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Abstract

Simulation-Based Inference (SBI) is a promising
Bayesian inference framework that alleviates the
need for analytic likelihoods to estimate poste-
rior distributions. Recent advances using neural
density estimators in SBI algorithms have demon-
strated the ability to achieve high-fidelity posteri-
ors, at the expense of a large number of simula-
tions ; which makes their application potentially
very time-consuming when using complex physi-
cal simulations. In this work we focus on boost-
ing the sample-efficiency of posterior density esti-
mation using the gradients of the simulator. We
present a new method to perform Neural Posterior
Estimation (NPE) with a differentiable simulator.
We demonstrate how gradient information helps
constrain the shape of the posterior and improves
sample-efficiency.

1. Introduction
Various scientific fields use complex computer simulations
to describe real physical processes as accurately as possible.
These simulators map the parameter space θ to a simula-
tion x through an implicit likelihood p(x|θ) that makes the
inverse process of constraining the parameter space from
data intractable in practice. Simulation-Based Inference
(SBI), also known as Likelihood-free inference, provides a
framework to alleviate that problem in different ways.

One can approximate the likelihood distribution p(x|θ)
(Wood, 2010; Papamakarios et al., 2018; Lueckmann et al.,
2018), or the likelihood ratio r(x, θ′, θt) = p(x|θ′)

p(x|θt) from
the simulations (Cranmer et al., 2015; Izbicki et al., 2014;
Thomas et al., 2016; Durkan et al., 2020), and use a sam-
pling method to estimate the posterior. Others choose an
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amortized method by directly approximating the posterior
distribution p(θ|x) (Blum & François, 2009; Papamakar-
ios & Murray, 2018; Lueckmann et al., 2017; Greenberg
et al., 2019). But such methods treat the simulator as a
black-box implicit distribution by considering only forward
simulations and discarding all information on the internal
process.

Brehmer et al. (2020) proposed to work with augmented
data such as the gradients of the simulator and introduced
a way to approximate the likelihood distribution and the
likelihood ratio which leverages this augmented data and
thus improves sample efficiency and inference quality.

In this work, we extend the work of Brehmer et al. (2020)
and propose the first Neural Posterior Estimation method
augmented with gradients of the simulator. Implementing
this approach necessitates the use of a particular kind of Nor-
malizing Flows, called Smooth Normalizing Flows (Köhler
et al., 2021), which have the property of having well defined,
smooth, and expressive gradients. We apply our approach
on a standard SBI benchmark problem (Lotka-Volterra) and
recover acceleration factors when using simulation gradi-
ents consistent with the results obtained with the NLE and
NRE methods of Brehmer et al. (2020).

2. Simulation-Based Inference with
Differentiable Simulators

Bayesian inference aims to infer the parameters θ0 that have
generated a given observation x0. From Bayes theorem we
have

p(θ|x0) =
p(x0|θ)p(θ)

p(x0)
∝ p(x0|θ)p(θ) , (1)

and since x0 is the result of a large number of transforma-
tions involving a large number of latent variables z, the
marginal likelihood

p(x0|θ) =
∫

p(x0|θ, z)p(z)dz , (2)

is intractable.

SBI is particularly useful in this case since it provides a
framework to approximate the posterior without using an
analytic likelihood. To approximate p(θ|x0) SBI algorithms
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require the observation x0, a prior p(θ) for the model pa-
rameters θ and a simulator x ∼ p(x|θ) to sample from the
intractable likelihood.

In this work we are interested in doing NPE which aims to
directly learn the following distribution

p(θ|x) ∝
∫

p(x|θ, z)p(z|θ)p(θ)dz , (3)

using a NDE such as a Normalizing Flow (hereafter NF).
One can train the NDE to learn the approximated distribu-
tion pφ(θ|x) from samples (x, θ) of the joint distribution by
minimizing

LNLL = Ep(θ,x) [− log pφ(θ|x)] , (4)

and then evaluate it on the given observation x0 to get the
approximated posterior pφ(θ|x = x0) ≈ p(θ|x0).

