
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

BARRIERS FOR LEARNING IN AN EVOLVING WORLD:
MATHEMATICAL UNDERSTANDING OF LOSS OF PLASTICITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning models excel in stationary data but struggle in non-stationary environments
due to a phenomenon known as loss of plasticity (LoP), the degradation of their abil-
ity to learn in the future. This work presents a first-principles investigation of LoP in
gradient-based learning. Grounded in dynamical systems theory, we formally define LoP by
identifying stable manifolds in the parameter space that trap gradient trajectories. Our anal-
ysis reveals two primary mechanisms that create these traps: frozen units from activation
saturation and cloned-unit manifolds from representational redundancy. Our framework un-
covers a fundamental tension: properties that promote generalization in static settings, such
as low-rank representations and simplicity biases, directly contribute to LoP in continual
learning scenarios. We validate our theoretical analysis with numerical simulations and
explore architectural choices or targeted perturbations as potential mitigation strategies.

1 INTRODUCTION

The extraordinary success of back-propagation in training deep neural networks often relies on two implicit
assumptions. First, stationarity is assumed. This means that the data distribution encountered during training
is similar to the distribution faced during deployment. As a result, post-training adaptation is minimal or
absent. Second, a single random initialization of network parameters is the main source of diversity and
exploration potential, a resource that is progressively consumed by optimization and not replenished. These
assumptions falter when an artificial agent must operate and learn continuously within an environment
characterized by changing dynamics or evolving task distributions. This scenario, commonly referred to as
continual or lifelong learning, presents the stability-plasticity dilemma (Abraham and Robins, 2005; Chaudhry
et al., 2018). This dilemma demands that the system must be stable enough to retain previously acquired
knowledge, yet plastic enough to effectively integrate new information.

Empirically, standard deep networks subjected to long sequences of tasks or slowly drifting data streams
often exhibit a decline in their learning capability (Dohare et al., 2024; Berariu et al., 2021; Dohare et al.,
2021; Nikishin et al., 2022; Lyle et al., 2023). This phenomenon, termed loss of plasticity (LoP), is
distinct from catastrophic forgetting (McCloskey and Cohen, 1989; Ratcliff, 1990; French, 1999), where new
learning overwrites old knowledge. LoP specifically refers to the diminished ability to learn new information
effectively over time. Common symptoms include exploding weight magnitudes (Nikishin et al., 2022),
activation saturation, the emergence of “dead” ReLU units (whose upstream parameters cease to update)
(Nair and Hinton, 2010; Sokar et al., 2023; Dohare et al., 2021; Lyle et al., 2022), a collapse in the effective
rank of hidden layer representations indicating reduced feature diversity (Papyan et al., 2020; Huh et al.,
2023; Kumar et al., 2020; Gulcehre et al., 2022), and redundancy or diminishing contributions from network
components like attention heads or filters (Lyle et al., 2023). Many of these issues have been highlighted in
recent studies focusing on LoP (Dohare et al., 2023; Kumar et al., 2024; Ash and Adams, 2020).

1



047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

Dohare et al. (2024) argue that such failures are intrinsically linked to the back-propagation algorithm itself.
They posit that gradient descent optimized for transient single-task learning relies heavily on the initial
random state for exploration, a resource that is consumed and not replenished during prolonged training. Their
work demonstrates that standard deep learning methods can lose plasticity until they perform comparably to
linear networks and suggests that maintaining plasticity requires mechanisms beyond pure gradient descent
such as continually injecting diversity via methods like their proposed continual backpropagation.

Goal of this paper. Motivated by observations about LoP, our paper revisits the dynamics of gradient
descent and back-propagation through the lens of dynamical systems theory. We seek to answer the question:

What structural features inherent in gradient flow dynamics inevitably lead to LoP, and how
might we design algorithms or architectures capable of perpetual adaptation?

The central theorem in this work is that the tendency of gradient-based optimization to favor low-rank or
“simple” representations lies at the heart of plasticity loss. While properties like low effective rank and
simplicity bias are often associated with improved generalization in the standard two-phase learning paradigm
(Huh et al., 2023; Papyan et al., 2020; Zhang et al., 2017), we argue that these very properties become
detrimental in continual learning settings. By reducing the effective dimensionality of the network’s feature
space, they limit its capacity to adapt to novel information, thus contributing to the LoP observed by (Dohare
et al., 2024) and others. While loss of plasticity (LoP) has been previously linked to hallmarks of low-rank
representations in the literature, our work introduces a novel perspective and develops a formal framework
that systematically unifies several previously disparate observations. In addition, our theory is the first to
establish explicit connections between LoP and the geometries induced by learning dynamics and cloning,
two active research domains that we argue hold considerable potential for advancing the study of LoP.

1.1 BACKGROUND AND RELATED WORK

Loss of Plasticity (LoP). A network is said to suffer a loss of plasticity when, after some period of training,
it can no longer acquire new information as effectively as a freshly-initialised model of the same architecture.
LoP has been documented in a variety of continual-learning and reinforcement-learning settings (Dohare
et al., 2024; Nikishin et al., 2022). Crucially, LoP is distinct from catastrophic forgetting: performance on past
tasks may remain intact while the ability to learn future tasks degrades (Lyle et al., 2023). Typical symptoms
include exploding weight norms, growing numbers of dead (saturated) units, and a collapse of the effective
rank of hidden representations (Dohare et al., 2021; Papyan et al., 2020).

Previous explanations. Early accounts linked LoP to individual pathologies, e.g., weight-norm growth or
activation sparsity. However, these factors alone failed to consistently explain the phenomenon (Lyle et al.,
2022). A more recent view connects LoP to a degeneration of the network’s neural tangent kernel (NTK)
that is once the NTK becomes low-rank, many directions in function space receive negligible gradient and
can no longer be learned (Lyle et al., 2023). This perspective suggests that LoP is multi-faceted with diverse
surface-level defects (e.g., dead units, duplicated features) sharing the common consequence of reducing the
network’s effective degrees of freedom.

Geometric Singularities and Learning Dynamics. The connection between overparameterization, reduced
dimensionality, and learning difficulties has deep roots in the analysis of neural network geometry. Hierarchi-
cal models exhibit singularities that are regions in parameter space where the mapping from parameters to
function is not unique (e.g., due to unit duplication or vanishing). Foundational work by Fukumizu and Amari
(2000) and Amari et al. (2006) demonstrated that these singularities cause the Fisher Information Matrix to
degenerate, leading to slow learning dynamics (plateaus) as gradient descent is attracted to these regions.

Implicit Bias and Stochastic Dynamics. Recent work highlighted how the optimization algorithm itself
contributes to the collapse towards simpler representations. Chen et al. (2023) analyzed the implicit bias

2



094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

of Stochastic Gradient Descent (SGD), showing that gradient noise induces an attractive force towards
these singular regions (termed “Invariant Sets”). This “Stochastic Collapse” suggests that the tendency
towards LoP states is exacerbated by the stochastic nature of the optimization process, even if the regions are
unstable under deterministic gradient descent. Furthermore, Wang et al. (2024) empirically demonstrated that
maintaining trainability (ability to fit new data) does not guarantee generalizability (performance on unseen
data), emphasizing the need for methods that restore genuine plasticity.

2 LOP MANIFOLDS: TRAPS FOR GRADIENT DESCENT

In this section, we lay the groundwork for our analysis by defining Loss of Plasticity (LoP) within a
dynamical systems framework and recalling the standard definitions for feed-forward neural networks and
back-propagation. The stability of LoP manifolds, a crucial concept for understanding their persistence, will
be discussed later in Sec. 2. Let θ ∈ Θ ⊆ Rp represent the parameters of a neural network. We consider
training on a stream of data {(xi, yi)}Ni=1 using gradient descent or its stochastic variants. The objective is
typically to minimize a loss

∑N
i=1 L(ŷθ(xi), yi), which we can succinctly refer to as L(θ). This allows us to

define LoP based on the the trajectory of parameters θ(t) in the parameter space Θ as driven by the negative
gradient in the loss landscape.

Definition 2.1 (LoP Manifold). A manifold M ⊂ Θ induces LoP if the gradient of the loss function is
tangent to the manifold at every point on the manifold. That is,∇θL(θ) ∈ TθM for all θ ∈M, where TθM
denotes the tangent space ofM at θ. This tangency condition ensures that once the gradient flow entersM,
it remains withinM under the dynamics of gradient flow dθ(t)

dt = −∇θL
(
θ(t)

)
.

Remark 2.1. If the conditions in Definition 2.1 hold irrespective of the specific data distribution generating
the loss L, which we can think of as functional LoP, and is our primary area of interest. Such LoP arises from
the network architecture and gradient descent dynamics alone and is particularly relevant as it persists even
if the task or data distribution evolves.

Given these definitions, we can formalize existence of these LoP manifolds, restricting subsequent learning.
We present a central theorem that jointly addresses LoP arising from frozen and duplicate units. The intuition
is that once units become unresponsive (frozen) or perfectly redundant (cloned), they tend to remain so under
standard gradient-based optimization.

Theorem 2.1. Let G = (V,E) be the network’s computational DAG and let θ = {θuv : (u→ v) ∈ E} ∈ Θ
denote the edge parameters.

1. Frozen-unit manifoldMF . Assume there exists F ⊂ V such that, for all finite inputs encountered,
each v ∈ F is persistently saturated (f ′(zv) = 0). Then the gradients wṙ.t. all incoming parameters
to v vanish on any mini-batch, so those coordinates remain fixed; writing the linear constraints as
θin(v) = const for all v ∈ F , the affine subspaceMF := {θ : θin(v) = const ∀v ∈ F} satisfies
∇L(θ) ∈ TθMF and GD/SGD updates initialized inMF remain inMF .

2. Cloning manifoldMC . Assume a partitioning of nodes into disjoint blocks {S1, . . . , Sk} exists
with following properties. For every ordered block pair (Si, Sj), we have the linear equalities∑

v∈Sj
θuv =

∑
v∈Sj

θu′v for all u, u′ ∈ Si (equal row-sums) and
∑

u∈Si
θuv =

∑
u∈Si

θuv′

for all v, v′ ∈ Sj (equal column-sums). LetMC be the affine subspace of Θ consisting of all θ
satisfying these constraints. If θ ∈MC , then (i) all units within any block share the same forward
values on any input, (ii) all units within any block share the same backpropagated errors on any
input, and therefore (iii) the per-edge gradients are constant across edges connecting the same block
pair, i.e., for any (u, v) and (u′, v′) with u, u′ ∈ Si and v, v′ ∈ Sj , ∂L/∂θuv = ∂L/∂θu′v′ . Hence
∇L(θ) ∈ TθMC and GD/SGD updates initialized inMC remain inMC .

3



141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Note that both LoP manifoldsMF andMC are defined as linear LoP manifolds in the sense of Definition 2.1.
Formal proofs and further details are provided in Appx. A.2.

Proof idea. Frozen units. If a unit stays in a regime with f ′(zv) = 0 for all finite inputs (e.g., tanh with
very large ∥θin(v)∥ or ReLU with a large negative bias), then ∂L/∂θin(v) ≈ 0; its incoming parameters are
fixed, so updates are tangent toMF . Cloning via redistribution. The key idea the row/column-sum equalities
mean total incoming/outgoing weight from/to any block is redistributed within each block pair (Si, Sj).
Thus, the total contribution to the forward and backward of each unit within a block remains identical,
implying the forward and backward cloning (properties (i) and (ii)) within blocks. Thus, per-edge gradients
dL/dθuv = h(u) δ(v), are therefore by forward and backward symmetries across the blocks the gradients
will be constant for any two units in these blocks (u, v) ∈ Si × Sj . These block-wise constant gradients
trivially satisfy the row-sum and column-sum equalities, and hence are tangent toMC , and first-order updates
remain on both manifolds.
Remark 2.2. It is important to note that the Duplicate ManifoldMD (defined formally via Incoming and
Outgoing Equitable partitions in Appx. A.2) represents a significant generalization of the cloning concepts
typically discussed in literature. Prior analyses of singularities (Fukumizu and Amari, 2000) or invariant sets
(Chen et al., 2023) generally define cloned units by requiring their associated weights to be strictly identical
(the block-wise constant condition in our terminology). Our framework proves that invariance under gradient
descent holds even under the relaxed condition of equitability, where individual weights may differ as long
as specific incoming and outgoing sums are maintained. This significantly broadens the class of structures
identified as LoP manifolds.
Remark 2.3. The cloning LoP manifold naturally lends itself to gradient descent and stochastic gradient
descent, regardless of the order which we process the samples, will remain strictly within the manifold.
This extends to virtually all variations of gradient descent based optimizations, namely Stochastic Gradient
Descent (SGD), SGD with momentum, and Adam, as long as the optimizer is initialized at the onset of cloning.
The only exception to this is weigh decay which could break some symmetries. This fact can be empirically
observed across our cloning experiments, showing that across a wide range of optimization schemes the
model remains trapped onto to the LoP manifold.

