Under review as a conference paper at ICLR 2026

BARRIERS FOR LEARNING IN AN EVOLVING WORLD:
MATHEMATICAL UNDERSTANDING OF LOSS OF PLASTICITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning models excel in stationary data but struggle in non-stationary environments
due to a phenomenon known as loss of plasticity (LoP), the degradation of their abil-
ity to learn in the future. This work presents a first-principles investigation of LoP in
gradient-based learning. Grounded in dynamical systems theory, we formally define LoP by
identifying stable manifolds in the parameter space that trap gradient trajectories. Our anal-
ysis reveals two primary mechanisms that create these traps: frozen units from activation
saturation and cloned-unit manifolds from representational redundancy. Our framework un-
covers a fundamental tension: properties that promote generalization in static settings, such
as low-rank representations and simplicity biases, directly contribute to LoP in continual
learning scenarios. We validate our theoretical analysis with numerical simulations and
explore architectural choices or targeted perturbations as potential mitigation strategies.

1 INTRODUCTION

The extraordinary success of back-propagation in training deep neural networks often relies on two implicit
assumptions. First, stationarity is assumed. This means that the data distribution encountered during training
is similar to the distribution faced during deployment. As a result, post-training adaptation is minimal or
absent. Second, a single random initialization of network parameters is the main source of diversity and
exploration potential, a resource that is progressively consumed by optimization and not replenished. These
assumptions falter when an artificial agent must operate and learn continuously within an environment
characterized by changing dynamics or evolving task distributions. This scenario, commonly referred to as
continual or lifelong learning, presents the stability-plasticity dilemma (Abraham and Robins} [2005; |Chaudhry|
et al.,[2018)). This dilemma demands that the system must be stable enough to retain previously acquired
knowledge, yet plastic enough to effectively integrate new information.

Empirically, standard deep networks subjected to long sequences of tasks or slowly drifting data streams
often exhibit a decline in their learning capability (Dohare et al., [2024; Berariu et al., 2021; |Dohare et al.}
2021} Nikishin et al.| [2022; [Lyle et al.l 2023). This phenomenon, termed loss of plasticity (LoP), is
distinct from catastrophic forgetting (McCloskey and Cohenl [1989; Ratcliff, |1990; |[Frenchl [1999), where new
learning overwrites old knowledge. LoP specifically refers to the diminished ability to learn new information
effectively over time. Common symptoms include exploding weight magnitudes (Nikishin et al., |2022),
activation saturation, the emergence of “dead” ReLU units (whose upstream parameters cease to update)
(Nair and Hintonl, 20105 Sokar et al.| 2023 [Dohare et al., 2021} Lyle et al., [2022), a collapse in the effective
rank of hidden layer representations indicating reduced feature diversity (Papyan et al.| 2020; |Huh et al.
2023} [Kumar et al.l 20205 \Gulcehre et al., [2022), and redundancy or diminishing contributions from network
components like attention heads or filters (Lyle et al.,[2023)). Many of these issues have been highlighted in
recent studies focusing on LoP (Dohare et al., 2023 |Kumar et al., 2024; |Ash and Adams} |2020).

Under review as a conference paper at ICLR 2026

Dohare et al.| (2024) argue that such failures are intrinsically linked to the back-propagation algorithm itself.
They posit that gradient descent optimized for transient single-task learning relies heavily on the initial
random state for exploration, a resource that is consumed and not replenished during prolonged training. Their
work demonstrates that standard deep learning methods can lose plasticity until they perform comparably to
linear networks and suggests that maintaining plasticity requires mechanisms beyond pure gradient descent
such as continually injecting diversity via methods like their proposed continual backpropagation.

Goal of this paper. Motivated by observations about LoP, our paper revisits the dynamics of gradient
descent and back-propagation through the lens of dynamical systems theory. We seek to answer the question:

What structural features inherent in gradient flow dynamics inevitably lead to LoP, and how
might we design algorithms or architectures capable of perpetual adaptation?

The central theorem in this work is that the tendency of gradient-based optimization to favor low-rank or
“simple” representations lies at the heart of plasticity loss. While properties like low effective rank and
simplicity bias are often associated with improved generalization in the standard two-phase learning paradigm
(Huh et al., 2023 Papyan et al., [2020} [Zhang et al.| |2017)), we argue that these very properties become
detrimental in continual learning settings. By reducing the effective dimensionality of the network’s feature
space, they limit its capacity to adapt to novel information, thus contributing to the LoP observed by (Dohare’
et al.| 2024) and others. While loss of plasticity (LoP) has been previously linked to hallmarks of low-rank
representations in the literature, our work introduces a novel perspective and develops a formal framework
that systematically unifies several previously disparate observations. In addition, our theory is the first to
establish explicit connections between LoP and the geometries induced by learning dynamics and cloning,
two active research domains that we argue hold considerable potential for advancing the study of LoP.

1.1 BACKGROUND AND RELATED WORK

Loss of Plasticity (LoP). A network is said to suffer a loss of plasticity when, after some period of training,
it can no longer acquire new information as effectively as a freshly-initialised model of the same architecture.
LoP has been documented in a variety of continual-learning and reinforcement-learning settings (Dohare
et al.,2024; |[Nikishin et al.,2022). Crucially, LoP is distinct from catastrophic forgetting: performance on past
tasks may remain intact while the ability to learn future tasks degrades (Lyle et al.,|2023)). Typical symptoms
include exploding weight norms, growing numbers of dead (saturated) units, and a collapse of the effective
rank of hidden representations (Dohare et al., 2021} |Papyan et al.| 2020).

Previous explanations. Early accounts linked LoP to individual pathologies, e.g., weight-norm growth or
activation sparsity. However, these factors alone failed to consistently explain the phenomenon (Lyle et al.|
2022). A more recent view connects LoP to a degeneration of the network’s neural tangent kernel (NTK)
that is once the NTK becomes low-rank, many directions in function space receive negligible gradient and
can no longer be learned (Lyle et al.| [2023)). This perspective suggests that LoP is multi-faceted with diverse
surface-level defects (e.g., dead units, duplicated features) sharing the common consequence of reducing the
network’s effective degrees of freedom.

Geometric Singularities and Learning Dynamics. The connection between overparameterization, reduced
dimensionality, and learning difficulties has deep roots in the analysis of neural network geometry. Hierarchi-
cal models exhibit singularities that are regions in parameter space where the mapping from parameters to
function is not unique (e.g., due to unit duplication or vanishing). Foundational work by [Fukumizu and Amari
(2000) and |Amari et al.|(2006) demonstrated that these singularities cause the Fisher Information Matrix to
degenerate, leading to slow learning dynamics (plateaus) as gradient descent is attracted to these regions.

Implicit Bias and Stochastic Dynamics. Recent work highlighted how the optimization algorithm itself
contributes to the collapse towards simpler representations. (Chen et al.| (2023) analyzed the implicit bias

Under review as a conference paper at ICLR 2026

of Stochastic Gradient Descent (SGD), showing that gradient noise induces an attractive force towards
these singular regions (termed “Invariant Sets”). This “Stochastic Collapse” suggests that the tendency
towards LoP states is exacerbated by the stochastic nature of the optimization process, even if the regions are
unstable under deterministic gradient descent. Furthermore, Wang et al.| (2024) empirically demonstrated that
maintaining trainability (ability to fit new data) does not guarantee generalizability (performance on unseen
data), emphasizing the need for methods that restore genuine plasticity.

2 LoP MANIFOLDS: TRAPS FOR GRADIENT DESCENT

In this section, we lay the groundwork for our analysis by defining Loss of Plasticity (LoP) within a
dynamical systems framework and recalling the standard definitions for feed-forward neural networks and
back-propagation. The stability of LoP manifolds, a crucial concept for understanding their persistence, will
be discussed later in Sec.[2| Let 8 € © C RP represent the parameters of a neural network. We consider
training on a stream of data {(=;, y;)}; using gradient descent or its stochastic variants. The objective is

typically to minimize a loss Zfil L(go(x;), yi), which we can succinctly refer to as £(#). This allows us to
define LoP based on the the trajectory of parameters 6(t) in the parameter space © as driven by the negative
gradient in the loss landscape.

Definition 2.1 (LoP Manifold). A manifold M C © induces LoP if the gradient of the loss function is
tangent to the manifold at every point on the manifold. That is, VgL (0) € Ty M for all § € M, where Ty M
denotes the tangent space of M at 0. This tangency condition ensures that once the gradient flow enters M,

it remains within M under the dynamics of gradient flow %(:) = —Vgﬁ(@(t)).

Remark 2.1. If the conditions in Definition hold irrespective of the specific data distribution generating
the loss L, which we can think of as functional LoP, and is our primary area of interest. Such LoP arises from
the network architecture and gradient descent dynamics alone and is particularly relevant as it persists even

if the task or data distribution evolves.

Given these definitions, we can formalize existence of these LoP manifolds, restricting subsequent learning.
We present a central theorem that jointly addresses LoP arising from frozen and duplicate units. The intuition
is that once units become unresponsive (frozen) or perfectly redundant (cloned), they tend to remain so under
standard gradient-based optimization.

Theorem 2.1. Let G = (V, E) be the network’s computational DAG and let 6 = {0, : (u > v) € E} € ©
denote the edge parameters.

1. Frozen-unit manifold M . Assume there exists F' C V such that, for all finite inputs encountered,
each v € F is persistently saturated (f'(z,) = 0). Then the gradients wi-t. all incoming parameters
to v vanish on any mini-batch, so those coordinates remain fixed; writing the linear constraints as
Oin(v) = const for all v € F, the affine subspace Mp := {0 : 0;,(v) = const Yv € F'} satisfies
VL(0) € Ty M and GD/SGD updates initialized in M g remain in M.

2. Cloning manifold M. Assume a partitioning of nodes into disjoint blocks {Sh, ..., Sk} exists
with following properties. For every ordered block pair (S;, S;), we have the linear equalities
Zvesj Ouwe = Zvesj Oyro for all u,u' € S; (equal row-sums) and Zuesi Opo = ZuESi -
for all v,v" € S; (equal column-sums). Let M be the affine subspace of © consisting of all 0
satisfying these constraints. If 0 € M, then (i) all units within any block share the same forward
values on any input, (ii) all units within any block share the same backpropagated errors on any
input, and therefore (iii) the per-edge gradients are constant across edges connecting the same block
pair, i.e., for any (u,v) and (v',v") with u, v’ € S; and v,v" € S}, 0L/ 00, = OL/08,r,. Hence
VL(0) € Ty M and GD/SGD updates initialized in M ¢ remain in Mc.

Under review as a conference paper at ICLR 2026

Note that both LoP manifolds M r and M are defined as linear LoP manifolds in the sense of Definition[2.1]
Formal proofs and further details are provided in Appx.

Proof idea. Frozen units. If a unit stays in a regime with f’(z,) = 0 for all finite inputs (e.g., tanh with
very large ||0;,(v)|| or ReLU with a large negative bias), then 9L /96;, (v) = 0; its incoming parameters are
fixed, so updates are tangent to M . Cloning via redistribution. The key idea the row/column-sum equalities
mean total incoming/outgoing weight from/to any block is redistributed within each block pair (S;, S;).
Thus, the total contribution to the forward and backward of each unit within a block remains identical,
implying the forward and backward cloning (properties (i) and (ii)) within blocks. Thus, per-edge gradients
dL/dBy, = h(u)d(v), are therefore by forward and backward symmetries across the blocks the gradients
will be constant for any two units in these blocks (u,v) € S; x S;. These block-wise constant gradients
trivially satisfy the row-sum and column-sum equalities, and hence are tangent to M ¢, and first-order updates
remain on both manifolds.

Remark 2.2. It is important to note that the Duplicate Manifold M p (defined formally via Incoming and
Outgoing Equitable partitions in Appx.[A.2)) represents a significant generalization of the cloning concepts
typically discussed in literature. Prior analyses of singularities (Fukumizu and Amari, | 2000) or invariant sets
((Chen et al.}|2023)) generally define cloned units by requiring their associated weights to be strictly identical
(the block-wise constant condition in our terminology). Our framework proves that invariance under gradient
descent holds even under the relaxed condition of equitability, where individual weights may differ as long
as specific incoming and outgoing sums are maintained. This significantly broadens the class of structures
identified as LoP manifolds.

