
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FIRST TRY MATTERS: REVISITING THE ROLE OF RE-
FLECTION IN REASONING MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have recently demonstrated significant gains in reasoning
ability, often attributed to their capacity to generate longer chains of thought and
engage in reflective reasoning. However, the contribution of reflections to perfor-
mance improvement remains unclear. In this paper, we systematically analyze the
rollouts of eight reasoning models on five mathematical datasets. We focus on
reflective behaviours where the model has already produced an answer but con-
tinues reflecting before finalizing its output. Our analysis reveals that reflections
are predominantly confirmatory and rarely alter the model’s initial answer, a pat-
tern consistent across models and datasets. To understand the role of reflections in
training, we construct supervised fine-tuning (SFT) datasets with varying amounts
of reflection steps. We observe that training models on rollouts with more reflec-
tion steps primarily enhances first-answer correctness rather than the ability to
correct initially wrong answers through reflections. This motivates us to propose
a question-aware early-stopping method that enhances inference-time token effi-
ciency by stopping the reasoning process once a few plausible candidate answers
are generated, thereby reducing unnecessary reflection steps. Motivated by this,
we further propose to dynamically truncate the reflections after a candidate answer
has appeared during generation, which reduces reasoning tokens by 24.5% across
five mathematical datasets, within a 2.9% drop in accuracy. 1

1 INTRODUCTION

Large language models (LLMs) have made remarkable progress in reasoning abilities, achieving
strong performance across domains such as mathematics, logic, and code synthesis (Cobbe et al.,
2021; Chen et al., 2021). This leap is largely attributable to the development of Chain-of-Thought
(CoT) reasoning pattern (Nye et al., 2021; Wei et al., 2022), which guides the model to break
down complex problems into a series of intermediate steps. Recent breakthroughs such as Ope-
nAI’s o1 (OpenAI et al., 2024) and DeepSeek-R1 (DeepSeek-AI et al., 2025) have brought LLMs
to the next paradigm, known as reasoning models (Ke et al., 2025; Zhang et al., 2025). Unlike
traditional CoT reasoning, which follows a single linear thought process, reasoning models trained
with Reinforcement Learning with Verifiable Rewards (RLVR) are believed to possess the ability to
internally reflect on their reasoning steps, detect potential errors, and adaptively adjust the reasoning
trajectories (Luo et al., 2025; Liu et al., 2025c; Yu et al., 2025; MiniMax et al., 2025; Li et al., 2025)

Within this paradigm, a consistent correlation is observed between the length of a model’s generated
response and its reasoning accuracy (Muennighoff et al., 2025). Models that generate more extensive
CoTs tend to exhibit higher accuracy, suggesting that longer reasoning processes are more beneficial.
One commonly observed pattern in these long reasoning rollouts is the presence of “reflections”,
where models elaborate or re-examine a solution after deriving a candidate answer. Intuitively, such
reflections are assumed to be productive, much like human problem-solving, where self-reflections
lead to correction or an “aha moment” (Chen et al., 2025b).

Despite their intuitive appeal, prior studies report mixed findings on the effects of reflective behav-
iors. Some emphasize the sophisticated internal mechanisms of reflection and their role in preventing
reasoning collapse (Yang et al., 2025c), while others argue that self-reflection patterns are often su-
perficial and do not improve outcomes (Liu et al., 2025c). Crucially, these studies provide limited

1The code and dataset of this work will be open-sourced upon acceptance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Let ABC be a triangle inscribed in circle ω. Let the tangents to ω at B and C intersect at point D, and let AD intersect ω at P. If AB = 5, BC = 9, and AC = 10,
AP can be written as the form m/n , where m and n are relatively prime integers. Find m+ n.

<think> Okay so I need to solve this geometry problem …
…

Wait, that's a nice simplification! So 𝐴𝑃 is 100/13. Therefore, 𝑚 = 100 , 𝑛 = 13 , which are coprime.

Wait, that seems straightforward. Let me check my steps again to ensure no mistakes.
…

Therefore, regardless of the method, AP is 100/13, so 𝑚 + 𝑛 = 100 + 13 = 113

But let me check once again with another approach to be thorough. Maybe using power of a point and some
properties of triangle.
…

Therefore, 𝐴𝑃 = 𝐷𝐴 − 𝐷𝑃 = 100/13 Therefore, the answer is 100 + 13 = 113. Thus, I can be confident that the
correct answer is 113.

</think> To solve the problem …

368:

369:

519:

520:

610:

1:

Model Response:

Problem statement:

Candidate Position: 368
Candidate answer: 113

Candidate Position: 519
Candidate answer: 113

Candidate Position: 610
Candidate answer: 113

Extractor Output:

Figure 1: Illustration of a long CoT and the extraction result of candidate answers.

quantitative analysis on the reflective behavior of reasoning models, leaving unresolved whether
reflections genuinely help models correct errors or merely confirm earlier conclusions.

To address this open question, we perform a systematic, large-scale quantitative study of reflection
patterns in eight reasoning models across five mathematical benchmarks of varying difficulty. To
extract these patterns, we design an LLM-based extractor that locates positions in the rollouts where
candidate answers are produced. Since a rollout often contains multiple candidate answers, we
define the portion of the rollout that follows the first candidate as reflections. This setup allows
us to disentangle forward reasoning (steps leading to the first candidate) from reflective reasoning
(subsequent steps) and to evaluate whether reflections genuinely contribute to error correction.

Our experiments quantitatively show that across various models and datasets, reflections are largely
confirmatory and rarely corrective: once a candidate answer is proposed, subsequent reasoning steps
seldom overturn it, instead mainly reiterating or justifying the initial answer. This finding challenges
a wide belief that reflections are the primary mechanism for self-correction. It also raises two fun-
damental questions:

• If reflections of reasoning models rarely change answers, why is their presence strongly
correlated with accuracy?

• If reflections mostly confirm earlier conclusions, can we safely truncate them at inference
time to reduce computation without significantly harming performance?

To address these questions, we explore the role of reflections in both training and inference. On the
training side, we conduct supervised fine-tuning (SFT) with datasets containing different amounts
of reflective reasoning. Our results show that performance gains do not arise from teaching the
model to self-correct after mistakes. Instead, reflections in training data improve performance
by increasing the likelihood that the model solves the problem correctly on the first try. We
hypothesize that rollouts with more reflections implicitly expose diverse reasoning paths toward the
same problem, which enriches the training distribution and leads to better generalization on unseen
problems. On the inference side, motivated by the observation that reflections are mostly confir-
matory, we propose a simple yet effective strategy: early stopping of reflections when additional
reasoning is unlikely to change the outcome. This method reduces token usage by 24.5% with less
than a 2.9% drop in accuracy. Moreover, it allows a dynamic balance between token usage and
performance by controlling the early stopping criteria. The contribution of this paper is three-fold:

• Taxonomy of reflection behavior (Section 2). We provide the first large-scale analysis of
how reasoning models allocate tokens between forward reasoning and reflection, showing
that reflections are mostly confirmatory rather than corrective, and the accuracy of the first
try is the driving factor of improvement.

• Training insights (Section 3). We show that reflection-rich training data improve model
accuracy by diversifying reasoning exposure and strengthening first-try correctness, not by
enabling error correction.

• Efficient inference technique (Section 4). We propose an early-stopping method that
reduces token consumption during inference and allows control over the balance between
token usage and performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0.0%

10.0%

20.0%

30.0%

40.0%
MiMo-7B-RL DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-Distill-Llama-8B Qwen3-8B

0.0 0.2 0.4 0.6 0.8 1.0
0.0%

10.0%

20.0%

30.0%

40.0%
DeepSeek-R1-0528-Qwen3-8B

0.0 0.2 0.4 0.6 0.8 1.0

gpt-oss-20b

0.0 0.2 0.4 0.6 0.8 1.0

Magistral-Small-2506

0.0 0.2 0.4 0.6 0.8 1.0

DeepSeek-R1-0528

First Candidate Answer Relative Position

gpt-oss-120b Prompt 1 Qwen3-235B-A22B Prompt 1 gpt-oss-120b Prompt 2 Qwen3-235B-A22B Prompt 2

Figure 2: Distribution of first candidate answer positions across different LLMs and prompts. The
x-axis denotes the relative position of the first candidate answer (line index divided by total lines),
and the y-axis shows the proportion of rollouts in each bin.

2 ANALYZING REFLECTIONS IN REASONING MODELS

2.1 REFLECTION EXTRACTION

Conventional LLMs typically employ a single, linear generation process, concluding upon the initial
derivation of a solution. Reasoning models, however, are capable of a more iterative and deliber-
ative methodology (Ke et al., 2025). They can construct significantly more elaborated chain-of-
thoughts (CoTs), not simply by extending the quantity of reasoning steps, but by generating and
assessing multiple divergent reasoning trajectories and potential answers. This recursive process of
refinement, frequently described as “reflection”, allows the model to compare alternatives, check
intermediate claims, and potentially improve the final answer before committing.

While the capability of performing reflection often correlates with the reasoning capabilities of rea-
soning models, the internal mechanics of this process remain opaque. To unlock the full potential of
these models and understand their decision-making, it is crucial to dissect their reflective patterns.
We observe that within a long CoT, there can be multiple positions where the model has already
derived a potential answer but opts to continue its reasoning before committing to a final output.
Analyzing these critical points is fundamental to understanding the model’s reflection process.

Method In this work, we define “reflection” as the contents occurring between two successive
candidate answers in the reasoning process. To extract reflections, we introduce an LLM-based
candidate answer extractor that parses long CoT outputs and identifies the positions of candidate
answers, enabling a structured analysis of the model’s reflective behavior. Specifically, a CoT can
be represented as a sequence C = {s1, s2, ..., sN}, where each si is a reasoning step delimited
by a line break. We employ an LLM (see Appendix A for prompts and example input), to extract
plausible candidate answers, which can be formally expressed as follows:

Extract(C) = {(i, ai) | i ∈ [1, N] ∧ IsCandidateAnswer(si)}, (1)

where IsCandidateAnswer(si) determines whether step si contains a candidate answer, and ai
denotes the extracted candidate answer. Note that the extraction process only requires understanding
what quantity the question is asking, and whether a reasoning step derived it, without any require-
ment on the ability to actually solve the question. As a result, this process yields a structured set of
candidate answers and their corresponding positions for subsequent analysis, shown in Figure 1.