Remarkably, the theorem admits a modular version, which allows us to create practical cloning certificate for
modern architectures (see Appx. A.3).
Theorem 2.2 (Modular Cloning (informal)). This cloning property can be decomposed modularly. If a
network is composed of individual modules (e.g., layers or blocks), and each module locally satisfies the
cloning invariance properties—namely, (1) cloned inputs produce cloned outputs (Forward Invariance), (2)
cloned backward signals at the outputs produce cloned backward signals at the inputs (Backward Invariance),
and (3) gradient updates preserve these invariances (Persistence)—then the entire network resides on a
cloning manifold, provided the cloning profiles (partitions) are consistent at the interfaces between modules.

To empirically test the validity of the cloning manifold and their potential escape mechanisms we conduct
cloning experiments. First, a base model (e.g., an MLP) is trained on a specific task. Subsequently, a larger
model is constructed by expanding the base model. This expansion involves increasing the width of the
model for MLPs, the number of channels for CNNs and ResNets, and the feature dimension for ViTs. The
weights of the cloned model are initialized in such a way that its activations are identical to those of the base
model. This effectively creates blocks of units that have identical activations. Next, we train both the base and
cloned models on the same task and monitor their training progress through the loss curve, the effective rank
of representations, and the cloning R2 score. Figure 2.1 presents the results of such experiments on MLPs,
shedding light on the dynamics within and escapes from these LoP manifolds. The empirical validation
of these claims, such as demonstrating perfect cloning under specific initializations or the persistence of
dead units, can be found in Fig. 2.1 and Appx. B. Notably, despite Adam violating the symmetry conditions
required for Theorem 2.1, the empirical evidence suggests that it frequently fails to escape the manifold. This
observation implies the existence of a stronger theory capable of explaining this phenomenon.

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Escaping the LoP manifolds with perturbations. While a comprehensive theoretical analysis of the
stability of empirically observed LoP manifolds is beyond the scope of this work, our empirical investigations
indicate that these manifolds are frequently unstable or resemble saddle-like shapes. Certain types of noise
or symmetry-breaking operations can help models escape these manifolds. We highlight two common
perturbations: (1) Noisy SGD is a modification of SGD that adds Gaussian noise to the computed gradients
before parameter updates. The magnitude of this injected noise is usually proportional to the norm of the
gradient, with its initial relative strength gradually decreasing over successive steps. By applying this noise
after cloning, we can determine whether the model can escape the LoP manifold or if it will fall back. (2)
Dropout introduces stochasticity in the forward and backward passes by randomly zeroing activations. For
cloned units, this breaks the symmetry because different clones might be active in different dropout masks,
leading to divergent gradient updates. This is supported by experiments where dropout helps a model escape
an artificially induced cloning manifold (see Fig. 2.1).

0 1e5 2e5 3e5 4e5
Step

0.5

0.6

0.7

0.8

0.9

1.0

C
lo

ni
ng

 R
2

Cloning

MLP

Cloned (x2)
+ Dropout
+ Noise

0 1e5 2e5 3e5 4e5
Step

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Cloning

MLP
Base
+ Dropout
+ Noise
Cloned (x2)
+ Dropout
+ Noise

0 1e5 2e5 3e5 4e5
Step

50

60

70

80

90

E
ff

ec
tiv

e 
R

an
k

Cloning

MLP

Figure 2.1: Cloning MLPs experiments. The empirical data validates Theorem 2.1 on duplicate manifold
LoP. The cloned network dynamics remain confined in the base network manifold when using SGD, however
using Noisy SGD or Dropout the dynamics can escape the manifold. Left: Cloning R2 score quantifies the
proportion of variance in individual unit activations within a cloned block that is explained by the mean
activation of that block. An R2 score of 1 indicates perfect cloning (units in a block are nearly identical),
while a 0 score indicates no explained variance. See Appx. B.1.2 (Appendix B) for the precise formula and
calculation details. Middle: Training loss comparison. Cloned loss refers to the loss of the cloned model
during its training phase, while base loss refers to the loss of the original base model, which continues training
for comparison. Right: Effective rank evolution showing representational diversity.

Both noisy SGD and dropout act as symmetry-breaking operations. In the case of dropout, both forward
and backward passes are asymmetric for cloned units. For noisy SGD, the backward pass (gradient update)
becomes asymmetric. This asymmetry causes the parameters of notionally cloned units to slowly diverge.
Remarkably, in our MLP experiments, even a small amount of gradient noise, e.g., a single step with noise
magnitude 0.01 relative to gradient norms, suffices to initiate escape from an LoP manifold, though stronger
noise generally leads to faster escape. In contrast, in settings such as Vision Transformers, while the model
could escape from the manifold with a small perturbation, it did not move very far from it. More experimental
studies into this direction would be vital to better understand the stability of these LoP manifolds.

3 EMERGENCE OF LOSS OF PLASTICITY FROM LINEAR–NONLINEAR RANK
DYNAMICS

Having established the existence of LoP manifolds, we now discuss the mechanisms within standard training
that drive their formation. The optimization process can be seen as a trajectory, beginning with an expansion of
representational diversity as features propagate through nonlinear layers and become increasingly decorrelated

5



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

(Poole et al., 2016). However, this initial growth is followed by a compression phase, where the network
simplifies its representation to retain only the most relevant features for the task. This low-dimensional
structure is a key characteristic of neural collapse, where last-layer features for each class converge to their
means in a highly organized geometric configuration (Papyan et al., 2020). This is also consistent with
the information bottleneck principle, which describes training as a process of first fitting the data and then
compressing the representation to discard irrelevant information (Shwartz-Ziv and Tishby, 2017). Here,
we argue that these two principles derive the model towards the LoP manifolds we identified earlier. Thus,
this provides a direct link between these fundamental compression dynamics inherent to deep network
optimization, and emergence of LoP.

To diagnose whether features are diversifying or compressing during training, we track a smooth surrogate of
the rank of the feature correlation matrix. Exact rank is numerically unstable, because it is not a continuous
nor a differentiable map from the matrix space. Therefore, we use differentiable proxies to rank such as
Rényi-2 rank, er2(M) = (trM)2/∥M∥2F , or the Shannon effective rank, er(M) = exp(H(λ(M)/trM)).
Both increase when the eigenmass is evenly distributed or dominated by a few values. Note that both of these
surrogates are maximized when matrix M has equal eivenvalues and minimized when it a rank-1 matrix. The
following theorem offers an insight into how nonlinear layers contribute to the formation of features.
Theorem 3.1 (rank gain across one linear–nonlinear step). Assume ϕ is nonlinear with a Hermite expansion.
Let C be the pre-activation correlation matrix with unit diagonal. For an activation ϕ, define the correlation
kernel Kϕ(r) = Corr(ϕ(x), ϕ(y)) where (x, y) are jointly Gaussian with correlation r. The nonlinearity
acts entrywise on correlations, producing Kϕ(C). Its correlation kernel satisfies Kϕ(0) = 0, Kϕ(1) = 1,
and |Kϕ(r)| < |r| for all |r| < 1. For any correlation matrix C with unit diagonal the Rényi-2 effective rank
obeys

er2(Kϕ(C))

er2(C)
=

d+
∑

i ̸=j C
2
ij

d+
∑

i ̸=j Kϕ(Cij)2
≥ 1,

and the ratio equals 1 only when every off-diagonal magnitude Cij is 0 or 1.

Note that the theorem implies that any correlations |Cij | ∈ (0, 1) strictly increase Rényi-2 rank after the
nonlinearity because Kϕ is below the identity map everywhere other than those fixed points. Note that this
gap also depends on the activation itself, and how nonlinear it is. We can summarize this gap via a scalar that
summarizes how strongly the kernel pulls intermediate correlations toward the fixed points {0, 1}, which we
term the decorrelation strength κϕ = maxr∈[0,1](r

2 −Kϕ(r)
2). Larger κϕ implies a larger rank gain for the

same spectrum of C. For a formal statement and proof of this statement see Appx. A.1.

Implication for emergence of frozen units So far we implicitly treated pre-activations as standardized. In
practice, their first and second moments drift during training. Allowing nonzero means and nonunit variances
changes the operating regime of the activation and thus modifies the kernel Kϕ and the decorrelation strength
κϕ. For ReLU, making the effective bias more negative increases nonlinearity and raises κϕ. For tanh,
increasing effective gain does the same. These are precisely the regimes where the derivative is near zero
on most inputs, which explains why training that enhances decorrelation also creates units that are nearly
always inactive or saturated. One insight from this connection is that we can unify two empirically observed
phenomena: “dead ReLU” and “frozen units” as both symptoms are caused by the same underlying force.

Implication for creation of duplicate or cloned units Neural collapse is a widely observed endpoint in
which the penultimate features are low-rank, and the class means form a simplex or Equiangular Tight Frame
(ETF) structure (Papyan et al., 2020). Under this geometry, the theorem makes a precise prediction. To
preserve low rank through the nonlinearity, correlations must lie at kernel fixed points that do not increase
effective rank, which means they should be close to 0 or 1. Maintaining rank C therefore requires roughly C
orthogonal directions for class structure and d− C directions that are near duplicates within classes. Linear
layers and the loss encourage this compression and duplication, while the nonlinearity would otherwise
expand diversity unless within-class correlations are driven close to 1 and others close to 0.

6



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

The two implications above provide a theoretical perspective on why duplicate features and frozen units
frequently emerge at or near convergence, and why the resulting representation lies close to LoP manifolds,
as proven in Theorem 2.1.

3.1 EXPERIMENTAL VALIDATION

We validate our theory with experiments on MLP, CNN, ResNet, and ViT architectures, training them
continually on a sequence of 40 5-class tasks derived from Tiny ImageNet. We track the emergence of
LoP symptoms, including dead units, duplicate units, and effective rank degradation. Full experimental
details are provided in Appx. B. The experimental evidence confirms our intuitions (see Appx. B and
Figs. 3.1, 3.2, B.4 and B.6): depending on the architecture, we observe that a degradation in the model
performance is concomitant with the emergence of duplicate or frozen units, and a corresponding decrese in
representational diversity. Our inquiry so far highlights two key pathways to LoP common symptoms: (1)

0 20 40
Task

0.2

0.4

0.6

0.8

MLP

Online training accuracy
Fraction of dead units

0 20 40
Task

0.5

0.6

0.7

0.8

0.9

1.0
CNN

Online training accuracy
Fraction of dead units

0 20 40
Task

0.5

0.6

0.7

0.8

0.9

1.0
RESNET

Online training accuracy
Fraction of dead units

0 20 40
Task

0.0

0.5

1.0

VIT

Online training accuracy
Fraction of duplicated units

Figure 3.1: Causes and symptoms of Loss of Plasticity emerging during continual learning. The plots illustrate
(across different architectures like MLP, CNN, ResNet, and ViT from left to right) an increase in the fraction
of dead or duplicate units during training, coincidental with a decrease in training accuracy. These are key
indicators of LoP. (Details of experimental setup in Appx. B).

0 20 40
Task

20

30

40

50

60

E
ff

ec
tiv

e 
R

an
k

MLP

0.2

0.3

0.4

0.5

Fr
ac

tio
n 

of
 d

up
lic

at
ed

 u
ni

ts

0 20 40
Task

30

40

50

60

70

E
ff

ec
tiv

e 
R

an
k

CNN

0.50

0.55

0.60

0.65

0.70

0.75

Fr
ac

tio
n 

of
 d

up
lic

at
ed

 u
ni

ts

0 20 40
Task

40

50

60

70

80

90

100

E
ff

ec
tiv

e 
R

an
k

RESNET

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Fr
ac

tio
n 

of
 d

up
lic

at
ed

 u
ni

ts

0 20 40
Task

0

50

100

150

200

E
ff

ec
tiv

e 
R

an
k

VIT

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 d

up
lic

at
ed

 u
ni

ts

Figure 3.2: Co-evolution of Effective rank and LoP symptoms, such as dead or duplicate units in the network
during continual training. (Experimental details in Appx. B).