As recognized in Brehmer et al. (2020), when the simula-
tors are differentiable one can extract for each simulation
the gradients w.r.t. simulation parameters, which provides
significantly more information than the samples from the
simulator, and can be used to help constrain the posterior
density estimates obtained by SBI. Therefore, in our case,
we extract for each simulation (xi, θi) the gradient of the
joint log-probability of the simulator with respect to input
parameters. In the following, we will note this gradient as

∇θ log p(θ|x, z) = ∇θ log p(x|θ, z)
+∇θ log p(z|θ)
+∇θ log p(θ),

(5)

where z are latent stochastic variables of the simulator. In a
slight abuse of language, we will refer to ∇θ log p(θ|x, z) as
the joint score, but it should be noted that the conventional
definition of the score function in statistics (also adopted in
Brehmer et al. (2020)) is the gradient of the log likelihood
∇θ log p(x|θ, z).

We can then define a direct score matching loss

LSM = Ep(x,z,θ)
[
∥ ∇θ log p(θ|x, z)−∇θ log pφ(θ|x) ∥22

]
.

(6)
Inspired by Brehmer et al. (2020), this quantity is minimized
by

Ep(z|x,θ) [∇θ log p(θ|x, z)]
= Ep(z|x,θ)

[
∇θ log

p(θ,z|x)p(x)
p(z,x)

]
= Ep(z|x,θ) [∇θ log p(θ, z|x)]
= ∇θ log p(θ|x)

(7)

meaning that by minimizing LSM we approximate the in-
tractable marginal score.

Ultimately, we train our NDE using the following combined
loss:

L = LNLL + λLSM , (8)

where λ is a hyper-parameter which may be used to tune the
score contribution to the loss function. The optimal value
for λ typically depends on the problem considered.

Note that in order to train the NDE by constraining its
score ∇θ log pφ(θ|x), it needs to be sufficiently smooth
with respect to θ, motivating the development of dedicated
NF architectures described in the next section.

While in this work we focus on NPE, which allows for amor-
tized inference, as demonstrated in Brehmer et al. (2020)
similar equations can be formulated for enhancing likeli-
hood and likelihood ratio estimation with gradient informa-
tion.

3. Smooth Normalizing Flows
To learn the approximated distribution pφ(θ|x) we focus
on NFs (Rezende & Mohamed, 2015), a class of density
estimators parameterized by neural networks that provides
tractable density estimation. The key idea of NFs is to trans-
form a simple density distribution (e.g. a multivariate Nor-
mal distribution) through a series of bijective functions to
reconstruct a complex target distribution. Several strategies
exist to define these bijections, here we focus on models
relying on coupling transforms (Dinh et al., 2014; 2016)
ϕ : RD 7→ RD of the form:{

x1:d = z1:d
xd+1:D = gφz1:d(zd+1:D)

(9)

where gφz1:d is an invertible coupling function, which is tuned
based on the first d dimensions of the input vector z. Stan-
dard models like the RealNVP (Dinh et al., 2016) use affine
coupling functions gφy (z) = σφ(y) · z+µφ(y) with σφ and
µφ are neural networks, and σφ strictly positive.

To be trained on both simulations and gradients using the
combined loss (8), a NF requires expressive derivatives
∇θ log pφ(θ|x) (6). If the coupling function is not smooth
enough, i.e. does not have well defined and non-trivial
higher-order gradients, the NF cannot be trained by score
matching. We illustrate this in the case of the affine coupling
of a RealNVP on the middle panel of Figure 1, which fails
to train under a score matching loss by lack of expressivity.

To overcome this issue, Köhler et al. (2021) propose a cou-
pling function based on a C∞ diffeomorphism on ]0, 1[

fφ
y (x) =

σ(x)− σ(x0)

σ(x1)− σ(x0)
· (1− cφ(y)) + cφ(y) · x (10)

σ(x) = cφ(y) · x+
1− cφ(y)

1 + exp(−ρ(x))
(11)

ρ(x) = aφ(y) ·
(
log

(
x

1− x

)
+ bφ(y)

)
(12)

with [x0, x1] ⊂]0, 1[, and aφ, bφ, cφ learned using a smooth
Neural Network (NN).
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True distribution and score Affine NF trained with score Smooth NF trained with score

Figure 1. Two-moons experiment: learning a bi-modal distribution using score matching loss only. Left: Two-moons true distribution
(orange) and score (arrows). Middle: distribution and score approximated with a standard affine RealNVP (Dinh et al., 2016). Right:
distribution and score approximated with a smooth NF (Köhler et al., 2021). It illustrates that Affine coupling layers cannot be trained
using a score matching loss.

