3 42.0±13.522.0±4.4 28.5±7.1
18. Hammer 75.5±1.5 8.5±5.0 33.0±11.10.0±0.0 12.2±7.1 1.5±0.9 2.0±0.8
19. Handle-press-side 69.0±1.4 100.0±0.099.0±0.6 100.0±0.014.2±4.9 6.0±2.2 38.5±8.5
20. Handle-press 70.0±1.3 100.0±0.099.5±0.3 100.0±0.065.5±3.2 45.5±2.9 57.0±2.5
21. Handle-pull-side 72.5±3.0 96.0±2.0 98.0±1.2 89.5±3.6 17.7±4.6 0.0±0.0 1.5±0.6
22. Handle-pull 70.5±1.9 76.5±13.399.5±0.3 63.5±12.227.0±10.11.5±0.3 1.0±0.6
23. Lever-pull 76.5±1.2 55.5±9.6 9.5±5.6 52.0±10.40.0±0.0 0.0±0.0 1.5±0.3
24. Peg-insert-side 72.0±1.7 9.0±1.1 33.5±2.5 3.5±0.6 0.0±0.0 0.0±0.0 0.0±0.0
25. Pick-place-wall 72.0±1.1 61.5±4.2 59.5±6.4 46.0±3.5 13.5±5.8 0.0±0.0 0.5±0.3
26. Pick-out-of-hole 67.0±3.6 39.0±9.9 52.0±5.0 53.5±5.7 0.0±0.0 0.0±0.0 0.0±0.0
27. Push 79.5±3.0 38.0±3.0 48.0±2.2 27.5±3.2 7.7±2.9 42.0±3.8 46.0±5.8
28. Push-back 66.5±1.9 69.0±5.7 79.5±3.1 64.0±4.2 0.0±0.0 0.0±0.0 1.0±0.6
29. Push 74.5±2.6 43.0±4.2 68.0±4.9 38.5±7.5 8.3±2.4 4.5±1.0 3.0±1.0
30. Pick-place 67.5±1.2 50.5±2.4 58.5±2.8 47.5±3.6 10.3±4.3 0.0±0.0 1.0±0.3
31. Plate-slide-side 69.0±2.8 47.5±4.8 48.0±3.7 67.0±3.8 36.7±7.0 0.0±0.0 0.5±0.3
32. Plate-slide-side 71.0±3.2 95.0±1.0 91.5±2.2 92.5±2.3 0.0±0.0 0.5±0.3 13.5±7.9
33. Plate-slide back 67.5±1.5 96.5±0.6 98.5±0.9 91.5±1.5 0.0±0.0 1.5±0.6 4.5±1.5
34. Plate-slide-back-side 75.5±2.4 80.5±5.1 89.0±2.5 83.5±2.7 0.0±0.0 0.5±0.3 6.0±2.0
35. Peg-unplug-side 69.5±1.7 66.5±3.7 76.0±4.7 53.5±3.8 5.3±1.3 6.5±2.8 4.5±1.5
36. Soccer 73.0±1.7 21.5±4.8 18.0±1.2 26.0±2.4 10.5±2.1 9.0±2.2 8.0±1.3
37. Stick-push 72.0±1.4 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
38. Stick-pull 73.5±1.9 0.0±0.0 0.5±0.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
39. Push-wall 72.0±2.4 54.5±6.4 88.0±1.1 54.0±10.07.8±3.1 0.5±0.3 1.0±0.6
40. Reach-wall 75.0±0.6 40.5±6.9 60.0±4.1 26.5±6.1 13.3±5.3 49.5±5.6 75.0±5.2
41. Shelf-place 74.5±2.5 6.0±2.8 1.0±0.6 1.0±0.6 0.8±0.5 0.0±0.0 0.0±0.0
42. Sweep-into 66.0±1.4 94.5±1.2 95.5±1.3 81.5±8.1 25.0±4.7 9.0±1.9 11.0±2.6
43. Sweep 73.0±1.1 74.5±2.9 83.0±3.6 36.5±12.30.0±0.0 0.0±0.0 0.0±0.0
44. Window-open 64.5±0.7 99.0±0.3 98.5±0.9 100.0±0.060.8±7.9 13.5±3.6 33.5±6.2
45. Window-close 67.0±2.7 100.0±0.099.5±0.3 99.5±0.3 11.8±4.0 17.0±3.2 29.5±8.0
Train mean 71.4±4.3 66.0±5.8 69.8±4.1 63.0±5.5 17.3±8.9 14.2±2.6 17.2±4.2