Emergence of duplicate features, where distinct computational units, or groups of units, within a network
layer effectively learn to become identical or highly correlated, as a potential consequence of attempting to
lower representational rank, (2) Emergence of frozen or dead features, where weights and biases of a unit
stop learning, as a result of attempting to maximize rank increase (leading to saturation) or to flatten the loss
landscape around the current parameters.

7



329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

4 MITIGATION AND RECOVERY STRATEGIES

Having discussed the emergence of LoP symtoms and the existence of LoP manifolds, we now turn to
strategies for preventing their formation or recovering from them if they have already occurred.

Preventing LoP with Normalization. As established in Sec. 3, one primary cause for activations becoming
frozen is their pre-activations drifting into saturated regions. It is therefore natural to expect that normalization
layers like Batch Normalization (BN) or Layer Normalization (LN) can help prevent this. By standardizing
pre-activation statistics, these layers can keep activations operating in their more dynamic, non-linear range.
Even with learnable affine parameters (γ, β) after normalization, these parameters often act to maintain pre-
activations within a “healthy” range, rather than pushing them into extreme values that cause saturation (e.g.,
consistently negative for ReLU). This is widely supported by empirical evidence (see Appx. B, Figures like
Fig. 3.1 in Sec. 3, and Fig. B.3 ). BN and LN generally help maintain higher effective rank of representations
throughout training (as seen in Fig. 3.2) and concurrently prevent frozen/dead features and excessive feature
duplication from becoming dominant.

0 20 40
Task

20

40

60

E
ff

ec
tiv

e 
R

an
k

MLP

Baseline
BN + affine
BN
LN + affine
LN

0 20 40
Task

40

60

80

100

E
ff

ec
tiv

e 
R

an
k

CNN

Baseline
BN + affine
BN
LN + affine
LN

0 20 40
Task

40

60

80

100

120

140

E
ff

ec
tiv

e 
R

an
k

RESNET

LN + affine
LN
BN + affine
Baseline

0 20 40
Task

0

50

100

150

200

E
ff

ec
tiv

e 
R

an
k

VIT
BN + affine
BN
LN + affine
Baseline

Figure 4.1: Evolution of the Effective rank during training for architectures with and without normalization
layers. Dotted lines represent normalization with affine parameters. (Experimental details in Appx. B).

Recovery from LoP via Perturbations. What if LoP conditions, such as widespread frozen units or
extensive feature cloning, have already set in? In such cases, mitigation strategies like normalization, which
act proactively, may no longer be sufficient to reverse the state, as indicated by cloning experiments where
normalization alone doesn’t break perfect, established clones. However, similar to our discussion on manifold
stability (Section 2), injecting noise into the training process can be a viable recovery strategy. The principle
is that if the LoP manifold is unstable or saddle-like, perturbations can allow the optimizer to find an escape
route. Noisy SGD and the more sophisticated Continual Backpropagation (Dohare et al., 2024) are examples
of such mechanisms. We test recovery from LoP on the “bit-flipping” benchmark, an online regression task
with a non-stationary target function designed to challenge a model’s adaptability. A detailed description
of the task is in Appx. B.1.1. In order to demonstrate the recovery potential of noise injection, we design
an experiment where the first half of 5M samples is processed by plain Stochastic Gradient Descent (SGD)
and in the second half we switch the learning rule to Continual Backpropagation (CBP). Figure B.1 clearly
shows a reversal in trend when the switch happens: whereas SGD causes the representations’ rank to drop
and the online training loss to increase, CBP amplifies the features’ rank and reduces the online training
loss, effectively recovering plasticity. Additionally Fig. B.2 illustrates how aspects like rank and feature
duplication are affected by the dimensionality of the model. The disparity between SGD and CBP is only
increased by the model size, hinting that the model scale might aggravate the symptoms of LoP. For details
see Appx. B.1.1.

An interesting distinction arises when comparing artificially induced LoP (like explicit cloning) with naturally
emerging LoP symptoms in challenging scenarios like continual learning. In controlled cloning setups (e.g.,

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

as conceptualized in Fig. 2.1, dropout can be effective in breaking the artificially imposed symmetry and
allowing units to diverge. In contrast, in our continual Bit Flipping experiments, the role of dropout can be
mixed or even detrimental. While it might prevent some forms of LoP, it can also hinder the consolidation
of new knowledge or exacerbate forgetting if it too aggressively discards learned information relevant to
the new task. This suggests that the optimal strategy for maintaining or recovering plasticity might be
context-dependent.

5 CONCLUSION

This work has presented a mathematical framework to understand Loss of Plasticity (LoP) in deep neural
networks through the lens of dynamical systems. We formally defined LoP manifolds as regions in parameter
space that trap gradient-based optimization. We identified two primary mechanisms for their formation: the
saturation of activations leading to frozen units, and representational redundancy manifesting as cloned-unit
manifolds. Our analysis reveals that these LoP states are frequently characterized by a reduction in the
effective rank of representations. We investigated how architectural choices, such as normalization, can
mitigate the emergence of LoP, and how perturbations, like noise injection, can facilitate escape from these
restrictive manifolds, depending on their stability.

A key finding from our investigation is the inherent tension between learning objectives in static and dynamic
environments. While properties conducive to good generalization on a fixed dataset, such as the emergence of
low-rank features or simplicity biases, appear to be beneficial, they can also lead to a loss of adaptability when
the learning process is extended over time or across changing tasks. This suggests that continual learning
necessitates mechanisms that actively preserve or regenerate representational diversity.

This study raises several intriguing questions and suggests directions for future research. From a theoretical
perspective, our analysis has primarily focused on linear or affine LoP manifolds. However, it remains
an open question whether non-linear LoP manifolds exist and could potentially arise in practical network
training scenarios. Additionally, a more comprehensive theoretical understanding of the stability conditions
for various types of LoP manifolds is essential. Specifically, we need to determine the precise architectural or
data conditions that lead to one type of stability over another.

Numerically, the curvature of the loss landscape in directions normal to an LoP manifold is critical. Even
for an unstable manifold, if the negative curvatures are very slight (near flat), escaping might necessitates
significant perturbations or many training steps. Characterizing these curvatures and their impact on escape
dynamics would be valuable. While we have demonstrated that models can escape artificially cloned LoP
manifolds with interventions like dropout or noise, the question remains: can a model, once recovered from
such a state, explore the parameter space as effectively and find solutions as generalizable as a model trained
from a fresh, random initialization? This question is of significant practical importance, as it explores whether
we can fully restore exploratory capacity after falling into a highly restricted subspace.

One of the most intriguing outcomes of this work is the connection between unit cloning, a phenomenon often
studied in model compression or network analysis, and LoP in continual learning. These have been largely
treated as separate fields of inquiry. However, our theoretical framework, particularly the theorems regarding
cloned units, reveals a deep link, suggesting that insights and tools can be transferred between these domains.
This raises questions about whether techniques from continual learning, such as noisy backpropagation or
methods like Continual Backpropagation (CBP) (Dohare et al., 2024), could be beneficial in the context of
model expansion or escaping cloned states in other scenarios.

Ultimately, understanding and overcoming LoP is crucial for building AI systems that can learn continuously
and adapt robustly in an ever-changing world. By providing a mathematical characterization of some
fundamental barriers to such adaptation, we aim to pave the way for the development of new architectures
and learning algorithms that can sustain plasticity indefinitely, leading to truly lifelong learning agents.

9



423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REFERENCES

Wickliffe C Abraham and Anthony Robins. Memory retention–the synaptic stability versus plasticity dilemma.
Trends in Neurosciences, 28(2):73–78, 2005.

Shun-ichi Amari, Hyeyoung Park, and Tomoko Ozeki. Singularities affect dynamics of learning in neuroman-
ifolds. Neural computation, 18(5):1007–1065, 2006.

Jordan Ash and Ryan P. Adams. On warm-starting neural network training. In Advances in Neural Information
Processing Systems, volume 33, pages 3884–3894, 2020. URL https://proceedings.neurips.
cc/paper/2020/hash/288cd2567953f06e460a33951f55daaf-Abstract.html.

Tudor Berariu, Wojciech Czarnecki, Stefano De, Jörg Bornschein, Samuel Smith, Razvan Pascanu, and
Claudia Clopath. A study on the plasticity of neural networks. arXiv preprint arXiv:2106.00042, 2021.
URL https://arxiv.org/abs/2106.00042.

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Rie-
mannian walk for incremental learning: Understanding forgetting and intransigence. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), pages 532–547. Springer,
2018. URL https://openaccess.thecvf.com/content_ECCV_2018/html/Arslan_
Chaudhry__Riemannian_Walk_ECCV_2018_paper.html.

Feng Chen, Daniel Kunin, Atsushi Yamamura, and Surya Ganguli. Stochastic collapse: How gradient noise
attracts sgd dynamics towards simpler subnetworks. Advances in Neural Information Processing Systems,
36:35027–35063, 2023.

Shibhansh Dohare, Richard S. Sutton, and A. Rupam Mahmood. Continual backprop: Stochastic gradient
descent with persistent randomness. arXiv preprint arXiv:2108.06325, 2021. URL https://arxiv.
org/abs/2108.06325.

Shibhansh Dohare, Juan F. Hernandez-Garcia, Parash Rahman, A. Rupam Mahmood, and Richard S. Sutton.
Maintaining plasticity in deep continual learning. arXiv preprint arXiv:2306.13812, 2023. URL https:
//arxiv.org/abs/2306.13812.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mahmood, and
Richard S Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):768–774, 2024.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences, 3(4):
128–135, 1999.

Kenji Fukumizu and Shun-ichi Amari. Local minima and plateaus in hierarchical structures of multilayer
perceptrons. Neural networks, 13(3):317–327, 2000.

Caglar Gulcehre, Srivatsan Srinivasan, Jakub Sygnowski, Georg Ostrovski, Mehrdad Farajtabar, Matt Hoff-
man, Razvan Pascanu, and Arnaud Doucet. An empirical study of implicit regularization in deep offline rl.
arXiv preprint arXiv:2207.02099, 2022.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola. The
low-rank simplicity bias in deep networks. In International Conference on Learning Representations
(ICLR), 2023.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization inhibits
data-efficient deep reinforcement learning. arXiv preprint arXiv:2010.14498, 2020.

10

https://proceedings.neurips.cc/paper/2020/hash/288cd2567953f06e460a33951f55daaf-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/288cd2567953f06e460a33951f55daaf-Abstract.html
https://arxiv.org/abs/2106.00042
https://openaccess.thecvf.com/content_ECCV_2018/html/Arslan_Chaudhry__Riemannian_Walk_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Arslan_Chaudhry__Riemannian_Walk_ECCV_2018_paper.html
https://arxiv.org/abs/2108.06325
https://arxiv.org/abs/2108.06325
https://arxiv.org/abs/2306.13812
https://arxiv.org/abs/2306.13812


470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity in continual learning via
regenerative regularization. In Proceedings of the 3rd Conference on Lifelong Learning Agents. PMLR,
2024. URL https://arxiv.org/abs/2308.11958.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in reinforcement
learning. arXiv preprint arXiv:2204.09560, 2022.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney. Under-
standing plasticity in neural networks. In Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pages 23190–23211. PMLR, 2023.
URL https://proceedings.mlr.press/v202/lyle23b.html.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of Learning and Motivation, volume 24, pages 109–165. Elsevier, 1989.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 807–814, 2010.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The primacy
bias in deep reinforcement learning. In Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 16828–16847. PMLR, 2022.
URL https://proceedings.mlr.press/v162/nikishin22a.html.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal phase of
deep learning training. Proceedings of the National Academy of Sciences, 117(40):24652–24663, 2020.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential
expressivity in deep neural networks through transient chaos. Advances in neural information processing
systems, 29, 2016.

Roger Ratcliff. Connectionist models of recognition memory: Constraints imposed by learning and forgetting
functions. Psychological Review, 97(2):285, 1990.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information. arXiv
preprint arXiv:1703.00810, 2017. Submitted March 2, 2017, last revised April 29, 2017.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phenomenon in
deep reinforcement learning. In Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pages 32145–32168. PMLR, 2023. URL
https://proceedings.mlr.press/v202/sokar23a.html.

Zhenyi Wang, Enneng Yang, Li Shen, and Heng Huang. A comprehensive survey of forgetting in deep
learning beyond continual learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization. In International Conference on Learning Representations
(ICLR), 2017.

