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ABSTRACT

We study differentially private model training with stochastic gradient descent un-
der learning rate scheduling and correlated noise. Although correlated noise, in
particular via matrix factorizations, has been shown to improve accuracy, prior
theoretical work focused primarily on the prefix-sum workload. That workload
assumes a constant learning rate, whereas in practice learning rate schedules are
widely used to accelerate training and improve convergence. We close this gap by
deriving general upper and lower bounds for a broad class of learning rate sched-
ules in both single- and multi-epoch settings. Building on these results, we pro-
pose a learning-rate-aware factorization that achieves improvements over prefix-
sum factorizations under both MaxSE and MeanSE error metrics. Our theoret-
ical analysis yields memory-efficient constructions suitable for practical deploy-
ment, and experiments on CIFAR-10 confirm that schedule-aware factorizations
improve accuracy in private training.

1 INTRODUCTION

Privacy has become a major concern as machine learning systems are trained on sensitive data
such as personal communications, financial transactions, and medical records. Beyond the risk of
direct data exposure, models themselves may memorize and unintentionally reveal private informa-
tion, creating serious ethical and security challenges. These concerns are especially pressing for
production-level large language models trained on vast and heterogeneous datasets.

A widely studied approach to mitigating these risks is differential privacy (DP), which provides
formal mathematical guarantees that the output of a learning algorithm does not reveal sensitive
information about any individual training example (Dwork et al., 2006). In practice, DP is often
achieved by injecting carefully calibrated noise into either the gradients, ensuring that an adversary
cannot infer the presence or absence of a single data point with high confidence. More recently,
large-scale efforts such as VaultGemma (VaultGemma Team, 2025) have demonstrated that it is
possible to train billion-parameter models with rigorous privacy guarantees, showing that DP can be
integrated into state-of-the-art architectures without prohibitive utility loss.

To make model training differentially private, algorithms typically inject noise into the gradients to
mask the contribution of any individual data point. The most common approach, DP-SGD, adds
independent Gaussian noise at each update, which provides strong privacy guarantees but can sig-
nificantly reduce accuracy (Abadi et al., 2016). Matrix factorization has emerged as a more general
alternative that introduces correlations in the injected noise, enabling improved accuracy while pre-
serving privacy (Choquette-Choo et al., 2023a;b).The approach has also seen practical adoption,
with Google reporting its use for training production on-device language models in their 2024 blog
post “Advances in private training for production on-device language models” (Xu & Zhang, 2024).

Recent work has focused on making matrix factorization memory efficient (McKenna, 2025; An-
dersson & Pagh, 2025; Kalinin et al., 2025; McMahan et al., 2024), and it has also been analyzed
theoretically, mostly in the setting of Toeplitz workloads (Fichtenberger et al., 2023; Henzinger et al.,
2024; Henzinger & Upadhyay, 2025; Dvijotham et al., 2024). However, existing utility analyses as-
sume a constant learning rate. While Denisov et al. (2022) introduced a non-Toeplitz workload with
varying learning rates, its theoretical properties remain largely unexplored. In this work, we address
this gap by studying matrix factorization under learning rate schedules.
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Learning rate scheduling plays a critical role in the optimization of machine learning models, and a
variety of strategies have been proposed in the literature. Popular approaches include cosine anneal-
ing (Loshchilov & Hutter, 2017) and cyclical learning rates (Smith, 2017), which adapt the step size
during training to improve convergence. Another common technique is warm-starting (He et al.,
2016), where models begin with a small learning rate that is gradually increased, as used in large-
scale training setups (Goyal et al., 2017). In this work, we focus on learning rate decays available in
PyTorch Paszke et al. (2019) such as exponential, linear, polynomial and cosine, which are widely
used and can be easily applied in practice.

Learning rate scheduling can be particularly useful in private training when the number of iterations
is limited. By accelerating convergence, it enables higher accuracy in settings such as warm-up train-
ing (Kurakin et al., 2022), private fine-tuning (Luo et al., 2021), and training under computational
constraints. It has also been combined with matrix factorization as a form of learning rate cool-down
(Choquette-Choo et al., 2023b;a; 2025), and was shown to provide improvements over fixed learning
rates in Denisov et al. (2022), where the workload of our interest was originally introduced.

Contribution

• We theoretically analyze the problem of matrix factorization under learning rate scheduling. We
establish general lower and upper bounds for MaxSE and MeanSE in single-epoch, as well as for
MeanSE in multi-epoch for a large class of schedulers. Here, MaxSE characterizes the maximum
variance of the added noise, while MeanSE captures the average variance across iterations.

• We propose a learning-rate-aware Toeplitz factorization, which for exponentially decaying learn-
ing rate is provably optimal in MaxSE under single-epoch and improves upon the proposed upper
bound for MeanSE. We adopt this factorization for memory efficient, multi-epoch training by
making it banded inverse.

• We show numerically that the proposed factorization is close to optimal in all metrics.
• We show experimentally on CIFAR-10 that banded inverse factorizations benefit from learning

rate scheduling. Moreover, we demonstrate that the proposed learning-rate-aware factorization
achieves even further accuracy improvements.

2 BACKGROUND

The most common way to train differentially private models is by using DP-SGD (Abadi et al.,
2016). At each step we receive a gradient gi ∈ Rd, clip it to a fixed ℓ2 norm ζ > 0, and add
appropriately scaled independent Gaussian noise zi ∼ N (0, Id σ

2), where σ depends on the target
privacy level (ϵ, δ). The model is then updated as

θi = θi−1 − ηi
(
clip(gi, ζ) + zi

)
, (1)

where ηi is the learning rate at step i.

This procedure can be improved by correlating the noise across iterations. To formalize this, we
define a matrix G ∈ Rn×d of stacked gradients, a matrix Θ ∈ Rn×d of intermediate models, and
a workload matrix A ∈ Rn×n that encodes the training process such that Θ = AG. If we use a
constant learning rate, this matrix, denoted A1, is a lower triangular matrix of ones. For varying
learning rates we instead use a matrix Aχ, described later.

To ensure that the intermediate models are differentially private, we can apply a matrix factoriza-
tion mechanism. Specifically, we factorize A into two matrices B and C, then compute CG, add
Gaussian noise to ensure differential privacy, and finally multiply the result by B as post-processing:

ÂG = B(CG+ Z) = A(G+ C−1Z), (2)
which is equivalent to adding correlated Gaussian noise with covariance structure induced by C−1

to the gradients.

The remaining question is: how much noise must be added, and does this procedure remain differ-
entially private when the gradients are not known in advance but depend on the current model? The
foundational work of Denisov et al. (2022) shows that the procedure is indeed differentially private,
even when the gradients adaptively depend on the model, provided we add noise of scale

σ = ζ · σϵ,δ · sens(C) = ζ · σϵ,δ · ∥C∥1→2, (3)
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Algorithm 1 Differentially Private SGD with Matrix Factorization and Learning Rate Schedules

Require: Model initialization θ0 ∈ Rd, dataset D, batchsize B, model loss ℓ(θ, d), clipnorm ζ > 0,
learning rate η, correlation matrix C ∈ Rn×n, learning rate scheduler χi,
noise matrix Z ∈ Rn×d with i.i.d. entries N (0, sens2(C)σ2

ϵ,δζ
2).

for i = 1, 2, . . . , n do
Si ← {d1, . . . , dB} ⊆ D (select a data batch)
gi ← ∇θℓ(θi−1, dj) for j = 1, . . . , B

xi ←
∑B

j=1 min(1, ζ/||gj ||) · gj (clip gradients)
x̂i ← 1

B

(
xi + [C−1Z][i,·]

)
θi ← θi−1 − (χiη)x̂i

Ensure: θn

where ζ denotes the clipping norm, and σϵ,δ is the noise multiplier of the standard Gaussian mech-
anism, which can be computed numerically (Balle & Wang, 2018). The term sens(C) represents
the global sensitivity of the Gaussian mechanism for the product CG when the row or rows corre-
sponding to a single datapoint in G change; it can be computed explicitly as ∥C∥1→2, the maximum
column norm of C. The case of multi-participation (multi-epoch) is discussed in Section 4.1. Now
we have all the steps to train the model with differential privacy as presented in Algorithm 1.

The choice of factorization A = BC significantly impacts the quality of the private estimation.
Following the work of Denisov et al. (2022); Henzinger et al. (2024) we quantify the approxima-
tion quality by either the mean squared error (MeanSE) or the maximum expected squared error
(MaxSE), which can be computed as

MeanSE(B,C) =

√
1
n EZ∥AG− ÂG∥2F = 1√

n
∥B∥F ∥C∥1→2 σϵ,δ ζ, (4)

MaxSE(B,C) = EZ∥AG− ÂG∥∞ = ∥B∥2→∞ ∥C∥1→2 σϵ,δ ζ,

where ∥ · ∥F denotes the Frobenius norm and ∥ · ∥2→∞ the maximum row ℓ2-norm. These approx-
imation errors are independent of G, and the term σϵ,δζ is independent of the matrix factorization.
To isolate the contribution of the factorization (B,C), we will use the notation MeanSE(B,C),
MaxSE(B,C) assuming ζ = σϵ,δ = 1 in the theoretical analysis.

3 METHOD

We now turn to the workload of stochastic gradient descent (SGD) with learning rate scheduling.
Let χ1, χ2, . . . , χn be a sequence with minχt = β > 0 and maxχt = 1, representing a learning
rate scheduler such that the actual learning rate at time t is ηt = ηχt. We assume that β is reasonably
separated from 1, as the regime β → 1 is not of interest since it nullifies the benefits of scheduling.
Then the workload matrix of interest is:

Aχ =


χ1 0 0 · · · 0
χ1 χ2 0 · · · 0
χ1 χ2 χ3 · · · 0
...

...
...

. . .
...

χ1 χ2 χ3 · · · χn

 = A1 ×D, (5)

where A1 is a prefix-sum matrix (lower triangular matrix of all ones) and D is a diagonal matrix
of learning rates, i.e., D = diag(χ1, . . . , χn). We will study the problem of optimal matrix factor-
ization in MaxSE and MeanSE metrics for the matrix Aχ with the learning rate decays given in
Table 1. For the experiments, we will also include the constant learning rate (χk = 1).

In this work, we prove general lower and upper bounds for the MaxSE and MeanSE errors. For the
upper bound, we use a prefix-sum-based factorization given by B = Aχ(A1)

−1/2 and C = A
1/2
1 ,

which has been shown to be nearly optimal up to the next asymptotic term for the prefix sum problem

3
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Table 1: Learning rate decays.

Exponential χk = β
k−1
n−1

Polynomial χk = β + (1− β)

(
n
k

)γ − 1

nγ − 1
, γ ≥ 1

Linear χk = 1− k−1
n−1 (1− β)

Cosine χk = β + 1−β
2

(
1 + cos

(
k−1
n−1π

))

(χk = 1) (Henzinger et al., 2025). To further improve the bounds, we propose a learning-rate-aware
factorization. To define it, let AToep

χ denote the Toeplitz matrix with χ1, . . . , χn on its subdiagonals.

AToep
χ =


χ1 0 0 . . . 0
χ2 χ1 0 . . . 0
χ3 χ2 χ1 . . . 0
...

...
...

. . .
...

χn χn−1 χn−2 . . . χ1

 (6)

We propose Cχ = (AToep
χ )1/2 as a learning-rate-aware correlation matrix. To analyze its properties,

we consider the exponentially decaying learning rate χt = β
t−1
n−1 = αt−1 with α = β

1
n−1 . In this

setting, the correlation matrix can be computed explicitly as

Cα =


1 0 . . . 0

αr1 1 . . . 0
...