Remark 2.3. The cloning LoP manifold naturally lends itself to gradient descent and stochastic gradient
descent, regardless of the order which we process the samples, will remain strictly within the manifold.
This extends to virtually all variations of gradient descent based optimizations, namely Stochastic Gradient
Descent (SGD), SGD with momentum, and Adam, as long as the optimizer is initialized at the onset of cloning.
The only exception to this is weigh decay which could break some symmetries. This fact can be empirically
observed across our cloning experiments, showing that across a wide range of optimization schemes the
model remains trapped onto to the LoP manifold.

Remarkably, the theorem admits a modular version, which allows us to create practical cloning certificate for
modern architectures (see Appx.[A.3).

Theorem 2.2 (Modular Cloning (informal)). This cloning property can be decomposed modularly. If a
network is composed of individual modules (e.g., layers or blocks), and each module locally satisfies the
cloning invariance properties—namely, (1) cloned inputs produce cloned outputs (Forward Invariance), (2)
cloned backward signals at the outputs produce cloned backward signals at the inputs (Backward Invariance),
and (3) gradient updates preserve these invariances (Persistence)—then the entire network resides on a
cloning manifold, provided the cloning profiles (partitions) are consistent at the interfaces between modules.

To empirically test the validity of the cloning manifold and their potential escape mechanisms we conduct
cloning experiments. First, a base model (e.g., an MLP) is trained on a specific task. Subsequently, a larger
model is constructed by expanding the base model. This expansion involves increasing the width of the
model for MLPs, the number of channels for CNNs and ResNets, and the feature dimension for ViTs. The
weights of the cloned model are initialized in such a way that its activations are identical to those of the base
model. This effectively creates blocks of units that have identical activations. Next, we train both the base and
cloned models on the same task and monitor their training progress through the loss curve, the effective rank
of representations, and the cloning R? score. Figure [2.1| presents the results of such experiments on MLPs,
shedding light on the dynamics within and escapes from these LoP manifolds. The empirical validation
of these claims, such as demonstrating perfect cloning under specific initializations or the persistence of
dead units, can be found in Fig.[2.T|and Appx.[B] Notably, despite Adam violating the symmetry conditions
required for Theorem [2.1] the empirical evidence suggests that it frequently fails to escape the manifold. This
observation implies the existence of a stronger theory capable of explaining this phenomenon.

4

Under review as a conference paper at ICLR 2026

Escaping the LoP manifolds with perturbations. While a comprehensive theoretical analysis of the
stability of empirically observed LoP manifolds is beyond the scope of this work, our empirical investigations
indicate that these manifolds are frequently unstable or resemble saddle-like shapes. Certain types of noise
or symmetry-breaking operations can help models escape these manifolds. We highlight two common
perturbations: (1) Noisy SGD is a modification of SGD that adds Gaussian noise to the computed gradients
before parameter updates. The magnitude of this injected noise is usually proportional to the norm of the
gradient, with its initial relative strength gradually decreasing over successive steps. By applying this noise
after cloning, we can determine whether the model can escape the LoP manifold or if it will fall back. (2)
Dropout introduces stochasticity in the forward and backward passes by randomly zeroing activations. For
cloned units, this breaks the symmetry because different clones might be active in different dropout masks,
leading to divergent gradient updates. This is supported by experiments where dropout helps a model escape
an artificially induced cloning manifold (see Fig. [2.T).

MLP MLP MLP
1.0 1.6| :Cloning = Base 90| Cloning
i & + Dropout
0.9| |Cloning
I NS R (O + Noise ’é 80
g 0.8 1.2 —— Cloned (x2) 52
> —— Cloned (x2) 210 + Dropout v 70
E 0.7 * Dr(?pout S ' —— + Noise E
o —— + Noise 0.8 T — 8
Q0.6 0.6 ‘:.La 60
0.5 0.4 50/ 1|
0.2
0 leb 2e5 3e5 4e5 0 leb5 2e5 3eb 4eb5 0 le5 2e5 3e5 4e5
Step Step Step

Figure 2.1: Cloning MLPs experiments. The empirical data validates Theorem [2.] on duplicate manifold
LoP. The cloned network dynamics remain confined in the base network manifold when using SGD, however
using Noisy SGD or Dropout the dynamics can escape the manifold. Left: Cloning R? score quantifies the
proportion of variance in individual unit activations within a cloned block that is explained by the mean
activation of that block. An R? score of 1 indicates perfect cloning (units in a block are nearly identical),
while a O score indicates no explained variance. See Appx. (Appendix [B)) for the precise formula and
calculation details. Middle: Training loss comparison. Cloned loss refers to the loss of the cloned model
during its training phase, while base loss refers to the loss of the original base model, which continues training
for comparison. Right: Effective rank evolution showing representational diversity.

Both noisy SGD and dropout act as symmetry-breaking operations. In the case of dropout, both forward
and backward passes are asymmetric for cloned units. For noisy SGD, the backward pass (gradient update)
becomes asymmetric. This asymmetry causes the parameters of notionally cloned units to slowly diverge.
Remarkably, in our MLP experiments, even a small amount of gradient noise, e.g., a single step with noise
magnitude 0.01 relative to gradient norms, suffices to initiate escape from an LoP manifold, though stronger
noise generally leads to faster escape. In contrast, in settings such as Vision Transformers, while the model
could escape from the manifold with a small perturbation, it did not move very far from it. More experimental
studies into this direction would be vital to better understand the stability of these LoP manifolds.

3 EMERGENCE OF LOSS OF PLASTICITY FROM LINEAR-NONLINEAR RANK
DyNAMICS

Having established the existence of LoP manifolds, we now discuss the mechanisms within standard training
that drive their formation. The optimization process can be seen as a trajectory, beginning with an expansion of
representational diversity as features propagate through nonlinear layers and become increasingly decorrelated

Under review as a conference paper at ICLR 2026

(Poole et al., [2016)). However, this initial growth is followed by a compression phase, where the network
simplifies its representation to retain only the most relevant features for the task. This low-dimensional
structure is a key characteristic of neural collapse, where last-layer features for each class converge to their
means in a highly organized geometric configuration (Papyan et al., [2020). This is also consistent with
the information bottleneck principle, which describes training as a process of first fitting the data and then
compressing the representation to discard irrelevant information (Shwartz-Ziv and Tishbyl, [2017). Here,
we argue that these two principles derive the model towards the LoP manifolds we identified earlier. Thus,
this provides a direct link between these fundamental compression dynamics inherent to deep network
optimization, and emergence of LoP.

To diagnose whether features are diversifying or compressing during training, we track a smooth surrogate of
the rank of the feature correlation matrix. Exact rank is numerically unstable, because it is not a continuous
nor a differentiable map from the matrix space. Therefore, we use differentiable proxies to rank such as
Rényi-2 rank, era(M) = (tr M)?/||M||%, or the Shannon effective rank, er(M) = exp(H (A(M)/tr M)).
Both increase when the eigenmass is evenly distributed or dominated by a few values. Note that both of these
surrogates are maximized when matrix M has equal eivenvalues and minimized when it a rank-1 matrix. The
following theorem offers an insight into how nonlinear layers contribute to the formation of features.

Theorem 3.1 (rank gain across one linear—nonlinear step). Assume ¢ is nonlinear with a Hermite expansion.
Let C be the pre-activation correlation matrix with unit diagonal. For an activation ¢, define the correlation
kernel K,(r) = Corr(¢(z), ¢(y)) where (x,y) are jointly Gaussian with correlation . The nonlinearity
acts entrywise on correlations, producing K4(C). Its correlation kernel satisfies K4(0) = 0, K4(1) =1,
and |K4(r)| < |r| for all |r| < 1. For any correlation matrix C with unit diagonal the Rényi-2 effective rank
obeys
era(Kp(C)) _ A+ iy O
erz(C) d+ 30 Ko(Ciy)> —

and the ratio equals 1 only when every off-diagonal magnitude C;; is 0 or 1.

Note that the theorem implies that any correlations |C;;| € (0, 1) strictly increase Rényi-2 rank after the
nonlinearity because K 4 is below the identity map everywhere other than those fixed points. Note that this
gap also depends on the activation itself, and how nonlinear it is. We can summarize this gap via a scalar that
summarizes how strongly the kernel pulls intermediate correlations toward the fixed points {0, 1}, which we
term the decorrelation strength kg = max,.c[g 1 (r? — Ky(r)?). Larger k, implies a larger rank gain for the
same spectrum of C'. For a formal statement and proof of this statement see Appx.

Implication for emergence of frozen units So far we implicitly treated pre-activations as standardized. In
practice, their first and second moments drift during training. Allowing nonzero means and nonunit variances
changes the operating regime of the activation and thus modifies the kernel K and the decorrelation strength
ke. For ReLU, making the effective bias more negative increases nonlinearity and raises x,. For tanh,
increasing effective gain does the same. These are precisely the regimes where the derivative is near zero
on most inputs, which explains why training that enhances decorrelation also creates units that are nearly
always inactive or saturated. One insight from this connection is that we can unify two empirically observed
phenomena: “dead ReLU” and “frozen units” as both symptoms are caused by the same underlying force.

Implication for creation of duplicate or cloned units Neural collapse is a widely observed endpoint in
which the penultimate features are low-rank, and the class means form a simplex or Equiangular Tight Frame
(ETF) structure (Papyan et al., [2020). Under this geometry, the theorem makes a precise prediction. To
preserve low rank through the nonlinearity, correlations must lie at kernel fixed points that do not increase
effective rank, which means they should be close to 0 or 1. Maintaining rank C' therefore requires roughly C'
orthogonal directions for class structure and d — C directions that are near duplicates within classes. Linear
layers and the loss encourage this compression and duplication, while the nonlinearity would otherwise
expand diversity unless within-class correlations are driven close to 1 and others close to 0.

Under review as a conference paper at ICLR 2026

The two implications above provide a theoretical perspective on why duplicate features and frozen units
frequently emerge at or near convergence, and why the resulting representation lies close to LoP manifolds,
as proven in Theorem [2.1]

3.1 EXPERIMENTAL VALIDATION

We validate our theory with experiments on MLP, CNN, ResNet, and ViT architectures, training them
continually on a sequence of 40 5-class tasks derived from Tiny ImageNet. We track the emergence of
LoP symptoms, including dead units, duplicate units, and effective rank degradation. Full experimental
details are provided in Appx. [B] The experimental evidence confirms our intuitions (see Appx. [B] and
Figs. 3.1} 3.2} B4 and [B.6): depending on the architecture, we observe that a degradation in the model
performance is concomitant with the emergence of duplicate or frozen units, and a corresponding decrese in
representational diversity. Our inquiry so far highlights two key pathways to LoP common symptoms: (1)

MLP CNN RESNET VIT
1.0 1.0
1.0 —
0.8 0.9 0.9 'E‘H;Hi it
0.8 41
0.6 0.8
T mRnIne 0.5
&Hfl}mﬁﬁ' Hﬁﬁ 0.7 .H‘}'HE EHHHHHEMH‘HE 0.7 - i HHHHHH
04| il / |
' YHI 0.6 ﬁl 06! I
I Online training accuracy ’ Online training accuracy : Online training accuracy 0.0 Online training accuracy
0.2| —+— Fraction of dead units 0.5| —— Fraction of dead units 0.5| —— Fraction of dead units —— Fraction of duplicated units
0 20 40 0 20 40 0 20 40 0 20 40
Task Task Task Task

Figure 3.1: Causes and symptoms of Loss of Plasticity emerging during continual learning. The plots illustrate
(across different architectures like MLP, CNN, ResNet, and ViT from left to right) an increase in the fraction
of dead or duplicate units during training, coincidental with a decrease in training accuracy. These are key
indicators of LoP. (Details of experimental setup in Appx.[B).

2 » RESNET ” VIT 2

g 2 100 0805 g0 5

L 5 ; I =]

“ iilfloss oo o f S ol LT 2

=] Q 5 =] Il o]

E YlH i < g 070g g % £ = =
3 © Yo @ © ®©150 5

ﬁ 50 f} 0_4% S 60 L 0708 i 06 8

653 A 3,

e el B2 0.655 > 100 04 3

& 40 g 250 Z 70 = 3

9 H}‘{ I 039 © 060° B oD I

Rt 3 o 5 8 60 [0608 & 5 02 8

= = a0 = Z g o

I 30 o | 0553 H 0.55 © H Tuutonnt| [P =}

028 " 3 50 5.3 o == " (00 2

20 g 0-50 @ 0 0.50 & —02 8

0 20 40 M 0 20 0 = 0 20 0 = 0 20 0 &

Task Task Task Task

Figure 3.2: Co-evolution of Effective rank and LoP symptoms, such as dead or duplicate units in the network
during continual training. (Experimental details in Appx.[B).