11

https://arxiv.org/abs/2308.11958
https://proceedings.mlr.press/v202/lyle23b.html
https://proceedings.mlr.press/v162/nikishin22a.html
https://proceedings.mlr.press/v202/sokar23a.html


517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

A THEORETICAL APPENDIX

This section contains detailed proofs of theorems and lemmas, further theoretical derivations, and discussions
extending the concepts presented in the main paper.

A.1 FORMAL PROOF OF THE RANK–GAIN THEOREM UNDER NON-LINEAR ACTIVATIONS

This section states and proves in full detail the theorem used in Sec. 3. We work with standard Gaussian
inputs and use Hermite expansions to characterize the correlation kernel of a nonlinearity.

Hermite basis and notation Let (hk)k≥0 be the orthonormal probabilists’ Hermite polynomials in L2(γ)
where γ = N (0, 1), with h0(z) = 1, h1(z) = z, and E[hk(Z)hℓ(Z)] = δkℓ for Z ∼ γ. Any ϕ ∈ L2(γ)
admits a Hermite expansion

ϕ(z) =

∞∑
k=0

akhk(z), ak = E
[
ϕ(Z)hk(Z)

]
.

Write σ2
ϕ = Var(ϕ(Z)) =

∑
k≥1 a

2
k. We call ϕ nonlinear when at least one coefficient with k ≥ 2 is nonzero.

Correlation kernel For jointly Gaussian (X,Y ) with EX = EY = 0, Var(X) = Var(Y ) = 1, and
corr(X,Y ) = r ∈ [−1, 1], define

Kϕ(r) = Corr
(
ϕ(X), ϕ(Y )

)
=

E[ϕ(X)ϕ(Y )]− E[ϕ(X)]E[ϕ(Y )]√
Var(ϕ(X))Var(ϕ(Y ))

.

Using the Hermite expansion and Mehler’s identity E[hk(X)hℓ(Y )] = δkℓ r
k gives

Kϕ(r) =

∑
k≥1 a

2
kr

k∑
k≥1 a

2
k

=
∑
k≥1

wkr
k, wk :=

a2k∑
ℓ≥1 a

2
ℓ

≥ 0,
∑
k≥1

wk = 1. (1)

Hence Kϕ is a convex combination of the monomials rk for k ≥ 1.

Lemma A.1 (basic properties of Kϕ). If ϕ is nonlinear with ϕ ∈ L2(γ), then the correlation kernel Kϕ

defined in (1) satisfies

Kϕ(0) = 0, Kϕ(1) = 1, |Kϕ(r)| < |r| for all |r| < 1.

Proof. The first two identities follow by evaluating (1) at r = 0 and r = 1. For the strict inequality, write
Kϕ(r) =

∑
k≥1 wkr

k with weights wk ≥ 0,
∑

k wk = 1. If |r| < 1 and there exists k ≥ 2 with wk > 0
(nonlinearity), then

|Kϕ(r)| ≤
∑
k≥1

wk|r|k = |r|
(
w1 +

∑
k≥2

wk|r|k−1
)
< |r|

(
w1 +

∑
k≥2

wk

)
= |r|.

Lemma A.2 (entrywise action on Gaussian correlation matrices). Let Z = (Z1, . . . , Zd)
⊤ ∼ N (0, C) with

C a correlation matrix. For ϕ ∈ L2(γ),

Corr
(
ϕ(Zi), ϕ(Zj)

)
= Kϕ(Cij) for all i, j.

12



564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Equivalently, the post-activation correlation matrix equals Kϕ(C) entrywise. Moreover,

Kϕ(C) =
∑
k≥1

wk C
⊙k,

where C⊙k is the k-th Hadamard power and (wk)k≥1 are as in (1). Hence Kϕ(C) is a correlation matrix: it
is positive semidefinite and has unit diagonal.

Proof. Fix i, j. By the same Hermite calculation used for (1), with r = Cij we have

Corr
(
ϕ(Zi), ϕ(Zj)

)
=

∑
k≥1 a

2
kr

k∑
k≥1 a

2
k

= Kϕ(r).

Stacking these equalities over all pairs (i, j) yields the entrywise identity and the series Kϕ(C) =∑
k≥1 wkC

⊙k. Each Hadamard power C⊙k is positive semidefinite by the Schur product theorem, and
the diagonal entries are (Cii)

k = 1, so the nonnegative convex combination is positive semidefinite with unit
diagonal.

Lemma A.3 (Frobenius contraction). For any correlation matrix C and nonlinear ϕ with kernel Kϕ as above,∑
i ̸=j

Kϕ(Cij)
2 ≤

∑
i ̸=j

C2
ij ,

with strict inequality if there exists i ̸= j such that |Cij | < 1.

Proof. By Lemma A.1, |Kϕ(r)| < |r| for every |r| < 1, and trivially |Kϕ(r)| ≤ |r| for |r| ≤ 1. Apply this
pointwise to each off-diagonal entry Cij and sum the squares. If some |Cij | < 1, the corresponding term is
strictly reduced, and no term increases, so the sum is strictly reduced.

We can now state and prove the theorem used in the main text.

Theorem A.1 (rank gain across one linear–nonlinear step). Let C be a d × d correlation matrix and let
ϕ ∈ L2(γ) be nonlinear. Define Kϕ by (1). Then Kϕ(C) is a correlation matrix and

er2
(
Kϕ(C)

)
er2(C)

=
d+

∑
i ̸=j C

2
ij

d+
∑

i ̸=j Kϕ(Cij)2
≥ 1.

Moreover, the ratio is strictly greater than 1 whenever there exists i ̸= j with |Cij | < 1. If the ratio equals 1,
then every off-diagonal magnitude satisfies |Cij | ∈ {0, 1}.

Proof. By Lemma A.2, Kϕ(C) is a correlation matrix and trKϕ(C) = d = trC. For any correlation matrix
M ,

∥M∥2F =
∑
i,j

M2
ij = d+

∑
i ̸=j

M2
ij ,

hence

er2(M) =
(trM)2

∥M∥2F
=

d2

d+
∑

i̸=j M
2
ij

.

Applying this to M = C and M = Kϕ(C) yields the displayed ratio. Lemma A.3 gives
∑

i ̸=j Kϕ(Cij)
2 ≤∑

i ̸=j C
2
ij , which makes the ratio at least 1, and strictly larger than 1 if some |Cij | < 1.

13



611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

For the equality case, suppose the ratio equals 1. Then the two Frobenius norms coincide, so∑
i ̸=j

(
C2

ij −Kϕ(Cij)
2
)
= 0.

Each term in the sum is nonnegative by Lemma A.1. Therefore every term must vanish, that is, for all i ̸= j,

Kϕ(Cij)
2 = C2

ij .

If |Cij | < 1 and ϕ is nonlinear, Lemma A.1 gives |Kϕ(Cij)| < |Cij |, a contradiction. Hence for all i ̸= j we
must have |Cij | ∈ {0, 1}, which proves the final claim.

Remark A.1 (dependence on operating regime). If the pre-activation is reparameterized as ϕa,b(z) =
ϕ(az + b), the Hermite coefficients and thus the weights (wk) in (1) change. The contraction at intermediate
correlations can be summarized by the decorrelation strength

κϕ = max
r∈[0,1]

(
r2 −Kϕ(r)

2
)
,

which quantifies the maximal per-entry reduction of squared correlation. For instance, more negative
effective bias for ReLU and larger effective gain for tanh increase κϕ, while also reducing typical derivatives,
connecting rank gains to the emergence of frozen units.

A.1.1 ACTIVATION MODULATION INCREASES DECORRELATION AND ALSO INDUCES FROZEN UNITS

Training changes pre–activation statistics, which modifies the operating regime of ϕ. Parameterize ϕa,b(z) =
ϕ(az + b). Both the kernel Kϕ and the decorrelation strength κϕ vary with (a, b). Appendix A.1 shows that
regimes that raise decorrelation also reduce typical derivatives, yielding frozen units:

• For tanh, increasing gain a raises the local decorrelation rate αϕ = E[ϕ′(Z)2]/E[ϕ(Z)2] − 1 while
ϕ′(az)→ 0 for almost all z as a→∞.

• For ReLU, making the effective bias b negative with |b|/a large increases αϕ while P(az + b < 0)→ 1,
so ϕ′(az + b) = 0 on most inputs.

The empirical relation between higher decorrelation and freezing is shown in Fig. A.1 and Fig. A.2.

A.2 LOP MANIFOLDS: FORMAL STATEMENT AND PROOF

This section provides the formal definitions, statement, and proof for the LoP manifold theorem. Since the
frozen manifold argument is self explanatory, we will only prove the cloning manifold result that is more
non-trivial. First, let us introduce our neural network network formalization. A feed-forward neural network
is defined by a directed acyclic graph G = (V,E,w), where V is the set of nodes (neurons), E is the set of
directed edges (connections), E representations the structure of the computational graph of the network, and
w : E→ R, is the weight parameters of the network, which will be denoted w(u, v) for each edge (u, v) ∈ E.
Furthermore, Vin ⊂ V are the input nodes, and Vout ⊂ V are the output nodes. The post-activation h(v) of a
node v ∈ V is computed as:

h(v) =


xv, if v ∈ Vin,

fv

(
Σu∈in(v)wu,v h(u)︸ ︷︷ ︸

pre-activation z(v):=

)
, otherwise.

Here, xv is the input value for input node v, fv is the activation function associated with node v, in(v) is the
set of nodes with edges towards v. The network output is the vector of activations h(Vout). With the formal

14



658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

10 1 100 101 102

Scale factor a

0

10

20

30

40

50

_f
Tanh(ax): Rank Recovery Strength

10 1 100 101 102

Scale factor a

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n 

w
ith

 |f
'| 

<
 1

e-
4

Tanh(ax): Frozen Units

3 2 1 0 1 2 3
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

ta
nh

(a
x)

Activation Shape

a=0.5
a=1.0
a=5.0
a=20.0

4 3 2 1 0 1 2
Shift b

0

2

4

6

8

_f

ReLU(x+b): Rank Recovery Strength

4 3 2 1 0 1 2
Shift b

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

w
ith

 f'
=

0

ReLU(x+b): Dead Units

4 3 2 1 0 1 2 3 4
x

0

1

2

3

4

5

R
eL

U
(x

+
b)

Activation Shape

b=-3
b=-1
b=0
b=1

Validation: Extreme Modulation Leads to Frozen States

Figure A.1: Validation that extreme modulation leads to frozen states. Top row: Analysis of Tanh(ax) with
increasing scale a. Left: Rank recovery strength αf increases with a. Middle: Fraction of frozen units (with
|f ′| < 10−4) approaches 1 as a increases. Right: Activation shapes showing saturation for large a. Bottom
row: Analysis of ReLU(x+b) with negative shift b. Left: αf varies with shift. Middle: Fraction of dead units
increases as b becomes more negative. Right: Activation shapes showing increasing dead zones. These results
substantiate that maximizing rank recovery strength drives activations into regimes with zero gradients almost
everywhere.

pass formally define, we can now define our backward passes. Given a loss function L(h(Vout), y) comparing
the network output h(Vout) to a target y, the back-propagation algorithm computes gradients via error signals
δ(v). The error signal is defined recursively:

δ(v) =


∂L(h(Vout), y)/∂h(Vout), for output nodes ,∑
u∈out(v)

δ(u)w(v, u) f ′
u(z(u)), v /∈ Vout,

where out(v) is the set of nodes receiving input from v, and f ′
u is the derivative of the activation function fu.

The gradient of the loss with respect to a weight w(u, v) is then given by ∂L/∂w(u, v) = δ(v) f ′
v(z(v))h(u).

Network partition and base network definitions. Let G = (V,E,w) be the main network. A partitioning
refers to a partitioning of nodes defined as:

∪ki=1Si = V, Sj ∩ Si = ∅ for all i ̸= j.

Given the partitioning, we define the base network G̃ = (Ṽ , Ẽ, w̃) where each partition is a node, the edges
are union of edges between two corresponding partitions, and weights are the sum total sum of edges divided
by the number of rows:

Ṽ := {Si : i ∈ [k]} Ẽ = {(Si, Sj) : Si × Sj ∩ E ̸= ∅} w̃ij =
1

|Si|
∑

u∈S,v∈Sj

wuv.