...
. . .

...
αn−1rn−1 αn−2rn−2 . . . 1

 , (7)

where the coefficients are rj =
∣∣∣(−1/2

j

)∣∣∣ = 1
4j

(
2j
j

)
.

4 RESULTS

In this work, we derive upper and lower bounds on the MaxSE and MeanSE errors of the learning
rate scheduling workload Aχ for a large class of learning rate schedulers χ1, . . . , χn. In the follow-
ing theorem, we prove an upper bound based on the prefix-sum factorization AχA

−1/2
1 ×A

1/2
1 .

Theorem 1. Let (χt)
n
t=1 be a sequence on [β, 1] for some constant β > 0. For n ≥ 2 we define

∆t = |χt − χt+1| (for all 1 ≤ t ≤ n− 1) . (8)

If either of the following two conditions holds (c > 0 an absolute constant):

∆t ≤
c

t(1 + log t)
(for all 1 ≤ t ≤ n− 1), or

n−1∑
t=1

∆2
t = o

(
log n

n

)
, (9)

then the factorization Bχ ×A
1/2
1 , where Bχ := Aχ(A1)

−1/2, satisfies

MaxSE(Bχ, A
1/2
1 ) = Θ

(√
log n ·

√
max
m∈[n]

χ2
m logm

)
, (10)

MeanSE(Bχ, A
1/2
1 ) = Θ

√log n ·

√√√√ 1

n

n∑
m=1

χ2
m logm

 . (11)

The conditions assumed in Theorem 1 are satisfied for all learning rate decays presented in Table 1,
more formally:

4
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Lemma 1. Every learning rate schedule (χt)
n
t=1 with constant β ∈ (0, 1/e) presented in Table 1

satisfies the assumptions of Theorem 1.

Moreover, in this work we also prove general lower bounds for any learning rate schedules:
Theorem 2. Let Aχ = A1Dχ, where Dχ = diag(χ1, . . . , χn) with positive χt > 0. Then

inf
B×C=Aχ

MaxSE(B,C) ≥ max
1≤t≤n

1

π
(min
j≤t

χj) log t (12)

inf
B×C=Aχ

MeanSE(B,C) ≥ max
1≤t≤n

1

π

√
t

n
(min
j≤t

χj) log t. (13)

In particular, plugging in the exponential learning rate decay χk = β
k−1
n−1 yields the following upper

and lower bounds.

Corollary 1. For exponential learning rate decay χk = β
k−1
n−1 with β ∈ (0, 1/e), the prefix-sum–

based factorization Aχ = Aχ(A1)
−1/2 ×A

1/2
1 gives the following values for MaxSE and MeanSE:

MaxSE(Bχ, A
1/2
1 ) = Θ

(√
log n

√
log

n

log(1/β)

)
, (14)

MeanSE(Bχ, A
1/2
1 ) = Θ

(
log n√
log(1/β)

)
. (15)

Corollary 2. Suppose χk = β
k−1
n−1 with β ∈ (0, 1/e). Then

inf
B×C=Aχ

MaxSE(B,C) = Ω

(
log

n

log(1/β)

)
(16)

inf
B×C=Aχ

MeanSE(B,C) = Ω

(
1√

log(1/β)
log

n

log(1/β)

)
. (17)

We further improve the upper bound by considering a learning-rate–aware factorization C =

(AToep
χ )1/2, which can be computed explicitly for the exponential learning rate decay χk = β

k−1
n−1 =

αk−1. This yields the factorization Aχ = Bα × Cα, where Cα is defined in equation (7), and Bα is
obtained as Aχ(Cα)

−1/2.

In Lemma 7 of Kalinin & Lampert (2024), the sensitivity of the matrix Cα has been computed as:

∥Cα∥1→2 = O
(

1
α

√
log 1

1−α2

)
= O

(√
log n

log(1/β)

)
. (18)

We then bound both the maximum row norm and the Frobenius norm of Bα, which leads to the
following lemma.

Lemma 2. Let β ∈ (0, 1/e) and α = β1/(n−1). For the factorization Aχ = Bα × Cα,

MaxSE(Bα, Cα) = O
(
log n

log(1/β)

)
, (19)

MeanSE(Bα, Cα) = O
(√

logn
log(1/β)

√
log n

log(1/β)

)
. (20)

This factorization achieves the optimal rate for the MaxSE error and, asymptotically, performs
better than alternative factorizations for the MeanSE error.

We summarize the errors for the exponential learning rate decay in Table 2. In addition, we consider
four alternative factorizations: the trivial factorizations Aχ×I and I×Aχ, two prefix-sum–inspired
factorizations A1/2

1 × A
1/2
1 D, and the square-root factorization A

1/2
χ × A

1/2
χ . The square-root fac-

torization is highly nontrivial to obtain since the matrix is not Toeplitz; due to space constraints, we
defer the detailed discussion to Appendix B.

5
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Table 2: Factorizations with corresponding MaxSE and MeanSE errors for exponential learning rate
scheduling χt = β

t−1
n−1 for β ∈ (0, 1/e). The proof of the first three bounds is rather technical and

can be found in Lemma 6 in Appendix. The errors for square root factorization (d) can be found in
Corollary 5. Learning-rate-aware factorization (e) is computed in Lemma 2. The prefix-sum-based
factorization (f) is computed in Corollary 6. The lower bounds are computed in Corollary 2 in the
appendix.

Factorization MaxSE MeanSE

(a) Aχ = A
1/2
1 ×A

1/2
1 D Θ(log n) Θ(log n)

(b) Aχ = Aχ × I Θ

(√
n

log 1/β

)
Θ

(√
n

log 1/β

)
(c) Aχ = I ×Aχ Θ(

√
n) Θ(

√
n)

(d) Aχ = A
1/2
χ ×A

1/2
χ Ω

(√
log n

√
log n

log 1/β

)
Ω

(
logn√
log(1/β)

)
(e) Aχ = Aχ(A

Toep
χ )−1/2 × (AToep

χ )1/2 O
(
log n

log 1/β

)
O
(√

logn
log 1/β

√
log n

log 1/β

)
(f) Aχ = A1DA

−1/2
1 ×A

1/2
1 Θ

(√
log n

√
log n

log 1/β

)
Θ

(
logn√
log 1/β

)
Lower Bound Ω

(
log n

log 1/β

)
Ω

(
1√

log 1/β
log
(

n
log 1/β

))
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Figure 1: Comparison of MaxSE and MeanSE errors under an exponentially decaying learning rate,
for the proposed factorizations (see Table 2), with fixed matrix size n = 2048 and varying decay β.
We refer to the approximately optimal value of MeanSE computed by dense factorization (Denisov
et al., 2022) as “dense.” For MaxSE, we report a lower bound since no scalable and accurate solution
for its optimal value is available. The bottom row compares our learning-rate aware factorization
with the prefix-sum based one, validating the theoretical improvements in both MeanSE and MaxSE.
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Figure 2: Multi-participation MeanSE error with matrix size n = 2048. Lines are computed for
bandwidth p = 64. For the exponential workload, we observe that with a larger participation number
it becomes beneficial to optimize the factorization with respect to the learning rate decay workload.
However, for the considered values of n and β, we do not observe any benefit from incorporating
learning rate scheduling for BISR.

We then numerically compare the proposed factorizations in the single-epoch (single-participation)
setting using the MaxSE and MeanSE metrics, as functions of the learning rate decay β and the
matrix size n (see Figure 1 for exponential decay and Figure 4 in the appendix for other learning rate
decays). As an approximation of the actual optimal value for MeanSE, we use a dense factorization
(Denisov et al., 2022) implemented in jax-privacy library (Balle et al., 2025). On the plots, we
refer to this approximation as “dense”. For MaxSE, it is computationally infeasible to compute
the exact optimal value for large matrix sizes. Therefore, we rely on the lower bound derived in
Theorem 2, which we denote on the plots as “lower bound”. We observe that our learning-rate-
aware factorization outperforms the others in terms of MaxSE. However, for the proposed values
of n and β, it performs worse than the prefix sum based factorization in terms of MeanSE. To
further investigate this, we plot the colormap of the gain over the prefix sum based approach (see
Figure 1). In the blue regions, our method performs worse, while in the red regions it performs
better. As can be seen, for any fixed n, sufficiently small values of β lead to the learning-rate-
aware factorization outperforming the prefix sum based approach, thereby numerically validating
our theoretical findings.

4.1 MULTI-PARTICIPATION

Following the line of work on multi-participation matrix factorization (Choquette-Choo et al.,
2023b;a; Kalinin & Lampert, 2024; McKenna, 2025; Kalinin et al., 2025), we allow each user or
datapoint to participate multiple times. Without imposing any restriction on the participation pattern,
the guarantees would be no stronger than those obtained via the privacy composition. To overcome
this, we adopt the notion of b-min separation, which requires that the gap between any two consecu-
tive participations of the same user be at least b > 0. Under this condition, each user may participate
up to k = ⌈n/b⌉ times. This naturally affects the definition of sensitivity, which we refine as

sensk,b(C) = sup
G∼G′

∥CG− CG′∥F , (21)

where G and G′ differ in the participations of a single user, with the corresponding rows separated
by at least b. We then generalize the notion of MeanSE error to the multi-participation setting:

E(B,C) =
1√
n
∥B∥F · sensk,b(C). (22)

In this section, we establish both upper and lower bounds on the optimal value E(B,C) among all
factorizations, for the learning-rate workload. This extends the results of Kalinin et al. (2025) on
SGD with momentum and weight-decay workloads to the non-Toeplitz case. For the prefix-sum
workload, it was shown that the Banded Inverse Square Root (BISR) factorization is asymptoti-
cally optimal in the multi-participation setting. The BISR is defined as follows: given a workload

7
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matrix A, we compute the square root of its inverse, C = A−1/2, band it to width p by nullifying all
elements below the p-th diagonal and then invert the result. The corresponding correlation matrix
is denoted Cp. Then there exists a unique matrix Bp such that BpCp = A. By using the BISR
matrix corresponding to the prefix-sum workload A1, we establish a general upper bound in the
multi-participation setting for workloads with learning rates Aχ.
Theorem 3. Under the same assumptions on learning rate scheduling χt as in Theorem 1, the
following holds.

E(Bp
χ, C

p
1 ) = O

√√√√k

n

(
log p+

p

b

) n∑
m=1

[
χ2
m log (min{m, p}) + 1

p

m−1∑
t=p

χ2
t

] . (23)

For exponential decay the upper bound (after optimizing over p) has the following form:

Corollary 3. Let χt = β
t−1
n−1 with β ∈ (0, 1/e). Then, in multi-participation with b-min-separation

and at most k = ⌈nb ⌉ participations, we have for p∗ ∼ b log b the following optimized upper bound:

E(Bp
χ, C

p
1 ) = O

(√
k logn+k√
log(1/β)

)
. (24)

We prove a general lower bound for multi-participation error with arbitrary learning rate scheduling.

Theorem 4 (Lower bound for multi-participation). Let Aχ = A1Dχ, where Dχ =
diag(χ1, . . . , χn) with positive χt > 0. Assume any factorization Aχ = B × C. Then, in multi-
participation with b-min-separation and at most k = ⌈nb ⌉ participations, we have

E(B,C) ≥ max

max
t≤n

√
k t χt

π
√
2n

(min
j≤t

χj) log(t),

k−1∑
j=0

χ1+jb

(
1− j

k − 1

) . (25)

For the exponential learning rate decay we can simplify the lower bound in the following Corollary.