A single sigmoidal function like the one proposed here is
not very expressive, but the sum of C∞-diffeomorphisms
being a C∞-diffeomorphism, one can combine this trans-
formation into a mixture to model a more complex bijection
on [0, 1] (see Figure 4 in appendix). Because the inverse of
mixtures of sigmoidal functions is not analytically defined,
following Köhler et al. (2021) we compute the inverse of
this coupling function numerically by the Newton-Raphson
algorithm, and gradients through the inverse are obtained by
the implicit function theorem (Blondel et al., 2021).

Figure 1 shows that using the smooth coupling function
defined in (10) (right plot) it is possible to train the NF
by penalizing its score through the score matching loss
(6), which was not possible for an affine coupling function
(middle plot).

4. Experiments
We tested our method using the combined loss (8) on two
different tasks:

Two-moons: As a first illustration of the benefit of having
access to the score to better constrain a distribution from
a small number of samples in a non-conditional case, we
consider a classical toy model called two-moons that con-
sists a simple 2D bi-modal distribution. We are interested
in learning the two-moons distribution p(x) from samples
x ∼ p(x) in two different cases: with simulations x only,
and with simulations and score ∇xp(x).

We use 3 coupling layers in our NF. The transformation pa-
rameters a, b, c, defined in (10), are learned using a neural
network with 4 hidden layers of 128 units each and sin acti-
vation functions. We trained our NF for six different training
sample simulation budgets {20, 50, 100, 200, 500, 1000}
and for each simulation budget we ran 10 realizations to
compute the epistemic uncertainty. We evaluated the qual-
ity of the approximated distribution with the negative log-

likelihood.

102 103

Number of training samples

2

0

2

4

6

8

NL
L

Quality evaluation - Two Moons
simulations + 1e-5*score
simulations

Figure 2. Two-moons inference: evolution of the quality of the
distribution approximation with and without score information,
measured by the negative log-likelihood, as a function of the size
of the training set.

We find that in this simple case the gradients help to signifi-
cantly accelerate the convergence of the density estimation.
As shown on Figure 2, the approximated distribution ob-
tained using simulation and score converge with only 200
simulations while 500 are needed for simulations alone. A
comparison of the learned distributions as a function of the
training set size is available in appendix in Figure 6.

Lotka-Volterra: We now consider the case of conditional
density estimation with the classical Lotka-Volterra simu-
lation model, which consists of a system of two non-linear
differential equations. It describes the interaction between
two different species, the preys X and the predators Y :

dX
dt = αX − βXY ;
dY
dt = −γY + δXY,

(13)
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Figure 3. Lotka Volterra inference: quality of the posterior approximation (C2ST metric) as a function of the number of training samples
used, for three methods with (orange) and without the score (red). Experiments from the top row have used a wide proposal distribution
(16), while the one from the bottom row have used a narrow proposal distribution (17). First column: NPE. Second column: NLE. Last
column: NPE for Lotka Volterra task with fixed initial conditions (x0, Y0) = (10, 1).

with, α, β, γ and δ the inferred parameters θ ∈ R4.

The simulations are 20 statistics that correspond to the num-
ber of each population X and Y at 10 different times. Hence
our simulations correspond to x = (x1, .., x10, y1, .., y10) ∈
R20. We considered the initial conditions as our latent vari-
ables z with prior

z =

[
x0

y0

]
∼ LogNormal (log(3), 0.5) , (14)

which lead to the following simulations

x|θ =

[
x1, .., x10
y1, .., y10

]
∼ LogNormal

(
log

[
X
Y

]
, 0.1

)
.

(15)

We expect that the quality of the posterior approximation
p(θ|x) no longer depends only on capturing the shape of
the distribution, but also on successfully conditioning it on
observations. To illustrate these two factors, we design two
experiments, one with a wide proposal distribution (compare
to the posterior)


α
β
γ
δ

 ∼ LogNormal



−0.125
−3

−0.125
−3

 , 0.5

 , (16)

for which we expect errors from the conditioning to domi-

nate, and a narrow proposal distribution,
α
β
γ
δ

 ∼ LogNormal



−0.125
−3

−0.125
−3

 , 0.03

 , (17)

for which the main task is to focus on the posterior shape
rather than finding its location.