46. Bin-picking 76.0±3.2 1.0±1.0 1.5±0.9 3.5±2.6 0.2±0.3 0.0±0.0 0.0±0.0
47. Box-close 70.0±4.3 1.0±1.0 6.5±3.9 0.5±0.9 1.7±2.9 0.5±0.9 0.5±0.9
48. Hand-insert 69.5±2.6 0.5±0.9 2.5±2.6 3.5±3.6 7.5±7.7 3.0±3.4 3.0±2.3
49. Door-lock 73.0±10.082.0±3.8 70.0±17.261.5±13.434.3±4.8 41.5±10.134.5±12.6
50. Door-unlock 68.5±3.6 81.0±7.1 84.5±9.7 66.0±15.514.2±24.821.0±10.037.0±15.0
Test mean 71.4±3.5 33.1±3.0 33.0±6.3 27.0±8.9 11.6±7.1 13.2±6.0 15.0±6.5

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 10: ML-45 of Meta-World returns. We present the final returns of our method and baseline
approaches on both the training and test tasks of the Meta-World ML-45 benchmark. All results are
reported as the mean return ±95% confidence interval of five seeds.

Index. Task Ours w/o
C2F

w/o
HLC

SDVT Million LDM VariBAD

1. Assembly 2898±97 2847±27 2529±88 2590±61 329±53 154±27 101±13
2. Basketball 2885±1011417±1161444±1071569±169281±86 5±0 11±2
3. Button-press-topdown 2693±1163582±1003712±27 3586±50 884±128 988±104 1182±84
4. Button-press-topdown-wall 2950±69 3541±1203686±52 3594±62 868±132 977±99 1209±81
5. Button-press-wall 3186±28 3143±1113072±48 3193±101553±102 667±68 615±96
6. Button-press-wall 3118±73 3344±1083170±64 3275±44 495±108 711±156 633±87
7. Coffee-button 2746±53 3465±71 2731±3363309±96 684±249 204±13 211±25
8. Coffee-pull 3123±79 1209±45 1385±128877±118 58±4 40±2 40±4
9. Coffee-push 3197±39 1175±2031463±193729±55 228±62 41±4 65±16
10. Dial-turn 2861±70 3711±1343396±1083607±197670±30 942±98 803±76
11. Disassemble 2990±85 2823±4312811±2912878±254124±20 156±11 130±10
12. Door-close 2975±93 4310±44 4328±63 4481±19 1138±1614359±27 2661±580
13. Door-open 3080±50 4004±1163948±76 4010±109636±61 624±76 607±62
14. Drawer-close 2936±35 4443±1254730±28 4748±22 3625±4624375±92 4482±122
15. Drawer-open 2855±1124638±6 4065±99 4391±14 1746±95 1284±71 1356±127
16. Faucet-open 2945±94 4608±9 4276±1584636±17 1669±47 2212±73 2584±299
17. Faucet-close 3074±23 4594±31 3997±1734533±42 2349±2142193±1292174±185
18. Hammer 3013±68 516±28 1299±301 468±5 563±56 394±27 397±25
19. Handle-press-side 2949±27 4689±52 4707±29 4783±8 480±68 489±71 1377±270
20. Handle-press 2941±53 4648±66 4601±48 4579±64 2063±73 1791±1002126±116
21. Handle-pull-side 2959±56 3647±1433060±2753340±240165±64 19±2 24±2
22. Handle-pull 3000±83 3482±3424019±59 2996±260996±392 40±8 87±23
23. Lever-pull 2999±46 762±79 381±33 878±89 276±13 240±10 232±11
24. Peg-insert-side 2978±42 1307±81 1616±1281238±50 192±36 11±0 10±1
25. Pick-place-wall 3102±60 2542±1572728±1361812±98 491±181 0±0 2±0
26. Pick-out-of-hole 2808±91 781±183 1206±142922±122 23±5 10±1 13±1
27. Push 3157±49 2839±1313313±1082823±1421555±1253105±1263193±89
28. Push-back 2897±1111284±88 1799±66 881±203 16±2 7±1 5±0
29. Push 3094±1152428±1233421±56 2247±92 651±156 55±6 60±8
30. Pick-place 2921±54 1632±76 2165±83 1449±141291±115 8±0 10±1
31. Plate-slide-side 2942±63 2516±1382207±77 3221±98 1929±195359±18 546±40
32. Plate-slide-side 3022±1143250±84 2873±85 3784±178818±54 191±31 662±139
33. Plate-slide back 2764±46 4235±28 4109±20 4165±52 1021±52 556±15 561±67
34. Plate-slide-back-side 3021±29 3776±1794173±24 4124±58 631±142 183±35 728±134
35. Peg-unplug-side 2935±36 1390±2171984±187890±103 43±9 33±3 27±1
36. Soccer 2974±67 1056±25 1079±41 1052±65 515±152 278±30 321±16
37. Stick-push 3074±21 612±206 289±166 26±8 125±28 11±1 14±2
38. Stick-pull 2980±88 289±92 82±43 16±3 129±37 11±1 12±1
39. Push-wall 2925±74 2224±97 3586±50 2548±308854±218 33±1 48±10
40. Reach-wall 3063±41 2747±2633447±1802330±2731602±1672906±2633509±46
41. Shelf-place 3041±76 878±70 838±105 899±36 69±35 0±0 1±0
42. Sweep-into 2756±79 3962±1404061±91 3095±422879±157 238±43 207±45
43. Sweep 2902±59 2976±1393251±1101640±421325±62 65±8 83±12
44. Window-open 2684±13 4142±51 4125±87 4225±31 710±62 471±30 795±116
45. Window-close 2828±1124392±39 4397±28 4406±49 710±128 928±36 1152±96
Train mean 2961±1492797±2122879±2012685±154766±352 719±63 779±171