Corollary 4. Let χk = β
k−1
n−1 with β ∈ (0, 1/e). Then Theorem 4 yields

E(B,C) = Ω

( √
k

log(1/β)
log

n

log(1/β)
+

k

log(1/β)

)
. (26)

For the numerical comparison in the multi-participation we study several recently proposed memory-
efficient factorizations. Including banded matrix factorization McKenna (2025), banded inverse fac-
torization BandInvMF and BISR (Kalinin et al., 2025) and Buffered Linear Toeplitz (BLT) (McMa-
han et al., 2024). We can optimize banded and banded inverse matrices, accounting for the learning
rate decay, as well as like if it was a prefix-sum workload with constant learning rate, we refer to
this difference as “w/ LRS” and “w/o LRS”. See the plots in the Figure 2 for the exponential decay,
and Figure 5 in the Appendix for other learning rate schedulers.

5 EXPERIMENTS

We demonstrate the practical benefits of learning rate scheduling in Figure 3 on CIFAR-10 dataset.
All experiments satisfy (9, 10−5)-DP and use a 3-block CNN trained for 10 epochs with batch size
128 and clipping norm 1. For privacy accounting, we use Poisson subsampling with PLD account-
ing (Koskela et al., 2021) for DP-SGD and amplification by ball-and-bins subsampling with MCMC
accounting (Choquette-Choo et al., 2025) for all factorizations. Subfigure (a) shows validation ac-
curacy across different initial learning rates, where exponential learning rate scheduling improves
performance compared to DP-SGD with a fixed learning rate (β = 1). Subfigure (b) reports test
accuracy using the best learning rate chosen on the validation set. All factorizations benefit sub-
stantially from scheduling, and the learning-rate–aware factorization (denoted as BISR w/ LRS)
achieves even further improvements. However, optimizing the factorization with respect to learning
rate workload does not lead to additional gains: while RMSE can serve as a proxy for performance,

8
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Figure 3: CIFAR-10 results under (9, 10−5)-differential privacy. (a) Validation accuracy with ex-
ponential learning rate scheduling for different learning rates in DP-SGD. We report the points
corresponding to the lowest learning rate; for example, a learning rate of 1/2 for β = 1/4 indicates
that training starts with a learning rate of 2 and decays to 1/2. (b) Test accuracy across different
matrix factorizations with exponential learning rate scheduling. Training hyperparameters are
provided in Table 3. (c) Test accuracy for different learning rate decays. Training hyperparameters
are provided in Table 4.

it does not perfectly predict it. In practice, workload optimization increases the added noise per
iteration, and this effect is not fully compensated during training due to the non-linearity introduced
by large noise.

In Subfigure (c), we compare different learning rate schedulers with a constant one. We observed
that learning rate scheduling improves accuracy for DP-SGD for all types. For BISR, we found that
polynomial learning rate decay with γ = 2 deteriorates the quality and is perhaps not a good choice
for the scheduler. The other schedulers substantially improve the accuracy of BISR. Moreover, our
proposed learning-rate-aware factorization (BISR w/ LRS) further improves the quality, with the
largest improvement for linear LRS, making it a suitable factorization for high-performance private
training.

6 CONCLUSION AND FUTURE DIRECTIONS

Learning rate scheduling has been shown to improve convergence in both private and non-private
machine learning. In this work, we combine learning rate scheduling with matrix factorization and
propose a learning-rate-aware factorization, which in the case of exponential learning rate decay
is theoretically shown to improve the error. Through numerical experiments using the MaxSE and
MeanSE metrics, as well as CIFAR-10 model training, we demonstrate its benefits.

We have primarily studied learning rate decay, but similar techniques can be applied to warm-
starting, where the learning rate is initially small and then gradually increased. Optimization-based
approaches for matrix factorization are generally agnostic to the choice of learning rate scheduling,
but adapting our learning-rate-aware factorization to this setting may pose extra challenges.

9
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Figure 4: Comparison of different LR schedulers (n = 2048) in single participation.

A ADDITIONAL EXPERIMENTS
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Figure 5: Multi-participation MeanSE error under different learning-rate schedulers (Polynomial
γ = 2, Linear, Cosine) for k = 4 and k = 8. Matrix size n = 1024, bandwidth p = 64.
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Table 3: We train four different methods for matrix optimization: DP-SGD, BISR, BandInvMF, and
BandMF. Each factorization method can be computed either with a workload induced by learning
rate scheduling (w/ LRS) or with a constant workload corresponding to prefix sums (w/o LRS). All
experiments use clipping norm ζ = 1 and batch size 128. For each method, the noise multiplier σ
is computed using a privacy accountant: Poisson accounting for DP-SGD and bins-and-balls sam-
pling with an MCMC accountant Choquette-Choo et al. (2025) for the matrix factorization methods.
Learning rates η are tuned on a validation set separately for each method and decay setting.

Method
β = 1 β = 1

2 β = 1
4 β = 1

8

ζ BS p η σ η σ η σ η σ

DP-SGD 1 128 1 0.4 0.479 0.4 0.479 0.6 0.479 0.8 0.479
BISR (w/o LRS) 1 128 64 0.8 1.910 1.6 1.910 1.8 1.910 1.8 1.910
BISR (w/ LRS) 1 128 64 0.8 1.908 1.6 1.901 1.9 1.894 2.0 1.888
BandInvMF (w/o LRS) 1 128 64 1.0 2.597 1.5 2.597 1.6 2.597 1.7 2.597
BandInvMF (w/ LRS) 1 128 64 1.0 2.597 1.5 2.681 1.6 2.814 1.6 2.870
BandMF (w/o LRS) 1 128 64 0.9 2.921 1.5 2.921 1.6 2.921 1.7 2.921
BandMF (w/ LRS) 1 128 64 0.9 2.921 1.1 3.053 1.6 3.158 1.7 3.222
BLT 1 128 64 0.9 2.580 1.3 2.580 1.4 2.580 1.8 2.580

Table 4: Comparison of different learning rate schedulers for training with matrix factorization with
fixed learning rate decay β = 1

4 . We evaluate DP-SGD, BISR (w/o LRS), and BISR (w/ LRS) under
four learning rate decay strategies: exponential, polynomial, linear, and cosine. All experiments use
clipping norm ζ = 1 and batch size 128, for BISR we use bandwidth p = 64. Noise multipliers σ are
computed using Poisson accounting for DP-SGD and bins-and-balls MCMC accounting Choquette-
Choo et al. (2025) for BISR. Learning rates η are tuned on a validation set for each decay setting.

Method
ζ BS p Exponential Polynomial Linear Cosine

η σ η σ η σ η σ

DP-SGD 1 128 1 0.6 0.479 1.1 0.479 0.6 0.479 0.5 0.479
BISR (w/o LRS) 1 128 64 1.8 1.910 1.8 1.910 1.6 1.910 1.5 1.910
BISR (w/ LRS) 1 128 64 1.9 1.894 1.8 1.366 1.6 1.900 1.4 1.907
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B SINGLE-PARTICIPATION: SQUARE ROOT OF THE WORKLOAD

As one of the baseline factorizations we propose the square root factorization

Aχ = A1/2
χ ×A1/2

χ , where Aχ =


χ1 0 0 · · · 0
χ1 χ2 0 · · · 0
χ1 χ2 χ3 · · · 0
...

...
...

. . .
...

χ1 χ2 χ3 · · · χn

 (27)

In the case of exponential learning rate decay we can compute the matrix square root explicitly and
tightly bound its values from below.
Theorem 5. For any n ≥ 1 and α ∈ (0, 1), with learning rates χi = αi−1 the following lower
bound holds:

(A1/2
χ )m,l = α(l−1)/2

m−l∏
k=1

1− αk−1/2

1− αk
≥ α(l−1)/2 max

{∣∣∣∣(−1/2n

)∣∣∣∣ , √1− α2

Γα2(1/2)

}
, (28)

where Γq(x) denotes the q-Gamma function, and limα→1− Γα2(1/2) = Γ(1/2) =
√
π.

We can also compute the inverse of this matrix (see Appendix, Lemma 5). Using the lower bound,
we now establish the following bounds for the MaxSE and MeanSE errors under an exponentially
decaying learning rate.

Corollary 5. Let β ∈ (0, 1/e) and α = β1/(n−1). For the square-root factorization Aχ =

A
1/2
χ A

1/2
χ , we have

MaxSE(A1/2
χ , A1/2

χ ) = Ω

(√
log n

√
log

n

log(1/β)

)
, (29)

MeanSE(A1/2
χ , A1/2

χ ) = Ω

(
log n√
log(1/β)

)
. (30)

We prove these statements next, beginning with necessary lemmas.
Lemma 3. For a specific choice of the learning rate coefficients χi = α2i with α ∈ (0, 1), we have:

(A1/2
χ )m,l = αl

m−l∏
k=1

1− α2k−1

1− α2k
(31)

Proof. To prove that the coefficients of the square root have the proposed form, we need to show
that the square of this matrix is equal to the original one. That is, for all 1 ≤ l ≤ m ≤ n, we show
that:

m∑
j=l

αj

m−j∏
k=1

1− α2k−1

1− α2k
· αl

j−l∏
k=1

1− α2k−1

1− α2k
= α2l (32)

or equivalently,

m−l∑
j=0

αj

m−l−j∏
k=1

1− α2k−1

1− α2k

j∏
k=1

1− α2k−1

1− α2k
= 1, (33)

which is a convolution of the sequences aj and ajα
j , where

aj =

j∏
k=1

1− α2k−1

1− α2k
=

(α;α2)j
(α2;α2)j

, (34)
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and (a; q)n denotes the q-Pochhammer symbol, given by
∏n−1

k=0(1−aqk). We will prove the identity
using generating functions. First, we find the generating function of aj :

f(x) =

∞∑
j=0

ajx
j =

∞∑
j=0

(α;α2)j
(α2;α2)j

xj =
(αx;α2)∞
(x;α2)∞

, (35)

where the last equality follows from the q-binomial theorem. Therefore, the generating function of
the convolution of aj and ajα

j is:

f(x)f(αx) =
(αx;α2)∞
(x;α2)∞

· (α
2x;α2)∞

(αx;α2)∞
=

(α2x;α2)∞
(x;α2)∞

=

∞∏
n=0

1− xα2n+2

1− xα2n
=

1

1− x
, (36)

as the product telescopes, yielding the generating function of the unit sequence (1, 1, 1, . . . ), thus
concluding the proof.

Lemma 4. For any n ≥ 1 and α ∈ (0, 1), the following lower bound holds:
n∏

k=1

1− α2k−1

1− α2k
≥ max

{∣∣∣∣(−1/2n

)∣∣∣∣ , √1− α2

Γα2(1/2)

}
, (37)

where Γq(x) denotes the q-Gamma function, and limα→1− Γα2(1/2) = Γ(1/2) =
√
π.

Proof. First, we show that fn(α) =
∏n

k=1
1−α2k−1

1−α2k is a decreasing function of α. Therefore,

fn(α) ≥ fn(1) =

n∏
k=1

2k − 1

2k
=

∣∣∣∣(−1/2n

)∣∣∣∣ . (38)

To prove this, we observe that each individual term is a decreasing function of α:

1− α2k−1

1− α2k
= 1− α2k−1 − α2k

1− α2k
= 1− α−1 − 1

α−2k − 1
= 1− 1

1 + α−1 + · · ·+ α−(2k−1)
. (39)

For the second part of the inequality, we show that

fn(α) ≥ f∞(α) =

∞∏
k=1

1− α2k−1

1− α2k
=

(α;α2)∞
(α2;α2)∞

=

√
1− α2

Γα2(1/2)
, (40)

where the inequality holds because each term of the product is less than 1, the infinite product
converges, and the q-Gamma function is defined by

Γq(x) = (1− q)1−x (q; q)∞
(qx; q)∞

. (41)

This concludes the proof.