Emergence of duplicate features, where distinct computational units, or groups of units, within a network
layer effectively learn to become identical or highly correlated, as a potential consequence of attempting to
lower representational rank, (2) Emergence of frozen or dead features, where weights and biases of a unit
stop learning, as a result of attempting to maximize rank increase (leading to saturation) or to flatten the loss
landscape around the current parameters.

Under review as a conference paper at ICLR 2026

4 MITIGATION AND RECOVERY STRATEGIES

Having discussed the emergence of LoP symtoms and the existence of LoP manifolds, we now turn to
strategies for preventing their formation or recovering from them if they have already occurred.

Preventing LoP with Normalization. As established in Sec.[3] one primary cause for activations becoming
frozen is their pre-activations drifting into saturated regions. It is therefore natural to expect that normalization
layers like Batch Normalization (BN) or Layer Normalization (LN) can help prevent this. By standardizing
pre-activation statistics, these layers can keep activations operating in their more dynamic, non-linear range.
Even with learnable affine parameters (v, 3) after normalization, these parameters often act to maintain pre-
activations within a “healthy” range, rather than pushing them into extreme values that cause saturation (e.g.,
consistently negative for ReLU). This is widely supported by empirical evidence (see Appx.|B| Figures like
Fig.[3.1)in Sec.[3] and Fig.). BN and LN generally help maintain higher effective rank of representations
throughout training (as seen in Fig.[3.2) and concurrently prevent frozen/dead features and excessive feature
duplication from becoming dominant.

MLP CNN RESNET
ey T 100 T AT 140

8o IR | TR o AR o gl 25
2 2 o M 2 : =100 TR s
510 E lL e E 80 /\l\ﬂ[]‘f E o
£ ol 5 Wﬁﬂw R e —

20 5 = o o — 0 10 0 20 40

Task Task Task

Figure 4.1: Evolution of the Effective rank during training for architectures with and without normalization
layers. Dotted lines represent normalization with affine parameters. (Experimental details in Appx. [B).

Recovery from LoP via Perturbations. What if LoP conditions, such as widespread frozen units or
extensive feature cloning, have already set in? In such cases, mitigation strategies like normalization, which
act proactively, may no longer be sufficient to reverse the state, as indicated by cloning experiments where
normalization alone doesn’t break perfect, established clones. However, similar to our discussion on manifold
stability (Section [2), injecting noise into the training process can be a viable recovery strategy. The principle
is that if the LoP manifold is unstable or saddle-like, perturbations can allow the optimizer to find an escape
route. Noisy SGD and the more sophisticated Continual Backpropagation (Dohare et al.| [2024) are examples
of such mechanisms. We test recovery from LoP on the “bit-flipping” benchmark, an online regression task
with a non-stationary target function designed to challenge a model’s adaptability. A detailed description
of the task is in Appx. In order to demonstrate the recovery potential of noise injection, we design
an experiment where the first half of SM samples is processed by plain Stochastic Gradient Descent (SGD)
and in the second half we switch the learning rule to Continual Backpropagation (CBP). Figure [B.T|clearly
shows a reversal in trend when the switch happens: whereas SGD causes the representations’ rank to drop
and the online training loss to increase, CBP amplifies the features’ rank and reduces the online training
loss, effectively recovering plasticity. Additionally Fig. illustrates how aspects like rank and feature
duplication are affected by the dimensionality of the model. The disparity between SGD and CBP is only
increased by the model size, hinting that the model scale might aggravate the symptoms of LoP. For details

see Appx.

An interesting distinction arises when comparing artificially induced LoP (like explicit cloning) with naturally
emerging LoP symptoms in challenging scenarios like continual learning. In controlled cloning setups (e.g.,

Under review as a conference paper at ICLR 2026

as conceptualized in Fig. 2.1} dropout can be effective in breaking the artificially imposed symmetry and
allowing units to diverge. In contrast, in our continual Bit Flipping experiments, the role of dropout can be
mixed or even detrimental. While it might prevent some forms of LoP, it can also hinder the consolidation
of new knowledge or exacerbate forgetting if it too aggressively discards learned information relevant to
the new task. This suggests that the optimal strategy for maintaining or recovering plasticity might be
context-dependent.

5 CONCLUSION

This work has presented a mathematical framework to understand Loss of Plasticity (LoP) in deep neural
networks through the lens of dynamical systems. We formally defined LoP manifolds as regions in parameter
space that trap gradient-based optimization. We identified two primary mechanisms for their formation: the
saturation of activations leading to frozen units, and representational redundancy manifesting as cloned-unit
manifolds. Our analysis reveals that these LoP states are frequently characterized by a reduction in the
effective rank of representations. We investigated how architectural choices, such as normalization, can
mitigate the emergence of LoP, and how perturbations, like noise injection, can facilitate escape from these
restrictive manifolds, depending on their stability.

A key finding from our investigation is the inherent tension between learning objectives in static and dynamic
environments. While properties conducive to good generalization on a fixed dataset, such as the emergence of
low-rank features or simplicity biases, appear to be beneficial, they can also lead to a loss of adaptability when
the learning process is extended over time or across changing tasks. This suggests that continual learning
necessitates mechanisms that actively preserve or regenerate representational diversity.

This study raises several intriguing questions and suggests directions for future research. From a theoretical
perspective, our analysis has primarily focused on linear or affine LoP manifolds. However, it remains
an open question whether non-linear LoP manifolds exist and could potentially arise in practical network
training scenarios. Additionally, a more comprehensive theoretical understanding of the stability conditions
for various types of LoP manifolds is essential. Specifically, we need to determine the precise architectural or
data conditions that lead to one type of stability over another.

Numerically, the curvature of the loss landscape in directions normal to an LoP manifold is critical. Even
for an unstable manifold, if the negative curvatures are very slight (near flat), escaping might necessitates
significant perturbations or many training steps. Characterizing these curvatures and their impact on escape
dynamics would be valuable. While we have demonstrated that models can escape artificially cloned LoP
manifolds with interventions like dropout or noise, the question remains: can a model, once recovered from
such a state, explore the parameter space as effectively and find solutions as generalizable as a model trained
from a fresh, random initialization? This question is of significant practical importance, as it explores whether
we can fully restore exploratory capacity after falling into a highly restricted subspace.

One of the most intriguing outcomes of this work is the connection between unit cloning, a phenomenon often
studied in model compression or network analysis, and LoP in continual learning. These have been largely
treated as separate fields of inquiry. However, our theoretical framework, particularly the theorems regarding
cloned units, reveals a deep link, suggesting that insights and tools can be transferred between these domains.
This raises questions about whether techniques from continual learning, such as noisy backpropagation or
methods like Continual Backpropagation (CBP) (Dohare et al.,[2024)), could be beneficial in the context of
model expansion or escaping cloned states in other scenarios.

Ultimately, understanding and overcoming LoP is crucial for building Al systems that can learn continuously
and adapt robustly in an ever-changing world. By providing a mathematical characterization of some
fundamental barriers to such adaptation, we aim to pave the way for the development of new architectures
and learning algorithms that can sustain plasticity indefinitely, leading to truly lifelong learning agents.

Under review as a conference paper at ICLR 2026

REFERENCES

Wickliffe C Abraham and Anthony Robins. Memory retention—the synaptic stability versus plasticity dilemma.
Trends in Neurosciences, 28(2):73-78, 2005.

Shun-ichi Amari, Hyeyoung Park, and Tomoko Ozeki. Singularities affect dynamics of learning in neuroman-
ifolds. Neural computation, 18(5):1007-1065, 2006.

Jordan Ash and Ryan P. Adams. On warm-starting neural network training. In Advances in Neural Information
Processing Systems, volume 33, pages 3884-3894, 2020. URL https://proceedings.neurips.
cc/paper/2020/hash/288cd2567953f06e460a33951f55daaf-Abstract.htmll

Tudor Berariu, Wojciech Czarnecki, Stefano De, Jorg Bornschein, Samuel Smith, Razvan Pascanu, and
Claudia Clopath. A study on the plasticity of neural networks. arXiv preprint arXiv:2106.00042, 2021.
URL https://arxiv.org/abs/2106.00042.

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Rie-
mannian walk for incremental learning: Understanding forgetting and intransigence. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), pages 532-547. Springer,
2018. URL https://openaccess.thecvf.com/content_ECCV_2018/html/Arslan_|
Chaudhry__Riemannian_Walk_ ECCV_2018_paper.html.

Feng Chen, Daniel Kunin, Atsushi Yamamura, and Surya Ganguli. Stochastic collapse: How gradient noise
attracts sgd dynamics towards simpler subnetworks. Advances in Neural Information Processing Systems,
36:35027-35063, 2023.

Shibhansh Dohare, Richard S. Sutton, and A. Rupam Mahmood. Continual backprop: Stochastic gradient
descent with persistent randomness. arXiv preprint arXiv:2108.06325,2021. URL https://arxiv,
org/abs/2108.06325.

Shibhansh Dohare, Juan F. Hernandez-Garcia, Parash Rahman, A. Rupam Mahmood, and Richard S. Sutton.
Maintaining plasticity in deep continual learning. arXiv preprint arXiv:2306.13812,2023. URL https:
//arxiv.org/abs/2306.13812/

Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mahmood, and
Richard S Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):768-774, 2024.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences, 3(4):
128-135, 1999.

Kenji Fukumizu and Shun-ichi Amari. Local minima and plateaus in hierarchical structures of multilayer
perceptrons. Neural networks, 13(3):317-327, 2000.

Caglar Gulcehre, Srivatsan Srinivasan, Jakub Sygnowski, Georg Ostrovski, Mehrdad Farajtabar, Matt Hoff-
man, Razvan Pascanu, and Arnaud Doucet. An empirical study of implicit regularization in deep offline rl.
arXiv preprint arXiv:2207.02099, 2022.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola. The
low-rank simplicity bias in deep networks. In International Conference on Learning Representations
(ICLR), 2023.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization inhibits
data-efficient deep reinforcement learning. arXiv preprint arXiv:2010.14498, 2020.

10

https://proceedings.neurips.cc/paper/2020/hash/288cd2567953f06e460a33951f55daaf-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/288cd2567953f06e460a33951f55daaf-Abstract.html
https://arxiv.org/abs/2106.00042
https://openaccess.thecvf.com/content_ECCV_2018/html/Arslan_Chaudhry__Riemannian_Walk_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Arslan_Chaudhry__Riemannian_Walk_ECCV_2018_paper.html
https://arxiv.org/abs/2108.06325
https://arxiv.org/abs/2108.06325
https://arxiv.org/abs/2306.13812
https://arxiv.org/abs/2306.13812

Under review as a conference paper at ICLR 2026

Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity in continual learning via
regenerative regularization. In Proceedings of the 3rd Conference on Lifelong Learning Agents. PMLR,
2024. URL https://arxiv.org/abs/2308.11958.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in reinforcement
learning. arXiv preprint arXiv:2204.09560, 2022.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney. Under-
standing plasticity in neural networks. In Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pages 23190-23211. PMLR, 2023.
URL https://proceedings.mlr.press/v202/1yle23b.htmll

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of Learning and Motivation, volume 24, pages 109—-165. Elsevier, 1989.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 807-814, 2010.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The primacy
bias in deep reinforcement learning. In Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 16828—16847. PMLR, 2022.
URLhttps://proceedings.mlr.press/v162/nikishin22a.html.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal phase of
deep learning training. Proceedings of the National Academy of Sciences, 117(40):24652-24663, 2020.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential
expressivity in deep neural networks through transient chaos. Advances in neural information processing
systems, 29, 2016.

Roger Ratcliff. Connectionist models of recognition memory: Constraints imposed by learning and forgetting
functions. Psychological Review, 97(2):285, 1990.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information. arXiv
preprint arXiv:1703.00810, 2017. Submitted March 2, 2017, last revised April 29, 2017.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phenomenon in
deep reinforcement learning. In Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pages 32145-32168. PMLR, 2023. URL
https://proceedings.mlr.press/v202/sokar23a.htmll

Zhenyi Wang, Enneng Yang, Li Shen, and Heng Huang. A comprehensive survey of forgetting in deep
learning beyond continual learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization. In International Conference on Learning Representations
(ICLR), 2017.

11

https://arxiv.org/abs/2308.11958
https://proceedings.mlr.press/v202/lyle23b.html
https://proceedings.mlr.press/v162/nikishin22a.html
https://proceedings.mlr.press/v202/sokar23a.html

Under review as a conference paper at ICLR 2026

A THEORETICAL APPENDIX

This section contains detailed proofs of theorems and lemmas, further theoretical derivations, and discussions
extending the concepts presented in the main paper.