46. Bin-picking 2993±138 84±48 133±38 104±35 20±9 20±6 15±1
47. Box-close 2844±133159±28 255±78 145±19 231±72 248±20 209±34
48. Hand-insert 2708±238221±41 258±67 273±111 118±89 82±63 124±102
49. Door-lock 2960±3352048±1061901±7471565±2271659±1841692±3381589±374
50. Door-unlock 2962±51 1844±2221952±2061763±264787±217 944±167 1219±339
Test mean 2912±105871±117 900±226 770±140 563±60 597±154 631±203

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 11: A list of all of the Meta-World tasks and a description of each task.

Task Language instructions

assembly pick up a nut and place it onto a peg
basketball pick the basketball and place at the goal point
button-press-topdown push the button down to the goal point
button-press-topdown-wall bypass a wall and press a button from the top
button-press press a button
button-press-wall bypass a wall and press a button
coffee-button push a button on the coffee machine
coffee-pull place cup away
coffee-push push cup to the goal point
dial-turn rotate a dial 180 degrees
disassemble pick a nut out of a peg
door-close push the door to the goal point
door-open pull the door to the goal point
drawer-close push the drawer to the goal point
drawer-open pull the drawer to the goal point
faucet-open rotate the faucet counter-clockwise
faucet-close rotate the faucet clockwise
hammer push to the goal point with hammer
handle-press-side press a handle down sideways
handle-press press a handle down
handle-pull-side pull a handle up sideways
handle-pull pull a handle up
lever-pull pull the lever to the goal point
peg-insert-side insert the peg to the goal point
pick-place-wall pick a puck, bypass a wall and place the puck
pick-out-of-hole pick up a puck from a hole
reach reach the goal point
push-back push the puck back to the goal point
push push the puck to the goal point
pick-place pick the puck and place at the goal point
plate-slide push the plate to the goal point
plate-slide-side push the plate left to the goal point
plate-slide-back push the plate back to the goal point
plate-slide-back-side push the plate right to the goal point
peg-unplug-side pull a peg sideways to the goal point
soccer push a ball to the goal point
stick-push grasp a stick and push a box using the stick
stick-pull grasp a stick and pull a box with the stick
push-wall bypass a wall and push a puck to a goal
reach-wall bypass a wall and reach a goal
shelf-place pick the puck and place on shelf at the goal point
sweep-into sweep the puck into the box
sweep sweep the puck off the table
window-open push the window to the goal point
window-close push the window to the goal point
bin-picking grasp the puck from one bin and place it into another bin
box-close grasp the cover and close the box with it
hand-insert insert the gripper into a hole
door-lock rotate the lock clockwise
door-unlock rotate the lock counter-clockwise

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Latent Space Visualization

Task Categories
Drawer-open
Door-close
Shelf-place
Sweep-into
Level-pull

(a) ML-10 Latent Space

Latent Space Visualization

Task Categories
Bin-picking
Box-close
Hand-insert
Door-lock
Door-unlock

(b) ML-45 Latent Space

Figure 6: Latent Space Visualization. The t-SNE visualization of the learned task representation
space for the ML-10 testing tasks is presented. We sampled three tasks from each task category
of the test tasks, with each color scheme representing a different task category. Each point in the
visualization corresponds to a task representation vector extracted from transitions and is color-
coded according to the task properties.

22

	Introduction
	Preliminary
	Meta-Reinforcement Learning
	Task Attributes Inference
	Variation-level Adaptation and Task-level Adaptation

	Method
	Method Overview
	Coarse-to-Fine Policy Refinement.
	Holistic-Local Contrastive Representation

	Experiments
	Experimental Settings
	Comparison Unseen Tasks Adaptation Performance
	Comparison Zero-shot Adaptation Performance
	Ablation

	Related Work
	Conclusion
	Training approach and Pseudocode
	Limitations and Future work
	Implementation Details
	Reference Implementations
	Hyperparameters
	SDVT
	LDM and VariBAD
	Million
	Ours

	Network Architecture
	Task Descriptions

	Detailed Experimental Results
	Performance on Individual Tasks
	ML-10
	ML-45

	Learning Curves

	Additional Results
	Visulizations