Proof of Theorem 5. The proof follows from combining Lemma 3 for the equality and Lemma 4 for
the lower bound. For convenience, we considered χi = α2i in those lemmas. To achieve αi−1, we
first divide the square root matrix by α so that we start from learning rates of 1 rather than α2. Then,
we replace α with α1/2, which concludes the proof.

Proof of Corollary 5. To use Lemma 3 and Lemma 4, we need to adjust the choice of α, as previous
lemmas consider χk = α2k while here χk = αk−1. This gives

(A1/2
χ )m,l ≥ α(l−1)/2 rm−l. (42)

Thus the maximum column norm of A1/2
χ is at least the norm of its first column, which in turn is at

least the maximum column norm of A1/2
1 ; the latter is Θ(log n).
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For the m-th row-sum of squares,
m∑
l=1

(A1/2
χ )2m,l ≥

m∑
l=1

α l−1r2m−l ≥
αm

π

m∑
l=1

1

l αl
≥ αm

π
logm.

MaxSE. Taking the maximum over m and applying Lemma 10 yields

max
1≤m≤n

m∑
l=1

(A1/2
χ )2m,l = Ω

(
log

n

log(1/β)

)
,

so the maximum row norm is Ω
(√

log n
log(1/β)

)
. Multiplying by the maximum column norm

Ω(log n) gives the first bound.

MeanSE. Averaging over m and using Lemma 11,

1

n

n∑
m=1

m∑
l=1

(A1/2
χ )2m,l = Θ

(
log n

log(1/β)

)
,

so the average row norm is Ω
(√

logn
log(1/β)

)
. Multiplying by the maximum column norm Ω(log n)

gives the second bound.

We also give the following lemma on the inverse of A1/2
χ .

Lemma 5. The inverse matrix A−1/2
χ for a specific choice of the learning rate coefficients χi = α2i

with α ∈ (0, 1) has the following form:

(A−1/2
χ )m,l =

−(1− α)

αl+1(1− α2(m−l)−1)

m−l∏
k=1

1− α2k−1

1− α2k
. (43)

Proof. To prove that A−1/2
χ corresponds to the inverse square root matrix, we will show that its

product with the square root matrix A
1/2
χ yields the identity matrix:

m∑
j=l

(A1/2
χ )m,j(A

−1/2
χ )j,l =

m∑
j=l

αj

[
m−j∏
k=1

1− α2k−1

1− α2k

]
· α− 1

αl+1(1− α2(j−l)−1)

[
j−l∏
k=1

1− α2k−1

1− α2k

]
= 1l=m.

(44)

This is equivalent to proving the following identity:

m−l∑
j=0

αj

[
m−l−j∏
k=1

1− α2k−1

1− α2k

]
· α− 1

α(1− α2j−1)

[
j∏

k=1

1− α2k−1

1− α2k

]
= 1l=m. (45)

This can be interpreted as a convolution of two sequences aj and αjbj , defined as follows:

aj =

j∏
k=1

1− α2k−1

1− α2k
=

(α;α2)j
(α2;α2)j

, bj =
α− 1

α(1− α2j−1)

j∏
k=1

1− α2k−1

1− α2k
=

(1/α;α2)j
(α2;α2)j

, (46)

where (a; q)n denotes the q-Pochhammer symbol, given by
∏n−1

k=0(1− aqk).

Analogously to Lemma 3, we will prove the identity via generating functions. Since the generating
function f(x) of aj is already known, it remains to find the generating function of bj :

g(x) =

∞∑
j=0

xjbj =

∞∑
j=0

xj (1/α;α
2)j

(α2;α2)j
=

(x/α;α2)∞
(x;α2)∞

. (47)
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Therefore, the generating function of the convolution of aj and αjbj is given by the product of the
generating functions f(x) and g(αx), resulting in:

f(x)g(αx) =
(αx;α2)∞
(x;α2)∞

· (x;α2)∞
(αx;α2)∞

= 1, (48)

which concludes the proof.

C SINGLE PARTICIPATION: NAIVE FACTORIZATIONS

Lemma 6.

(a) MaxSE(A1/2
1 , A

1/2
1 D) = Θ(log n) MeanSE(A1/2

1 , A
1/2
1 D) = Θ(log n)

(b) MaxSE(Aχ, I) = Θ

(√
n

log 1/β

)
MeanSE(Aχ, I) = Θ

(√
n

log 1/β

)
(c) MaxSE(I, Aχ) = Θ(log n) MeanSE(I, Aχ) = Θ(log n)

Proof. (a) Since χ1 = 1 and all other χt ≤ 1, the maximum column norm is still achieved in the
first column and is exactly the same as that of A1/2

1 . Thus,

MaxSE(A1/2
1 , A

1/2
1 D) = MaxSE(A1/2

1 , A
1/2
1 ) = Θ(log n),

MeanSE(A1/2
1 , A

1/2
1 D) = MeanSE(A1/2

1 , A
1/2
1 ) = Θ(log n),

which follows from the analysis of the prefix-sum square root factorization by Henzinger et al.
(2024).

(b) The maximum column norm of I is 1. The maximum row norm of Aχ is√√√√ n∑
k=1

χ2
k =

√√√√n−1∑
k=0

β
2k
n−1 =

√√√√√1− β
2n
n−1

1− β
2

n−1

= Θ
(√

n
log(1/β)

)
. (49)

The normalized Frobenius norm 1√
n
∥Aχ∥F is

1√
n
∥Aχ∥F =

1√
n

√√√√ n∑
k=1

(n+ 1− k)χ2
k =

1√
n

√√√√ n∑
k=1

(n+ 1− k)β
2(k−1)
n−1

=
1√
n

√√√√n−1∑
k=0

(n− k)β
2k
n−1 =

√
α2(n+1) − α2(n+ 1) + n

n(1− α2)2
,

where α = β
1

n−1 . Hence 1− α2 ∼ 2 log(1/β)
n and α2n ∼ β2, which results in

MeanSE(Aχ, I) =
1√
n
∥Aχ∥F = Θ

(√
1

1−α2

)
= Θ

(√
n

log(1/β)

)
.

(c) The maximum row norm of I is 1, as is its normalized Frobenius norm. The maximum column
norm of Aχ is attained in the first column and is exactly

√
n, which concludes the proof.

D SINGLE-PARTICIPATION: LEARNING-RATE-AWARE TOEPLITZ
SQUARE-ROOT

Lemma 2. Let β ∈ (0, 1/e) and α = β1/(n−1). For the factorization Aχ = Bα × Cα,

MaxSE(Bα, Cα) = O
(
log n

log(1/β)

)
, (19)

MeanSE(Bα, Cα) = O
(√

logn
log(1/β)

√
log n

log(1/β)

)
. (20)
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Proof. For the exponential learning rate χk = β
k−1
n−1 = αk−1, consider the factorization

Aχ = Aχ C−1
α × Cα = Bα × Cα,

with

Cα =


1 0 . . . 0

αr1 1 . . . 0
...

...
. . .

...
αn−1rn−1 αn−2rn−2 . . . 1

 , C−1
α =


1 0 . . . 0

αr̃1 1 . . . 0
...

...
. . .

...
αn−1r̃n−1 αn−2r̃n−2 . . . 1

 ,

(50)
where (rk) and (r̃k) are the coefficients of A1/2

1 and A
−1/2
1 , respectively. By equation (18),

∥Cα∥1→2 = O
( 1
α

√
log

1

1− α2

)
= O

(√
log

n

log(1/β)

)
. (51)

The corresponding left matrix is Bα, which can be computed as

(Bα)m,l = αl
m−l∑
t=0

r̃tα
2t.

Then, applying summation by parts:

(Bα)m,l = α2m−lrm−l + αl(1− α2)

m−l−1∑
t=0

α2trt. (52)

Using (a+ b)2 ≤ 2a2 + 2b2 and summing over l,
m∑
l=1

(Bα)
2
m,l ≤ 2

m∑
l=1

α4m−2lr2m−l + 2(1− α2)2
m∑
l=1

α2l
(m−l−1∑

t=0

α2trt

)2
. (53)

First term. Since
∑m−1

u=0 r2u ≤ 1 + 1
π + 1

π log(m− 1),

2

m∑
l=1

α4m−2lr2m−l = 2α2m
m−1∑
u=0

α2ur2u ≤
2

π
α2m logm+O(1). (54)

Second term. With r0 = 1 and rt ≤ 1√
πt

for t ≥ 1,

m−l−1∑
t=0

α2trt ≤ 1 +
1√
π

∞∑
t=1

α2t

√
t
,

m∑
l=1

α2l ≤ α2

1− α2
,

and
∞∑
t=1

α2t

√
t
≤
∫ ∞

0

e2x logα

√
x

dx =

√
π√

2 log(1/α)
. (55)

Hence

2(1− α2)2
m∑
l=1

α2l
(m−l−1∑

t=0

α2trt

)2
≤ 2α2(1− α2)

(
1 +

1√
2 log(1/α)

)2
= O(1). (56)

Combining (54)–(56),
m∑
l=1

(Bα)
2
m,l ≤

2

π
α2m logm+O(1). (57)

MaxSE. From (57),

∥Bα∥22→∞ = max
m

m∑
l=1

(Bα)
2
m,l ≤ max

m

( 2
π
α2m logm+O(1)

)
= O

(
log

n

log(1/β)

)
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by Lemma 10 with α 7→ α2. Multiplying by ∥Cα∥1→2 = O
(
1
α

√
log 1

1−α2

)
(Kalinin & Lampert,

2024, Lemma 7) gives the stated bound.

MeanSE. From (57),

1

n
∥Bα∥2F =

1

n

n∑
m=1

m∑
l=1

(Bα)
2
m,l ≤

2

π
· 1
n

n∑
m=1

α2m logm+O(1) = O
(

log n

log(1/β)

)
by Lemma 11 with α 7→ α2. Thus 1√

n
∥Bα∥F = O

(√
logn

log(1/β)

)
, and multiplying by ∥Cα∥1→2 (as

above) yields the claimed bound.

E SINGLE-PARTICIPATION: PREFIX-SUM FACTORIZATION

Lemma 7. Let (χt)
n
t=1 be a positive sequence taken from [β,∞) where β > 0 is a constant, and

Q =

n−1∑
l=1

(
n−l−1∑
t=0

|χl+t − χl+t+1|rt

)2

= o(log n) .

Then

MaxSE(Bχ, A
1/2
1 ) = Θ

(√
log n ·

√
max
m∈[n]

χ2
m logm

)
,

MeanSE(Bχ, A
1/2
1 ) = Θ

√log n ·

√√√√ 1

n

n∑
m=1

χ2
m logm

 .