A.1 FORMAL PROOF OF THE RANK—GAIN THEOREM UNDER NON-LINEAR ACTIVATIONS

This section states and proves in full detail the theorem used in Sec.[3] We work with standard Gaussian
inputs and use Hermite expansions to characterize the correlation kernel of a nonlinearity.

Hermite basis and notation Let (hy,),>0 be the orthonormal probabilists’ Hermite polynomials in L2 ()

where v = N(0,1), with ho(2) = 1, hi(2) = 2, and E[hy,(Z2)h¢(Z)] = 6 for Z ~ 7. Any ¢ € L(y)
admits a Hermite expansion

¢(2) = Zakhk(z)v a, = E[¢(Z2)hi(Z)].
k=0
Write Uj) = Var(é(2)) = >y ai. We call ¢ nonlinear when at least one coefficient with k > 2 is nonzero.

Correlation kernel For jointly Gaussian (X,Y") with EX = EY = 0, Var(X) = Var(Y) = 1, and
corr(X,Y) =r € [—1,1], define

Ko(r) = Con(6(X), (1)) = S0~ EPCOIEGK)]

V/ Var(¢(X)) Var(¢(Y))
Using the Hermite expansion and Mehler’s identity E[hy,(X)he(Y)] = Sge 7" gives
D1 apr” a;
Ky(r)= =5 = wir, wp = =—r— >0, wg = 1. (1
Zkzl ai kzzl 2521 af kzg

Hence K is a convex combination of the monomials rk for k > 1.

Lemma A.1 (basic properties of K). If ¢ is nonlinear with ¢ € L?(), then the correlation kernel K
defined in (1) satisfies

K4(0) =0, K4(1) =1, | Ky (r)| < |r| forall|r] < 1.
Proof. The first two identities follow by evaluating (I) at » = 0 and » = 1. For the strict inequality, write

Ky(r) = 3,5, wer® with weights wy, > 0, Y-, wy, = 1. If |r| < 1 and there exists k¥ > 2 with wy, > 0
(nonlinearity), then

()] <D welr(e = vl (w1 + D wilr1) < el (w1 + D wi) = Irl-

E>1 k>2 k>2
O

Lemma A.2 (entrywise action on Gaussian correlation matrices). Let Z = (Zy,...,Zq) " ~ N(0,C) with
C a correlation matrix. For ¢ € L*(7),

Corr(¢(Z;), (Z;)) = K4(Cyj) foralli,j.

12

Under review as a conference paper at ICLR 2026

Equivalently, the post-activation correlation matrix equals K 4(C') entrywise. Moreover,
K¢(C) = Z Wi CGk,
E>1
where C®¥ is the k-th Hadamard power and (wy)>1 are as in (I). Hence K 4(C) is a correlation matrix: it

is positive semidefinite and has unit diagonal.

Proof. Fix i, j. By the same Hermite calculation used for (I)), with r = C;; we have

_ Zk21 ajr®

B Zk21 ai

Stacking these equalities over all pairs (¢, j) yields the entrywise identity and the series K4(C) =
> k>1 wpC®F. Bach Hadamard power C®* is positive semidefinite by the Schur product theorem, and

Corr(gb(Zi),qﬁ(Zj)) = Ky(r).

the diagonal entries are (Cj;)* = 1, so the nonnegative convex combination is positive semidefinite with unit
diagonal. U

Lemma A.3 (Frobenius contraction). For any correlation matrix C' and nonlinear ¢ with kernel K 4 as above,
> Ko(Cy)® <)
i ij

with strict inequality if there exists i # j such that |C;;| < 1.

Proof. By Lemma[A.1] |[Ky(r)| < |r| for every |r| < 1, and trivially | K4(r)| < |r| for |r| < 1. Apply this
pointwise to each off-diagonal entry C;; and sum the squares. If some |C;;| < 1, the corresponding term is
strictly reduced, and no term increases, so the sum is strictly reduced.

We can now state and prove the theorem used in the main text.

Theorem A.1 (rank gain across one linear—nonlinear step). Let C' be a d x d correlation matrix and let
¢ € L*(vy) be nonlinear. Define K by (1). Then K 4(C) is a correlation matrix and

erz (K (C)) d+ 3%, O

era(C) d+ Y, Ke(Cij)?

—_

Moreover, the ratio is strictly greater than 1 whenever there exists i # j with |C;;| < 1. If the ratio equals 1,
then every off-diagonal magnitude satisfies |C;;| € {0, 1}.

Proof. By LemmalA.2] K4 (C) is a correlation matrix and tr K4(C) = d = tr C. For any correlation matrix
M

(M5 = Y MG = d+) M,
0. i#j
hence
(tr M)? d?
IMI[E d+30,, MY

Applying this to M = C and M = K4(C') yields the displayed ratio. Lemma gives 3, K »(Cij)? <

ero(M) =

> oy ij, which makes the ratio at least 1, and strictly larger than 1 if some |C};| < 1.

13

Under review as a conference paper at ICLR 2026

For the equality case, suppose the ratio equals 1. Then the two Frobenius norms coincide, so
> (c2 - Ky(cy)?) =o0.
i#j
Each term in the sum is nonnegative by Lemma[A.T] Therefore every term must vanish, that is, for all i # j,
K4(Cij)? = CF.
If |C;;| < 1 and ¢ is nonlinear, Lemmal[A.1|gives | K, (C;;)| < |Cy;|, a contradiction. Hence for all i # j we
must have |C;;| € {0, 1}, which proves the final claim. O

Remark A.1 (dependence on operating regime). If the pre-activation is reparameterized as ¢q p(2) =
¢(az +b), the Hermite coefficients and thus the weights (wy,) in (I) change. The contraction at intermediate
correlations can be summarized by the decorrelation strength
2 2
Ky = max (r® — Ky(r
¢ 7_6[071]((1)%),
which quantifies the maximal per-entry reduction of squared correlation. For instance, more negative

effective bias for ReLU and larger effective gain for tanh increase kg, while also reducing typical derivatives,
connecting rank gains to the emergence of frozen units.

A.1.1 ACTIVATION MODULATION INCREASES DECORRELATION AND ALSO INDUCES FROZEN UNITS

Training changes pre—activation statistics, which modifies the operating regime of ¢. Parameterize ¢, (2) =
¢(az + b). Both the kernel K4 and the decorrelation strength £, vary with (a, b). Appendix [A.1]shows that
regimes that raise decorrelation also reduce typical derivatives, yielding frozen units:

« For tanh, increasing gain a raises the local decorrelation rate oy = E[¢'(Z)?]/E[¢(Z)?] — 1 while
¢'(az) — 0 for almost all z as a — oo.

* For ReLU, making the effective bias b negative with |b|/a large increases o, while P(az +b < 0) — 1,
0 ¢'(az + b) = 0 on most inputs.

The empirical relation between higher decorrelation and freezing is shown in Fig.[A.T|and Fig.[A.2]

A.2 LOP MANIFOLDS: FORMAL STATEMENT AND PROOF

This section provides the formal definitions, statement, and proof for the LoP manifold theorem. Since the
frozen manifold argument is self explanatory, we will only prove the cloning manifold result that is more
non-trivial. First, let us introduce our neural network network formalization. A feed-forward neural network
is defined by a directed acyclic graph G = (V, E, w), where V is the set of nodes (neurons), E is the set of
directed edges (connections), E representations the structure of the computational graph of the network, and
w : E — R, is the weight parameters of the network, which will be denoted w(u, v) for each edge (u,v) € E.
Furthermore, Vi, C V are the input nodes, and Vo, C V are the output nodes. The post-activation h(v) of a
node v € V' is computed as:

Ly, ifv e ‘/in7
h(’l}) =9 fo (Euein(v)wu,v h(u)) , otherwise.
—_——

pre-activation z(v):=

Here, z,, is the input value for input node v, f, is the activation function associated with node v, in(v) is the
set of nodes with edges towards v. The network output is the vector of activations h (V). With the formal

14

Under review as a conference paper at ICLR 2026

Validation: Extreme Modulation Leads to Frozen States

Tanh(ax): Rank Recovery Strength Tanh(ax): Frozen Units Activation Shape
1.00 | e a=
=
—_a=
0.75
v 08 a=5.0
10 & 050 a=20.0
¥ 06
= 2 025
. 30 &l
= =
5 S Z 0,00
i 204 4 E
20 4 g -0.25 4
< -0.50 q
10 4 £o24
-0.75 4
0 0.0 -1.00 4
1071 100 10! 10? 107! 10° 10! 10% -3 -2 -1 0 1 2 3
Scale factor a Scale factor a X
ReLU(x+b): Rank Recovery Strength ReLU(x+b): Dead Units Activation Shape
1.0 4 5 1 —— b=-3
s —— b=-1
0.8 4 b=0
? b=1
6 = ~
g 06 234
“] i
s 4 o =1
S 224
£ 04 El
0.2 4 1
o0
0.0 4 0
T T T T T T T T T T T T T T — T T T T T
-4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 3 4
Shift b Shift b X

Figure A.1: Validation that extreme modulation leads to frozen states. Top row: Analysis of Tanh(ax) with
increasing scale a. Left: Rank recovery strength oy increases with a. Middle: Fraction of frozen units (with
|f’| < 10~*) approaches 1 as a increases. Right: Activation shapes showing saturation for large a. Bottom
row: Analysis of ReLU(x+b) with negative shift b. Left: oy varies with shift. Middle: Fraction of dead units
increases as b becomes more negative. Right: Activation shapes showing increasing dead zones. These results
substantiate that maximizing rank recovery strength drives activations into regimes with zero gradients almost
everywhere.

pass formally define, we can now define our backward passes. Given a loss function £(h(Voy), y) comparing
the network output i (V) to a target y, the back-propagation algorithm computes gradients via error signals
0(v). The error signal is defined recursively:

DL (Vo). y) /O (Vou), for output nodes ,
M) =93 §(u)w(v,u) f4(2(w), v ¢ Vou,
u€out(v)

where out(v) is the set of nodes receiving input from v, and f/, is the derivative of the activation function f,.
The gradient of the loss with respect to a weight w(u, v) is then given by 0L /0w(u,v) = §(v) fi(z(v)) h(u).

Network partition and base network definitions. Let G = (V, E, w) be the main network. A partitioning
refers to a partitioning of nodes defined as:

ur S, =V, S;NS; =0foralli # j.
Given the partitioning, we define the base network G = (XN/7 E , W) where each partition is a node, the edges

are union of edges between two corresponding partitions, and weights are the sum total sum of edges divided
by the number of rows:

~ ~ 1
Vi={Si:ick]} E={(Si8S;):8 xS8;NE#0} ij = g7 > Wi
¢ u€S vES;

15

Under review as a conference paper at ICLR 2026

Comprehensive 2D Analysis: Modulation Effects on Different Activation Functions
Frozen Fraction Rank Recovery (a_f) Activation Shape Trade-off Analysis

ReLU(ax+b): Frozen Fraction ReLU(ax+b): a_f (capped at 10) ReLU Shape ReLU(ax-+b): Trade-off
5 1.0 5 10 2.0
3 101 ([half-vanishing]
0.9 |]
0 s o 8 29 [15
0.8 4]
= 0o £
2074 AL
a5 05 ¢ P | 6 6 g ::.,é: . 10
& k| &g “, B1s & 0.6 4 cos”
& £ @ g
-10 04 = -10 4 8 05 4 0.5
[
04 1
15 02 15 2 5 00
03 4
0 024
-20 0.0 -20 0 T T T T T T -05
107 10! 10? 10° 10! 10% 0 2 8 1
Scale a Scale a a_f (Rank Recovery Strength)
SELU(ax+b): Frozen Fraction SELU(ax+b): a_f (capped at 10) SELU(ax+b): Trade-off
10 5 20
059 ({Baltvanishing]|
° wla
e, e o 5
0 0.8 04l o %pn-gh 15
. = % .
g Fo 8,
- g .
a 5 06 = S 03 4 . . 0 o
& £ i ° g
& £ g . s B
? 10 04 & §o2q %, 0s =
3
-15 02 019 0.0
0.0 4
—20 0.0 —— -05
107 10! 10% 0 2 4 6 8 10
Scale a a_f (Rank Recovery Strength)
Tanh(a(x+b)): Frozen Fraction Tanh(a(x+b)): Trade-off
10 10 10 20
b K ([plateauing]
0.5) 8 18
0.8 08 4 «® 8
0.0 >
- e ° 16
Zos I I .
. 05 5 g . ., 14 g
£ -10 E] = . ° z
@ 5 § 04 4 . 128
&
15 o4 7. 0o
& . 10
-20) 024 e
0.2 ®ole 0.8
25 .
0.0 - etiogatn 0.6
-30 0.0
10° 10t 10% -3 -2 -1 o 1 2 3 0 2 4 6 8 10
Scale a x a_f (Rank Recovery Strength)
Sigmoid(a(x+b)): Frozen Fraction Sigmoid(a(x+b)): a_f (capped at 10) Sigmoid(a(x-+b)): Trade-off
10 10 10 10 20
\ 0% 010, ° ¢ ([plateauing]
05
08 8 15
0.8 1]
oo 0.20 1
< 1
-0.5 6 £ 6 | §
0.6 g a 6 _ E 0.6 4 H 1.0 g.
2 & “ 015 % m] B
g E 1.0 s g L] S
04k 15 4 § 04 8 05 =
15 8 og
£ H
0.10 ° LY
-2.0 0.2 4 13
02 2 O o 0.0
25]
. g
0.0 -30 0 -05
100 10! 102 10 10! 10? -3 -2 -1 o 1 2 3 o 2 1 6 8 10
Scale a Scale a x a_f (Rank Recovery Strength)