15



705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

100 101 102

Scale a

20

15

10

5

0

5

Sh
ift

 b

ReLU(ax+b): Frozen Fraction

100 101 102

Scale a

20

15

10

5

0

5

Sh
ift

 b

ReLU(ax+b): _f (capped at 10)

3 2 1 0 1 2 3
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f(
x)

ReLU Shape

f(x)
f'(x)

0 2 4 6 8 10
_f (Rank Recovery Strength)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
oz

en
 F

ra
ct

io
n

[half-vanishing]

ReLU(ax+b): Trade-off

100 101 102

Scale a

20

15

10

5

0

5

Sh
ift

 b

SELU(ax+b): Frozen Fraction

100 101 102

Scale a

20

15

10

5

0

5
Sh

ift
 b

SELU(ax+b): _f (capped at 10)

3 2 1 0 1 2 3
x

1

0

1

2

3

f(
x)

SELU Shape

f(x)
f'(x)

0 2 4 6 8 10
_f (Rank Recovery Strength)

0.0

0.1

0.2

0.3

0.4

0.5

Fr
oz

en
 F

ra
ct

io
n

[half-vanishing]

SELU(ax+b): Trade-off

100 101 102

Scale a

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Sh
ift

 b

Tanh(a(x+b)): Frozen Fraction

100 101 102

Scale a

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Sh
ift

 b

Tanh(a(x+b)): _f (capped at 10)

3 2 1 0 1 2 3
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

f(
x)

Tanh Shape

f(x)
f'(x)

0 2 4 6 8 10
_f (Rank Recovery Strength)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
oz

en
 F

ra
ct

io
n

[plateauing]

Tanh(a(x+b)): Trade-off

100 101 102

Scale a

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Sh
ift

 b

Sigmoid(a(x+b)): Frozen Fraction

100 101 102

Scale a

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Sh
ift

 b

Sigmoid(a(x+b)): _f (capped at 10)

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)

Sigmoid Shape

f(x)
f'(x)

0 2 4 6 8 10
_f (Rank Recovery Strength)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
oz

en
 F

ra
ct

io
n

[plateauing]

Sigmoid(a(x+b)): Trade-off

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

0

2

4

6

8

10

_f

0.0

0.2

0.4

0.6

0.8

1.0

f'(
x)

0.5

0.0

0.5

1.0

1.5

2.0

log
(a)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

0

2

4

6

8

10

_f

0.25

0.50

0.75

1.00

1.25

1.50

1.75

f'(
x)

0.5

0.0

0.5

1.0

1.5

2.0

log
(a)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

0

2

4

6

8

10
_f

0.0

0.2

0.4

0.6

0.8

1.0

f'(
x)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

log
(a)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

0

2

4

6

8

10

_f

0.05

0.10

0.15

0.20

0.25

f'(
x)

0.5

0.0

0.5

1.0

1.5

2.0

log
(a)

Frozen Fraction Rank Recovery ( _f) Activation Shape Trade-off Analysis
Comprehensive 2D Analysis: Modulation Effects on Different Activation Functions

Figure A.2: Comprehensive 2D analysis of modulation effects on activation functions. Each row shows
a different activation function (ReLU, SELU, Tanh, Sigmoid) with their modulation scheme. Column 1:
Heatmaps of frozen fraction as a function of scale a and shift b. Red regions indicate parameter combinations
leading to frozen/dead units. Column 2: Heatmaps of rank recovery strength αf (capped at 10 for visualiza-
tion). Column 3: Activation function shapes showing both f(x) (blue) and f ′(x) (red dashed). Column 4:
Trade-off analysis showing the correlation between αf and frozen fraction, with colors indicating log10(a).
The analysis reveals that half-vanishing activations (ReLU, SELU) and plateauing activations (Tanh, Sigmoid)
exhibit different pathways to frozen states, but all show the fundamental tension between rank recovery and
maintaining gradient flow discussed in Sec. 3.

We can view the base graph as a “meta” graph, whose nodes are set of nodes, and its edges correspond to set
of edges of the main graph. While the node and edge definitions are standard, the weight definition is slightly
deviating from one might expect from standard quotient graph definitions, where the weights are total sum
without averaging. The reason for this is more specific to our construction and is there to ensure similarity of
the cloned and base networks forward and backward passes.

16



752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

Definitions of Weight Manifolds Given a network partitioning S1, . . . , Sk, and the corresponding base
graph G̃ = (Ṽ , Ẽ, w̃), here are the manifold definitions:

• The Row-wise Equitable (RE) manifold consists of all cloned weight matrices w such that for every
connection (i, j) ∈ Ẽ in the base network, each block w[Si, Sj ] all row-sums are equal:

MRE =

w ∈ R|E|

∣∣∣∣∣∣ ∀(i, j) ∈ Ẽ, and ∀r, r′ ∈ Si, it holds
∑
u∈Sj

wru =
∑
u∈Sj

wr′r


The Column-wise Equitable (CE) manifold, consists of all cloned weight matrices w such that for
partitioned block w[Si, Sj ] , all column sums are equal:

MCE =

{
w ∈ R|E|

∣∣∣∣∣ ∀(i, j) ∈ Ẽ, and ∀c, c′ ∈ Sj , it holds
∑
u∈Si

wuc =
∑
u∈Si

wuc′

}

• The Block-wise Constant (BC) manifold consists of all cloned weight matrices w such that for every
block w[Si, Sj ], all its elements are equal:

MBC =
{
w ∈ R|E|

∣∣∣ ∀(i, j) ∈ Ẽ, and ∀u, u′ ∈ Si,∀v, v′ ∈ Sj , it holds wuv = wu′v′

}
• Finally, we can define the family of all duplicate manifolds, that are affine sub-spaces of the

parameters. For any matrix with row and column equitability, w ∈ MRE ∩MCE , they shift the
block constant manifoldMD. Formally:

MD = {MD(w) | w ∈MRE ∩MCE} , MD(w) := {w + T | T ∈MBC}

Note that all the manifolds defined above are linear or affine sub-spaces, as their constraints are all linear.
There are two important facts worth mentioning that will shed more light on the upcoming theorem.

Remark A.2. Note that the dimensionality of manifolds in the family MD are given by the number of blocks
in W, as opposed to number of its elements. Thus, for example if the partitioning of units forms blocks of size
n, we would roughly expect 1/n2 fewer dimensions in MD than in the original full parameter space.

Furthermore, the following remark clarifies why we define these networks as cloned networks. Because when
we are on these manifolds, the clone network units form perfect copies of the base network units.

Remark A.3. If W ∈ MRE , any unit in a block v ∈ Sk, the forward activations will be identical to the
corresponding base unit h(v) = h(ṽ), where ṽ is the corresponding unit in the base network to block Sk. If
we further assume W ∈MRE ∩MCE , we will have a similar property for the backwards δ(v) = δ(ṽ).

Let us re-state the theorem on cloning to make this section more self-contained.

Theorem A.2 (Cloned-Unit Manifold (Re-stated)). Let G = (V,E,W ), denote a network that is partitioned
with S1, . . . , Sk. For any input and label (x, y):

1. If W ∈ MRE , then all units in the same cluster u, v ∈ Sk have identical forward activations
h(u) = h(v).

2. If W ∈ MRE ∩ MCE , then all units in the same cluster u, v ∈ Sk have identical backward
activations δ(u) = δ(v). Furthermore, the gradients ∂L/∂W will have a block-wise constant
structure, such that gradients between any two units in two blocks will be equal, i.e., for any
u, u′ ∈ Si and v, v′ ∈ Sj , we have ∂L/∂Wuv = ∂L/∂Wu′v′ .

17



799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

3. If the model weights at initialization or any point in training touch, if they lie on a manifold from the
family W ∈MD whereMD ∈MD, given any arbitrary batches of input label pairs used to obtain
subsequent model parameters W (t),, any subsequent training parameter trajectory constrained to
the same manifold:

W (0) ∈MD =⇒ W (t) ∈MD MD ∈MD, t gradient steps

Proof of Theorem A.2 (Cloned-Unit Manifold). The proof will be done as a series of inductions. First, let us
assume that we have sorted the units in a topological order v1, . . . , vn which exists because the network is
a directed acyclic graph. Let us further assume that input nodes appear first in this list, and that outputs as
the last edges in the list. Finally, because we assume no edges inside each block between the units, let us
assume that the units in the same block are adjacent in our topological sort. Thus, for any two distinct blocks
Si ̸= Sj , we either have all nodes in Si before Sj or vice versa, but cannot have a mix.

Forward cloning. Row-equitability assumption implies identical forward for units in the same block. The
induction hypothesis is that for all k, any preceding unit p ≤ k, that belongs same partition up, uk ∈ Si,
will have identical forward h(up) = h(uk). Because cloning does not apply to input units, meaning that
every unit is a separate block, the hypothesis trivially holds for all input units k = 1, . . . , d where d is input
dimension. Now, let us prove the induction step, assuming step k. Let p ≤ k correspond to a unit in the same
block up, uk ∈ Si. Now, consider all the units that have incoming edges to these two units, which necessarily
must appear before p. Let’s consider all such units within the same block Sj . Because these units appear
before k, the induction hypothesis tells us that they have identical forward. Thus, the total contribution from
these units to pre-activations z(up) and z(uk) will be proportional to sum of edge weights from units in Sj .
Because of our construction of the ordering, all the units in Sj that feed into Si must occur before them. Now,
the row-equal assumption implies that the sum of weights from all these units to up and uk must be equal
weight sum. Thus, we have proven that pre-activation contribution from units in Sj will be identical for up

and uk. Because we chose Sj arbitrarily and it could have been any block, we have proven that pre-activation
these units must be identical z(up) = z(uk). Since they also have identical activation function, they will have
identical outputs h(up) = h(uk). This completes the induction hypothesis for forward pass cloning.

Backward cloning. We want to prove that column and row-equitability assumption implies identical
backward for units in the same block. The proof strategy will be highly similar to the forward cloning case,
with the key difference that our induction will be backward in our ordering, starting from latest output units
and then moving in backward in the list. The induction hypothesis for step k is that, for al q > k, if they are in
the same block uk, uq ∈ Si, they will have identical backwards δ(uk) = δ(uq). Because output units are not
themselves cloned, the induction step holds trivially for the last output nodes. Now let us prove the induction
hypothesis for k assuming that it holds for all higher steps. Now, for some arbitrary block Sj that units in Si

feed into, consider all outgoing connections from uk, uq to the units in this block. Because of our construction
of the ordering, all the units in Sj that Si feeds into must occur after Sj . Thus, by induction hypothesis,
all these units must have identical backwards. Furthermore, from our column-equitability assumption we
know that total edge weights from uk, uq to these units must be identical. Thus, the summation formulas in
the backward of uk and uq are similar. Finally, since Sj was chosen arbitrarily, this summation is identical
for all subsequent blocks, which implies the overal sum is also identical. To conclude the proof, note
that because of row-equitability condition we already inherit the proof from the forward case, implying
f ′(z(uk)) = f ′(z(uq)). Thus, both parts to the backward formula for uk, uq will be identical, which proves
they have identical backwards. This finishes the induction step.

Gradient cloning. This step is a straightforward consequence of the forward and backward cloning steps,
and the formula that gradient of an edge from u to v is simply h(u)δ(v). Thus, the cloning structures in
forward and backward, manifest themselves as a block structure in the gradients.

18



846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

Constrained training trajectory. Here, the key induction step is over the gradient steps. For step t,
the induction hypothesis is that W (t) ∈ MCE ∩MRE , and that W (t) −W (0) ∈ MBC . This trivially
holds for initial step t = 0. Let us prove the induction step t + 1 assuming that it holds for t. Suppose
gradient at this step ∆W (t) is defined over the loss arbitrary number of samples {(xi, yi)}. Because of
the induction hypothesis W (t) ∈ MCE ∩ MRE , our earlier results imply that the gradients for each
sample ∂Li/∂W (t), will have a block-wise constant structure ∂Li/∂W (t) ∈ MBC . Thus, the sum of
these gradients will also have a block-wise constant structure ∆W (t) := ∂L/∂W (t) ∈ MBC . Because
block-wise matrices are also row- and column-equitable, this implies that the new weights will inherit
those W (t + 1) = W (t) + ∆W (t) ∈ MCE ∩ MRE . Finally, our parameter shift can be written as
W (t + 1) −W (0) = ∆W (t) +W (t) −W (0), where W (t) −W (0) is a block-wise constant matrix and
thus W (t+ 1)−W (0) becomes sum two block-wise constant matrices, which is itself block-wise constant
W (t+ 1)−W (0) ∈MBC . This finishes our induction step.