Setup We apply our LLM-based extractor on the rollouts of five mathematical benchmarks:
AIME2024 (MAA, 2024), AIME2025 (AIME, 2025), AMC (AMC12, 2025), Olympiad Bench (He
et al., 2024), Math500 (Hendrycks et al., 2021). Among these benchmarks, Math500 is consid-
ered easier, with state-of-the-art models reaching more than 95% accuracy, while AIME2024 and
AIME2025 are considered harder, with model pass@1 performance ranging from 30% to 80%. For
benchmarks with fewer problems, such as AIME, we increase the number of rollouts per prob-
lem to ensure a robust and consistent evaluation (See Table 3 of Appendix B for details). In

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

87.7%

9.5%
0.9%
1.5%
0.4% MiMo-7B-RL

59.3%28.3%

8.6%
2.3%
1.5%

DeepSeek-R1-Distill-
Qwen-7B

66.9%

25.3%

5.3%
1.8%
0.8%

DeepSeek-R1-Distill-
Llama-8B

89.5%

8.1%
0.7%
1.4%
0.2% Qwen3-8B

DeepSeek-R1-0528-Qwe
n3-8B

90.1%

7.6%
0.7%
1.4%
0.2%

gpt-oss-20b

73.7%

19.1%

2.7%
4.0%
0.4%

Magistral-Small-2506

89.7%

7.9%
0.7%
1.4%
0.4%

DeepSeek-R1-0528

93.1%

5.3%0.6%
0.8%
0.2%

Transitions
T T
F F (same)
F T
F F (diff)
T F

Figure 3: Reflections type statistics of long CoTs of different models. Long CoTs are collected on
AIME2024 and AIME2025 (32 rollouts per question), AMC (4 rollouts per question), Olympiad
Bench, and Math500 (1 rollout per question). Statistics are compiled for the union of all rollouts.
More detailed breakdown of each dataset can be found in Figure 11 of Appendix D.

total, 3,427 rollouts are collected for each of the eight reasoning models evaluated. The stud-
ied models cover a wide spectrum of the reasoning model family, with sizes ranging from 7B to
685B, covering models trained with reinforcement learning (RL) (MiMo-7B-RL (Xiaomi et al.,
2025), gpt-oss-20b (OpenAI, 2025), Magistral-Small-2506 (Mistral-AI et al., 2025), DeepSeek-R1-
0528 (DeepSeek-AI et al., 2025)) and distillation (DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI
et al., 2025), DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI et al., 2025), Qwen3-8B (Yang et al.,
2025a), DeepSeek-R1-0528-Qwen3-8B (DeepSeek-AI et al., 2025)).

Robustness Analysis To evaluate the robustness and accuracy of our method, we first conduct
a human evaluation. We randomly sample 100 rollouts and ask human participants to evaluate
whether the candidate positions and candidate answers extracted by our extractor are reasonable.
Across 100 rollouts with 426 extracted candidates in total, human participants labeled 94% of the
candidate extraction as correct, which demonstrates the high reliability of the proposed extractor
(See Appendix C for more details).

Further, we evaluate the sensitivity of our method by testing four extractor variants, constructed
using two different LLMs (Qwen3-235B-A22B (Yang et al., 2025a) and gpt-oss-120b (OpenAI,
2025)) and two distinct extraction prompts (see Appendix A for both complete prompts). To ana-
lyze consistency across these configurations, we focus on the relative position of the first candidate
answer, which serves as a stable and comparable reference point despite differences in the number
and length of reflections across models. The histogram in Figure 2 shows that the distribution of
the first candidate answer’s relative position is consistent across different extractors for each model.
This demonstrates the robustness and insensitivity of our extractor to the choice of LLMs or prompts,
as it consistently captures reflection patterns across different models’ outputs. We use gpt-oss-120b
and prompt 1 in Appendix A for the extractor in the rest of the paper.

2.2 REFLECTION ANALYSIS

Reflection Types Using the LLM-based extractor, we identify and extract n candidate answers
for each CoT, here we denote them as {a1, a2, . . . , an} indexed by their appearing order. We then
evaluate the correctness of each answer ai using a rule-based verifier 2, which returns True (T) if
ai is correct and False (F) otherwise. For two consecutive candidate answers from the same CoT,
ai−1 and ai, the reflection type is determined by whether the answer’s correctness changes from
the previous to the current attempt: (1) T → T: both ai−1 and ai are correct; (2) F → F (same): both
ai−1 and ai are incorrect, and ai−1 = ai; (3) F → T: ai−1 is incorrect, and ai is correct; (4) F → F
(diff): both ai−1 and ai are incorrect, and ai−1 ̸= ai ; (5) T → F: ai−1 is correct, and ai is incorrect.
Specifically, we define T → T and F → F (same) reflections as confirmatory, since the answer is not
changed. And F → T reflections as corrective, since it changes an incorrect answer to correct.

2https://github.com/huggingface/Math-Verify

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 5000 10000 15000
Output Tokens

DeepSeek-R1-0528
Magistral-Small-2506

gpt-oss-20b
DeepSeek-R1-0528-Qwen3-8B

Qwen3-8B
DeepSeek-R1-Distill-Llama-8B
DeepSeek-R1-Distill-Qwen-7B

MiMo-7B-RL

89.2% +1.4%
82.0% +3.0%
79.3% +3.1%
79.9% +1.5%
81.2% +3.5%
62.3% +2.8%
61.5% +2.9%
78.8% +2.4%

First candidate answer
Reflections

Figure 4: Breakdown of long CoTs: orange bars
show the token count up to the first candidate answer,
and blue bars show the token count in subsequent re-
flections. Numbers on bars indicate the accuracy of
the first candidate answer, and the accuracy improve-
ment brought by reflections.

3.5 4.0 4.5 5.0 5.5
Number of Candidates

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Math500
AMC
Olympiad Bench
AIME2024
AIME2025

0.50 0.55 0.60 0.65 0.70 0.75
Relative Position of First Candidate

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Figure 5: Left: Average number of candidate
answers per rollout across different datasets.
Right: Relative position of the first candi-
date. Values are averaged over 8 models.

Analysis on Reflection Types The analysis of reflection types within long CoT, as depicted in
Figure 3, reveals that over 90% of the reflections are confirmatory, i.e., T → T and F → F (same),
rather than corrective. This indicates that most reflections reaffirm an existing answer instead
of changing it. This trend is universal across all tested models and datasets (see Figure 11 in
Appendix D for a detailed breakdown). Crucially, the proportion of corrective reflections (F → T)
that actually improve performance is exceptionally small (mostly less than 2%).

Impact of Reflection on Performance To better understand the impact of reflections on perfor-
mance and their token usage, we compare the accuracy of the first candidate answer with that of
the final answer in the rollouts as shown in Figure 4. The accuracy of the first candidate answer is
given on the orange bar segments, and the contribution of subsequent reflections is shown on the
blue segments. Reported accuracies are averaged over AIME2024, AIME2025, AMC, Olympiad
Bench, and Math500. We report this averaged accuracy unless mentioned otherwise throughout the
paper. We observe that while reflections after the first candidate answer consume a large portion of
the total tokens (ranging from 16.8% to 47.8%), the resulting performance gain is limited (ranging
from 1.4% to 3.5%). This suggests that the final accuracy strongly correlates with the correctness
of the first answer, highlighting its dominant influence. In other words, the first try matters. We
provide a detailed breakdown in Tables 5 and 6 of Appendix G.

Effect of Data Difficulty on Reflection Patterns To analyze the reasoning models’ reflection
patterns across various mathematical datasets of different difficulties, we plot the average number
of candidates and the average relative position of the initial candidate in Figure 5 (See Table 4 in
Appendix E for detailed statistics). Our analysis reveals that on more challenging datasets, such
as AIME2024 and AIME2025, the model allocates more tokens to forward reasoning, delaying the
appearance of the first candidate. Conversely, on easier datasets such as Math500, the first candidate
appears much earlier in the reasoning trajectory. This presents a counterintuitive pattern: models
perform more reflections on easier problems and fewer on difficult ones, indicating that the
reflection mechanism of reasoning models is not well aligned with task difficulty.

3 THE ROLE OF REFLECTION IN REASONING MODEL TRAINING

Analysis of reflection patterns in reasoning model rollouts reveals a counterintuitive phenomenon:
the majority of reflections neither alter the candidate answer nor contribute meaningfully to per-
formance improvement. This observation raises a critical question: why do reasoning models still
achieve a substantial performance boost after being trained on long CoTs containing many confir-
matory reflections? In this section, we study this by conducting supervised fine-tuning (SFT) on
curated datasets with different reflection characteristics and comparing their performance.

3.1 TRAINING WITH VARYING AMOUNT OF REFLECTIONS

To investigate the role of reflection in reasoning, we begin by examining how the amount of reflec-
tions included in training data affects model performance.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6
Cutting Position

20

25

30

35

40

Ac
cu

ra
cy

 (%
)

Train with DeepSeek-R1 Rollouts

1 2 3 4 5 6
Cutting Position

20

25

30

35

40

45

Ac
cu

ra
cy

 (%
)

Train with Qwen3-8B Rollouts

Llama3.1 Performance (left axis)
Llama3.1 Length (right axis)
Qwen2.5 Performance (left axis)
Qwen2.5 Length (right axis)

5000

6000

7000

8000

9000

10000

11000

12000

Av
er

ag
e

Le
ng

th

5000

6000

7000

8000

9000

10000

11000

12000

Av
er

ag
e

Le
ng

th

Figure 6: Comparison of performance and rollout length after SFT when training on rollouts cut
at different positions. Qwen2.5-7B-Instruct and Llama3.1-8B-Instruct are trained using processed
rollouts from DeepSeek-R1 and Qwen3-8B, respectively. Accuracies are averaged over five datasets.