As a first step, it is standard practice in SBI to compress x
using an external neural network into a summary statistic
of same dimensionality as the number of parameters.
Moreover, this will allow us to make a fairer comparison
between Neural Likelihood Estimation (NLE) and our
NPE approach since in both cases the density estimation
problem will be of same dimensionality and thus the same
NF architecture can be used. In our case, we compressed x
using a 1D CNN rϕ trained externally. We trained the CNN
under a NLL loss into a low dimensional 4 − d summary
statistics y, and used 4 smooth transformations in our NF.
The transformation parameters a, b, c, defined in (10),
were learned using a small NN (enough due to the external
compressor mentioned above): 2 hidden layers of 128 units
and silu activation functions (Elfwing et al., 2017). To
make our NDE conditional on y, this variable is used as an
additional input to the coupling layers x. This yields the
approximated distribution pφ(θ|y = rϕ(x)).

We compared our method (NPE with score) with SCANDAL
(NLE with score from Brehmer et al., 2020). We used the
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same compressor and NF architecture and run a MCMC to
get the approximated posterior from the learned likelihood
pφ(y = rϕ(x)|θ).

For this task, we trained the NFs for eight different training
sample simulations budget {20, 50, 100, 200, 500, 103, 104,
105} and for each simulation budget we ran 20 realizations
to compute the epistemic uncertainty. We sample these sim-
ulations according to two different proposal distributions
described above. We evaluated the quality of the approxi-
mated posterior with the Classifier 2-Sample Tests (C2ST)
metric (Lueckmann et al., 2021). If the two samples come
from the same distribution the classifier’s prediction is 0.5.

The two figures on the left in the first row of Figure 3 show
that, in the case of a wide proposal distribution, adding the
gradients in the inference process do not help to constrain
the posterior. The score information does not help to con-
strain the conditioning of the density, i.e. to help constrain
the overall location of the posterior mass. However, in the
case of a narrow proposal distribution, the two figures on
the left in the second row of the Figure 3, we find that score
information significantly helps accelerating inference, for
both NPE and NLE. This can be understood as in this case
the location of the posterior mass is already well defined,
and the score information contributes to constraining the
shape of the posterior.

Finally, we highlight the impact of the stochastic score
∇θ log p(θ|x, z) by repeating the same experiment with
fixed initial conditions (X0, Y0) = (10, 1). We found that
the gradients help more without latent variables in the case
of a narrow proposal distribution (see the last figures in
the second row of Figure 3). This result is expected as the
score in the fixed latent variable case is no longer stochastic,
and can directly help to constrain the posterior distribution.
However, fixed initial conditions make the posterior nar-
rower and thus in the case of wide proposal distribution (see
the last figures in the first row of Figure 3) the gradients
help even less.

5. Discussion
To train the NF using simulations and score, we used a
smooth NF from Köhler et al. (2021). Other types of dif-
ferentiable C∞ NF, such as ODE Flows Grathwohl et al.
(2018), could be used in practice.
We demonstrated that having access to gradients from the
simulation is only beneficial for the density shape estima-
tion. This points to a high interest of having access to score
information to refine rough estimates, and thus to sequen-
tial density estimation methods. We expect these tools to
become increasingly useful in astrophysics with the advent
of automatically differentiable physical simulators like the
FlowPM cosmological simulation code (Modi et al., 2020).

References
Blondel, M., Berthet, Q., Cuturi, M., Frostig, R., Hoyer, S.,
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A. Additional plots
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Figure 4. Mixture of 5 smooth transformations used to create a smooth Normalizing Flow.
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Figure 5. Lotka Volterra posterior comparison between the reference posterior (blue), the posterior obtained using only simulations
(orange on the left) and the one obtained using both simulations and gradients (red on the right). These posteriors are approximated using
NPE method with only 50 simulations in the case of a narrow proposal distribution.

Figure 6. Two Moons distribution approximated using, from left to right, 20, 100, 200, 500, 1000 simulations. The first row correspond to
the distribution learned using simulations only and the second row learned on simulations and score.