A.3 MODULAR CLONING PROFILES AND A COMPOSITION THEOREM

This subsection formalizes a modular extension of the cloning theorem in Theorem 2.1 (see also Appx. A.2)
and proves that local, module-level cloning certificates glue to yield cloning for the entire composed architec-
ture.

Modules, interfaces, and profiles. A module is a feed-forward sub-DAG GM = (VM , EM ,WM ) together
with disjoint sets of interface nodes IM (inputs) and OM (outputs). We allow internal nodes V ◦

M :=
VM \ (IM ∪ OM ) and edges that connect interface nodes to internal nodes or to other interface nodes as
permitted by the DAG. Let G̃M = (ṼM , ẼM , W̃M ) denote a smaller base module.

A cloning profile for M relative to M̃ consists of surjections

πin
M : IM ↠ ĨM , πout

M : OM ↠ ÕM ,

inducing partitions P in
M = { (πin

M )−1(i) : i ∈ ĨM } and Pout
M = { (πout

M )−1(o) : o ∈ ÕM }. Intuitively, all
interface units in the same block are clones of the corresponding base port.

We say two wired modules A→ B have matching profiles if their shared interface partitions coincide after
applying the wiring map ωA→B : OA → IB , i.e.

ωA→B

(
Pout
A

)
= P in

B as partitions of IB ,

and dually for the reversed wiring used by backpropagation. More generally, a whole network has matching
profiles if this holds on every inter-module edge set.

Module-level cloning manifold. Fix a module M with profile (P in
M ,Pout

M ). Extend these interface partitions
to a partition of all nodes VM by assigning each internal node of M to the block of its corresponding base-node
in the collapsed base graph G̃ defined in Appx. A.2. On M , define the (affine) module cloning manifold

MD(M) = {WM : WM ∈MRE ∩MCE with respect to the induced partition of VM },
i.e., each inter-block weight submatrix is row- and column-equitable (block-wise constant up to redistribution),
reusing the notation of Appx. A.2. This generalizes the block-constant manifoldMBC by allowing intra-block
redistribution while preserving equal in/out block-sums.
Definition A.1 (Module-level cloning certificate). A module M endowed with profile (P in

M ,Pout
M ) admits a

cloning certificate if the following hold for every batch:

(MC1) Forward interface preservation. If inputs in the same block of P in
M carry identical values, then for any

WM ∈MD(M) all outputs in the same block of Pout
M are identical (forward cloning).

19



893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

(MC2) Backward interface preservation. If the output adjoints (backprop signals) are blockwise identical
on Pout

M , then for any WM ∈ MD(M) the input adjoints are blockwise identical on P in
M (backward

cloning).

(MC3) Gradient closedness. Under (MC1)–(MC2), the per-edge gradient ∂L/∂WM is block-wise constant on
each inter-block submatrix, hence ∇L(WM ) is tangent toMD(M) and first-order parameter updates
initialized onMD(M) remain onMD(M).

Remark A.4 (Optimizers covered). (MC3) implies closure under any first-order optimizer whose update
is a (possibly stateful) scalar multiple of the local gradient on each parameter and whose internal state
is identical across clones at initialization (e.g., SGD, momentum, RMSProp, Adam with tied clone states).
Weight decay that acts per-parameter independently may break exact symmetry; see Appx. A.2. Dropout
violates (MC1)–(MC2) because independent masks destroy blockwise equality in the forward/backward
signals.

Lemma A.4 (Module certificate fromMRE ∩MCE). If WM ∈MRE ∩MCE for the induced partition of
VM , then M satisfies (MC1)–(MC3).

Proof. This is the restriction of Theorem 2.1 to the subgraph GM with its node partition: row-equitability
yields identical forward values within blocks, column-equitability yields identical backward adjoints within
blocks, and dL/dWM = h δ⊤ is block-wise constant across inter-block submatrices. Tangency of the gradient
toMRE ∩MCE follows exactly as in Appx. A.2.

Theorem A.3 (Composition theorem for modular cloning). Let a feed-forward network be formed by wiring
modules {Mℓ}Lℓ=1 with matching profiles at every interface. Suppose each Mℓ admits a cloning certificate
(Def. A.1) and that parameters are initialized on the product manifold

∏
ℓMD(Mℓ). Then:

1. Global forward cloning. If the external inputs respect the input profile of the first modules, then all
internal interfaces and the final outputs are blockwise identical according to the propagated profiles.
Equivalently, the composed network is a cloned enlargement of the composed base network.

2. Global backward cloning. For any loss, if the final output adjoints are blockwise identical, then all
internal interface adjoints and the external input adjoints are blockwise identical according to the
propagated profiles.

3. Persistence under training. The network gradient is tangent to
∏

ℓMD(Mℓ), hence any first-order
parameter update that preserves (MC3) at the module level preserves the global cloning manifold and
items 1–2 continue to hold at all subsequent steps.

Proof. Forward. Order modules topologically. Assume the external inputs are blockwise identical on the
first-layer profiles. Applying (MC1) to the first module yields blockwise-identical outputs on its output
profile. By profile matching, these outputs equal the input profile of the next module, so (MC1) applies again.
Induction over modules yields blockwise equality at every interface and at the final outputs.

Backward. Reverse the topological order. Start from blockwise-identical adjoints at the final outputs. By
(MC2) for the last module, the incoming adjoints to its inputs are blockwise identical. Profile matching
identifies these with the previous module’s output profile, so (MC2) applies again. The inductive step
propagates back to the external inputs.

Persistence. By (MC3), in each module the gradient is block-wise constant on inter-block submatrices, i.e.,
tangent toMD(Mℓ). The product of affine manifolds is an affine manifold with tangent equal to the product
of tangents, so the global gradient is tangent to

∏
ℓMD(Mℓ). Thus first-order updates initialized on this

product manifold remain on it, and the previous two items re-apply at every step.

20



940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

Remark A.5 (Coverage: modern architectures). The certificate (Lemma A.4) is satisfied by the standard
width/channel/heads expansions used in practice:

• MLPs / Linear layers: Duplicate hidden units; enforce RE/CE by tiling weights with appropriate
1/(input expansion) scaling; duplicate biases. Matches the implementation in clone_linear.

• CNNs / Conv layers: Duplicate channels (in/out); tile kernels with 1/(input expansion) scaling; duplicate
biases (clone_conv1d, clone_conv2d). Spatial pooling is per-channel and thus profile-preserving.

• Normalization: BN/LN/GN with duplicated (γ, β) and running stats per clone are profile-preserving
(clone_normalization).

• Activations and elementwise ops: Elementwise maps are profile-preserving (clone_activation);
parameter-free ops are trivially preserved (clone_parameter_free).

• ResNets: Residual addition preserves cloning provided both branches use the same profile; block-level
expansions meet RE/CE at each addition.

• Transformers/ViTs: (i) Embedding/patch-projection expansions via tiling (clone_embedding); (ii)
Multi-head attention via head duplication; per-head linear maps satisfy RE/CE; concatenation is a
profile-preserving reshape; (iii) MLP sub-blocks as in MLPs; (iv) LayerNorm is profile-preserving. The
CloneAwareFlatten operator ensures profile-preserving reshapes between conv/linear stages.

By contrast, Dropout with independent masks across clones breaks (MC1)–(MC2) and thus is excluded from
this corollary (see also discussion in the main text).

Remark A.6 (Minimal check-list for a new module). To certify a new module M :

1. Choose interface partitions (P in
M ,Pout

M ) and extend them to VM .

2. Verify WM ∈MRE∩MCE for the induced partition (row/column equitability per inter-block submatrix).

3. Conclude (MC1)–(MC3) by Lemma A.4.

4. Ensure adjacent modules use matching profiles at shared interfaces.

Under these conditions, Theorem A.3 guarantees network-level cloning and its persistence under training.

Observation A.1 (Connection to the implementation). The functions
clone_{linear,conv1d,conv2d,normalization,embedding,activation} and
model_clone implement the RE/CE tiling and profile-preserving reshapes described above, while
test_activation_cloning empirically verifies (MC1)–(MC2) layer-wise via forward/backward R2.
The CloneAwareFlatten operator is a profile-preserving connector that keeps duplicated channels
adjacent, ensuring that profiles match across CNN→FC boundaries.

A.4 STABILITY OF LOP MANIFOLDS.

While Theorem 2.1 establishes the existence of LoP manifolds under exact conditions (perfect saturation,
perfect cloning), in practice, these conditions might only be approximately reached during training. This
leads to the question of whether near-LoP states will move back closer to the LoP manifold under gradient
descent dynamics, or will they move away from it. To address this, we introduce the notion of the stability of
an LoP manifold.
Definition A.2 (Stability of LoP Manifold). LetM be an LoP manifold and NθM be the normal space to
M at θ ∈M. The stability ofM is characterized by the Hessian∇2

θL(θ) in directions normal toM:

21



987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

• Stable LoP: ∀v ∈ NθM\ {0} : v⊤∇2
θL(θ)v > 0. (Perturbations revert to LoP)

• Unstable LoP: ∀v ∈ NθM\ {0} : v⊤∇2
θL(θ)v < 0. (Perturbations escape LoP)

• Saddle LoP: ∃v1, v2 ∈ NθM s.t. v⊤1 ∇2
θLv1 > 0 and v⊤2 ∇2

θLv2 < 0. (Escape is direction-
dependent)

Remark A.7. Stability in the normal space to the manifold (convexity of the loss in these directions) does not
imply that the loss is convex in general (i.e., also within the manifold or in other directions). These conditions
are local characterizations of the loss landscape geometry around the manifold.

To understand the practical implications of these stability types, consider injecting a small perturbation ∆θ
that pushes the parameters θ slightly off the manifoldM. IfM is stable, the subsequent gradient steps
−∇L(θ +∆θ) will tend to project back towardsM. IfM is unstable, these steps will tend to move further
away. For a saddle LoP manifold, escape depends on the direction of the initial perturbation relative to the
eigenvectors of the Hessian in the normal space. Therefore, the strongest form of LoP corresponds to a stable
LoP manifold, as it actively resists escape. An unstable manifold is the easiest to escape. A saddle manifold
presents a mixed scenario, where random perturbations may or may not escape depending on the perturbation
vector being in a positively or negative space orientation.

B EMPIRICAL APPENDIX

This section provides comprehensive details of the experimental setups, additional empirical results, figures
supporting claims made in the main text, and visualizations.

B.1 EXPERIMENTAL DETAILS

This section outlines the experimental setup, methodologies, and general procedures employed for the
empirical analysis of Loss of Plasticity (LoP) in neural networks.

B.1.1 OVERVIEW OF EXPERIMENTAL PARADIGMS

Our investigation into LoP encompasses three primary experimental paradigms.

Continual Learning Experiments These experiments involve training models on a sequence of temporally
independent tasks where data from previously learned tasks is unavailable. Tasks are typically formulated by
partitioning the output classes of standard datasets, and for any given task t, the model is trained exclusively
on its assigned class subset Ct. We trained our models on Tiny ImageNet, which consists of 200 classes, by
creating a sequence of 40 tasks, each containing a disjoint subset of 5 classes. Each task is trained for 500
steps, and validation is performed periodically, resulting in 20,000 total training steps. The training protocol
included optional reinitialization of model output layer weights and biases are reset to zero before starting
each new task to mitigate interference.

Neural Network Cloning Experiments These experiments study the effects of neuron duplication using a
two-stage training protocol. Initially, a base model is trained on a target task to establish baseline performance.
Subsequently, this base model is expanded by a specified factor (always fixed to two), using the cloning
procedures detailed later. The expanded (cloned) model is then trained. To compare the base and cloned
model, we also keep training the base model at the same time during this second phase. The results presented
here are all on the CIFAR-10 dataset, and we used 20 epochs to train the base model and 500 epochs to train
the cloned model. Functional equivalence post-cloning is verified by ensuring the cloned model produces

22



1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

activations identical to its base, assessed via R2 scores between corresponding layer activations. R2 scores,
computed for each layer, measure if the mean of cloned units can explain the variance of all units in that
block.