Training Data Construction To study the effect of the number of reflections in long CoT data,
we carefully manipulate the rollouts by truncating them after the occurrence of different candidate
answers, thereby constructing a long CoT SFT dataset with a controllable number of reflections.
Specifically, we use the MiroMind-M1-SFT dataset (Li et al., 2025), which contains mathemati-
cal problems curated from diverse sources, along with their corresponding DeepSeek-R1 rollouts.
Additionally, we generate one rollout per problem using Qwen3-8B, providing an alternative roll-
out source for comparison. We then apply the candidate answer extractor to filter out rollouts that
satisfy: (1) produce a correct final answer, and (2) the correct answer appears more than six times
as a candidate. This filtering step ensures that each selected rollout includes sufficient reflections,
allowing flexible truncation from the first to the sixth candidate answers to construct datasets with a
varying number of reflections.

To create a rollout with exactly i reflection steps, we truncate a filtered rollout at the i-th candidate
answer, append the stop-thinking symbol </think>, then feed the truncated rollout into the rea-
soning model that used to generate it (e.g., DeepSeek-R1 or Qwen3-8B) to continue generation and
produce the final answer. This yields a reasoning rollout with exactly i reflection steps. See Ap-
pendix Figure 12 for an example. By continuing the truncated thinking, we ensure that the rollouts
we used for training are still coherent, without abrupt stops. We filter out rollouts whose answers
in the continued generation are different from the candidate answer from which we truncated. This
step removes less than 0.5% of rollouts, showing that once the model settles on a candidate answer,
stopping the thinking process and prompting for a final response reliably yields that same answer.

Applying this procedure on the MiroMind-M1-SFT dataset, we curate six SFT datasets. The i-th
dataset, termed the “cut-at-i” dataset, contains long CoTs truncated at the i-th reflection, resulting in
exactly i reflections per example. These datasets share the same set of problems, and all rollouts cor-
rectly solve the problem. The difference between them lies in the controlled number of reflections.
Another variable we need to control is that, CoTs with more reflections typically contain more to-
kens. Therefore, for fair comparison, we downsample these datasets to ensure all six have the same
number of training tokens. After this process, each generated dataset contains 28 million tokens,
with the cut-at-1 dataset having 6,754 questions and the cut-at-6 dataset having 3,405 questions.

Impact of Reflection Amount on SFT Performance Given the curated dataset, we perform SFT
on Llama3.1-8B-Instruct (Grattafiori et al., 2024), and Qwen2.5-7B-Instruct (Yang et al., 2024). We
test on the combined set of AIME24, AIME25, Olympiad Bench, AMC, and Math500. The perfor-
mance results and corresponding rollout lengths are presented in Figure 6. It shows that training on
reflection-rich rollouts yields higher accuracy and longer generations across different datasets and
model architectures. For SFT models, this suggests that, under a fixed token budget, constructing
datasets with more reflection-rich rollouts is more effective than using the same budget to include
more questions with shorter rollouts.

To better understand this improvement, we leverage the extractor and we split each rollout at the
first candidate answer: the segment before it is denoted as “first candidate answer”, and the segment
after it as “reflections”. We then compare their corresponding lengths and accuracies. Figure 7
(plotted in the same manner as Figure 4) shows results trained on Qwen3-8B rollouts, with similar
DeepSeek-R1 results in Figure 13 of Appendix H.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 2,000 4,000 6,000 8,000 10,000
Output Tokens

Cut at 1
Cut at 2
Cut at 3
Cut at 4
Cut at 5
Cut at 6

18.5% +0.9%

18.9% +1.0%

19.0% +0.9%

20.0% +1.4%

21.8% +1.7%

22.0% +1.2%

First candidate answer
Reflections

(a) Llama3.1-8B-Instruct

0 2,500 5,000 7,500 10,000 12,500
Output Tokens

Cut at 1
Cut at 2
Cut at 3
Cut at 4
Cut at 5
Cut at 6

37.7% +2.3%

38.3% +1.9%

38.1% +2.8%

40.8% +3.1%

40.6% +3.0%

41.7% +2.6%

(b) Qwen2.5-7B-Instruct
Figure 7: Token usage and accuracy after SFT using Qwen3-8B rollouts. Before SFT, Llama3.1-
8B-Instruct achieves 7.9% accuracy, and Qwen2.5-7B-Instruct achieves 35.3%.

Figure 7 demonstrates a clear trend that models trained on rollouts with more reflections achieve
higher final performance. Averaging over Llama3.1-8B-Instruct and Qwen2.5-7B-Instruct, cut-at-6
outperforms cut-at-1 by 4.05%. This performance gain is mainly due to higher accuracy of the first
candidate answers, which increase by an average of 3.75% from cut-at-1 to cut-at-6, whereas the
contribution from additional reflections is much smaller, averaging only 0.3%. Interestingly, while
the accuracy of the first answer is increased, the token cost of generating the first answer remains
consistent after trained with different cut-at-i datasets. The tokens spent on reflections account for
most of the difference, with an average of 5,636 reflection tokens increase per rollout from cut-at-1
to cut-at-6.

In conclusion, training models with more reflections leads to better performance and longer re-
sponses, which is expected. Surprisingly, from the breakdown of the source of improvements, we
find that this gain does not come from reflections fixing incorrect answers, but from higher accuracy
in the first candidate answer. One possible explanation is that richer reflections expose the model to
diverse problem-solving approaches, improving generalization and boosting initial answer quality
rather than simply correcting mistakes.

0 2,000 4,000 6,000 8,000 10,000
Output Tokens

Initial

After RL

75.3% +2.9%

79.9% +3.2%

MiroMind-M1-RL-32B

First candidate answer Reflections

0 2,000 4,000 6,000 8,000 10,000 12,000
Output Tokens

Initial

After RL

68.3% +2.9%

76.0% +3.0%

MiroMind-M1-RL-7B

Figure 8: Changes of reasoning be-
havior after RL.

Discussions Our analysis in Figure 7 shows that SFT distil-
lation enhances overall performance primarily by improving
first-try correctness, especially when the SFT data includes
more reflections, while the improvement brought by reflec-
tions is marginal. Our previous analysis in Figure 3 also shows
that both RL-trained and SFT-distilled reasoning models show
a similar pattern that reflections are mostly confirmatory and
do not bring improvement. This raises the question of whether
the RL training stage of reasoning models is also improving
accuracy by making better first tries. To investigate this, we
compare behaviors before and after RL of open-source rea-
soning models: MiroMind-M1-RL-7B (Li et al., 2025) and its
initialization, MiroMind-M1-SFT-7B; MiroMind-M1-RL-32B
and its initialization, DeepSeek-R1-Distill-Qwen-32B. As il-
lustrated in Figure 8, we see that for both models, the performance gains after RL mainly come from
first-answer accuracy improvement (+4.6% for 32B model, and +7.7% for 7B model), while gains
attributable to reflections are marginal (+0.3% for 32B model, and +0.1% for 7B model). The ex-
perimental results indicate that during reinforcement learning, reasoning models primarily enhance
their ability to produce a correct answer on the first attempt, rather than improving the quality of
their subsequent reflections.

3.2 TRAINING WITH CORRECTIVE REFLECTION PATTERNS

In the previous section, we investigated how reflections affect model performance in SFT, and
showed that more reflections in training rollout mainly improve first answer accuracy, with lim-
ited improvement on its corrective behavior. In this section, we test whether reflection ability can be
improved by adding more corrective reflections (i.e., F → T) to the training dataset.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance after SFT with different ratios of F → T reflections in the dataset.

Ratio (%) Llama3.1-8B-Instruct Qwen2.5-7B-Instruct

p(F → T) Accuracy (%) Length p(F → T) Accuracy (%) Length

100 0.053 26.6 10830 0.036 44.1 9655
75 0.050 25.6 11085 0.043 44.4 8775
50 0.058 27.3 10746 0.045 43.1 9943
25 0.059 26.2 11295 0.046 44.8 10094
0 0.050 26.9 11419 0.041 44.1 9363

Dataset Construction We collect Qwen3-8B rollouts on math problems from the MiroMind-M1-
SFT dataset. For each question, we sample one rollout containing at least one F → T reflection
and one rollout consisting solely of T → T reflections. By filtering problems that have both type
of rollouts (corrective and confirmatory), we kept 6K problems. Using these problems and their
rollouts, we construct five datasets by varying the proportion of problems for which we select their
corrective rollout to include in the dataset: 0%, 25%, 50%, 75%, and 100%. For the remaining
problems in each dataset, we select their confirmatory rollouts to include in the dataset.

Impact of Corrective Reflections on SFT Performance We perform SFT on Llama3.1-8B-
Instruct and Qwen2.5-7B-Instruct using the constructed datasets, with results shown in Table 1.
Models trained on datasets with varying proportions of corrective reflections show similar response
lengths and accuracies. The performance difference between the best and worst models is just 1.7%,
and the maximum difference in response length is only about 1K tokens. Moreover, their ability
to flip an incorrect answer to a correct one, measured by p(F → T), the probability that the next
candidate is correct given that the current candidate is incorrect, shows no improvement. This indi-
cates that training on rollouts containing corrective reflections is not more beneficial than training
on rollouts with only confirmatory reflections. This echos with our earlier analysis, reasoning im-
provements are reflected mainly as higher first-answer accuracy, rather than increased p(F → T).

4 EFFICIENT REASONING BY EARLY STOPPING

Our studies in Section 2 show that the reflections of reasoning models are primarily confirmatory,
which suggests potential token efficiency gains by stopping once a few candidate answers are iden-
tified. In this section, we study the token-accuracy tradeoff under different early-stopping strategies.
Specifically, we propose a question-aware adaptive early-stopping approach to improve token effi-
ciency of the reasoning process.

Candidate Answer Detector A straightforward way to reduce confirmatory reflection tokens is
to monitor candidate answers and early-stop the reasoning process once a correct one is generated.
To achieve this, we train a Qwen3-1.7B-based candidate answer detector (CAD) to detect for each
sentence in the generation whether it contains the candidate answer. We construct CAD training
data from annotated rollouts in the MiroMind-M1-SFT dataset. The sentences in each rollout, de-
limited by \n, are annotated by gpt-oss-120b and labeled 1 if they contain a candidate answer, or 0
otherwise. The CAD takes the corresponding question and one sentence in the rollout as input, and
is trained to predict whether the sentence contains a candidate answer.