Proof. We have that

(Bχ)m,l = χl +

m−l∑
t=1

r̃tχt+l

where r̃t = −rt
2t−1 are the coefficients of A−1/2

1 . Applying summation by parts (also known as Abel’s
transformation), we obtain:

(Bχ)m,l = χm

m−l∑
t=0

r̃t −
m−l−1∑
t=0

(χl+t+1 − χl+t)

t∑
j=0

r̃j

= χmrm−l +

m−l−1∑
t=0

(χl+t − χl+t+1)rt . (58)

Defining ∆k = |χk − χk+1|, and using (a+ b)2 ≤ 2a2 + 2b2, we get for its squared row sum:

m∑
l=1

(Bχ)
2
m,l ≤ 2

m∑
l=1

χ2
mr2m−l + 2

m−1∑
l=1

(
m−l−1∑
t=0

∆l+trt

)2

︸ ︷︷ ︸
Qm

Similarly, using the inequality (a+ b)2 ≥ 1
2a

2 − b2:
m∑
l=1

(Bχ)
2
m,l ≥

1

2
χ2
m

m∑
l=1

r2m−l −Qm

Using the bounds 1√
π(t+1)

≤ rt ≤ 1√
πt

, we arrive at

1

2π
χ2
m logm+O(1)−Qm ≤

m∑
l=1

(Bχ)
2
m,l ≤

2

π
χ2
m logm+O(1) + 2Qm .
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As Qm ≤ Q (observe that Qm is a truncated sum of positive summands), we can write

m∑
l=1

(Bχ)
2
m,l = Θ

(
χ2
m logm

)
±O(Q) .

For the requisite norms, we get:

∥Bχ∥22→∞ = max
m∈[n]

m∑
l=1

(Bχ)
2
m,l = Θ

(
max

1≤m≤n
χ2
m logm

)
︸ ︷︷ ︸

Θ(logn)

±O(Q) = Θ

(
max

1≤m≤n
χ2
m logm

)

1

n
∥Bχ∥2F =

1

n

n∑
m=1

m∑
l=1

(Bχ)
2
m,l = Θ

(
1

n

n∑
m=1

χ2
m logm

)
︸ ︷︷ ︸

Θ(logn)

±O(Q) = Θ

(
1

n

n∑
m=1

χ2
m logm

)

as Q = o(log n) by assumption. The final statement is derived from taking the square-root of the
requisite norm and multiplying by ∥A1/2

1 ∥1→2 = Θ(log n).

Lemma 8. Let (χt)
n
t=1 be a positive sequence. Fix n ≥ 2 and define (∆t)

n−1
t=1 via

∆t = |χt − χt+1| (for all 1 ≤ t ≤ n− 1) .

Then

Q =

n−1∑
l=1

(
n−l−1∑
t=0

|χl+t − χl+t+1|rt

)2

= O

(
n

n−1∑
k=1

∆2
k

)
.

Proof. Define the two sequences (at)t∈Z, (bt)t∈Z via

at =

{
∆t for 1 ≤ t ≤ n− 1

0 otherwise
bt =

{
r−t for 2− n ≤ t ≤ 0

0 otherwise

Note that a, b and a ∗ b are all in ℓp(Z) as they are zero-padded finite sequences, moreover

(a ∗ b)l =
∞∑

t=−∞
atbl−t =

n−1∑
t=1

∆tbl−t =

n−1∑
t=l

∆trt−l =

n−l−1∑
t=0

∆l+trt .

We can thus write

Q ≤
∞∑

l=−∞

(a ∗ b)2l = ∥a ∗ b∥22 ≤ ∥a∥22 · ∥b∥21 = O

(
n

n−1∑
t=1

∆2
t

)

where the second inequality is Young’s convolution inequality, and the last step uses
∑n−2

t=0 rt =
O(
√
n).

Lemma 9. Fix n ≥ 2, and let (χt)
n
t=1 be a positive sequence satisfying

∆k = |χk − χk+1| ≤
C

k(1 + log k)

for some absolute constant C > 0. Then

Q =

n−1∑
l=1

(
n−l−1∑
t=0

|χl+t − χl+t+1|rt

)2

= O(1) .
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Proof. We consider the (coarse) upper bound rt ≤ 1√
πt

< 1√
t+1

, and start manipulating Q:

Q =

n−1∑
l=1

(
n−l−1∑
t=0

∆l+trt

)2

≤
n−1∑
l=1

(
n−l−1∑
t=0

∆l+t√
t+ 1

)2

=

n−1∑
l=1

(
n−1∑
t=l

∆t√
t− l + 1

)2

=

n−1∑
l=1

n−1∑
j=l

n−1∑
k=l

∆j∆k√
j − l + 1

√
k − l + 1

=

n−1∑
j=1

n−1∑
k=1

∆j∆k

min{j,k}∑
l=1

1
√
j − l + 1

√
k − l + 1

= S

Our task is now reduced to showing that S = O(1). For 1 ≤ j ≤ k, define H(j, k) =∑j
r=1

1√
r
√
r+k−j

. We can now write

S =

n−1∑
k=1

∆2
kH(k, k) + 2

n−1∑
k=1

∑
j<k

∆j∆kH(j, k)

=

n−1∑
k=1

∆2
kH(k, k)︸ ︷︷ ︸
D

+2

n−1∑
k=1

⌈k/2⌉∑
j=1

∆j∆kH(j, k)︸ ︷︷ ︸
F

+2

n−1∑
k=1

k−1∑
j=⌈k/2⌉+1

∆j∆kH(j, k)

︸ ︷︷ ︸
N

= D + 2F + 2N .

We bound each separately.

Bounding D. For D, we have that H(k, k) =
∑k

r=1 r
−1 = O(1 + log k), and so

D =

n−1∑
k=1

∆2
kH(k, k) ≤

n−1∑
k=1

C ′

k2(1 + log k)
= O(1) .

Bounding F . We have that k − j ≥ k − ⌈k/2⌉ ≥ k/2, and so

H(j, k) =

j∑
r=1

1√
r
√
r + k − j

≤
√

2

k

j∑
r=1

1√
r
≤ 2
√
2

√
j

k
.

Plugging into our expression for F :

F =

n−1∑
k=1

⌈k/2⌉∑
j=1

∆j∆kH(j, k) ≤ 2
√
2C2

n−1∑
k=1

1

k3/2(1 + log k)

⌈k/2⌉∑
j=1

1√
j(1 + log j)︸ ︷︷ ︸

T (⌈k/2⌉)

.

We will show that T (K) = O(
√
K

1+logK ) via integral inequality and integration by parts:

T (K) =

K∑
j=1

1√
j(1 + log j)

= O(1) +
K∑

j=⌈e2⌉

1√
j(1 + log j)

≤ O(1) +
∫ K

e2

dz√
z(1 + log z)

= O(1) + 2

∫ √
K

e

du

1 + 2 log u

where the last step uses a variable substitution z = u2 (dz = 2u du). Continuing from the integral:∫ √
K

e

du

1 + 2 log u
=

[
u

1 + 2 log u

]u=√
K

u=e

+

∫ √
K

e

2

(1 + 2 log u)2
du

≤
√
K

1 + logK
+ 2

∫ √
K

e

du

(1 + 2 log u)2

≤
√
K

1 + logK
+

2

3

∫ √
K

e

du

1 + 2 log u
,
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where the last step follows from f(u) = 1
1+2 log u taking on values in (0, 1/3] for u ∈ [e,

√
K], and

so f(u)2 ≤ f(u)/3. Solving for the integral, we have that∫ √
K

e

du

1 + 2 log u
≤ 3

√
K

1 + logK

and so T (K) = O(
√
K

1+logK ). Going back to bounding F , we have that

F ≤ 2
√
2C2

n−1∑
k=1

T (⌈k/2⌉)
k3/2(1 + log k)

≤ C ′′
n−1∑
k=1

1

k(1 + log k)2

≤ C ′′
(
1 +

∫ ∞

1

dz

z(1 + log z)2

)
= C ′′

(
1 +

∫ ∞

0

du

(1 + u)2

)
= 2C ′′ ,

where the integral step uses the variable substitution u = log z (dz = z du), and C ′′ is an absolute
constant.

Bounding N . Here we have that ⌈k/2⌉+ 1 ≤ j < k (and so k − j ≤ k/2− 1). It follows that

H(j, k) =

j∑
r=1

1√
r(r + k − j)

≤ 1√
1 + k − j

+

∫ j

1

dz√
z(z + k − j)

=
1√

1 + k − j
+

[
2 arsinh

√
z

k − j

]z=j

z=1

≤ 1√
1 + k − j

+ 2arsinh

√
j

k − j
.

Noting that arsinh(u) ≤ log(1+2u) ≤ log 3u for u ≥ 1, and that k
k−j ≥

j
k−j ≥ 1, we can simplify

further:

H(j, k) ≤ 1√
1 + k − j

+ 2 log

(
3

√
j

k − j

)
≤ 2 log

(
9k

k − j

)
Plugging our bound into the expression for N yields:

N =

n−1∑
k=1

k−1∑
j=⌈k/2⌉+1

∆j∆kH(j, k)

≤
n−1∑
k=1

⌈k/2⌉∑
d=1

∆k∆k−dH(k, k − d)

≤ 2C2
n−1∑
k=1

⌈k/2⌉∑
d=1

log(9k/d)

k(1 + log k)(k − d)(1 + log(k − d))

≤ 4C2
n−1∑
k=1

1

k2(1 + log(k/2))2

⌈k/2⌉∑
d=1

log(9k/d) .

For the inner sum, we note that
⌈k/2⌉∑
d=1

log(9k/d) = ⌈k/2⌉ log(9k)− log(⌈k/2⌉!)

≤ ⌈k/2⌉ log(9k)− ⌈k/2⌉ log(⌈k/2⌉) + ⌈k/2⌉
≤ (1 + log 18)⌈k/2⌉

where the first inequality uses Stirling’s lower bound: log(t!) ≥ t log t − t. Continuing, we have
thus shown

N ≤ 4C2(1 + log 18)

n−1∑
k=1

⌈k/2⌉
k2(1 + log(k/2))2

≤ C ′′′
n−1∑
k=1

1

k(1 + log k)2

≤ C ′′′
(
1 +

∫ ∞

1

1

k(1 + log k)2

)
≤ 2C ′′′
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where the last integral was already computed in bounding F , and C ′′′ is an absolute constant. Taking
it all together, we have shown that

S = D + 2F + 2N = O(1) ,
proving the theorem statement.

Theorem 1. Let (χt)
n
t=1 be a sequence on [β, 1] for some constant β > 0. For n ≥ 2 we define

∆t = |χt − χt+1| (for all 1 ≤ t ≤ n− 1) . (8)

If either of the following two conditions holds (c > 0 an absolute constant):

∆t ≤
c

t(1 + log t)
(for all 1 ≤ t ≤ n− 1), or

n−1∑
t=1

∆2
t = o

(
log n

n

)
, (9)

then the factorization Bχ ×A
1/2
1 , where Bχ := Aχ(A1)

−1/2, satisfies

MaxSE(Bχ, A
1/2
1 ) = Θ

(√
log n ·

√
max
m∈[n]

χ2
m logm

)
, (10)

MeanSE(Bχ, A
1/2
1 ) = Θ

√log n ·

√√√√ 1

n

n∑
m=1

χ2
m logm

 . (11)

Proof. Statement follows immediately from invoking Lemma 7 with the bounds on Q derived from
Lemma 8 and 9.

Lemma 1. Every learning rate schedule (χt)
n
t=1 with constant β ∈ (0, 1/e) presented in Table 1

satisfies the assumptions of Theorem 1.

Proof. The result will be derived from invoking Corollary 1. We split the treatment of the learn-
ing schedules based on if their change over time is, roughly, uniform (exponential/linear/cosine

schedules), or not (polynomial schedule). For the first case we show that ∥∆∥2 =
√∑n−1

t=1 ∆2
t =

o
(√

log(n)/n
)

; for the second we show that ∆t = O(1/(t log t)). We begin with the uniform
case.

Exponential schedule. χk = β
k−1
n−1 and so

∆t = |χt − χt+1| = β
t−1
n−1 (1− β

1
n−1 ) ≤ 1− e−

log(1/β)
n−1 = O

(
log(1/β)

n

)
.