Bit Flipping Experiments These experiments simulate a slowly-changing regression problem to evalu-
ate network adaptability to gradually drifting input distributions. An illustrative benchmark for studying
adaptability is the ’bit-flipping’ experiment, an online regression task where the model receives an m-bit
input vector x and must predict an output y. The environment is non-stationary: a subset of f input bits
are designated ’flipping bits,’ and at regular T -step intervals, one of these f bits is randomly inverted. The
remaining m−f input bits are randomly sampled at each step. The target output y is generated by a fixed (but
unknown to the learning model) two-layer network, and a two-layer MLP is trained to learn this continuously
drifting target function. The complexity of the learning model is typically designed to be less than that of the
data-generating process, thereby creating a challenging scenario for maintaining plasticity. A target network
with Linear Threshold Units (LTUs) implements hi = LTU(wT

i x − θi) and y = wT
outh + bout. A Linear

Threshold Unit operation is defined as LTU(z) = 1 if z ≥ 0, and 0 otherwise (a Heaviside step function).
For the target network, the specific thresholds are θi = (m · β)− Si, and Si =

∑
j:wij<0 1− 0.5 · wi,m+1.

Input consists of m bits plus a bias bit; f of these bits are “flipping bits” changing every T time steps (one
randomly selected flipping bit is inverted), while the remaining m− f bits are randomly sampled each step.
A two-layer MLP with a configurable activation function is trained online to learn this target.

0 1 2 3 4 5
Step 1e6

0.1

0.2

0.3

0.4

0.5

0.6

O
nl

in
e 

Tr
ai

ni
ng

 L
os

s Switch
SGD CBP

8

10

12

14

16

E
ff

ec
tiv

e 
R

an
k

SGD first half, CBP second half

Figure B.1: Bit Flipping experiment on 5M samples, switching from SGD to CBP at 2.5M samples. Low
rank structures emerge during training with standard Backpropagation (SGD), but after the switch Continual
Backpropagation (CBP) is able to recover representational diversity, suggesting that CBP-like training could
be effective for cloning too. (Experimental details in Appx. B).

B.1.2 CORE METHODOLOGIES AND IMPLEMENTATIONS

Several core methodologies underpin our experiments.

Cloning Implementation. Our cloning implementation is modular. For each architecture, we first need
to decide the “free” parameter to expand. This is the feature dimension for MLP and ViT, and channels for
CNN and ResNet. After creating a base and expanded model, our cloning implementation proceeds in a
modular fashion. The key implementation idea that allowed this modular design is the principle that the
cloning profile of inputs and outputs of different modules must be consistent. For example if inputs A and
B to a module are assumed to be cloned, and if these are output by a different modules, that module must
ensure this cloning. We can think of this as a matching cloning profile between connected modules. With
this design in mind, for linear layers, weights and biases are replicated according to input/output expansion

23



1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

10 5 50 100
Width

0.0

2.5

5.0

7.5

10.0

E
ff

ec
tiv

e 
R

an
k

First Half (SGD)
Second half (CBP)

5 10 50 100
Width

0.0

0.1

0.2

0.3

0.4

D
up

lic
at

e 
Fr

ac
tio

n

5 10 50 100
Width

0.00

0.25

0.50

0.75

1.00

Lo
ss

Figure B.2: Bit Flipping experiment on 5M samples, switching from SGD to CBP at 2.5M samples. For each
of the two phases, we show the average over the last 100K steps. Duplicated structures (indicated by fraction
of duplicate features at different layers/scales) emerge during training with standard Backpropagation (BP)
but Continual Backpropagation (CBP) is able to decouple the cloned units. As the model width is increased
more duplicate features emerge. The size of the data generating function is 100. (Other experimental details
in Appx. B).

factors; weights connected to cloned input neurons are scaled (e.g., by 1/αin for an input duplication factor of
αin) to maintain activation magnitudes. Convolutional layers see similar expansion of input/output channels,
with kernels tiled and appropriately scaled while preserving spatial dimensions. For normalization layer, if
affine features are learned, their cloning will be a simple duplication for different cloned units. The same
applies to modules such as patch embeddings, which require a simple duplication. Parameterized activations
(e.g., PReLU) have their parameters correspondingly duplicated or broadcast. Any other units that does
not have parameters, such as softmax layer or activations without parameter, will not require any particular
treatment, because it has the potential to create cloning profiles that do not match. To fix this, we implemented
a clone-aware flattening operation in CNNs ensures duplicated channels remain adjacent after flattening to
preserve structure for subsequent fully-connected layers.

Noisy SGD optimizer introduces Gaussian noise ϵt ∼ N (0, σ2
t ∥gt∥2I) to gradients gt, where the noise

scale σt = σ0 · λt decays over time t from an initial value σ0. The values of σ0 and λ are hyperparameters of
the optimizer. Later, we show the effect of varying them on the cloned model dynamics.

Continual Backpropagation (CBP) , implemented in src/utils/cbp_optimizer.py following
the Generate-and-Test framework, aims to maintain plasticity by selectively replacing low-utility neurons.
Utility tracking involves measures like Contribution Utility ((u(t)

contrib))i = |h(t)
i | · |w̄out,i|) and Adaptable

Contribution ((u(t)
adapt)i =

|h(t)
i −h̄

(t)
i |·|w̄out,i|

|w̄in,i| ), where h
(t)
i is activation, h̄(t)

i is its running average, and w̄

terms are mean weight magnitudes. Instantaneous utilities are smoothed using an exponential moving
average (ρ is decay rate, a(t)i is neuron age): u(t)

i = ρu
(t−1)
i + (1 − ρ)ũ

(t)
i , with a bias-corrected version

û
(t)
i = u

(t)
i /(1 − ρa

(t)
i ). Neuron replacement occurs for eligible mature neurons (ai > τmaturity) with the

lowest utility (a fraction rreplace of layer neurons NL). Selected neurons are reinitialized (incoming weights
via Kaiming, outgoing to zero, utility/age reset). A bias correction (bnext ← bnext +Wout[:, i] · h̄i) is applied to
the subsequent layer.

Metrics for Analysis Our comprehensive metric suite quantifies various aspects of network behavior
and plasticity loss. Single and pair feature metrics include the fraction of “dead” neurons, identified
when 1

N

∑N
i=1 1[|Hij | < 10−7] > τdead for neuron j across N samples, with τdead = 0.95. “Duplicate”

neurons are detected through cosine similarity patterns, with neurons j, k are considered duplicates if
H̃T

j H̃k > τcorr = 0.95, where activations are normalized by feature H̃j = H·,j/∥H·,j∥2. “Saturated”
neurons are identified when the ratio of gradient magnitude to mean activation magnitude |Gij |/max(µj , ϵ)
falls below τsat = 10−4 for more than psat = 99% of samples in a batch. Representation diversity metrics

24



1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

include effective rank, computed as exp(−
∑

i pi log pi) where pi = σi/
∑

j σj are normalized singular
values from the activation matrix SVD; stable rank, calculated as ∥H̃∥4F /tr((H̃T H̃)2) for mean-centered
activations H̃; Cloning quality is assessed by R2 scores between base and cloned model activations, computed
as R2 = 1− Var(residuals)/Var(total) where the predictor is the mean of N cloned units and we measure
explained variance across individual units relative to the total variance in that layer. This is done for both
forward and backward activations across all layers, and numbers presented here are averages across all layers
and both forward and backwards for the fixed batch that we are measuring the metrics. We also keep tracking
all metrics for both base and cloned model after training to provide a comparison between the two.

B.1.3 GENERAL SETUP AND PROCEDURES

Model Architectures include Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks (CNNs),
ResNets, and Vision Transformers (ViTs), with configurations (depth, width, activations, normalization layer,
dropout). The default configurations are as follows: Our Multi-Layer Perceptron (MLP) consists of 5 hidden
layers with 128 units each, employing ReLU activations, batch normalization applied before activation, and
20% dropout. The Convolutional Neural Network (CNN) architecture comprises 3 convolutional layers with
[64, 128, 256] channels respectively, using 3× 3 kernels with stride 1 and padding 1, followed by 2× 2 max
pooling operations. The convolutional features are processed by a single fully connected layer with 512
units, with ReLU activations, batch normalization, and 10% dropout throughout. For ResNet, we implement
a ResNet-18 variant with [2, 2, 2, 2] residual blocks per stage, starting with 64 base channels that double
at each stage, using ReLU activations, batch normalization, and 10% dropout. The Vision Transformer
(ViT) architecture divides input images into 8 × 8 pixel patches, which are projected to 384-dimensional
embeddings and processed through 6 transformer layers with 6 attention heads each. The ViT employs an
MLP ratio of 4.0 (yielding hidden dimensions of 1536), GELU activations, layer normalization, and 10%
dropout for both general operations and attention mechanisms. All normalization layers include learnable
affine parameters (γ, β), unless stated otherwise, and bias terms are enabled where applicable. Default
hyperparameter configurations for each architecture can be adjusted per experiment as described in the
experimental setup.

Datasets and Preprocessing involve standard image classification benchmarks: MNIST (28×28 grayscale),
CIFAR-10 and CIFAR-100 (32× 32 RGB with standard augmentations like random crops and flips), and
Tiny ImageNet (64× 64 RGB). Standard train/test splits are used. For all the figures and results reported here,
we used tiny ImageNet dataset for continual learning experiments, while for cloning, CIFAR-10 was used.

Training Configuration involves optimizers like Adam or SGD without momentum and no weight decay
with otherwise parameters in torch. The learning rates for the continual experiments where set to 0.001 using
Adam for all architectures except for Vision Transformer, which was set to 0.0001. For cloning experiments
with dropout, we varied the learning rate on a grid 0.01, 0.001, 0.0001.

Experimental Control is maintained through comprehensive random seeding, which controls the random-
ness across all relevant libraries (Python, NumPy, PyTorch) and CuDNN deterministic mode. We used 5
seeds for all experiments to calculate confidence intervals. Experiments utilize GPUs when available, falling
back to CPUs otherwise. Metrics are typically computed at fixed epoch intervals (e.g., every 5 epochs), often
on consistent fixed data batches for reproducibility. Computationally intensive metrics like SVD may use
subsampling of the features or samples to make them less expensive.

Computational Resources. For the continual learning and cloning experiments, our experimental grid
consisted of approximately 2,000 individual runs (counting each random seed separately). These experiments
were executed on a cluster of NVIDIA A100 GPUs, utilizing a heterogeneous mix of 40GB and 80GB

25



1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

memory variants. The total computational cost for these experiments was approximately 10,000 GPU-hours.
The bit flipping experiments and additional theory validation experiments were conducted on a more diverse
set of hardware, utilizing lower-end computational nodes equipped with NVIDIA RTX 3090, V100, and RTX
2080 GPUs. This heterogeneous setup was sufficient for these less computationally intensive experiments,
and the overall compute amounted to under 100 GPU-hours on these nodes. The theoretical validation figures
and numerical simulations presented in the theory appendix (Appendix A.1.1) were generated on a MacBook
using CPU computation only.

Figures details. Unless stated otherwise, all our figures report standard deviations over 5 experiment
randomization, by the use of a different seed. Additionally, to reduce the number of points in the plot, in
Figs. 3.1, 3.2, 4.1, B.1 and B.2 we plot the average over time windows of 1000 steps.

B.2 ADDITIONAL FIGURES AND EMPIRICAL SUBSTANTIATION

This subsection includes placeholder figures for concepts discussed in the main text, for which specific
existing figures were not available or suitable for direct inclusion in the main body.

none batch layer
0.0

0.2

0.4

0.6

0.8

Sa
tu

ra
te

d 
Fr

ac
tio

n

MLP

none batch layer
0.0

0.2

0.4

0.6

0.8

Sa
tu

ra
te

d 
Fr

ac
tio

n

CNN

none batch layer
0.0

0.2

0.4

0.6

0.8

1.0

Sa
tu

ra
te

d 
Fr

ac
tio

n

RESNET

none batch layer
0.0

0.2

0.4

0.6

0.8

1.0

Sa
tu

ra
te

d 
Fr

ac
tio

n

VIT

none batch layer
0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
up

lic
at

e 
Fr

ac
tio

n BN
BN + dropout
Baseline
Baseline + dropout
LN
LN + dropout

none batch layer
0.000

0.005

0.010

0.015

0.020

D
up

lic
at

e 
Fr

ac
tio

n BN
BN + dropout
Baseline
Baseline + dropout
LN
LN + dropout

none batch layer
0.00

0.01

0.02

0.03

D
up

lic
at

e 
Fr

ac
tio

n BN
BN + dropout
Baseline
Baseline + dropout
LN
LN + dropout

none batch layer
0.0

0.2

0.4

0.6

D
up

lic
at

e 
Fr

ac
tio

n BN
BN + dropout
Baseline
Baseline + dropout
LN
LN + dropout

none batch layer
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Ac

cu
ra

cy

none batch layer
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Ac

cu
ra

cy

none batch layer
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Ac

cu
ra

cy

none batch layer
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Ac

cu
ra

cy

Figure B.3: Normalization reduces the number of dead/saturated units (top row) and duplicated units (middle
row), and its impact on training accuracy (bottom row) across different architectures. The training accuracy
displayed is calculated as the average online accuracy over the entire training length. These results highlight
the role of normalization in mitigating LoP symptoms.