Question-aware Reflection Controller While reflections are mostly confirmatory in reasoning
rollouts, some mathematical problems may benefit more from reflections than others. To identify
such problems and give them more reflection budget, we train a question-aware reflection controller
(QRC) to predict for a problem whether we should stop at the first candidate, or allow more reflec-
tions before early-stopping. Specifically, we train a Qwen3-1.7B-based binary classifier that takes
in only the problem statement, and output a binary label. The training data is collected from the
annotated MiroMind-M1-SFT dataset, where a question is labeled 1 if its rollout contains F → T
reflections, otherwise 0.

Question-aware Adaptive Early-Stopping With CAD and QRC, we can reduce unnecessary re-
flections in the reasoning process through question-aware adaptive early-stopping. During inference,
we first feed the question into the QRC to determine whether the reasoning process should terminate
at the first candidate answer or do more reflections. Then we use CAD to monitor the appearance of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Question-aware adaptive early-stopping improves token efficiency. Without QRC, reason-
ing terminates immediately after the first candidate answer is generated. The classification thresh-
olds of QRC and CAD are set as 0.05 and 0.5, respectively.

Dataset Accuracy (%) Length
Qwen3-8B +CAD +CAD, +QRC Qwen3-8B +CAD +CAD, +QRC

AIME2024 82.1 77.9 (-4.2) 79.6 (-2.5) 18,962 13,517 (-28.7%) 14,869 (-21.6%)
AIME2025 70.8 65.0 (-5.8) 65.8 (-5.0) 22,998 17,664 (-23.2%) 18,014 (-21.7%)
AMC 93.0 90.0 (-3.0) 89.4 (-3.6) 13,279 8,432 (-36.5%) 8,756 (-34.1%)
Math500 97.4 94.4 (-3.0) 96.0 (-1.4) 5,755 2,912 (-49.4%) 3,593 (-37.6%)
Olympiad Bench 80.2 76.9 (-3.3) 78.4 (-1.8) 14,633 10,479 (-28.4%) 11,835 (-19.1%)
Average 84.7 80.9 (-3.8) 81.8 (-2.9) 15,125 10,601 (-29.9%) 11,414 (-24.5%)

candidate answers during generation and terminate thinking accordingly. In practice, we terminate
at the first candidate if QRC labeled 0, otherwise the third candidate. We apply this approach to
Qwen3-8B reasoning model and report the performance on five mathematical datasets in Table 2.

0 0.01 0.05 0.1 0.5 1.0
QRC Threshold

0.15

0.3

0.5CA
D

 T
hr

es
ho

ld -3.5 -3.5 -7.2 -7.5 -8.2 -8.1

-1.9 -2.3 -5.7 -6.4 -6.9 -6.9

-1.0 -1.1 -2.9 -3.5 -3.9 -3.9

Accuracy Percentage-Point Drop

0 0.01 0.05 0.1 0.5 1.0
QRC Threshold

0.15

0.3

0.5CA
D

 T
hr

es
ho

ld -24.9 -27.1 -35.6 -37.5 -40.6 -40.7

-18.2 -20.8 -30.6 -33.2 -36.0 -36.3

-12.0 -14.7 -24.5 -27.2 -29.7 -29.9

Token Reduction (%)

10.0

7.5

5.0

2.5

0.0

40

30

20

10

Figure 9: Accuracy drop and token reduction with vary-
ing classification thresholds of CAD and QRC.

Table 2 illustrates that CAD saves on
average 29.9% tokens across five math-
ematical datasets, with a modest 3.8%
drop. With QRC, the performance drop
is improved to 2.9%, while still enjoying
a 24.5% token reduction. By controlling
the classification thresholds of CAD and
the QRC, our method provides a handle
to balance between performance and to-
ken usage. Figure 9 illustrates the trade-
off between token reduction and performance by adopting different threshold settings. On one ex-
treme, a modest 1 percentage-point accuracy drop allows a 12.0% reduction in tokens; on the other
extreme of the trade-off, an 8.12% accuracy drop corresponds to a 40.7% reduction in tokens.

5 RELATED WORKS

In the past year, scaling inference-time computation has emerged as a promising paradigm for im-
proving the capabilities of large language models (LLMs) (Snell et al., 2024; Brown et al., 2025;
Muennighoff et al., 2025). Building on this line of work, DeepSeek-R1 (DeepSeek-AI et al., 2025)
demonstrates that inference-time scaling via reinforcement learning with verifiable rewards (RLVR)
can unlock emergent reasoning abilities, yielding state-of-the-art results on challenging mathemati-
cal and coding benchmarks (Liu et al., 2025b; Ke et al., 2025; Xie et al., 2025; Jain et al., 2025).

Recently, a complementary body of research has examined why long chain-of-thought (CoT) rea-
soning is effective (Zhao et al., 2025; Chen et al., 2025a; Jiang et al., 2025). The dominant belief is
that its success can be attributed to mechanisms such as recursive reflection, verification, and revi-
sion, which allow models to refine intermediate steps (Yang et al., 2025b; Wang et al., 2025). At the
same time, excessively verbose traces are observed often to introduce redundancy, amplify halluci-
nations, and degrade the performance of reasoning models (Chen et al., 2025b; Zeng et al., 2025).
In contrast, a separate line of literature argues that prolonged traces can strengthen reasoning ability
and promote exploration of diverse solutions (Liu et al., 2025b;a). Despite these advances, the role
of reflections within long CoTs remains underexplored. To address this gap, our work isolates and
studies reflections within long CoTs across training and testing stages.

6 CONCLUSIONS

In this work, we systematically analyze the reflection pattern in long CoTs of reasoning models. We
investigate their role in both the training and the inference phases. Through extensive experiments,
we show that the reflections of reasoning models are mostly confirmatory, yet they are still helpful
when included in training data. We also show that during inference time, confirmatory reflections
consume a decent amount of tokens, while only introducing marginal improvements. To this end, we
develop an efficient reasoning technique during inference to early stop excessive reflections while
maintaining the performance. Together, these results provide a clearer understanding of the role of
reflections and offer practical guidance for data design and inference efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We did not collect any new human-subject data or process personally identifiable information. No
potential harms, such as bias amplification, toxic outputs, or dual-use risks, were observed in this
work.

REPRODUCIBILITY STATEMENT

We are committed to reproducibility. All details of the data used and generated are documented in
the paper, along with comprehensive descriptions of our experimental setup and hyperparameters.
Upon publication, we will release the source code and data to the public to support transparent
validation and further research.

USE OF LLMS

The use of LLM in this work is limited to rewriting sections to shorten them and save space for the
page limit.

REFERENCES

AIME. AIME Problems and Solutions, 2025. https://artofproblemsolving.com/
wiki/index.php/AIME_Problems_and_Solutions, 2025. Accessed: September 23,
2025.

AMC12. AMC 12 Problems and Solutions. https://artofproblemsolving.com/
wiki/index.php/AMC_12_Problems_and_Solutions, 2025. Accessed: September
23, 2025.

Bradley Brown, Jordan Juravsky, Ryan Saul Ehrlich, Ronald Clark, Quoc V Le, Christopher Re, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2025. URL https://openreview.net/forum?id=0xUEBQV54B.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021. URL https://
arxiv.org/abs/2107.03374.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-
of-thought for reasoning large language models, 2025a. URL https://arxiv.org/abs/
2503.09567.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do
NOT think that much for 2+3=? on the overthinking of long reasoning models. In Forty-second
International Conference on Machine Learning, 2025b. URL https://openreview.net/
forum?id=MSbU3L7V00.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021. URL https://arxiv.
org/abs/2110.14168.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024. URL https://arxiv.org/abs/2407.
21783.

10

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions
https://openreview.net/forum?id=0xUEBQV54B
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2503.09567
https://arxiv.org/abs/2503.09567
https://openreview.net/forum?id=MSbU3L7V00
https://openreview.net/forum?id=MSbU3L7V00
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024. URL https://aclanthology.org/2024.acl-long.211/.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021. URL https://arxiv.org/abs/2103.03874.

Arnav Kumar Jain, Gonzalo Gonzalez-Pumariega, Wayne Chen, Alexander M Rush, Wenting Zhao,
and Sanjiban Choudhury. Multi-turn code generation through single-step rewards. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=aJeLhLcsh0.

Gangwei Jiang, Yahui Liu, Zhaoyi Li, Qi Wang, Fuzheng Zhang, Linqi Song, Ying Wei, and Defu
Lian. What makes a good reasoning chain? uncovering structural patterns in long chain-of-
thought reasoning, 2025. URL https://arxiv.org/abs/2505.22148.

Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li,
Chengwei Qin, Peifeng Wang, Silvio Savarese, Caiming Xiong, and Shafiq Joty. A survey of fron-
tiers in LLM reasoning: Inference scaling, learning to reason, and agentic systems. Trans. Mach.
Learn. Res., 2025, 2025. URL https://openreview.net/forum?id=SlsZZ25InC.

Xingxuan Li, Yao Xiao, Dianwen Ng, Hai Ye, Yue Deng, Xiang Lin, Bin Wang, Zhanfeng Mo,
Chong Zhang, Yueyi Zhang, Zonglin Yang, Ruilin Li, Lei Lei, Shihao Xu, Han Zhao, Weiling
Chen, Feng Ji, and Lidong Bing. Miromind-m1: An open-source advancement in mathematical
reasoning via context-aware multi-stage policy optimization, 2025. URL https://arxiv.
org/abs/2507.14683.

Mingjie Liu, Shizhe Diao, Jian Hu, Ximing Lu, Xin Dong, Hao Zhang, Alexander Bukharin,
Shaokun Zhang, Jiaqi Zeng, Makesh Narsimhan Sreedhar, Gerald Shen, David Mosallanezhad,
Di Zhang, Jonas Yang, June Yang, Oleksii Kuchaiev, Guilin Liu, Zhiding Yu, Pavlo Molchanov,
Yejin Choi, Jan Kautz, and Yi Dong. Scaling up rl: Unlocking diverse reasoning in llms via
prolonged training, 2025a. URL https://arxiv.org/abs/2507.12507.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models,
2025b. URL https://arxiv.org/abs/2505.24864.