It follows that ∥∆∥2 = O(log(1/β)/
√
n) = o

(√
log(n)/n

)
,

Linear schedule. χk = 1− (1− β) k−1
n−1 and so

∆t = |χt − χt+1| =
1− β

n− 1

and so ∥∆∥2 = O(1/
√
n− 1) = o

(√
log(n)/n

)
.

Cosine schedule. χk = β + 1−β
2

(
1 + cos

(
(k−1)
n−1 Pπ

))
, and so

∆t = |χt − χt+1| =
1− β

2

∣∣∣∣cos( t− 1

n− 1
π

)
− cos

(
t

n− 1
π

)∣∣∣∣
=

(1− β)

2
· π

n− 1

∣∣∣∣sin( ξ

n− 1
π

)∣∣∣∣ ≤ (1− β)π

2(n− 1)
= O (1/n)

where the third equality uses the mean value theorem applied to f(z) = cos (cz) on [t − 1, t] with
ξ ∈ (t− 1, t). It follows that ∥∆∥2 = O(1/

√
n), which is o

(√
log(n)/n

)
.
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Table 5: MaxSE and MeanSE errors for the factorization Bχ ×A
1/2
1 = Aχ(A1)

−1/2 ×A
1/2
1 = Aχ

under single participation, listed for each of the learning rate schedules in Table 1. β ∈ (0, 1/e) is
assumed throughout. (a) Exponential decay, proven in Corollary 6; (b) polynomial decay, proven in
Corollary 7; (c) linear decay, proven in Corollary 8; (d) cosine decay, proven in Corollary 9.

Learning rate χt MaxSE MeanSE

(a) χt = β
t−1
n−1 Θ

(√
log n

√
log n

log(1/β)

)
Θ

(
logn√
log(1/β)

)
(b) χt = β + (1− β) (n/t)

γ−1
nγ−1 , γ ≥ 1 Θ

(√
log n

(
β2 log n+ (1−β)2

γ

))
Θ(β log n)

(c) χt = β + (1− β) t−1
n−1 Θ(log n) Θ(log n)

(d) χt = β + 1−β
2

(
1 + cos

(
t−1
n−1π

))
Θ(log n) Θ(log n)

Polynomial schedule. χk = β + (1− β)
(n

k )
γ−1

nγ−1 , γ > 0, and so

∆k = |χk − χk+1| =
1− β

nγ − 1

[(n
k

)γ
−
(

n

k + 1

)γ]
=

(1− β)nγ

(nγ − 1)kγ

[
1−

(
k

k + 1

)γ]
= O

(
k−(γ+1)

)
.

This also implies ∆k = O
(

1
k log k

)
, completing the last case.

E.1 ERROR FOR SPECIFIC LEARNING RATES

In this section we give tight error bounds for the prefix-sum factorization for each of the learning
rate schedules discussed in this paper (see Table 1 for the list). In Table 5 we give the corresponding
error bounds, all of which are proved later in the section.

E.1.1 EXPONENTIAL LEARNING RATE DECAY

Lemma 10. Let β ∈ (0, 1/e) and α = β1/(n−1). Then

max
1≤m≤n

αm logm = Θ

(
log

n

log(1/β)

)
. (59)

Proof. For the lower bound, take m0 = ⌈1/ log(1/α)⌉. Since log(1/α) = 1
n−1 log(1/β), we have

m0 ≤ (n − 1)/ log(1/β) < n, so m0 is admissible. Moreover, αm0 ≥ e−1α and logm0 ≥
log 1

log(1/α) , giving

max
1≤m≤n

αm logm ≥ Ω
(
log 1

log(1/α)

)
.

For the upper bound, write f(m) = αm logm with real m > 1. Then d
dm log f(m) = logα +

1/(m logm), so the maximizer satisfies m logm = 1/ log(1/α). At this point, logm ∼ log 1
log(1/α)

and αm = e−1/ logm = Θ(1), hence f(m) = O(log 1
log(1/α) ).

Thus
max

1≤m≤n
αm logm = Θ

(
log 1

log(1/α)

)
.

Finally, since log 1
log(1/α) = log n−1

log(1/β) = Θ(log n
log(1/β) ), the claim follows.

Lemma 11. Let β ∈ (0, 1/e) and α = β1/(n−1). Then

1

n

n∑
m=1

αm logm = Θ

(
log n

log(1/β)

)
. (60)
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Proof. Splitting logm = log n+ log(m/n) gives

1

n

n∑
m=1

αm logm =
log n

n

n∑
m=1

αm +
1

n

n∑
m=1

αm log(m/n).

The first sum is geometric:
∑n

m=1 α
m = α(1 − αn)/(1 − α). Since α = 1 − log(1/β)

n−1 + o(1/n),

we have 1− α ∼ log(1/β)
n−1 and αn → β. Thus 1

n

∑n
m=1 α

m ∼ (1− β)/ log(1/β), so the first term
is ∼ 1−β

log(1/β) log n = Θ( logn
log(1/β) ).

The second sum is a Riemann sum, converging to I(β) =
∫ 1

0
βx log x dx. Since I is monotone

decreasing with I(0) = 0, I(1) = −1, we have I(β) = Θ(1). Hence the first term dominates, and
the result follows.

Corollary 6. For exponential learning rate decay χk = β
k−1
n−1 with β ∈ (0, 1/e), the prefix-sum–

based factorization Aχ = Aχ(A1)
−1/2 ×A

1/2
1 gives the following values for MaxSE and MeanSE:

MaxSE(Bχ, A
1/2
1 ) = Θ

(√
log n

√
log

n

log(1/β)

)
, (61)

MeanSE(Bχ, A
1/2
1 ) = Θ

(
log n√
log(1/β)

)
. (62)

Proof. Invoking Lemma 1 we have that

MaxSE
(
Bχ, A

1/2
1

)
= Θ

(√
log n ·

√
max
1≤t≤n

β2 t−1
n−1 log t

)
= Θ

(√
log n

√
n

log(1/β)

)

MeanSE
(
Bχ, A

1/2
1

)
, = Θ

√log n ·

√√√√ 1

n

n∑
t=1

β
2(t−1)
n−1 log t

 = Θ

(√
log n

log(1/β)

)
,

where the last step of each equation invokes Lemma 10 and 11 respectively for β′ = β2 ∈ (0, 1/e).

E.1.2 POLYNOMIAL LEARNING RATE DECAY

Lemma 12. Let 1 ≤ m ≤ n be integers, β ∈ (0, 1/e), γ ≥ 1 and n sufficiently large. Let

χk = β + (1− β)
(n

k )
γ−1

nγ−1 . Then

max
1≤m≤n

χ2
m logm = Θ

(
β2 log n+

(1− β)2

γ

)
.

Proof. Before we start, we will find the following inequality useful:

χm = β + (1− β)m−γ +
(1− β)(m−γ − 1)

nγ − 1
≥
(
1− 1− β

β(nγ − 1)

)(
β + (1− β)m−γ

)
In particular for large enough n, and 1 ≤ m ≤ n, we have that

χm ≥
1

2

(
β + (1− β)m−γ

)
,

and for all n, and 1 ≤ m ≤ n, also that

χm ≤ β + (1− β)m−γ ,

implying that it suffices for us to argue about

χm = Θ(β + (1− β)m−γ) (63)
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when convenient. We now begin with the upper bound. Using (a+ b)2 ≤ 2a2+2b2 in the first step:

max
1≤m≤n

χ2
m logm ≤ max

1≤m≤n
2(β2 + (1− β)2m−2γ) logm

≤ 2β2 log n+ 2(1− β)2 max
1≤m≤n

m−2γ logm

Defining f(z) = z−2γ log z, we have that f ′(z) = z−2γ−1(1− 2γ log z). Solving f(z) = 0 yields
the maximizer z = e

1
2γ , and so

max
m

χ2
m logm ≤ 2

(
β2 log n+

(1− β)2

2eγ

)
= O

(
β2 log n+

(1− β)2

γ

)
.

For the lower bound, we note that setting m0 = n yields χ2
m0

logm0 = β2 log n.

Instead choosing m0 =
⌈
e

1
2γ

⌉
yields

χ2
m0

logm0 ≥
1

4
(β + (1− β)e−

1
2 )2 log(e

1
2γ − 1) ≥ (1− β)2

4e
log(e

1
2γ − 1) = Ω

(
(1− β)2

γ

)
Combining the two lower bounds, we get

max
m

χ2
m logm = Ω

(
max

{
β2 log n,

(1− β)2

γ

})
= Ω

(
β2 log n+

(1− β)2

γ

)
,

finishing the proof.

Lemma 13. Let 1 ≤ m ≤ n be integers, β ∈ (0, 1/e), γ ≥ 1 and n sufficiently large. Let

χk = β + (1− β)
(n

k )
γ−1

nγ−1 . Then

1

n

n∑
m=1

χ2
m logm = Θ

(
β2 log n

)
.

Proof. We will again use that
1

2
(β + (1− β)2m−γ) ≤ χm ≤ β + (1− β)2m−γ

as shown in the proof of Lemma 12. First the upper bound. We write

1

n

n∑
m=1

χ2
m logm ≤ 1

n

n∑
m=1

2(β2 + (1− β)2m−2γ) logm ≤ 2 log n

n

n∑
m=2

β2 + (1− β)2m−2γ

≤ 2β2 log n+
2(1− β)2 log n

n

∫ n

t=1

t−2γ dt

= 2β2 log n+
2(1− β)2 log n

n
· n

2γ−1 − 1

2γ − 1
= O(β2 log n) ,

where the second term in the second-to-last expression can be identified as o(log n) for any value of
γ > 0. For the lower bound,

1

n

n∑
m=1

χ2
m logm ≥ 1

n

n∑
m=1

1

4

(
β + (1− β)m−γ

)2
logm ≥ 1

4n

n∑
m=1

β2 logm

≥ β2

4n

n∑
m=⌈m/2⌉

logm ≥ β2(n/2− 1) log(n/2)

4n
= Ω(β2 log n).

Corollary 7. For polynomial learning rate decay χk = β+(1−β) (
n
k )−1

nγ−1 with constant β ∈ (0, 1/e)

and γ ≥ 1, the prefix-sum-based factorization Aχ = Aχ(A
−1/2
1 )×A

1/2
1 gives the following values

for MaxSE and MeanSE:

MaxSE(Bχ, A
−1/2
1 ) = Θ

(√
log n

(
β2 log n+

(1− β)2

γ

))
,

MeanSE(Bχ, A
−1/2
1 ) = Θ (β log n) .
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Proof. Result is immediate from invoking Lemma 1, together with Lemma 12 and 13 for the MaxSE
and MeanSE errors respectively.

E.1.3 LINEAR LEARNING RATE DECAY

Lemma 14. Let χk = 1− (1− β) k−1
n−1 , β ∈ (0, 1/e) and n ≥ 2. Then

max
1≤m≤n

χ2
m logm = Θ(log n) .

Proof. For the upper bound, using χk ≤ 1, we directly get

max
1≤m≤n

χ2
m logm ≤ log n .

For the lower bound, pick m0 = ⌊(n+ 1)/2⌋ where χm0 ≥ (1 + β)/2:

max
1≤m≤n

χ2
m logm ≥ χ2

m0
logm0 =

(1 + β)2

4
log

⌊
n+ 1

2

⌋
= Ω(log n) ,

finishing the proof.

Lemma 15. Let χk = 1− (1− β) k−1
n−1 , β ∈ (0, 1/e) and n ≥ 2. Then

1

n

n∑
m=1

χ2
m logm = Θ(log n) .

Proof. For the upper bound, again using χk ≤ 1, and logm ≤ log n we directly get

1

n

n∑
m=1

χ2
m logm ≤ 1

n
· n log n = log n .