26



1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

Figure B.4: Evolution of duplicate/dead unit fractions and training accuracy. The colors correspond to training
steps (lighter is earlier) and the points size to the Training Accuracy (bigger is higher). This figure illustrates
the correlation between the increase in LoP symptoms (duplicate/dead units) and training dynamics.

0 10 20 30 40
Task

0.05

0.00

0.05

0.10

0.15

0.20

D
up

lic
at

e 
fr

ac
tio

n

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4

MLP Duplicate fraction

0 10 20 30 40
Task

0.02

0.00

0.02

0.04

0.06

0.08

D
up

lic
at

e 
fr

ac
tio

n

Layer 0
Layer 1
Layer 2
Layer 3

CNN Duplicate fraction

0 10 20 30 40
Task

0.00

0.02

0.04

0.06

D
up

lic
at

e 
fr

ac
tio

n

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

RESNET Duplicate fraction

0 10 20 30 40
Task

0.2

0.0

0.2

0.4

0.6

0.8

1.0

D
up

lic
at

e 
fr

ac
tio

n

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

VIT Duplicate fraction

Figure B.5: Emergence of duplicate units layer-wise during training without normalization and no dropout.
This figure shows the increasing fraction of duplicate units as training progresses, a symptom of LoP.

0 10 20 30 40
Task

0.0

0.2

0.4

0.6

0.8

1.0

D
ea

d 
fr

ac
tio

n

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4

MLP Dead fraction

0 10 20 30 40
Task

0.0

0.2

0.4

0.6

0.8

1.0

D
ea

d 
fr

ac
tio

n

Layer 0
Layer 1
Layer 2
Layer 3

CNN Dead fraction

0 10 20 30 40
Task

0.2

0.4

0.6

0.8

1.0

D
ea

d 
fr

ac
tio

n

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

RESNET Dead fraction

0 10 20 30 40
Task

0.2

0.4

0.6

0.8

1.0

Sa
tu

ra
te

d 
fr

ac
tio

n

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

VIT Saturated fraction

Figure B.6: Emergence of dead or saturated units layer-wise during training without normalization and no
dropout. This figure shows the increasing fraction of dead units as training progresses, a symptom of LoP.

27



1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

0 1e5 2e5 3e5 4e5
Step

0.5

0.6

0.7

0.8

0.9

1.0

C
lo

ni
ng

 R
2

Cloning

MLP

Cloned (x2)
+ Dropout
+ Noise

0 1e5 2e5 3e5 4e5
Step

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Cloning

MLP
Base
+ Dropout
+ Noise
Cloned (x2)
+ Dropout
+ Noise

0 1e5 2e5 3e5 4e5
Step

50

60

70

80

90

E
ff

ec
tiv

e 
R

an
k

Cloning

MLP

0 1e5 2e5 3e5 4e5
Step

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
lo

ni
ng

 R
2 Cloning

CNN

Cloned (x2)
+ Dropout
+ Noise

0 1e5 2e5 3e5 4e5
Step

0.0

0.2

0.4

0.6

0.8

Lo
ss

Cloning

CNN
Base
+ Dropout
+ Noise
Cloned (x2)
+ Dropout
+ Noise

0 100000 200000 300000 400000
Step

60

80

100

120

140

160

180

200

E
ff

ec
tiv

e 
R

an
k

Cloning
CNN

0 1e5 2e5 3e5 4e5
Step

0.75

0.80

0.85

0.90

0.95

1.00

C
lo

ni
ng

 R
2

Cloning

RESNET

Cloned (x2)
+ Dropout
+ Noise

0 1e5 2e5 3e5 4e5
Step

0.0

0.2

0.4

0.6

0.8

Lo
ss

Cloning

RESNET
Base
+ Dropout
+ Noise
Cloned (x2)
+ Dropout
+ Noise

0 100000 200000 300000 400000
Step

100

150

200

250
E

ff
ec

tiv
e 

R
an

k
Cloning

RESNET

0 1e5 2e5 3e5 4e5
Step

0.6

0.7

0.8

0.9

1.0

C
lo

ni
ng

 R
2

Cloning

VIT

Cloned (x2)
+ Dropout
+ Noise

0 1e5 2e5 3e5 4e5
Step

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Lo
ss

Cloning

VIT
Base
+ Dropout
+ Noise
Cloned (x2)
+ Dropout
+ Noise

0 100000 200000 300000 400000
Step

100

150

200

250

300

350

400

E
ff

ec
tiv

e 
R

an
k

Cloning
VIT

Figure B.7: Cloning experiments across architectures. Configurations details: SGD with LR=0.01, Noisy
SGD with σ = 0.01 and λ = 0.999, and Dropout with probability 0.1. Normalization used: Batch Norm for
all architectures, except ViTs, where we use Layer Norm.

28



1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

0 1e5 2e5 3e5 4e5
Step

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Lo

ss
Cloning

MLP = 0.9

Cloned SGD
Base SGD
Cloned = 0.01
Base = 0.01

Cloned = 0.02
Base = 0.02
Cloned = 0.05
Base = 0.05

0 1e5 2e5 3e5 4e5
Step

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

Cloning

MLP = 0.99

Cloned SGD
Base SGD
Cloned = 0.01
Base = 0.01

Cloned = 0.02
Base = 0.02
Cloned = 0.05
Base = 0.05

0 1e5 2e5 3e5 4e5
Step

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

Cloning

MLP = 0.999

Cloned SGD
Base SGD
Cloned = 0.01
Base = 0.01

Cloned = 0.02
Base = 0.02
Cloned = 0.05
Base = 0.05

Figure B.8: Effect of noise scale parameter σ in Noisy SGD for the Cloning MLP Experiments.

0 1e5 2e5 3e5 4e5
Step

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

Cloning

MLP = 0.01

Cloned SGD
Base SGD
Cloned = 0.9
Base = 0.9
Cloned = 0.99
Base = 0.99

Cloned = 1.0
Base = 1.0
Cloned = 0.999
Base = 0.999
Cloned = 0.0
Base = 0.0

0 1e5 2e5 3e5 4e5
Step

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

Cloning

MLP = 0.02

Cloned SGD
Base SGD
Cloned = 0.9
Base = 0.9
Cloned = 0.99
Base = 0.99

Cloned = 1.0
Base = 1.0
Cloned = 0.999
Base = 0.999
Cloned = 0.0
Base = 0.0

0 1e5 2e5 3e5 4e5
Step

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

Cloning

MLP = 0.05

Cloned SGD
Base SGD
Cloned = 0.9
Base = 0.9
Cloned = 0.99
Base = 0.99

Cloned = 1.0
Base = 1.0
Cloned = 0.999
Base = 0.999
Cloned = 0.0
Base = 0.0

Figure B.9: Effect of noise decay parameter λ in Noisy SGD for the Cloning MLP Experiments.

0 1e5 2e5 3e5 4e5
Step

0.0

0.5

1.0

1.5

Lo
ss

Cloning

VIT = 0.9

Cloned SGD
Base SGD
Cloned = 0.05
Base = 0.05

Cloned = 0.01
Base = 0.01
Cloned = 0.02
Base = 0.02

0 1e5 2e5 3e5 4e5
Step

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

Cloning

VIT = 0.99

Cloned SGD
Base SGD
Cloned = 0.05
Base = 0.05

Cloned = 0.01
Base = 0.01
Cloned = 0.02
Base = 0.02

0 1e5 2e5 3e5 4e5
Step

0

1

2

3

4

5

6

7

Lo
ss

Cloning
VIT = 0.999

Cloned SGD
Base SGD
Cloned = 0.05
Base = 0.05

Cloned = 0.01
Base = 0.01
Cloned = 0.02
Base = 0.02

Figure B.10: Effect of noise scale parameter σ in Noisy SGD for the Cloning ViT Experiments.

29



1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

0 1e5 2e5 3e5 4e5
Step

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Lo

ss
Cloning

VIT = 0.01

Cloned SGD
Base SGD
Cloned = 0.9
Base = 0.9
Cloned = 1.0
Base = 1.0

Cloned = 0.0
Base = 0.0
Cloned = 0.99
Base = 0.99
Cloned = 0.999
Base = 0.999

0 1e5 2e5 3e5 4e5
Step

0.0

0.5

1.0

1.5

Lo
ss

Cloning

VIT = 0.02

Cloned SGD
Base SGD
Cloned = 0.9
Base = 0.9
Cloned = 1.0
Base = 1.0

Cloned = 0.0
Base = 0.0
Cloned = 0.99
Base = 0.99
Cloned = 0.999
Base = 0.999

0 1e5 2e5 3e5 4e5
Step

0

2

4

6

Lo
ss

Cloning
VIT = 0.05

Cloned SGD
Base SGD
Cloned = 0.9
Base = 0.9
Cloned = 1.0
Base = 1.0

Cloned = 0.0
Base = 0.0
Cloned = 0.99
Base = 0.99
Cloned = 0.999
Base = 0.999

Figure B.11: Effect of noise decay parameter λ in Noisy SGD for the Cloning ViT Experiments.

0 1e5 2e5 3e5 4e5
Step

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

Cloning

MLP
Cloned Dropout p=0.1
Base Dropout p=0.1
Cloned SGD
Base SGD
Cloned Dropout p=0.2
Base Dropout p=0.2

0 1e5 2e5 3e5 4e5
Step

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Cloning

CNN
Cloned SGD
Base SGD
Cloned Dropout p=0.2
Base Dropout p=0.2
Cloned Dropout p=0.1
Base Dropout p=0.1

0 1e5 2e5 3e5 4e5
Step

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Cloning

VIT
Cloned SGD
Base SGD
Cloned Dropout p=0.1
Base Dropout p=0.1
Cloned Dropout p=0.2
Base Dropout p=0.2

Figure B.12: Effect of dropout probability parameter for the Cloning MLP, CNN and ViT Experiments. Batch
norm is used for the MLP and CNN models, and Layer norm for the ViT model.

0 100000 200000 300000 400000
Step

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

Cloning

MLP
Cloned adam
Base adam
Cloned sgd
Base sgd

0 100000 200000 300000 400000
Step

0.96

0.98

1.00

1.02

1.04

C
lo

ni
ng

 R
2

Cloning

MLP

Cloned adam
Cloned sgd

0 100000 200000 300000 400000
Step

50

55

60

65

70

75

E
ff

ec
tiv

e 
R

an
k

Cloning

MLP

Figure B.13: Differences between SGD and Adam optimizers in the MLP Experiments. Like SGD, Adam
cannot escape the base sub-manifold, although the dynamics are different.

30



1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

0 100000 200000 300000 400000
Step

0.0

0.5

1.0

1.5

2.0

Lo
ss

Cloning

VIT

Cloned sgd
Base sgd
Cloned adam
Base adam

0 100000 200000 300000 400000
Step

0.96

0.98

1.00

1.02

1.04

C
lo

ni
ng

 R
2

Cloning

VIT

Cloned sgd
Cloned adam

0 100000 200000 300000 400000
Step

0

50

100

150

200

250

E
ff

ec
tiv

e 
R

an
k

Cloning
VIT

Figure B.14: Differences between SGD and Adam optimizers in the ViT Experiments. Like SGD, Adam
cannot escape the base sub-manifold, although the dynamics are different.

31


	Introduction
	Background and Related Work

	LoP Manifolds: Traps for Gradient Descent
	Emergence of Loss of Plasticity from Linear–Nonlinear Rank Dynamics
	Experimental Validation

	Mitigation and Recovery Strategies
	Conclusion
	Theoretical Appendix
	Formal proof of the rank–gain theorem under non-linear activations
	Activation modulation increases decorrelation and also induces frozen units

	LoP manifolds: Formal Statement and Proof
	Modular cloning profiles and a composition theorem
	Stability of LoP manifolds.

	Empirical Appendix
	Experimental Details
	Overview of Experimental Paradigms
	Core Methodologies and Implementations
	General Setup and Procedures

	Additional Figures and Empirical Substantiation