Zichen Liu, Changyu Chen, Wenjun Li, Tianyu Pang, Chao Du, and Min Lin. There may not
be aha moment in r1-zero-like training a pilot study. https://oatllm.notion.site/
oat-zero, 2025c. Notion Blog.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-
preview with a 1.5b model by scaling rl. https://github.com/agentica-project/
deepscaler, 2025.

MAA. American Invitational Mathematics Examination (AIME) 2024. https://maa.org/
math-competitions/american-invitational-mathematics-examination-aime,
February 2024. Accessed: September 23, 2025.

MiniMax, :, Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan,
Changqing Yu, et al. Minimax-m1: Scaling test-time compute efficiently with lightning attention,
2025. URL https://arxiv.org/abs/2506.13585.

Mistral-AI, :, Abhinav Rastogi, Albert Q. Jiang, Andy Lo, Gabrielle Berrada, Guillaume Lample,
Jason Rute, Joep Barmentlo, et al. Magistral, 2025. URL https://arxiv.org/abs/2506.
10910.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

11

https://aclanthology.org/2024.acl-long.211/
https://arxiv.org/abs/2103.03874
https://openreview.net/forum?id=aJeLhLcsh0
https://openreview.net/forum?id=aJeLhLcsh0
https://arxiv.org/abs/2505.22148
https://openreview.net/forum?id=SlsZZ25InC
https://arxiv.org/abs/2507.14683
https://arxiv.org/abs/2507.14683
https://arxiv.org/abs/2507.12507
https://arxiv.org/abs/2505.24864
https://oatllm.notion.site/oat-zero
https://oatllm.notion.site/oat-zero
https://github.com/ agentica-project/deepscaler
https://github.com/ agentica-project/deepscaler
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://arxiv.org/abs/2506.13585
https://arxiv.org/abs/2506.10910
https://arxiv.org/abs/2506.10910
https://arxiv.org/abs/2501.19393

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models,
2021. URL https://arxiv.org/abs/2112.00114.

OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL https://arxiv.org/abs/
2508.10925.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card,
2024. URL https://arxiv.org/abs/2412.16720.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
Juntao Li, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Thoughts are
all over the place: On the underthinking of o1-like llms, 2025. URL https://arxiv.org/
abs/2501.18585.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H.
Chi, Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in
large language models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems 35 (NeurIPS
2022), 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

LLM-Core Xiaomi, :, Bingquan Xia, Bowen Shen, Cici, Dawei Zhu, Di Zhang, Gang Wang, Hailin
Zhang, Huaqiu Liu, et al. Mimo: Unlocking the reasoning potential of language model – from
pretraining to posttraining, 2025. URL https://arxiv.org/abs/2505.07608.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning, 2025. URL https://arxiv.org/abs/2502.14768.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024. URL https:
//arxiv.org/abs/2412.15115.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a. URL https://arxiv.org/abs/2505.09388.

Shiming Yang, Yuxuan Tong, Xinyao Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning. In Forty-second International Conference on Machine Learning,
2025b. URL https://openreview.net/forum?id=OLodUbcWjB.

Shu Yang, Junchao Wu, Xin Chen, Yunze Xiao, Xinyi Yang, Derek F. Wong, and Di Wang. Un-
derstanding aha moments: from external observations to internal mechanisms, 2025c. URL
https://arxiv.org/abs/2504.02956.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

12

https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2501.18585
https://arxiv.org/abs/2501.18585
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://arxiv.org/abs/2505.07608
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=OLodUbcWjB
https://arxiv.org/abs/2504.02956
https://arxiv.org/abs/2503.14476

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Yunhua Zhou, and Xipeng Qiu. Revisiting the
test-time scaling of o1-like models: Do they truly possess test-time scaling capabilities? In
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Pro-
ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 4651–4665, Vienna, Austria, July 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.232. URL
https://aclanthology.org/2025.acl-long.232/.

Chong Zhang, Yue Deng, Xiang Lin, Bin Wang, Dianwen Ng, Hai Ye, Xingxuan Li, Yao Xiao,
Zhanfeng Mo, Qi Zhang, and Lidong Bing. 100 days after deepseek-r1: A survey on replication
studies and more directions for reasoning language models, 2025. URL https://arxiv.
org/abs/2505.00551.

Chengshuai Zhao, Zhen Tan, Pingchuan Ma, Dawei Li, Bohan Jiang, Yancheng Wang, Yingzhen
Yang, and Huan Liu. Is chain-of-thought reasoning of llms a mirage? a data distribution lens,
2025. URL https://arxiv.org/abs/2508.01191.

13

https://aclanthology.org/2025.acl-long.232/
https://arxiv.org/abs/2505.00551
https://arxiv.org/abs/2505.00551
https://arxiv.org/abs/2508.01191

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROMPT FOR CANDIDATE EXTRACTION

SYSTEM PROMPT 1

SYSTEM PROMPT Candidate Answer Extractor

Role: You read a math problem statement and a line-numbered model
solution (thinking only).

Goal: For every line that presents a candidate answer to what the
problem asks, output a record of (line_number,
"candidate_answer_in_required_form"). Do not judge correctness
or re-derive the solution.

1) Golden rule: lock the target first
Silently infer exactly what the original problem asks for:
- Target quantity: e.g., m+n, "remainder mod 1000", "sum of digits

of N", "area", "number of solutions", etc.
- Required output form: e.g., integer, simplified fraction, decimal

to k d.p., radical with squarefree radicand, gcd/coprime
conditions, modulo residue, floor/ceil, units, etc.

- Trivial post-processing, if any (see ğ3).
Keep this target in working memory. All extraction converts to this

target form.

2) What counts as a candidate answer
A line presents a candidate answer if it directly gives the target

or uniquely determines it after only the trivial final steps in
ğ3.

Include lines that:
- State the target explicitly (e.g., "Thus m+n=38", "Answer: 456").
- Give an equivalent numeric/expression that becomes the target

after trivial conversion (e.g., a remainder before reduction,
ab before radical normalization when the target is m+n, a
fraction before simplification when the target is "lowest
terms", a raw integer before taking "last 3 digits", etc.).

- Re-present the candidate (e.g., boxed, restated, "Therefore "),
even if previously seen. Record every explicit presentation.

Exclude lines that:
- Only give intermediate facts not uniquely tied to the target

(ranges/inequalities/bounds, generic identities, unspecialized
parameters) unless the problem asks for those.

- Require nontrivial algebra, case analysis, multi-step geometry,
or symbolic manipulation to reach the target (see ğ4).

3) Trivial Final Steps (you must perform these when applicable)
When a line yields a value that is one obvious step away from the

target, perform the step and record the final target value:
- Simple arithmetic on explicit numerics/rationals

(add/subtract/multiply/divide; reduce fractions to lowest
terms).

- Modulo: compute N mod m; extract last k digits; compute parity.
- Digit ops: sum/product of digits; last digit.
- Floor/Ceil/Abs/Sign when directly evaluable on a numeric

expression.
- Rounding exactly as requested (e.g., to 3 d.p.).
- Radicals normalization: rewrite ab with squarefree b, absorb

perfect-square factors into a, ensure gcd(a,b)=1.
- If the problem then asks for m+n, output that integer.

- Composite "reporting forms" common in contests:
- If target is m+n from mn (squarefree n), or p+q from a
reduced fraction p/q, compute and output the sum.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

- If target is "remainder", "units digit", "sum of
coefficients", "sum of roots (given the polynomial)", etc., and
the line gives the immediately-evaluable precursor, do the
one-step conversion.

- Unit conversion if it's a fixed scalar multiply/divide stated by
the problem.

Never cross into multi-step derivations. If it's more than a short,
mechanical evaluation, do not include.

4) Nontrivial (do not do)
- No solving new equations, factoring beyond extracting perfect

squares for radicals normalization, trig/geometry multi-steps,
solving systems, case splits, or applying the quadratic formula
unless it's already fully computed in the line.

- No deducing implicit constraints unless the line states the value
that pins the target after a trivial step.

5) High-recall detection heuristics
When scanning a line, look for any of the following cues. If

present, attempt extraction.

Textual cues:
"so", "thus", "therefore", "hence", "we get", "equals", "is",

"becomes", "gives", "yields", "implies", "it follows",
"answer", "result", "final", "box/boxed".

Math cues:
- An equality or assignment (e.g., =, , if exact), explicit

numerals, simplified forms, isolated expressions at the end of
a derivation.

- Named quantity matching the target (e.g., "remainder = 456", "sum
of digits is 6").

- Expressions that trivially map to target form (e.g., 1218 when
target demands m+n).

Repeat cues:
If a line reasserts or updates a candidate, record it again with

that line number.

6) Per-line extraction algorithm (do this for each line
independently)

1. Collect candidates on this line:
- Parse any explicit equalities/values/boxed content.
- Note any expression that can be trivially converted to the
target via ğ3.

2. Resolve to target form:
- Apply only ğ3 operations; otherwise stop.
- If multiple possible candidates appear on the same line,
record each separately.

3. If successful, emit (line_number, "value_in_required_form").
If no candidate survives ğ3, skip the line.

7) Output format (STRICT)
- Output a Python list of tuples only: [(line, "value"), (line,

"value"), ...]
- Keep tuples in the order of increasing line number; if multiple

candidates on the same line, keep their left-to-right
occurrence order.

- "value" must be exactly what the problem asks for after trivial
conversion (e.g., put "38", not "36*sqrt(2)" when the target is
m+n).

- The very last line of your reply must be only that list so eval()
can parse it. No extra text.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

8) Micro-examples (apply ğ3 automatically)
- Remainder: Line has N = 123456; target is N mod 1000 \to record

"456".
- Last 3 digits: Line has S = 7000456 \to "456".
- Sum of digits: Line has N = 1002003 \to "6".
- Reduced fraction: Line has 84/126 \to "2/3".
- Radical m+n: Line has 1218 \to normalize to 362 \to m+n =

36+2 = "38".
- Floor: Line has 7.99 and target is the integer part \to "7".
Edge case principle: When in doubt, include if the target is

uniquely determined by a single, trivial step.

SYSTEM PROMPT 2

You are given a text block that contains the original problem
statement, followed by a line-numbered "model solution".