For the lower bound, we truncate the sum at m0 = ⌊(n + 1)/2⌋ and use the bound χk ≥ 1+β
2 for

all k ≤ m0:

1

n

n∑
m=1

χ2
m logm ≥ 1

n

m0∑
m=1

χ2
m logm ≥ (1 + β)2

4n

m0∑
m=1

logm ≥ Ω (log n) ,

where the last step can be seen by truncating the sum, taking the upper half of the indices, and lower
bounding each of the Ω(n) logarithms by log⌈m0/2⌉ = Ω(log n). This finishes the proof.

Corollary 8. For linear learning rate decay χk = 1 − (1 − β) k−1
n−1 with β ∈ (0, 1/e), the prefix-

sum–based factorization Aχ = Aχ(A1)
−1/2 × A

1/2
1 gives the following values for MaxSE and

MeanSE:

MaxSE(Bχ, A
1/2
1 ) = Θ (log n) , MeanSE(Bχ, A

1/2
1 ) = Θ (log n) . (64)

Proof. Result is immediate from invoking Lemma 1, together with Lemma 14 and 15 for the MaxSE
and MeanSE errors respectively.

E.1.4 COSINE LEARNING RATE DECAY.

Lemma 16. Let 1 ≤ m ≤ n be integers, β ∈ (0, 1/e), and n sufficiently large. Let χk = β +
1−β
2 (1 + cos( k−1

n−1π)). Then

max
1≤m≤n

χ2
m logm = Θ(log n) .

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Proof. First the upper bound. We use that χk ≤ 1:

max
1≤m≤n

χ2
m logm ≤ max

1≤m≤n
logm = log n .

For the lower bound, we set m0 = ⌊(n+ 1)/2⌋.

max
1≤m≤n

χ2
m logm ≥

(
β +

1− β

2

(
1 + cos

(
⌊(n+ 1)/2⌋ − 1

n− 1
π

)))2

log

⌊
n+ 1

2

⌋
≥
(
β +

1− β

2

(
1 + cos

(π
2

)))2

log

(
n− 1

2

)
=

(1 + β)2

4
log

(
n− 1

2

)
= Ω(log n) .

Lemma 17. Let 1 ≤ m ≤ n be integers, β ∈ (0, 1/e), and n sufficiently large. Let χk = β +
1−β
2

(
1 + cos

(
k−1
n−1π

))
. Then

1

n

n∑
m=1

χ2
m logm = Θ(log n) .

Proof. For the upper bound, we again use that χk ≤ 1.

1

n

n∑
m=1

χ2
m logm ≤ 1

n
· n log n = log n

We prove the lower bound by truncating the sum.

1

n

n∑
m=1

χ2
m logm ≥ 1

n

⌊(n+1)/2⌋∑
m=⌈n/4⌉

(
β +

(1− β)

2

(
1 + cos

(
m− 1

n− 1
π

)))2

logm

≥ 1

n

⌊(n+1)/2⌋∑
m=⌈n/4⌉

(
β +

(1− β)

2

(
1 + cos

(
⌊(n+ 1)/2⌋ − 1

n− 1
π

)))2

log
⌈n
4

⌉

≥ 1

n

⌊(n+1)/2⌋∑
m=⌈n/4⌉

(
1 + β

2

)2

log
(n
4

)
=

(1 + β)2

4n

(⌊
n+ 1

2

⌋
−
⌈n
4

⌉
+ 1

)
log
(n
4

)
= Ω(log n).

Corollary 9. For cosine learning rate decay χk = β + 1−β
2

(
1 + cos

(
k−1
n−1π

))
with β ∈ (0, 1/e),

the prefix-sum-based factorization Aχ = Aχ(A1)
−1/2×A

1/2
1 gives the following values for MaxSE

and MeanSE:

MaxSE(Bχ, A
−1/2
1 ) = Θ(log n) , MeanSE(Bχ, A

−1/2
1 ) = Θ(log n) .

Proof. Result is immediate from invoking Lemma 1, together with Lemma 16 and 17 for the MaxSE
and MeanSE errors respectively.

F SINGLE-PARTICIPATION: LOWER BOUNDS

Theorem 2. Let Aχ = A1Dχ, where Dχ = diag(χ1, . . . , χn) with positive χt > 0. Then

inf
B×C=Aχ

MaxSE(B,C) ≥ max
1≤t≤n

1

π
(min
j≤t

χj) log t (12)

inf
B×C=Aχ

MeanSE(B,C) ≥ max
1≤t≤n

1

π

√
t

n
(min
j≤t

χj) log t. (13)
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Proof. We prove each bound separately in Lemmas 18 and 19.

Lemma 18. Let Aχ = A1Dχ, where Dχ = diag(χ1, . . . , χn) with positive χ1, χ2, . . . , χn. Then

γ2(Aχ) := inf
B×C=Aχ

MaxSE(B,C) ≥ max
1≤k≤n

1

π
(min
j≤k

χj) log k.

Proof. The optimal factorization error can be written as

γ2(A) = max
{
∥P 1/2AQ1/2∥∗ : P,Q diag., nonneg., TrP = TrQ = 1

}
,

where ∥ · ∥∗ denotes the nuclear norm of a matrix. It was observed in Matoušek et al. (2020) that
this norm is monotonic with respect to taking submatrices: if A = B × C, then removing rows
from B cannot increase the maximum row norm, and removing columns from C cannot increase
the maximum column norm. Thus, we can lower bound γ2(A) by the k × k principal submatrix
consisting of the first k rows and columns:

γ2(Aχ) ≥ γ2((Aχ):k,:k).

For the lower bound, let us assume P = 1
k Ik and Q = 1

Tr(D−2
:k,:k)

D−2
:k,:k, which gives

γ2((Aχ):k,:k) ≥
∥(A1):k,:k∥∗
√
k

√
k∑

j=1

χ−2
j

.

Using the bound ∥(A1):k,:k∥∗ ≥ k
π log k and the fact that

∑k
j=1 χ

−2
j ≤ k(min

j≤k
χj)

−2, we conclude

γ2(Aχ) ≥
1

π
(min
j≤k

χj) log k.

Maximizing over k yields the lemma.

Lemma 19. Let Aχ = A1Dχ, where Dχ = diag(χ1, . . . , χn) with positive χ1, χ2, . . . , χn. Then

γF (Aχ) = inf
Aχ=BC

MeanSE(B,C) ≥ max
1≤k≤n

1

π

√
k

n
(min
j≤k

χj) log k.

Proof. By definition,

γF (A) = inf
A=BC

1√
n
∥B∥F ∥C∥1→2,

where ∥C∥1→2 = maxj ∥C:,j∥2 is the maximum column norm.

Fix k ≤ n. For any factorization A = BC, the principal k × k submatrix satisfies

A:k,:k = B:k,: C:k.

Since removing rows can only decrease the Frobenius norm, ∥B:k,:∥F ≤ ∥B∥F , and removing
columns can only decrease the ∥ · ∥1→2 norm, ∥C:k∥1→2 ≤ ∥C∥1→2. Therefore

1√
n
∥B∥F ∥C∥1→2 ≥

1√
n
∥B:k,:∥F ∥C:k∥1→2 =

√
k

n

( 1√
k
∥B:k,:∥F ∥C:k∥1→2

)
.

Taking the infimum over all factorizations gives

γF (A) ≥
√

k

n
γF (A:k,:k). (65)

For the submatrix, we use the bound from Henzinger et al. (2023):

γF ((Aχ):k,:k) ≥
∥(Aχ):k,:k∥∗

k
, (66)
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where ∥ · ∥∗ denotes the nuclear norm. Recall that the nuclear norm is dual to the spectral norm:

∥M∥∗ = sup
∥Y ∥2≤1

tr(MY ⊤),

where the supremum is over all matrices Y with operator norm at most 1. Write (Aχ):k,:k =
(A1):k,:kDk with Dk = diag(χ1, . . . , χk). If W is a dual certificate for (A1):k,:k, so that ∥W∥2 ≤ 1
and ∥(A1):k,:k∥∗ = tr((A1):k,:kW

⊤), then consider

Y =
WD−1

k

∥D−1
k ∥2

.

Since ∥W∥2 ≤ 1, we have ∥Y ∥2 ≤ 1. Thus

∥(Aχ):k,:k∥∗ ≥ tr((A1):k,:kDkY
⊤) =

1

∥D−1
k ∥2

tr((A1):k,:kW
⊤) =

1

∥D−1
k ∥2

∥(A1):k,:k∥∗.

The largest diagonal entry of D−1
k is (min

j≤k
χj)

−1, so

∥(Aχ):k,:k∥∗ ≥ (min
j≤k

χj) ∥(A1):k,:k∥∗. (67)

Finally, using the standard estimate ∥(A1):k,:k∥∗ ≥ k
π log k, combining (65), (66), and (67) gives

γF (Aχ) ≥
√

k

n
· 1
k
· k
π
(min
j≤k

χj) log k =
1

π

√
k

n
(min
j≤k

χj) log k.

Maximizing over k proves the lemma.

Corollary 2. Suppose χk = β
k−1
n−1 with β ∈ (0, 1/e). Then

inf
B×C=Aχ

MaxSE(B,C) = Ω

(
log

n

log(1/β)

)
(16)

inf
B×C=Aχ

MeanSE(B,C) = Ω

(
1√

log(1/β)
log

n

log(1/β)

)
. (17)

Proof. By Theorem 2, for any t,

inf
Aχ=BC

MaxSE(B,C) ≥ χt

π
log t, inf

Aχ=BC
MeanSE(B,C) ≥ χt

π

√
t

n
log t.

Choose

t⋆ =

⌈
n

log(1/β)

⌉
,

which satisfies 1 ≤ t⋆ ≤ n since β ∈ (0, 1/e). Then

χt⋆ = β
t⋆−1
n−1 = exp

(
− log(1/β)

n− 1
(t⋆ − 1)

)
= Θ(1).

Hence

inf
Aχ=BC

MaxSE(B,C) ≥ χt⋆

π
log t⋆ = Ω

(
log

n

log(1/β)

)
,

and, using t⋆/n = Θ
(
1/ log(1/β)

)
,

inf
Aχ=BC

MeanSE(B,C) ≥ χt⋆

π

√
t⋆

n
log t⋆ = Ω

(
1√

log(1/β)
log

n

log(1/β)

)
.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

G MULTI-PARTICIPATION: PREFIX-SUM FACTORIZATION

Lemma 20. Let (χt)
n
t=1 be a positive sequence taken from [β,∞) where β > 0 is a constant, and

Q =

n−1∑
l=1

(
n−l−1∑
t=0

|χl+t − χl+t+1|rt

)2

= o(log n) .

Then

∥Bp
χ∥2→∞ = Θ

√√√√ max
1≤m≤n

χ2
m log (min{m, p}) + 1

p

m−1∑
t=p

χ2
t

 ,

1√
n
∥Bp

χ∥F = Θ

√√√√ 1

n

n∑
m=1

[
χ2
m log (min{m, p}) + 1

p

m−1∑
t=p

χ2
t

] .

Proof. The entries of Bp
χ can be expressed as follows:

(Bp
χ)m,l = χl +

min{m−l,p−1}∑
t=1

r̃tχt+l = χl +

m−l∑
t=1

r̃tχt+l1t≤p−1 , (68)

where again r̃t =
−rt
2t−1 . Following the proof of Lemma 7 and applying summation of parts:

(Bp
χ)m,l = χm

m−l∑
t=0

r̃t1t≤p−1 −
m−l−1∑
t=0

(χl+t+1 − χl+t)

t∑
j=0

r̃j1j≤p−1

= χmrmin{m−l,p−1} +

m−l−1∑
t=0

(χl+t − χl+t+1)rmin{t,p−1}.