Figure A.2: Comprehensive 2D analysis of modulation effects on activation functions. Each row shows
a different activation function (ReLU, SELU, Tanh, Sigmoid) with their modulation scheme. Column 1:
Heatmaps of frozen fraction as a function of scale a and shift b. Red regions indicate parameter combinations
leading to frozen/dead units. Column 2: Heatmaps of rank recovery strength o ¢ (capped at 10 for visualiza-
tion). Column 3: Activation function shapes showing both f(x) (blue) and f’(z) (red dashed). Column 4:
Trade-off analysis showing the correlation between ¢y and frozen fraction, with colors indicating log;(a).
The analysis reveals that half-vanishing activations (ReLU, SELU) and plateauing activations (Tanh, Sigmoid)
exhibit different pathways to frozen states, but all show the fundamental tension between rank recovery and
maintaining gradient flow discussed in Sec.[3]

We can view the base graph as a “meta” graph, whose nodes are set of nodes, and its edges correspond to set
of edges of the main graph. While the node and edge definitions are standard, the weight definition is slightly
deviating from one might expect from standard quotient graph definitions, where the weights are total sum
without averaging. The reason for this is more specific to our construction and is there to ensure similarity of
the cloned and base networks forward and backward passes.

16

Under review as a conference paper at ICLR 2026

Definitions of Weight Manifolds ~Given a network partitioning Si, . . ., Sk, and the corresponding base
graph G = (V, E, W), here are the manifold definitions:

* The Row-wise Equitable (RE) manifold consists of all cloned weight matrices w such that for every
connection (i, j) € E in the base network, each block w[S;, S;] all row-sums are equal:

Mpr = we R V(i,j) € E’, and Vr, 7’ € S;, it holds Z Wiy = Z Wy
’U.GSJ' ’LLGSJ'

The Column-wise Equitable (CE) manifold, consists of all cloned weight matrices w such that for
partitioned block w[S;, S;] , all column sums are equal:

MCE = {w S RlEl

Y(i,7) € E, and Ve, € S;, it holds Z Wye = Z wucz}

u€eS,; u€eS;

* The Block-wise Constant (BC) manifold consists of all cloned weight matrices w such that for every
block w[S;, S;], all its elements are equal:

Mpe = {w e RIPI ‘ V(i,j) € E, and Vu,u' € S;,Yv,v' € S;, it holds wy, = wu/v/}

* Finally, we can define the family of all duplicate manifolds, that are affine sub-spaces of the
parameters. For any matrix with row and column equitability, w € Mgrg N Mg, they shift the
block constant manifold M p. Formally:

MDZ{MD(w)|w€MREﬁMCE}, MD(’U)) :={’LU+T|TEMBc}

Note that all the manifolds defined above are linear or affine sub-spaces, as their constraints are all linear.
There are two important facts worth mentioning that will shed more light on the upcoming theorem.

Remark A.2. Note that the dimensionality of manifolds in the family M p are given by the number of blocks
in W, as opposed to number of its elements. Thus, for example if the partitioning of units forms blocks of size
n, we would roughly expect 1/n? fewer dimensions in Mip than in the original full parameter space.

Furthermore, the following remark clarifies why we define these networks as cloned networks. Because when
we are on these manifolds, the clone network units form perfect copies of the base network units.

Remark A.3. If W € MRgrg, any unit in a block v € Sy, the forward activations will be identical to the
corresponding base unit h(v) = h(0), where U is the corresponding unit in the base network to block Sy,. If
we further assume W € Mprgr N Mcg, we will have a similar property for the backwards §(v) = §(0).

Let us re-state the theorem on cloning to make this section more self-contained.

Theorem A.2 (Cloned-Unit Manifold (Re-stated)). Let G = (V, E, W), denote a network that is partitioned
with S1, ..., Sk. For any input and label (x,y):

1. If W € MRgg, then all units in the same cluster u,v € Sy have identical forward activations
h(u) = h(v).

2. If W € Mgg N Mcg, then all units in the same cluster u,v € Sy have identical backward
activations 6(u) = 6(v). Furthermore, the gradients OL/OW will have a block-wise constant

structure, such that gradients between any two units in two blocks will be equal, i.e., for any
u, v’ € S;and v, v’ € S;, we have OL/OWy,, = OL/OW 4.

17

Under review as a conference paper at ICLR 2026

3. If the model weights at initialization or any point in training touch, if they lie on a manifold from the
SJamily W € Mp where M p € Mp, given any arbitrary batches of input label pairs used to obtain
subsequent model parameters W (t),, any subsequent training parameter trajectory constrained to
the same manifold:

W(0)e Mp = W(t) e Mp Mp € Mp, t gradient steps

Proof of Theorem[A.2](Cloned-Unit Manifold). The proof will be done as a series of inductions. First, let us
assume that we have sorted the units in a topological order v4, . . ., v,, which exists because the network is
a directed acyclic graph. Let us further assume that input nodes appear first in this list, and that outputs as
the last edges in the list. Finally, because we assume no edges inside each block between the units, let us
assume that the units in the same block are adjacent in our topological sort. Thus, for any two distinct blocks
S; # S;, we either have all nodes in S; before .S; or vice versa, but cannot have a mix.

Forward cloning. Row-equitability assumption implies identical forward for units in the same block. The
induction hypothesis is that for all k, any preceding unit p < k, that belongs same partition u,, u, € S;,
will have identical forward h(u,) = h(uy). Because cloning does not apply to input units, meaning that
every unit is a separate block, the hypothesis trivially holds for all input units £ = 1, ..., d where d is input
dimension. Now, let us prove the induction step, assuming step k. Let p < k correspond to a unit in the same
block u,,, u;, € S;. Now, consider all the units that have incoming edges to these two units, which necessarily
must appear before p. Let’s consider all such units within the same block S;. Because these units appear
before k, the induction hypothesis tells us that they have identical forward. Thus, the total contribution from
these units to pre-activations z(uy,) and z(uy,) will be proportional to sum of edge weights from units in 5.
Because of our construction of the ordering, all the units in .S; that feed into .S; must occur before them. Now,
the row-equal assumption implies that the sum of weights from all these units to u, and u; must be equal
weight sum. Thus, we have proven that pre-activation contribution from units in S; will be identical for u,,
and uy,. Because we chose .S; arbitrarily and it could have been any block, we have proven that pre-activation
these units must be identical z(u,) = z(ux). Since they also have identical activation function, they will have
identical outputs h(u,) = h(uy). This completes the induction hypothesis for forward pass cloning.

Backward cloning. We want to prove that column and row-equitability assumption implies identical
backward for units in the same block. The proof strategy will be highly similar to the forward cloning case,
with the key difference that our induction will be backward in our ordering, starting from latest output units
and then moving in backward in the list. The induction hypothesis for step is that, for al ¢ > £, if they are in
the same block uy, u, € S;, they will have identical backwards d(uy) = 6(u,). Because output units are not
themselves cloned, the induction step holds trivially for the last output nodes. Now let us prove the induction
hypothesis for k assuming that it holds for all higher steps. Now, for some arbitrary block S; that units in S;
feed into, consider all outgoing connections from uy, u, to the units in this block. Because of our construction
of the ordering, all the units in S; that S; feeds into must occur after S;. Thus, by induction hypothesis,
all these units must have identical backwards. Furthermore, from our column-equitability assumption we
know that total edge weights from wuy, u, to these units must be identical. Thus, the summation formulas in
the backward of u;, and u, are similar. Finally, since S; was chosen arbitrarily, this summation is identical
for all subsequent blocks, which implies the overal sum is also identical. To conclude the proof, note
that because of row-equitability condition we already inherit the proof from the forward case, implying
f'(z(ur)) = f'(2(uy)). Thus, both parts to the backward formula for uy, u, will be identical, which proves
they have identical backwards. This finishes the induction step.

Gradient cloning. This step is a straightforward consequence of the forward and backward cloning steps,
and the formula that gradient of an edge from w to v is simply h(u)d(v). Thus, the cloning structures in
forward and backward, manifest themselves as a block structure in the gradients.

18

Under review as a conference paper at ICLR 2026

Constrained training trajectory. Here, the key induction step is over the gradient steps. For step ¢,
the induction hypothesis is that W (t) € Mcg N Mgg, and that W (t) — W(0) € Mpc. This trivially
holds for initial step ¢ = 0. Let us prove the induction step ¢ 4+ 1 assuming that it holds for ¢. Suppose
gradient at this step AW (¢) is defined over the loss arbitrary number of samples {(z;,y;)}. Because of
the induction hypothesis W (t) € Mg N Mgg, our earlier results imply that the gradients for each
sample OL;/OW (t), will have a block-wise constant structure 9L;/OW (t) € Mpc. Thus, the sum of
these gradients will also have a block-wise constant structure AW (t) := 9L,0W (t) € Mpc. Because
block-wise matrices are also row- and column-equitable, this implies that the new weights will inherit
those W(t + 1) = W(t) + AW (t) € Mcg N Mgg. Finally, our parameter shift can be written as
W(t+1)—W(0) = AW(t) + W(t) — W(0), where W (t) — W(0) is a block-wise constant matrix and
thus W (t + 1) — W(0) becomes sum two block-wise constant matrices, which is itself block-wise constant
W(t+ 1) — W(0) € Mpc. This finishes our induction step. O

A.3 MODULAR CLONING PROFILES AND A COMPOSITION THEOREM

This subsection formalizes a modular extension of the cloning theorem in Theorem 2.1] (see also Appx.[A.2)
and proves that local, module-level cloning certificates glue to yield cloning for the entire composed architec-
ture.

Modules, interfaces, and profiles. A module is a feed-forward sub-DAG Gy = (Vir, Enr, W) together
with disjoint sets of interface nodes Ip; (inputs) and Oy, (outputs). We allow internal nodes Vy; :=
Var \ (Ins U Oypy) and edges that connect interface nodes to internal nodes or to other interface nodes as

permitted by the DAG. Let G M= (VM, E M WM) denote a smaller base module.
A cloning profile for M relative to M consists of surjections
% Ing — I, w4t Oar — O,
inducing partitions P = { (7i2)~1(i) : i € Iy; } and PRt = { (7525)~1(0) : 0 € Oy }. Intuitively, all
interface units in the same block are clones of the correspondmg base port.

We say two wired modules A — B have matching profiles if their shared interface partitions coincide after
applying the wiring map wa_,5 : O4 — Ip, i.e.
WAB (Pf;“t) =PIt as partitions of I,

and dually for the reversed wiring used by backpropagation. More generally, a whole network has matching
profiles if this holds on every inter-module edge set.

Module-level cloning manifold. Fix a module M with profile (P, P$#t). Extend these interface partitions
to a partition of all nodes Vs by assigning each internal node of M to the block of its corresponding base-node

in the collapsed base graph G defined in Appx. On M, define the (affine) module cloning manifold
Mp(M) = {Wy: Wy € Mg N Mg with respect to the induced partition of V) },

i.e., each inter-block weight submatrix is row- and column-equitable (block-wise constant up to redistribution),
reusing the notation of Appx.[A.2] This generalizes the block-constant manifold M p¢ by allowing intra-block
redistribution while preserving equal in/out block-sums.