Your job is **NOT** to judge correctness or solve the problem.
Instead, read the solution **line by line** and record every
line that presents a *candidate answer* to the problem. You
need to fully understand what the problem asks for to notice
the candidate answer. Only the thinking part of the model
solution is provided for analysis.

Definitions
Candidate answer any explicit value or statement that (a)

directly answers what the problem asks **or** (b) uniquely
determines it with only a trivial final step (e.g. once you
know N, taking "N mod 1000" is immediate).

Candidate answer is not intermediate components (like individual
addends when the question asks for their sum) unless the
problem explicitly asks for each component.

If the line gives an expression that still needs a trivial final
computation to directly answer the question (for instance, a
fraction whose numerator and denominator you must sum), carry
out that simple arithmetic and record the result as your
"candidate answer."

There is likely multiple candidates answers in the model solution,
and they are not necessarily the same as the model's final
answer. You should not look for candidate answers by matching
the model's final answer.

You can reason about the lines and decide whether they are
candidate answers. For the final response, you should follow
the format as below.

Final output format strict
1. For each qualifying line output a two-element tuple:

(line_number, "candidate_answer")
`line_number` is an integer.
`candidate_answer` is the exact answer text you extracted from

that line (no boxing, no extra words) OR the answer that can be
immediately implied from the line. Continuing the previous
example, if the line indicates N=2016, the extracted candidate
answer should be 16.

2. Collect the tuples in a Python list **in the order the lines
appear**.

3. The **very last line** of your reply must be *only* that list,
so that `eval()` can parse it, for example, [(12, "15"), (27,
"3/4")]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

4. Do **not** output anything after that list.

EXAMPLE INPUT

Analyze the following problem and its model solution.

--
Below is the problem statement **followed by** the line-numbered

model solution:
--

Problem statement:
Find all prime numbers p and positive integers m such that

$2p^2 + p + 9 = m^2.$
Model solution:
1: <think>
2: Okay, so I need to find all prime numbers p and positive

integers m such that the equation 2pš + p + 9 = mš holds. Hmm,
let's start by understanding the problem. I have to find primes
p and positive integers m where this quadratic in p becomes a
perfect square.

...

B BENCHMARK STATISTICS

Table 3: Statistics of Datasets and Rollouts

Dataset Problems Rollouts per Problem Total Rollouts

AIME 2024 30 32 960
AIME 2025 30 32 960
AMC 83 4 332
Olympiad Bench 675 1 675
MATH500 500 1 500

Total 1318 - 3427

C HUMAN EVALUATION

To validate our extraction method, we conduct a human annotation study with four participants. We
task the annotators with labeling the correctness of each candidate answer in the rollout detected by
our model. Each candidate is presented with the sentence that contains a candidate answer, alongside
the corresponding problem statement of the rollout and the ground-truth solution.

The evaluation centers on two key questions, as illustrated in our user interface (Figure 10):

• Q1: This question tests whether the model correctly identifies a sentence containing a
candidate answer. For example, a sentence such as “So the answer is 5?” qualifies as a
valid candidate, whereas “Let’s try to solve this” does not.

• Q2: This question assesses whether the extracted candidate answer is an answer to the
question, regardless of correctness. For example, if the question is asking some quantity
that “can be represented as m/n, what is m+n”, then an extraction of “5” is valid in form,
while “m=2, n=3” is invalid, as it does not allow the math verifier to robustly evaluate its
correctness.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 10: The user interface for evaluating LLM extraction correctness for human participants.

Based on human verification of 100 randomly sampled rollouts (comprising 426 candidates), our
model demonstrates high performance. It achieves 94.1% accuracy in identifying the correct posi-
tion (Q1) and 94.0% accuracy in adhering to the target format (Q2).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D BREAKDOWN OF REFLECTIONS

87.7%

9.5%
0.9%
1.5%
0.4%

MiMo-7B-RL

59.3%28.3%

8.6%
2.3%
1.5%

DeepSeek-R1-Distill-
Qwen-7B

66.9%

25.3%

5.3%
1.8%
0.8%

DeepSeek-R1-Distill-
Llama-8B

89.5%

8.1%
0.7%
1.4%
0.2%

Qwen3-8B

DeepSeek-R1-0528-Qwe
n3-8B

90.1%

7.6%
0.7%
1.4%
0.2%

gpt-oss-20b

73.7%

19.1%
2.7%
4.0%
0.4%

Magistral-Small-2506

89.7%

7.9%
0.7%
1.4%
0.4%

DeepSeek-R1-0528

93.1%

5.3%0.6%
0.8%
0.2%

ALL

Transitions
T T F F (same) F T F F (diff) T F

83.7%

13.5%
0.4%
2.2%
0.2%

MiMo-7B-RL

55.7%30.8%

10.9%1.3%
1.3%

DeepSeek-R1-Distill-
Qwen-7B

57.5%32.9%

7.4%
1.5%
0.8%

DeepSeek-R1-Distill-
Llama-8B

92.5%

6.9%
0.3%
0.3%

Qwen3-8B

DeepSeek-R1-0528-Qwe
n3-8B

88.8%

8.6%
1.0%
1.4%
0.2%

gpt-oss-20b

75.5%

21.3%

2.6%
0.6%

Magistral-Small-2506

91.5%

7.9%
0.2%
0.5%

DeepSeek-R1-0528

93.2%

5.7%0.6%
0.4%
0.2%

AIME2024

Transitions
T T F F (same) F T F F (diff) T F

82.8%

13.4%
1.3%
2.4%
0.2% MiMo-7B-RL

38.1%

51.0%

9.9%
0.8%
0.2%

DeepSeek-R1-Distill-
Qwen-7B

38.0%

56.1%

0.7%
5.0%
0.2% DeepSeek-R1-Distill-

Llama-8B

83.6%

14.6%
0.8%
1.0%

Qwen3-8B

DeepSeek-R1-0528-Qwe
n3-8B

81.8%

17.0%
0.5%
0.7%

gpt-oss-20b

72.4%

21.9%

2.7%
2.4%
0.6%

Magistral-Small-2506

79.9%

17.6%

1.3%
1.2%

DeepSeek-R1-0528

93.6%

6.4%

AIME2025

Transitions
T T F F (same) F T F F (diff) T F

97.8%

2.2%

MiMo-7B-RL

74.8%

18.9%
2.8%
1.6%
1.8%

DeepSeek-R1-Distill-
Qwen-7B

77.8%

18.3%
1.2%
1.9%
0.8%

DeepSeek-R1-Distill-
Llama-8B

97.1%

1.5%
0.5%
0.9%
0.1% Qwen3-8B

DeepSeek-R1-0528-Qwe
n3-8B

95.7%

3.5%
0.3%
0.3%
0.2%

gpt-oss-20b

86.9%

9.1%
1.6%
2.3%

Magistral-Small-2506

95.4%

4.1%
0.3%
0.1%
0.1%

DeepSeek-R1-0528

98.6%

1.1%
0.3%

AMC

Transitions
T T F F (same) F T F F (diff) T F

93.5%

5.2%0.4%
0.7%
0.2%

MiMo-7B-RL

80.7%

12.6%
1.2%
4.1%
1.4%

DeepSeek-R1-Distill-
Qwen-7B

82.0%

13.5%
1.5%
1.9%
1.0%

DeepSeek-R1-Distill-
Llama-8B

94.6%

4.1%
0.6%
0.4%
0.3% Qwen3-8B

DeepSeek-R1-0528-Qwe
n3-8B

95.8%

3.0%
0.4%
0.7%
0.1%

gpt-oss-20b

87.2%

10.7%
0.6%
1.5%

Magistral-Small-2506

96.3%

3.2%
0.2%
0.1%
0.1%

DeepSeek-R1-0528

95.6%

3.8%
0.3%
0.2%
0.1%

Math500

Transitions
T T F F (same) F T F F (diff) T F

80.6%

14.5%
1.8%
2.3%
0.8%

MiMo-7B-RL

53.4%
29.9%

11.6%3.2%
1.9%

DeepSeek-R1-Distill-
Qwen-7B

62.7%
25.3%

8.6%
2.6%
0.9%

DeepSeek-R1-Distill-
Llama-8B

82.5%

13.2%
1.1%
2.8%
0.4%

Qwen3-8B

DeepSeek-R1-0528-Qwe
n3-8B

83.5%

12.1%
1.1%
2.8%
0.4%

gpt-oss-20b

62.8%
24.8%

7.6%
3.9%
0.9%

Magistral-Small-2506

80.3%

13.5%
1.3%
3.8%
1.0%

DeepSeek-R1-0528

87.8%

8.7%
1.1%
1.9%
0.6%

Olympiad Bench

Transitions
T T F F (same) F T F F (diff) T F

Figure 11: Reflection statistics of long CoTs of different models. Long CoTs are collected on
AIME24 and AIME25 (32 rollouts per question), AMC (4 rollouts per question), Olympiad Bench,
and Math500 (1 rollout per question).

E REFLECTION STATISTICS

Table 4: Number of candidate answers in rollouts across different reasoning models and datasets.

Model AIME2024 AIME2025 Math500 Olympiad Bench AMC

MiMo-7B-RL 3.64 3.52 5.79 4.69 4.64
DeepSeek-R1-Distill-Qwen-7B 3.50 3.12 2.47 3.76 2.96
DeepSeek-R1-Distill-Llama-8B 3.84 3.87 4.52 4.59 4.38
Qwen3-8B 4.27 3.72 6.94 6.10 5.77
DeepSeek-R1-0528-Qwen3-8B 3.55 3.17 6.32 4.74 4.57
gpt-oss-20B 3.22 3.12 3.01 3.48 3.31
Magistral-Small-2506 3.85 4.00 9.32 6.23 6.19
DeepSeek-R1-0528 3.65 2.96 6.34 4.85 5.03

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F EXAMPLE OF SFT DATA CURATION

Let ABC be a triangle inscribed in circle ω. Let the tangents to ω at B and C intersect at point D, and let AD intersect ω at P. If AB = 5, BC = 9, and AC = 10, AP
can be written as the form m/n , where m and n are relatively prime integers. Find m+ n.