For notational convenience, let δt = χt − χt+1 and ∆t = |δt|. We have two distinct cases for these
sums: m− l ≤ p− 1 and m− l > p− 1. Starting with the first case, we get

(
Bp

χ

)
m,l

= χmrm−l +

m−l−1∑
t=0

δl+trt .

as in the case without bandedness (p = n). For the second case, where m− l > p− 1, we get

(
Bp

χ

)
m,l

= χmrp−1 +

p−2∑
t=0

δl+trt +

m−l−1∑
t=p−1

δl+trp−1︸ ︷︷ ︸
=(χl+p−1−χm)rp−1

= χl+p−1rp−1 +

p−2∑
t=0

δl+trt .

Combining the two expressions, we can express the squared row sums:

m∑
l=1

(
Bp

χ

)2
m,l

=

max{m−p,0}∑
l=1

(
Bp

χ

)2
m,l

+

m∑
l=max{m−p,0}+1

(
Bp

χ

)2
m,l

=

max{m−p,0}∑
l=1

(
χl+p−1rp−1 +

p−2∑
t=0

δl+trt

)2

︸ ︷︷ ︸
S1

+

m∑
l=max{m−p,0}+1

(
χmrm−l +

m−l−1∑
t=0

δl+trt

)2

︸ ︷︷ ︸
S2

.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

We will argue that we can characterize S1 + S2 tightly. Beginning with upper bounds, using (a +
b)2 ≤ 2a2 + 2b2, and letting q = max{m− p, 0}:

S1 ≤
q∑

l=1

(
χl+p−1rp−1 +

p−2∑
t=0

∆l+trt

)2

≤ 2 r2p−1

q∑
l=1

χ2
l+p−1︸ ︷︷ ︸

P1

+2

q∑
l=1

(
p−2∑
t=0

∆l+trt

)2

︸ ︷︷ ︸
Q1

,

S2 ≤
m∑

l=q+1

(
χmrm−l +

m−l−1∑
t=0

∆l+trt

)2

≤ 2χ2
m

m∑
l=q+1

r2m−l︸ ︷︷ ︸
P2

+2

m−1∑
l=q+1

(
m−l−1∑
t=0

∆l+trt

)2

︸ ︷︷ ︸
Q2

.

Repeating the exercise to get a lower bound on S1 + S2 via (a+ b)2 ≥ 1
2a

2 − b2:

S1 =

q∑
l=1

(
χl+p−1rp−1 +

p−2∑
t=0

δl+trt

)2

≥ 1

2
P1 −

q∑
l=1

(
p−2∑
t=0

δl+trt

)2

≥ 1

2
P1 −Q1 ,

S2 =

m∑
l=q+1

(
χmrm−l +

m−l−1∑
t=0

δl+trt

)2

≥ 1

2
P2 −

m−1∑
l=q+1

(
m−l−1∑
t=0

δl+trt

)2

≥ 1

2
P2 −Q2 ,

where the last step in each derivation uses that the expression is made smaller when we replace δl+t

by ∆l+t. It follows that
m∑
l=1

(
Bp

χ

)2
m,l

= S1 + S2 = Θ(P1 + P2)±O(Q1 +Q2) .

We have that

P1 = r2p−1

max{m−p,0}∑
l=1

χ2
l+p−1 = r2p−1

m−1∑
l=p

χ2
t = Θ

(
1

p

m−1∑
t=p

χ2
t

)
,

P2 = χ2
m

m∑
l=q+1

r2m−l = χ2
m

min{m,p}−1∑
t=0

r2t = Θ
(
χ2
m logmin{m, p}

)
,

from using the bound rt = Θ(1/
√
t), and

Q1 +Q2 ≤
m−1∑
l=1

(
m−l−1∑
t=0

∆l+trt

)2

≤ Q ,

from increasing the upper limit of the inner sum of Q1 to m− l − 1, then setting m = n. And so,

m∑
l=1

(
Bp

χ

)2
m,l

= Θ

(
χ2
m log (min{m, p}) + 1

p

m−1∑
t=p

χ2
t

)
±O(Q) .

Computing the norms:

1

n
∥Bp

χ∥2F =
1

n

n∑
m=1

m∑
l=1

(
Bp

χ

)2
m,l

= Θ

(
1

n

n∑
m=1

[
logmin({m, p}) + max{m− p, 0}

p

])
±O(Q)

∥Bp
χ∥22→∞ = max

1≤m≤n

m∑
l=1

(
Bp

χ

)2
m,l

= max
1≤m≤n

Θ

(
logmin({m, p}) + max{m− p, 0}

p

)
±O(Q)

For each of the two norms, the first term has smallest asymptotic growth for p ∼ n, yielding
Θ(log n), and so is Ω(log n) for all choices of p, thus dominating ±O(Q). Taking a square-root
finishes the proof.
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Theorem 3. Under the same assumptions on learning rate scheduling χt as in Theorem 1, the
following holds.

E(Bp
χ, C

p
1 ) = O

√√√√k

n

(
log p+

p

b

) n∑
m=1

[
χ2
m log (min{m, p}) + 1

p

m−1∑
t=p

χ2
t

] . (23)

Proof. As shown in the proof of Theorem 1, the condition on χt is sufficient to enforce Q =
o(log n), and so

1√
n
∥Bp

χ∥F = Θ

√√√√ 1

n

n∑
m=1

[
χ2
m log (min{m, p}) + 1

p

m−1∑
t=p

χ2
t

]
from invoking Lemma 20. For the sensitivity sens(Cp

1 ), we use the following bound from (Kalinin
et al., 2025, Theorem 2 proof)

sens(Cp
1 ) = O

(√
k log p+

kp

b

)
.

Inserting the two bounds into E(Bp
χ, C

p
1 ) =

1√
n
∥Bp

χ∥F · sens(Cp
1 ) gives the statement.

Corollary 3. Let χt = β
t−1
n−1 with β ∈ (0, 1/e). Then, in multi-participation with b-min-separation

and at most k = ⌈nb ⌉ participations, we have for p∗ ∼ b log b the following optimized upper bound:

E(Bp
χ, C

p
1 ) = O

(√
k logn+k√
log(1/β)

)
. (24)

Proof. As χt satisfies the condition of Theorem 3, we have that

E(Bp
χ, C

p
1 ) = O

√√√√k

n

(
log p+

p

b

) n∑
m=1

[
α2(m−1) log (min{m, p}) + 1

p

m−1∑
t=p

α2(t−1)

] ,

where α = β
1

n−1 . We will evaluate each of the two terms in the outer sum. First off,
n∑

m=1

α2(m−1) log (min{m, p}) ≤ log p

n∑
m=1

α2(m−1) = Θ

(
n log p

log(1/β)

)
,

where the last step follows from the proof of Lemma 11. Proceeding with the second term:

1

p

n∑
m=1

m−1∑
t=p

α2(t−1) =
1

p

n−1∑
t=p

(n− t)α2(t−1) ≤ n− p

p

n−1∑
t=p

α2(t−1) = O
(

n2

p log(1/β)

)
,

where the last step again uses the proof of Lemma 11. It follows that

E(Bp
χ, C

p
1 ) = O

(√
k

log(1/β)

(
log p+

p

b

)(
log p+

n

p

))
.

As this exactly matches the error given in (Kalinin et al., 2025, Theorem 2), up to the 1/
√
log(1/β)

factor, the upper bound is minimized for the choice of p∗ ∼ b log b achieving error

E(Bp
χ, C

p
1 ) = O

(√
k log n+ k√
log(1/β)

)
,

completing the proof.
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H MULTI-PARTICIPATION: LOWER BOUNDS

Theorem 4 (Lower bound for multi-participation). Let Aχ = A1Dχ, where Dχ =
diag(χ1, . . . , χn) with positive χt > 0. Assume any factorization Aχ = B × C. Then, in multi-
participation with b-min-separation and at most k = ⌈nb ⌉ participations, we have

E(B,C) ≥ max

max
t≤n

√
k t χt

π
√
2n

(min
j≤t

χj) log(t),

k−1∑
j=0

χ1+jb

(
1− j

k − 1

) . (25)

Proof. We start with the first bound, by definition,

E(B,C) =
1√
n
∥B∥F · sensk,b(C). (69)

If we restrict to the principal submatrices B:t,: and C:,:t, then removing the rows can only decrease
the Frobenius norm, and removing the last n − t columns can only decrease the sensitivity, since
any participation pattern for the matrix C:,:t would be a valid pattern for the full matrix. Hence

E(B,C) ≥ 1√
n
∥B:t,:∥F · sensk,b(C:,:t). (70)

Following the proof of Lemma 9 in (Kalinin et al., 2025), we have

sensk,b(C:,:t) ≥
1√
2b
∥C:,:t∥F . (71)

Therefore,

E(B,C) ≥ 1√
2nb
∥B:t,:∥F · ∥C:,:t∥F . (72)

Applying the Schatten inequality for Frobenius and nuclear norms,
∥B:t,:∥F · ∥C:,:t∥F ≥ ∥(Aχ):t,:t∥∗, (73)

which gives

E(B,C) ≥ 1√
2nb
∥(Aχ):t,:t∥∗. (74)

Finally, by Lemma 19,

∥(Aχ):t,:t∥∗ ≥
1

π
(min
j≤t

χj)t log t, (75)

which implies

E(B,C) ≥ max
t≤n

√
k t

π
√
2n

(min
j≤t

χj) log t. (76)

For the second bound, we use the proof of Theorem 1 from Kalinin et al. (2025), which shows that

E(B,C) ≥ 1√
n
∥BCπ1∥2 =

1√
n
∥Aχπ1∥2, (77)

where π1 is a vector with ones in positions 1 + jb for j ∈ [0, k − 1], and zeros elsewhere. We can
lower bound the norm explicitly:

1√
n
∥Aχπ1∥2 =

√√√√ 1

n

k−1∑
i=0

k−1∑
j=0

χ1+jbχ1+ib(n− jb)

=

√√√√k−1∑
i=0

k−1∑
j=0

χ1+jbχ1+ib

(
1− j

n/b

)

≥
k−1∑
j=0

χ1+jb

(
1− j

n/b

)
≥

k−1∑
j=0

χ1+jb

(
1− j

k − 1

)
,
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which concludes the proof.

Corollary 4. Let χk = β
k−1
n−1 with β ∈ (0, 1/e). Then Theorem 4 yields

E(B,C) = Ω

( √
k

log(1/β)
log

n

log(1/β)
+

k

log(1/β)

)
. (26)

Proof. We substitute χk = β
k−1
n−1 in the general lower bound:

E(B,C) ≥ max

max
t≤n

√
k t χt log(t)

π
√
2n

,

k−1∑
j=0

χ1+jb

(
1− j

k − 1

) . (78)

For the first term, we substitute t = ⌈ n
log(1/β)⌉, which gives χt = Θ(1), resulting in

E(B,C) = Ω

( √
k

log(1/β)
log

n

log(1/β)

)
. (79)

The second term, we compute explicitly:

k−1∑
j=0

χ1+jb

(
1− j

k − 1

)
= α

αbn + (1− αb)n− 1

(1− αb)2(n− 1)
, (80)

where α = β1/(n−1). Asymptotically this is equal to 1
1−αb , giving the lower bound

E(B,C) = Ω

(
n

b log(1/β)

)
= Ω

(
k

log(1/β)

)
. (81)

Combining those lower bounds as an average, we conclude the proof.
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