Definition A.1 (Module-level cloning certificate). A module M endowed with profile (P, PSi) admits a
cloning certificate if the following hold for every batch:

(MC1) Forward interface preservation. If inputs in the same block of PY} carry identical values, then for any

W € Mp(M) all outputs in the same block of PS} are identical (forward cloning).

19

Under review as a conference paper at ICLR 2026

(MC2) Backward interface preservation. If the output adjoints (backprop signals) are blockwise identical
on P, then for any Wy € Mp(M) the input adjoints are blockwise identical on Py} (backward
cloning).

(MC3) Gradient closedness. Under (MC1)—-(MC2), the per-edge gradient OL/0W yy is block-wise constant on
each inter-block submatrix, hence VL(W) is tangent to M p (M) and first-order parameter updates
initialized on M p (M) remain on Mp(M).

Remark A.4 (Optimizers covered). (MC3) implies closure under any first-order optimizer whose update
is a (possibly stateful) scalar multiple of the local gradient on each parameter and whose internal state
is identical across clones at initialization (e.g., SGD, momentum, RMSProp, Adam with tied clone states).
Weight decay that acts per-parameter independently may break exact symmetry; see Appx. Dropout
violates (MC1)—(MC2) because independent masks destroy blockwise equality in the forward/backward
signals.

Lemma A.4 (Module certificate from Mgrp N Mcg). If Wy € Mreg N Mcg for the induced partition of
Vs, then M satisfies (MC1)—(MC3).

Proof. This is the restriction of Theorem[2.1]to the subgraph G, with its node partition: row-equitability
yields identical forward values within blocks, column-equitability yields identical backward adjoints within
blocks, and dL/dWy; = h T is block-wise constant across inter-block submatrices. Tangency of the gradient
to Mprg N Mcg follows exactly as in Appx. O

Theorem A.3 (Composition theorem for modular cloning). Let a feed-forward network be formed by wiring
modules { M, z}é::l with matching profiles at every interface. Suppose each M, admits a cloning certificate
(Def. and that parameters are initialized on the product manifold [[, M p(M;). Then:

1. Global forward cloning. If the external inputs respect the input profile of the first modules, then all
internal interfaces and the final outputs are blockwise identical according to the propagated profiles.
Equivalently, the composed network is a cloned enlargement of the composed base network.

2. Global backward cloning. For any loss, if the final output adjoints are blockwise identical, then all
internal interface adjoints and the external input adjoints are blockwise identical according to the
propagated profiles.

3. Persistence under training. The network gradient is tangent to [[, M p(M;), hence any first-order
parameter update that preserves (MC3) at the module level preserves the global cloning manifold and
items 1-2 continue to hold at all subsequent steps.

Proof. Forward. Order modules topologically. Assume the external inputs are blockwise identical on the
first-layer profiles. Applying (MC1) to the first module yields blockwise-identical outputs on its output
profile. By profile matching, these outputs equal the input profile of the next module, so (MC1) applies again.
Induction over modules yields blockwise equality at every interface and at the final outputs.

Backward. Reverse the topological order. Start from blockwise-identical adjoints at the final outputs. By
(MC2) for the last module, the incoming adjoints to its inputs are blockwise identical. Profile matching
identifies these with the previous module’s output profile, so (MC2) applies again. The inductive step
propagates back to the external inputs.

Persistence. By (MC3), in each module the gradient is block-wise constant on inter-block submatrices, i.e.,
tangent to M p(My). The product of affine manifolds is an affine manifold with tangent equal to the product
of tangents, so the global gradient is tangent to [[, M p(M;). Thus first-order updates initialized on this
product manifold remain on it, and the previous two items re-apply at every step. O

20

Under review as a conference paper at ICLR 2026

Remark A.5 (Coverage: modern architectures). The certificate (Lemma is satisfied by the standard
width/channel/heads expansions used in practice:

* MLPs / Linear layers: Duplicate hidden units; enforce RE/CE by tiling weights with appropriate
1/(input expansion) scaling; duplicate biases. Matches the implementation in clone_linear.

* CNNs / Cony layers: Duplicate channels (in/out); tile kernels with 1 /(input expansion) scaling; duplicate
biases (clone_convld, clone_conv2d). Spatial pooling is per-channel and thus profile-preserving.

* Normalization: BN/LN/GN with duplicated (v, 8) and running stats per clone are profile-preserving
(clone_normalization).

* Activations and elementwise ops: Elementwise maps are profile-preserving (clone_activation);
parameter-free ops are trivially preserved (clone_parameter._free).

* ResNets: Residual addition preserves cloning provided both branches use the same profile; block-level
expansions meet RE/CE at each addition.

* Transformers/ViTs: (i) Embedding/patch-projection expansions via tiling (clone_embedding); (ii)
Multi-head attention via head duplication; per-head linear maps satisfy RE/CE; concatenation is a
profile-preserving reshape; (iii) MLP sub-blocks as in MLPs; (iv) LayerNorm is profile-preserving. The
CloneAwareFlatten operator ensures profile-preserving reshapes between conv/linear stages.

By contrast, Dropout with independent masks across clones breaks (MC1)—(MC2) and thus is excluded from
this corollary (see also discussion in the main text).

Remark A.6 (Minimal check-list for a new module). To certify a new module M :

1. Choose interface partitions (Pi}, P33%) and extend them to V.
2. Verify Wy € MggpN Mcg for the induced partition (row/column equitability per inter-block submatrix).
3. Conclude (MC1)-(MC3) by LemmalA.4|

4. Ensure adjacent modules use matching profiles at shared interfaces.

Under these conditions, Theorem[A.3| guarantees network-level cloning and its persistence under training.

Observation Al (Connection to the implementation). The functions
clone_{linear,convld, conv2d, normalization, embedding,activation} and
model_clone implement the RE/CE tiling and profile-preserving reshapes described above, while
test_activation_cloning empirically verifies (MCI)—(MC2) layer-wise via forward/backward R.
The CloneAwareFlatten operator is a profile-preserving connector that keeps duplicated channels
adjacent, ensuring that profiles match across CNN— FC boundaries.

A.4 STABILITY OF LOP MANIFOLDS.

While Theorem @] establishes the existence of LoP manifolds under exact conditions (perfect saturation,
perfect cloning), in practice, these conditions might only be approximately reached during training. This
leads to the question of whether near-LoP states will move back closer to the LoP manifold under gradient
descent dynamics, or will they move away from it. To address this, we introduce the notion of the stability of
an LoP manifold.

Definition A.2 (Stability of LoP Manifold). Let M be an LoP manifold and NgM be the normal space to
M at § € M. The stability of M is characterized by the Hessian V3L (0) in directions normal to M:

21

Under review as a conference paper at ICLR 2026

s Stable LoP: Yv € NgM \ {0} : vTV2L(0)v > 0. (Perturbations revert to LoP)
s Unstable LoP: Yv € NpM \ {0} : v VZL(0)v < 0. (Perturbations escape LoP)

e Saddle LoP: Jvi,v3 € NyM s.t. vagﬁvl > 0 and vgvgﬁvg < 0. (Escape is direction-
dependent)

Remark A.7. Stability in the normal space to the manifold (convexity of the loss in these directions) does not
imply that the loss is convex in general (i.e., also within the manifold or in other directions). These conditions
are local characterizations of the loss landscape geometry around the manifold.

To understand the practical implications of these stability types, consider injecting a small perturbation Af
that pushes the parameters 6 slightly off the manifold M. If M is stable, the subsequent gradient steps
—VL(0 + A) will tend to project back towards M. If M is unstable, these steps will tend to move further
away. For a saddle LoP manifold, escape depends on the direction of the initial perturbation relative to the
eigenvectors of the Hessian in the normal space. Therefore, the strongest form of LoP corresponds to a stable
LoP manifold, as it actively resists escape. An unstable manifold is the easiest to escape. A saddle manifold
presents a mixed scenario, where random perturbations may or may not escape depending on the perturbation
vector being in a positively or negative space orientation.

B EMPIRICAL APPENDIX

This section provides comprehensive details of the experimental setups, additional empirical results, figures
supporting claims made in the main text, and visualizations.

B.1 EXPERIMENTAL DETAILS

This section outlines the experimental setup, methodologies, and general procedures employed for the
empirical analysis of Loss of Plasticity (LoP) in neural networks.

B.1.1 OVERVIEW OF EXPERIMENTAL PARADIGMS

Our investigation into LoP encompasses three primary experimental paradigms.

Continual Learning Experiments These experiments involve training models on a sequence of temporally
independent tasks where data from previously learned tasks is unavailable. Tasks are typically formulated by
partitioning the output classes of standard datasets, and for any given task ¢, the model is trained exclusively
on its assigned class subset C;. We trained our models on Tiny ImageNet, which consists of 200 classes, by
creating a sequence of 40 tasks, each containing a disjoint subset of 5 classes. Each task is trained for 500
steps, and validation is performed periodically, resulting in 20,000 total training steps. The training protocol
included optional reinitialization of model output layer weights and biases are reset to zero before starting
each new task to mitigate interference.

Neural Network Cloning Experiments These experiments study the effects of neuron duplication using a
two-stage training protocol. Initially, a base model is trained on a target task to establish baseline performance.
Subsequently, this base model is expanded by a specified factor (always fixed to two), using the cloning
procedures detailed later. The expanded (cloned) model is then trained. To compare the base and cloned
model, we also keep training the base model at the same time during this second phase. The results presented
here are all on the CIFAR-10 dataset, and we used 20 epochs to train the base model and 500 epochs to train
the cloned model. Functional equivalence post-cloning is verified by ensuring the cloned model produces

22

Under review as a conference paper at ICLR 2026

activations identical to its base, assessed via R? scores between corresponding layer activations. R? scores,
computed for each layer, measure if the mean of cloned units can explain the variance of all units in that
block.

Bit Flipping Experiments These experiments simulate a slowly-changing regression problem to evalu-
ate network adaptability to gradually drifting input distributions. An illustrative benchmark for studying
adaptability is the ’bit-flipping’ experiment, an online regression task where the model receives an m-bit
input vector x and must predict an output y. The environment is non-stationary: a subset of f input bits
are designated "flipping bits,” and at regular 7T-step intervals, one of these f bits is randomly inverted. The
remaining m — f input bits are randomly sampled at each step. The target output y is generated by a fixed (but
unknown to the learning model) two-layer network, and a two-layer MLP is trained to learn this continuously
drifting target function. The complexity of the learning model is typically designed to be less than that of the
data-generating process, thereby creating a challenging scenario for maintaining plasticity. A target network
with Linear Threshold Units (LTUs) implements h; = LTU(w!x — ;) and y = wX h + boy. A Linear
Threshold Unit operation is defined as LTU(z) = 1 if z > 0, and 0 otherwise (a Heaviside step function).
For the target network, the specific thresholds are §; = (m - 3) — S;, and S; = > Jiwi; <0 1—-0.5"wjmt1-
Input consists of m bits plus a bias bit; f of these bits are “flipping bits” changing every T time steps (one
randomly selected flipping bit is inverted), while the remaining m — f bits are randomly sampled each step.
A two-layer MLP with a configurable activation function is trained online to learn this target.

SGD first half, CBP second half

n 0.6 I {|Switch
8 SGD {1 { }]‘ CBP
—os BN
= A d |
‘204 s 224
2= {I :f X‘i\rx-ﬂ R
£ 0.3 i FE N Ay
])3
é 0.2 1z
S
0.1
0 1 2 3 4 5
Step 1e6

Figure B.1: Bit Flipping experiment on SM samples, switching from SGD to CBP at 2.5M samples. Low
rank structures emerge during training with standard Backpropagation (SGD), but after the switch Continual
Backpropagation (CBP) is able to recover representational diversity, suggesting that CBP-like training could
be effective for cloning too. (Experimental details in Appx.[B).

B.1.2 CORE METHODOLOGIES AND IMPLEMENTATIONS

Several core methodologies underpin our experiments.