<think> Okay so I need to solve this geometry problem …
…

Wait, that's a nice simplification! So 𝐴𝑃 is 100/13. Therefore, 𝑚 =
100 , 𝑛 = 13 , which are coprime.

Wait, that seems straightforward. Let me check my steps again
to ensure no mistakes.
…

Therefore, regardless of the method, AP is 100/13, so 𝑚 + 𝑛 =
100 + 13 = 113

But let me check once again with another approach to be
thorough. Maybe using power of a point and some properties of
triangle.
…

Therefore, 𝐴𝑃 = 𝐷𝐴 − 𝐷𝑃 = 100/13 Therefore, the answer is 100 +
13 = 113. Thus, I can be confident that the correct answer is 113.

</think> To solve the problem …

Model Response:

Problem statement:

<think> Okay so I need to solve this geometry problem …
…

Wait, that's a nice simplification! So 𝐴𝑃 is 100/13. Therefore, 𝑚 = 100 ,
𝑛 = 13 , which are coprime.

</think> To solve the problem …

Processed Cut-at-1 rollout:

“To solve the problem …” is generated by the model to ensure
coherence of the processed rollout

1st candidate

2nd candidate

3rd candidate

Figure 12: An illustration of the SFT data curation process in Section 3.1.

G ROLLOUT ANALYSIS

Table 5: Rollout analysis of 8 models on 5 datasets. "First" and "Final" indicates the accuracy of the
first appearing candidate and the final answer of the rollout.

AIME2024 AIME2025 AMC
Olympiad

Bench Math500 Average

Model First Final First Final First Final First Final First Final First Final

MiMo-7B-RL 72.5 72.5 65.0 67.9 89.2 89.2 74.3 80.3 93.1 96.2 78.8 81.2
DeepSeek-R1-Distill-Qwen-7B 53.3 52.1 33.8 35.4 76.4 79.2 59.0 64.3 85.2 90.8 61.5 64.4
DeepSeek-R1-Distill-Llama-8B 52.5 53.3 33.1 34.3 81.0 81.6 60.7 67.4 84.4 89.0 62.3 65.1
Qwen3-8B 81.7 82.1 67.9 70.8 91.6 92.8 72.7 80.3 92.2 97.4 81.2 84.7
DeepSeek-R1-0528-Qwen3-8B 76.2 77.9 66.2 68.8 92.8 90.7 71.5 74.9 92.3 94.9 79.8 81.4
gpt-oss-20b 76.4 78.5 74.5 77.0 87.0 89.4 67.7 73.5 90.9 93.9 79.3 82.4
Magistral-Small-2506 83.8 84.2 70.4 72.9 93.2 93.5 68.9 77.5 94.0 97.0 82.0 85.0
DeepSeek-R1-0528 89.6 90.0 85.8 86.2 96.4 95.8 78.4 82.6 95.2 98.4 89.1 90.6

Table 6: Rollout analysis of 8 models on 5 datasets. "FC" stands for first candidate, indicating the
token usage of getting the first candidate. "Refl." stands for reflection, indicating the token usage of
reflection after first candidate.

AIME2024 AIME2025 AMC
Olympiad

Bench Math500 Average

Model FC Refl. FC Refl. FC Refl. FC Refl. FC Refl. FC Refl.

MiMo-7B-RL 11,728 2,320 13,437 1,910 7,186 2,287 7,964 2,815 3,146 1,868 8,692 2,240
DeepSeek-R1-Distill-Qwen-7B 7,259 1,116 9,085 991 3,712 752 3,912 1,167 1,339 444 5,061 894
DeepSeek-R1-Distill-Llama-8B 9,404 1,256 9,862 1,237 4,434 1,246 5,126 1,533 1,920 1,024 6,149 1,259
Qwen3-8B 10,723 3,676 12,254 3,705 6,597 3,472 7,492 3,326 2,522 2,345 7,918 3,305
DeepSeek-R1-0528-Qwen3-8B 10,907 3,090 11,897 2,568 6,631 2,597 7,507 2,602 2,558 2,309 7,900 2,633
gpt-oss-20b 5,814 923 5,861 1,242 2,560 738 3,539 1,734 1,039 386 3,763 1,005
Magistral-Small-2506 12,539 6,424 14,272 6,410 8,312 6,830 8,654 6,785 3,547 5,936 9,465 6,477
DeepSeek-R1-0528 9,232 3,450 11,823 3,558 6,065 3,267 6,586 3,100 2,241 2,194 7,189 3,114

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

H TOKEN USAGE AND ACCURACY

0 2,000 4,000 6,000 8,000
Output Tokens

Cut at 1
Cut at 2
Cut at 3
Cut at 4
Cut at 5
Cut at 6

18.8% +1.5%

20.3% +1.0%

20.1% +1.2%

19.4% +1.4%

19.7% +1.7%

20.9% +2.2%

First candidate answer
Reflections

(a) Llama3.1-8B-Instruct

0 2,500 5,000 7,500 10,000 12,500
Output Tokens

Cut at 1
Cut at 2
Cut at 3
Cut at 4
Cut at 5
Cut at 6

37.9% +1.1%

38.7% +1.8%

40.2% +1.0%

39.4% +2.8%

39.1% +2.5%

40.1% +2.7%

(b) Qwen2.5-7B-Instruct

Figure 13: Token usage and accuracy after SFT using Deepseek-R1 rollouts, separated into two
parts: the first candidate answers (before the first candidate) and the reflections (after the first candi-
date). In the figure, orange bars show tokens used before the first candidate answer, blue bars show
tokens used for reflections, and performance is marked on each segment. Cut at i rows correspond to
models trained with R1 rollouts truncated at different positions. Training data are controlled so that
they have same number of training tokens. We can see that cut-at-6 is on average 3.8% better than
cut-at-1 (averaging over two models), while the improvement in first answer accuracy contributes
2.65% improvement, and reflection contributes 1.15% improvement.

I COMPARING DIVERSITY BETWEEN ROLLOUTS

Diversity Prompt

Please compare the two response and judge whether Response 2
contains any new mathematical concept, or is simply redoing the
previous calculations. Note, "new mathematical concept" can be
any new information, imagine this is educational material to
someone not familiar with math. Will Response 2 provide more
information to them instead of simply repeating some previous
calculation already in Response 1? In the last line of your
response, please indicate "<YES>" or "<NO>".

To assess whether datasets truncated at later positions include extra useful information, we compare
two responses to the same problem: one from dataset cut-at-{i} and the other from dataset cut-
at-{i+1}, where the latter contains one more piece of reflection. Using an LLM (gpt-oss-120b),
we evaluate whether this added text introduces any new mathematical concepts or problem-solving
approaches. For all problems, we then compute the percentage for which cut-at-{i+1} contributes
additional concepts/approaches beyond cut-at-{i}. The statistics are shown in Table 7

Table 7: Diversity analysis of longer rollouts. Percentage stands for the percentage of problems that
the longer rollouts see additional problem-solving approaches.

Percentage (%)

From cut-at-1 to cut-at-2 22.6
From cut-at-2 to cut-at-3 16.8
From cut-at-3 to cut-at-4 15.6
From cut-at-4 to cut-at-5 16.4
From cut-at-5 to cut-at-6 15.2

We provide two cases showing when the rollout with more reflections provides additional problem-
solving approaches (Figure 14) and when the rollout with more reflections repeats previous calcula-
tions (Figure 15).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Question. Even or odd sum of all natural numbers from 1 to 17?

Response in cut-at-1
<think> Okay, so I need to figure out whether the sum of all
natural numbers from 1 to 17 is even or odd. Hmm, let’s start
by recalling how to calculate the sum of numbers from 1 to
a certain number. I think there’s a formula for that. Let me
remember... Oh yeah, it’s the formula for the sum of an arith-
metic series. The formula is n(n + 1)/2, where n is the last
number in the sequence. So in this case, n is 17. Let me write
that down:
Sum = 17 * (17 + 1) / 2
Calculating that, first I need to compute 17 + 1, which is 18.
Then multiply by 17: 17 * 18. Hmm, what’s 17 times 18?
Let me do that step by step. 17 * 10 is 170, 17 * 8 is 136,
so adding them together: 170 + 136 = 306. Then divide by 2:
306 / 2 = 153. So the total sum is 153. Now, I need to check
if 153 is even or odd.
An even number is divisible by 2 without a remainder, and an
odd number isn’t. So, let me divide 153 by 2. 2 goes into 153
how many times? Well, 2*70 is 140, subtract that from 153,
you get 13. Then 2*6 is 12, so that’s 76 with a remainder of 1.
So 153 divided by 2 is 76 with a remainder of 1, which means
it’s an odd number. Therefore, the sum is odd. ... Actually,
that’s correct, no further checking needed, I believe I have got
the answer. Let’s stop thinking and give a concrete answer
based on the thoughts.