Cloning Implementation. Our cloning implementation is modular. For each architecture, we first need
to decide the “free” parameter to expand. This is the feature dimension for MLP and ViT, and channels for
CNN and ResNet. After creating a base and expanded model, our cloning implementation proceeds in a
modular fashion. The key implementation idea that allowed this modular design is the principle that the
cloning profile of inputs and outputs of different modules must be consistent. For example if inputs A and
B to a module are assumed to be cloned, and if these are output by a different modules, that module must
ensure this cloning. We can think of this as a matching cloning profile between connected modules. With
this design in mind, for linear layers, weights and biases are replicated according to input/output expansion

23

Under review as a conference paper at ICLR 2026

10.0

e
-

7.5

e
w

m

2.5 | B First Half (SGD)

3 Second half (CBP)

10 5 50 100
Width

e
=

Duplicate Fraction
o
o

Effective Rank
«
o

o
S

5 10 50 100
Width

Figure B.2: Bit Flipping experiment on 5M samples, switching from SGD to CBP at 2.5M samples. For each
of the two phases, we show the average over the last 100K steps. Duplicated structures (indicated by fraction
of duplicate features at different layers/scales) emerge during training with standard Backpropagation (BP)
but Continual Backpropagation (CBP) is able to decouple the cloned units. As the model width is increased
more duplicate features emerge. The size of the data generating function is 100. (Other experimental details

in Appx.[B).

factors; weights connected to cloned input neurons are scaled (e.g., by 1/, for an input duplication factor of
Qin) to maintain activation magnitudes. Convolutional layers see similar expansion of input/output channels,
with kernels tiled and appropriately scaled while preserving spatial dimensions. For normalization layer, if
affine features are learned, their cloning will be a simple duplication for different cloned units. The same
applies to modules such as patch embeddings, which require a simple duplication. Parameterized activations
(e.g., PReLU) have their parameters correspondingly duplicated or broadcast. Any other units that does
not have parameters, such as softmax layer or activations without parameter, will not require any particular
treatment, because it has the potential to create cloning profiles that do not match. To fix this, we implemented
a clone-aware flattening operation in CNNs ensures duplicated channels remain adjacent after flattening to
preserve structure for subsequent fully-connected layers.

Noisy SGD optimizer introduces Gaussian noise ¢; ~ N(0, 07 ||g:||?I) to gradients g;, where the noise
scale o; = og - A\! decays over time ¢ from an initial value . The values of oy and) are hyperparameters of
the optimizer. Later, we show the effect of varying them on the cloned model dynamics.

Continual Backpropagation (CBP) , implemented in src/utils/cbp_optimizer.py following
the Generate-and-Test framework, aims to maintain plasticity by selectively replacing low-utility neurons.

Utility tracking involves measures like Contribution Utility ((“g?mb»i = \hl(-t)\ - |Wout,;|) and Adaptable
buti ® o =R o

Contribution ((Uygyy)i = S Tt B

terms are mean weight magnitudes. Instantaneous utilities are smoothed using an exponential moving

()

%

, where h(t) s activation, 1_1(-t) is its running average, and w
7 K2 g g

is neuron age): ul(-t) = pugtfl) + (1 - p)az(-t), with a bias-corrected version

average (p is decay rate, a

A (¢ (®) .. .
u,l(»f) = ugt) /(1 — p%). Neuron replacement occurs for eligible mature neurons (a¢; > Tiatwrity) With the

lowest utility (a fraction repiace Of layer neurons Ny). Selected neurons are reinitialized (incoming weights
via Kaiming, outgoing to zero, utility/age reset). A bias correction (bpext < bnext + Wout[:, 4] - h;) is applied to
the subsequent layer.

Metrics for Analysis Our comprehensive metric suite quantifies various aspects of network behavior
and plasticity loss. Single and pair feature metrics include the fraction of “dead” neurons, identified
when + Zfil 1[|H;j| < 1077] > Tyeaq for neuron j across N samples, with 7geas = 0.95. “Duplicate”
neurons are detected through cosine similarity patterns, with neurons j, k are considered duplicates if
ﬁjTﬁk > Teor = 0.95, where activations are normalized by feature H; = H.;/||H. ;||2. “Saturated”
neurons are identified when the ratio of gradient magnitude to mean activation magnitude |G|/ max(s;, €)
falls below 7y = 10~* for more than pg = 99% of samples in a batch. Representation diversity metrics

24

Under review as a conference paper at ICLR 2026

include effective rank, computed as exp(— >, p; log p;) where p; = ¢/}, 0; are normalized singular

values from the activation matrix SVD; stable rank, calculated as || H ||%./tr((H H)?) for mean-centered

activations H; Cloning quality is assessed by R? scores between base and cloned model activations, computed
as R? = 1 — Var(residuals)/Var(total) where the predictor is the mean of N cloned units and we measure
explained variance across individual units relative to the total variance in that layer. This is done for both
forward and backward activations across all layers, and numbers presented here are averages across all layers
and both forward and backwards for the fixed batch that we are measuring the metrics. We also keep tracking
all metrics for both base and cloned model after training to provide a comparison between the two.

B.1.3 GENERAL SETUP AND PROCEDURES

Model Architectures include Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks (CNNs),
ResNets, and Vision Transformers (ViTs), with configurations (depth, width, activations, normalization layer,
dropout). The default configurations are as follows: Our Multi-Layer Perceptron (MLP) consists of 5 hidden
layers with 128 units each, employing ReLU activations, batch normalization applied before activation, and
20% dropout. The Convolutional Neural Network (CNN) architecture comprises 3 convolutional layers with
[64, 128, 256] channels respectively, using 3 x 3 kernels with stride 1 and padding 1, followed by 2 x 2 max
pooling operations. The convolutional features are processed by a single fully connected layer with 512
units, with ReLU activations, batch normalization, and 10% dropout throughout. For ResNet, we implement
a ResNet-18 variant with [2,2, 2, 2] residual blocks per stage, starting with 64 base channels that double
at each stage, using ReLU activations, batch normalization, and 10% dropout. The Vision Transformer
(ViT) architecture divides input images into 8 x 8 pixel patches, which are projected to 384-dimensional
embeddings and processed through 6 transformer layers with 6 attention heads each. The ViT employs an
MLP ratio of 4.0 (yielding hidden dimensions of 1536), GELU activations, layer normalization, and 10%
dropout for both general operations and attention mechanisms. All normalization layers include learnable
affine parameters (y, (), unless stated otherwise, and bias terms are enabled where applicable. Default
hyperparameter configurations for each architecture can be adjusted per experiment as described in the
experimental setup.

Datasets and Preprocessing involve standard image classification benchmarks: MNIST (28 x 28 grayscale),
CIFAR-10 and CIFAR-100 (32 x 32 RGB with standard augmentations like random crops and flips), and
Tiny ImageNet (64 x 64 RGB). Standard train/test splits are used. For all the figures and results reported here,
we used tiny ImageNet dataset for continual learning experiments, while for cloning, CIFAR-10 was used.

Training Configuration involves optimizers like Adam or SGD without momentum and no weight decay
with otherwise parameters in torch. The learning rates for the continual experiments where set to 0.001 using
Adam for all architectures except for Vision Transformer, which was set to 0.0001. For cloning experiments
with dropout, we varied the learning rate on a grid 0.01, 0.001, 0.0001.

Experimental Control is maintained through comprehensive random seeding, which controls the random-
ness across all relevant libraries (Python, NumPy, PyTorch) and CuDNN deterministic mode. We used 5
seeds for all experiments to calculate confidence intervals. Experiments utilize GPUs when available, falling
back to CPUs otherwise. Metrics are typically computed at fixed epoch intervals (e.g., every 5 epochs), often
on consistent fixed data batches for reproducibility. Computationally intensive metrics like SVD may use
subsampling of the features or samples to make them less expensive.

Computational Resources. For the continual learning and cloning experiments, our experimental grid
consisted of approximately 2,000 individual runs (counting each random seed separately). These experiments
were executed on a cluster of NVIDIA A100 GPUs, utilizing a heterogeneous mix of 40GB and 80GB

25

Under review as a conference paper at ICLR 2026

memory variants. The total computational cost for these experiments was approximately 10,000 GPU-hours.
The bit flipping experiments and additional theory validation experiments were conducted on a more diverse
set of hardware, utilizing lower-end computational nodes equipped with NVIDIA RTX 3090, V100, and RTX
2080 GPUs. This heterogeneous setup was sufficient for these less computationally intensive experiments,
and the overall compute amounted to under 100 GPU-hours on these nodes. The theoretical validation figures
and numerical simulations presented in the theory appendix (Appendix [A.T.T) were generated on a MacBook
using CPU computation only.

Figures details. Unless stated otherwise, all our figures report standard deviations over 5 experiment
randomization, by the use of a different seed. Additionally, to reduce the number of points in the plot, in

Figs.[3.1} [3-2] @1} [B-T]and [B:2] we plot the average over time windows of 1000 steps.

B.2 ADDITIONAL FIGURES AND EMPIRICAL SUBSTANTIATION

This subsection includes placeholder figures for concepts discussed in the main text, for which specific
existing figures were not available or suitable for direct inclusion in the main body.

MLP CNN RESNET VIT

e
©

=

m
°
o

3

>
o
3
o
®

o
>

o
°
>

°
=

o
o
Saturated Fraction

Saturated Fraction
=
Saturated Fraction

S
Saturated Fraction

°
N

0.0

°
B
o
>

none batch layer . none batch layer none batch layer none batch layer

= BN = BN B BN B BN
§0050 IS BN + dropout S BN + dropout 0.03 | BN + dropout 06 S BN + dropout
Zo0.025 = Baseline EEN Baseline EE Baseline EE Baseline
<4 B Baseline + dropout B Bascline + dropout B Bascline + dropout, B Baseline + dropout
£, 0.020 = N 0.02 = LN 04 (=R

= LN

=1 LN + dropout 1 LN + dropout 1 LN + dropout 1 LN + dropout

o o o o
s =2 o =2
g =2 =2 B
& 5 & 3

Duplicate Fraction
Duplicate Fraction
Duplicate Fraction

S 1
Z 0.010 0.01 \ 02
2 0.005
0.000 0.000 0.00
none batch layer none batch layer none batch layer none batch layer
1.0
10 —— o —— 10
208 208 z Z0.8
2]] 3
g g g £
206 206 8 306
8 8 8 8
2 < < 2
04 04 el 504
Kl] < 2]
g = £ E
o2 o2 = Foz
0.0 0.0 0. 0.0
none batch layer none batch layer none batch layer none batch layer

Figure B.3: Normalization reduces the number of dead/saturated units (top row) and duplicated units (middle
row), and its impact on training accuracy (bottom row) across different architectures. The training accuracy
displayed is calculated as the average online accuracy over the entire training length. These results highlight
the role of normalization in mitigating LoP symptoms.

26

Under review as a conference paper at ICLR 2026

VIT
MLP CNN or RESNET 1o
08| ® ’ ° o .

0.85 g |° 206 2 0@ 0% o g ° . .
e S07le ® 0% S 80 o 509|] N
‘5 ° oo, ° g g <1 .
8 [IS 206 20 ° g05 m #
£ o075 et - o&, 0? o go| & <08
3 .- gos ee goa 8 K
g - © 8 o © . 4

o .
5 ° . 504 % o °| Sos 2"
o ° - . - ' - ©
= L © o]
0 ° [N3 n %)
0.60 ° . . . ‘ 0.2 o 0.6
o o © °® .
0.00 0.02 0.04 0.06 0.08 0.00 0.01 0.02 0.03 0.000 0.005 0.010 0.015 0.020 0.00 025 050 0.75 1.00
Duplicate Fraction Duplicate Fraction Duplicate Fraction Duplicate Fraction

Figure B.4: Evolution of duplicate/dead unit fractions and training accuracy. The colors correspond to training
steps (lighter is earlier) and the points size to the Training Accuracy (bigger is higher). This figure illustrates
the correlation between the increase in LoP symptoms (duplicate/dead units) and training dynamics.

. . . . RESNET Duplicate fraction i i
MLP Duplicate fraction CNN Duplicate fraction b VIT Duplicate fraction
Tvars P —— Layer 0 1o
—— Layer —— Layer C_ X —_—
0.20 —— Layer1 0.08 —— Layer1 | g0.06] 77 iﬂye“; - i 1
g —— Layer2 g —— Layer2 | 9 - Layer 5 S 08
5 015 —— Layer3 = 0.06 Layer3 | © ayer S
© 9] 3 —— Layerd S
K Layer 4 < < 0.04) =
o o & ayer 5 &
o o 004 @ Layer 6 ®
k] " © Layer 7,] —— Layer 0
9 s} .5 0.02| | 3 —— Layer 1
= B g \ = —— Layer2
=3 =4 A —— Layer3
2 e . 0.00 % _ —— Layer 4
—— Layer5
-0.05 ~0.02
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Task Task Task Task

Figure B.5: Emergence of duplicate units layer-wise during training without normalization and no dropout.
This figure shows the increasing fraction of duplicate units as training progresses, a symptom of LoP.

MLP Dead fraction CNN Dead fraction RESNET Dead fraction VIT Saturated fraction
1.0 il 1.0 /}\ A gre 1.0
P ol
prtt! o et l ; dodtsg | 5 10
08 g f a5 0.8 i =
S o Lagero 2] 8 S o8
p=} p=] E=] .
S06 [—— vayer1 506 S &
=} —— Layer 2 = = 0.6 $— La a ke
[i=] ¢ [i=] " =] ayer g
= - Layer] S04 | h - Layer/2 206
204 g 0.) 5]
S > S 0.4 ++ [Eayer 3 =
s I] . a —Layer 4 =] —— Layer 2
0.2 0.2 —— Layer 1 —— Layer 5 g 0.4| —— Layer3
—— Layer 2 0.2 Layer 6 —— Layer 4
0.0 0.0 Layer 3 Layer 7 o2l Layer 5
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Task Task Task Task

Figure B.6: Emergence of dead or saturated units layer-wise during training without normalization and no
dropout. This figure shows the increasing fraction of dead units as training progresses, a symptom of LoP.

27

Under review as a conference paper at ICLR 2026

MLP MLP MLP
10 1.6| :Cloning == Base 90| Cloning
i & + Dropout
0.9| [Cloning
I NG R (PP + Noise 'é 80
208 1.2 — Cloned (x2) Qfg
> — Cloned (x2) 210 + Dropout o 70
Lo + Dropout Q™ —— + Noise 2
g — + Noise ~os —~———— | ©
= O
006 & 60
0.6 B
0.5 0.4 50
0.2
leb 2e5 3e5 4e5 0 le5 2e5 3e5 4eb5 0 leb 2e5 3e5 4e5
Step Step Step
CNN CNN CNN
1.00)| | | e Base :
loni Cloni
0.95 0.8 Cloning + Dropout 200
S N A A R I | N K + Noise 1180
g 0.0/ [Cloning 0.6 —— Cloned (x2) | '§
o —— Cloned (x2) @ + Dropout ~ 160
g 085 + Dropout Soa —— + Noise 2 140
30.80 — + Noise) D120 | s “ 2
@) & g
G 7
0.75 0.2 5100 |
|
070 L\\NA‘A\W*~V-4.KA*W~*V\/ 8o
0.0
60
0 leb 2e5 3e5 4e5 0 le5 2e5 3e5 4eb5 0 100000 200000 300000 400000
Step Step Step
RESNET RESNET RESNET
1.00 B e Base ;
08|} i Clon
§Clonlng + Dropout W
095 f e e + Noise - 250
g 0.6 — Cloned (x2) | g
0.90 Cloning —— Cloned (x2) @ + Dropout ~ 200
£ + Dropout 3 0.4 —— + Noise g’
E 0.85 —— + Noise 43 -
o 0.2 & 150
0.80) [
100
0.75 0.0
0 le5 2e5 3e5 4e5 0 le5 2e5 3e5 4e5 0 100000 200000 300000 400000
Step Step Step
VIT VIT
1.0 i VIT
150 i{Cloning - Base 4001 iCloning
0.9 Cloning) H + Dropout 350
~ 1.25 g e + Noise A
4 — Cloned x2) | &
—— Cloned (x2) 1.00 g2 300
g o + Dropout g — : 1]31::; " 2250
g —— + Noise 4 0.75 =
) 0.7 8
0.50 E 200
0.6 0.25 150 |
{
0.00 100

Figure B.7: Cloning experiments across architectures. Configurations details: SGD with LR=0.01, Noisy
SGD with ¢ = 0.01 and A = 0.999, and Dropout with probability 0.1. Normalization used: Batch Norm for

0 Te5

2e5 3e5 4e5

Step

0 le5

2e5 3e5 4e5

Step

all architectures, except ViTs, where we use Layer Norm.

28

0 100000 200000 300000 400000
Step

Under review as a conference paper at ICLR 2026

MLPA=0.9 MLP A=0.99
175 i Cloning 175 {Cloning
150§ 150§
A b
1.25 1.25| N
2 \v».,,, 2 A\
1.00 A 1.00
Q Y Q e
S \ % S M
0.75 " 0.75 \
0.50 0.50 Wy
0.25 0.25
0 les 2eb 3e5 4e5 0 le5 2e5 3eb 4e5
Step Step
—— Cloned SGD —— Cloned 0=0.02 —— Cloned SGD —— Cloned 0=0.02
----- Base SGD ----- Base 0=0.02 -=--- Base SGD ----- Base 0=0.02
—— Cloned 0=0.01 Cloned 0=0.05 —— Cloned 0=0.01 Cloned 0 =0.05
----- Base 0=10.01 Base 0=0.05 ----- Base 0=0.01 Base 0=0.05

MLP A =0.999
L75 { Cloning
1.50 :
1.25
3
g 1.00
=
0.75
0.50
0.25
0 le5 2e5 3eb 4e5
Step
—— Cloned SGD —— Cloned 0=0.02
----- Base SGD ----- Base 0=0.02
—— Cloned 0=0.01 Cloned 0 =0.05
----- Base 0=0.01 Base 0=0.05

Figure B.8: Effect of noise scale parameter o in Noisy SGD for the Cloning MLP Experiments.

MLP 0=0.01 MLP 0=0.02
{ Cloning 175 %Cloning
150 |
1.25
12}
2 1.00
—
0.75
0.50
0.25
0 le5 2e5 3e5 4e5 0 le5 2e5
Step Step
—— Cloned SGD —— ClonedA=1.0 —— Cloned SGD —— ClonedA=1.0
----- Base SGD ==+ BaseA=1.0 -+=-= Base SGD ----- BaseA=1.0
—— ClonedA=0.9 —— Cloned A =0.999 —— ClonedA=0.9 —— Cloned A =0.999
----- Base A=0.9 ----- Base A =0.999 ----- BaseA=0.9 ----- Base A=0.999
—— Cloned A =0.99 Cloned A =0.0 —— Cloned A =0.99 Cloned A =0.0
----- Base A =0.99 Base A =0.0 ----- Base A=0.99 Base A =0.0

MLP 0 =0.05
1.75 loni
oning

1.50

1.25
3
£1.00
—

0.75

0.50

0.25

0 le5 2e5 3eb 4e5
Step

—— Cloned SGD —— ClonedA=1.0
----- Base SGD ----- BaseA=1.0
—— ClonedA=0.9 —— Cloned A =0.999
----- Base A=0.9 ----- Base A=0.999
—— Cloned A =0.99 Cloned A =0.0
----- Base A =0.99 Base A=0.0

Figure B.9: Effect of noise decay parameter A in Noisy SGD for the Cloning MLP Experiments.

‘ VITA=0.9
§C10ning
15] 1
% 1.0
Q
—
0.5
0.0 r—
0 le5 2e5 3e5 4e5
Step
—— Cloned SGD —— Cloned 0=0.01
----- Base SGD ---+- Base 0=0.01
—— Cloned 0=0.05 Cloned o=0.02
----- Base 0=0.05 Base 0=0.02

VITA=0.99
1.75 | i Cloning
1.50| |
1.25
% 1.00
Q
= 0.75
0.50
0.25 \
0.00 ———
0 le5 2e5 3eb 4e5
Step
—— Cloned SGD —— Cloned 0=0.01
----- Base SGD ----- Base 0=0.01
—— Cloned 0=0.05 Cloned 0 =0.02
----- Base 0=0.05 Base 0=0.02

VIT A =0.999
7 Cloning
6
5
B4
Q
=3
20, \
1|4
0 \\.. P
0 le5 2e5 3e5 4e5
Step
—— Cloned SGD —— Cloned 0=0.01
----- Base SGD ----- Base 0=0.01
—— Cloned 0=0.05 Cloned 0=0.02
----- Base 0=0.05 Base 0=0.02

Figure B.10: Effect of noise scale parameter o in Noisy SGD for the Cloning ViT Experiments.

29

Under review as a conference paper at ICLR 2026

1.75
1.50
1.25

£1.00

o075
0.50
0.25
0.00

VIT 0=0.01

i Cloning

—— Cloned SGD —— Cloned A=0.0
Base SGD - Base A =0.0

—— Cloned A=0.9 —— Cloned A =0.99
BaseA=0.9 - Base A =0.99

—— ClonedA=1.0 Cloned A = 0.999
Base A=1.0 Base A =0.999

VIT 0=0.02
{ Cloning
15(1
2 1.0
Q
— \
\
0.5 '*\&x
0.0 e —
leb 2e5 3e5 4eb
Step
—— Cloned SGD —— Cloned A=0.0
----- Base SGD ==~ Base A=0.0
—— Cloned A=0.9 —— Cloned A =0.99
----- Base A =0.9 ----- Base A=0.99
—— Cloned A=1.0 Cloned A = 0.999
----- Base A=1.0 Base A =0.999

VIT 0=0.05
Cloning
6
?
2 4
—
2
N
0 e saxwmssssssessssneseen e,
0 les 2e5 3e5 4e5
Step
—— Cloned SGD —— Cloned A=0.0
----- Base SGD === BaseA=0.0
—— ClonedA=0.9 —— Cloned A=0.99
----- Base A=0.9 ----- Base A=0.99
—— Cloned A=1.0 Cloned A = 0.999
----- Base A=1.0 Base A =0.999

Figure B.11: Effect of noise decay parameter A in Noisy SGD for the Cloning ViT Experiments.

MLP CNN VIT
—— Cloned Dropout p=0.1 X —— Cloned SGD . —
: Cloning - Base Dropout p=0.1 10| Cloning - Base SGD 2.00 -;Clonlng gi‘;ess[fn
i —— Cloned SGD Cloned Dropout p=0.2 1.75 ; Cloned Dropout p=0.1
E + Base SGD 0.8 Base Dropout p=0.2) - Base Dropout p=0.1
: Cloned Dropout p=0.2 —— Cloned Dropout p=0.1 1.50 Cloned Dropout p=0.2
Base Dropout p=0.2 - Base Dropout p=0.1 Base Dropout p=0.2
12}
»n 1.25
SN T
1.001 N\ T~
0.75
0.50
0.25
0 le5 2e5 3e5 4eb 0 le5 2e5 3e5 4eb 0 le5 2e5 3e5 4e5
Step Step Step

Figure B.12: Effect of dropout probability parameter for the Cloning MLP, CNN and ViT Experiments. Batch
norm is used for the MLP and CNN models, and Layer norm for the ViT model.

Loss

0.8

MLP MLP MLP
7
| —— Cloned adam 5
#iCloning -+ Base adam
: —— Cloned sgd 1.04
. Base sgd —— Cloned adam 70
—— Cloned sgd
A
1.02
~ £ 65
~ ~
=3 o
5 1.00 2 60
g 3
3 ©
0.98 4 55
0.96 50
Cloning
0 100000 200000 300000 400000 0 100000 200000 300000 400000 0 100000 200000 300000 400000
Step Step Step

Figure B.13: Differences between SGD and Adam optimizers in the MLP Experiments. Like SGD, Adam
cannot escape the base sub-manifold, although the dynamics are different.

30

Under review as a conference paper at ICLR 2026

VIT VIT VIT
Cloning 250 Cloning
"o e ~
1.04 —— Cloned sgd
{ Cloned adam 200
i 1.02 =
15 ~ g f
—— Cloned sgd ~ @ 150
2 -+ Base sgd =) ©
3 Cloned adam £ 1.00 o
1.0 Base adam g B
se g © 100
o &
0.98 B3|
0.5 50
0.96
0.0 Cloning 0
0 100000 200000 300000 400000 0 100000 200000 300000 400000 0 100000 200000 300000 400000
Step Step Step

Figure B.14: Differences between SGD and Adam optimizers in the ViT Experiments. Like SGD, Adam
cannot escape the base sub-manifold, although the dynamics are different.

31

	Introduction
	Background and Related Work

	LoP Manifolds: Traps for Gradient Descent
	Emergence of Loss of Plasticity from Linear–Nonlinear Rank Dynamics
	Experimental Validation

	Mitigation and Recovery Strategies
	Conclusion
	Theoretical Appendix
	Formal proof of the rank–gain theorem under non-linear activations
	Activation modulation increases decorrelation and also induces frozen units

	LoP manifolds: Formal Statement and Proof
	Modular cloning profiles and a composition theorem
	Stability of LoP manifolds.

	Empirical Appendix
	Experimental Details
	Overview of Experimental Paradigms
	Core Methodologies and Implementations
	General Setup and Procedures

	Additional Figures and Empirical Substantiation