Response in cut-at-2

<think> Okay, so I need to figure out whether the sum of all
natural numbers from 1 to 17 is even or odd. Hmm, let’s start
by recalling how to calculate the sum of numbers from 1 to
a certain number. I think there’s a formula for that. Let me
remember... Oh yeah, it’s the formula for the sum of an arith-
metic series. The formula is n(n + 1)/2, where n is the last
number in the sequence. So in this case, n is 17. Let me write
that down:
Sum = 17 * (17 + 1) / 2
Calculating that, first I need to compute 17 + 1, which is 18.
Then multiply by 17: 17 * 18. Hmm, what’s 17 times 18?
Let me do that step by step. 17 * 10 is 170, 17 * 8 is 136,
so adding them together: 170 + 136 = 306. Then divide by 2:
306 / 2 = 153. So the total sum is 153. Now, I need to check
if 153 is even or odd.
An even number is divisible by 2 without a remainder, and an
odd number isn’t. So, let me divide 153 by 2. 2 goes into 153
how many times? Well, 2*70 is 140, subtract that from 153,
you get 13. Then 2*6 is 12, so that’s 76 with a remainder of 1.
So 153 divided by 2 is 76 with a remainder of 1, which means
it’s an odd number. Therefore, the sum is odd.
Wait, but maybe there’s another way to figure this out without
calculating the entire sum? Let me think. Since we’re deal-
ing with parity (even or odd), maybe we can find the num-
ber of odd numbers in the sequence from 1 to 17 and see if
their count is odd or even. Because adding an even number of
odd numbers would result in an even sum, and adding an odd
number of odd numbers would result in an odd sum. But then
again, even numbers don’t affect the parity. So let’s see.
From 1 to 17, how many odd numbers are there? Well, the
numbers alternate between odd and even. Starting with 1
(odd), then 2 (even), 3 (odd), etc. Since 17 is odd, there are
(17 + 1)/2 = 9 odd numbers? Wait, let me check. If you have
numbers from 1 to n, the number of odd numbers is ceil(n/2).
For example, if n is even, like 16, then there are 8 odd num-
bers. If n is odd, like 17, then there are (17 + 1)/2 = 9 odd
numbers. Let me count them manually to confirm. Numbers
from 1 to 17:
1 (odd), 2 (even), 3 (odd), 4 (even), 5 (odd), 6 (even), 7 (odd),
8 (even), 9 (odd), 10 (even), 11 (odd), 12 (even), 13 (odd),
14 (even), 15 (odd), 16 (even), 17 (odd). Let me count how
many odds: 1,3,5,7,9,11,13,15,17. That’s 9 numbers. So 9
odd numbers.
Now, each odd number contributes 1 to the parity of the sum.
So adding 9 odd numbers together. Since 9 is odd, the sum of
9 odd numbers is odd. Because adding two odd numbers gives
even, adding another odd number makes it odd again. So odd
+ odd = even, even + odd = odd. So for 9 odds, since 9 is odd,
the total sum would be odd. Therefore, the sum from 1 to 17
is odd.
... Actually, that’s correct, no further checking needed, I be-
lieve I have got the answer. Let’s stop thinking and give a
concrete answer based on the thoughts.

Figure 14: One case where the additional reflection provides another problem-solving approach: To
know the parity of the sum, one only needs to count the number of odd numbers.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Question. What is the number? If I subtract a number from 12, I get 7. Calculate!

Response in cut-at-1
<think> Okay, let’s see. The problem says, "If I sub-
tract a number from 12, I get 7. Calculate!" So I need
to find the number that when subtracted from 12 gives
7. Hmm, let me break this down.
First, let me translate the words into a mathematical
equation. The problem states that subtracting a num-
ber from 12 results in 7. Let me denote the unknown
number as x. So, the equation would be 12 minus x
equals 7. That is, 12 - x = 7.
Now, I need to solve for x. To do that, I can rearrange
the equation. Let me think. If I subtract x from 12,
the result is 7. So, to isolate x, I can subtract 7 from
both sides? Wait, no. Let me recall how to solve linear
equations.
Starting with 12 - x = 7. If I want to solve for x, I can
add x to both sides to get rid of the negative sign. So,
adding x to both sides gives 12 = 7 + x. Then, to get x
by itself, I subtract 7 from both sides. That would be 12
- 7 = x. Calculating that, 12 minus 7 is 5. So x equals 5.
... Actually, that’s correct, no further checking needed,
I believe I have got the answer. Let’s stop thinking and
give a concrete answer based on the thoughts.

Response in cut-at-2
<think> Okay, let’s see. The problem says, "If I sub-
tract a number from 12, I get 7. Calculate!" So I need
to find the number that when subtracted from 12 gives
7. Hmm, let me break this down.
First, let me translate the words into a mathematical
equation. The problem states that subtracting a num-
ber from 12 results in 7. Let me denote the unknown
number as x. So, the equation would be 12 - x = 7.
Now, I need to solve for x. To do that, I can rearrange
the equation. Let me think. If I subtract x from 12,
the result is 7. So, to isolate x, I can subtract 7 from
both sides? Wait, no. Let me recall how to solve linear
equations.
Starting with 12 - x = 7. If I want to solve for x, I can
add x to both sides to get rid of the negative sign. So,
adding x to both sides gives 12 = 7 + x. Then, to get
x by itself, I subtract 7 from both sides. That would
be 12 - 7 = x. Calculating that, 12 minus 7 is 5. So x
equals 5.
Wait, let me check that again. If I subtract 5 from 12,
does that give 7? Let me verify. 12 minus 5 is indeed
7. Yeah, that works. So the number must be 5.
... Actually, that’s correct, no further checking needed,
I believe I have got the answer. Let’s stop thinking and
give a concrete answer based on the thoughts.

Figure 15: One case where the additional reflection is simple repetition.

J TESTS ON NON-MATHEMATICAL DOMAINS

In addition to mathematical problems, in this section, we analyze the reasoning rollouts of Qwen3-
8B, Qwen3-14B, and DeepSeek-R1-Distill-Llama-8B on three non-mathematical domains from
MMLU: Formal Logic, High School Statistics, and Economics. Since MMLU are multiple-choice
questions, we use the following prompt to extract the candidate answer positions.

System Prompt for MMLU

You are given a text block that contains the original problem
statement and a list of four choices to choose from to answer
the problem, followed by a line-numbered model solution.

Your job is **NOT** to judge correctness or solve the problem.
Instead, read the solution **line by line** and record every
line where the model has implicitly or explicitly derived a
candidate answer to the problem (it may not be correct, as long
as it is an answer to the problem it counts). You need to fully
understand what the problem asks for to notice the candidate
answer. Only the thinking part of the model solution is
provided for analysis.

Definitions
Candidate answer any explicit value or statement that (a)

directly answers what the problem asks **or** (b) uniquely
determines it with only a trivial final step (e.g. if the
problem asks N mod 1000, then once you know N, taking N mod
1000 is immediate).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Candidate answer is not intermediate components (like individual
addends when the question asks for their sum) unless the
problem explicitly asks for each component.

There is likely multiple candidates answers in the model solution,
and they are not necessarily the same as the model's final
answer. You should not look for candidate answers by matching
the model's final answer.

You can reason about the lines and decide whether they are
candidate answers. For the final response, you should follow
the format as below.

Final output format strict
1. For each qualifying line output a two-element tuple:

(line_number, choice)
`line_number` is an integer.
`choice` is one of A, B, C or D.

2. Collect the tuples in a Python list **in the order the lines
appear**.

3. The **very last line** of your reply must be *only* that list,
so that `eval()` can parse it, for example, [(12, "A"), (27,
"C")]

4. Do **not** output anything after that list.

We report results of Qwen3-8B, Qweb3-14B, and DeepSeek-R1-Distill-Llama-8B on three MMLU
tasks in Table 8, 9, and 10. We can see that on these non-mathematical tasks, the models exhibit a
similar pattern as in mathematical tasks, where the first answer accuracy closely matches the final
answer accuracy, and the relative position of the first answer is early.

Table 8: Performance of Qwen3-8B on three MMLU tasks.

Qwen3-8B Formal Logic High School Statistics Economics

First answer accuracy 94.4 91.7 79.8
Final answer accuracy 96.8 94.4 80.7
First answer relative position 0.47 0.51 0.54

Table 9: Performance of Qwen3-14B on three MMLU tasks.

Qwen3-14B Formal Logic High School Statistics Economics

First answer accuracy 96.8 93.1 78.9
Final answer accuracy 97.6 94.4 80.7
First answer relative position 0.51 0.56 0.59

Table 10: Performance of DeepSeek-R1-Distill-Llama-8B on three MMLU tasks.

DeepSeek-R1-Distill-Llama-8B Formal Logic High School Statistics Economics

First answer accuracy 64.3 77.8 45.6
Final answer accuracy 66.7 79.2 48.2
First answer relative position 0.66 0.69 0.74

K DISCUSSION ON REINFORCEMENT LEARNING STAGE

In Section 3, we studied the role of reflections in supervised-fine-tuning stage of the model training,
and briefly discussed the implications on RL stage. In this section, we further discuss how our
findings may apply to the reinforcement learning stage.

We first conducted an RL training experiment, training a model initialized from Qwen2.5-Math-7B
with the DeepScaleR dataset and GRPO algorithm. We collect rollouts on the five mathematical

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

datasets studied for every 5 steps of RL training and analyze their first answer accuracy and final
answer accuracy. As shown in Figure 16 the first-answer-accuracy closely matches the final answer
accuracy as training progresses. The echos with our findings that performance of a model is mainly
decided by its first answer accuracy, and models performance boost from RL also mainly originates
from the boost in first answer accuracy.

0 50 100 150 200 250
Training step

22

24

26

28

30

32

34

Ac
cu

ra
cy

 (%
)

First Answer Accuracy
Final Answer Accuracy

Figure 16: Change of first answer accuracy and final accuracy as RL training progresses.

L TRANSFERABILITY OF CAD AND QRC

In this section, we study the transferability of the proposed candidate answer detector (CAD) and
question-aware reflection controller (QRC) on other models and datasets. To do that, we use the
same CAD and QRC trained on the LLM-annotated Qwen3-8B rollouts on questions in M1-SFT
dataset, and apply to two models, Qwen3-14B and DeepSeek-R1-Distill-Llama-8B, on the five
mathematical datasets studied in the paper (Math500, AMC, Olympiad Bench, AIME2024, and
AIME2025), as well as three recent mathematical datasets at the time of writting: CMIMC, HMMT,
and BRUMO.

We report the results in Figure 17. We can see that the CAD and QRC can transfer well when
applied to Qwen3-14B on different datasets. Suggesting its robustness to model and problem for-
matting. Moreover, we also see that in some threshold configurations of CAD and QRC (e.g. 0.5
and 0), we achieve a 1.9% performance increase while reducing 13.5% of the tokens by early stop-
ping. Suggesting that excessive reflections may even have negative effects on the models reasoning
performance. Additionally, we show that CAD and QRC is not sensitive to problem difficulty by
showing their performance on AIME2025, which is considered the hardest among the five studied
datasets. Comparing Figure 17c with 17e and 17d with 17f, we can see that on AIME2025, CAD and
QRC do not introduce more performance drop than average, suggesting their robustness to problem
difficulties.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 0.010.05 0.1 0.5 1.0
QRC Threshold

0.15

0.3

0.5CA
D

 T
hr

es
ho

ld -0.8 -0.5 +0.6 +1.3 +0.9 +0.9

+1.1 +0.8 -0.3 -0.6 -1.6 -1.6

0.0 -0.4 -0.7 -0.7 -0.7 -0.7

Accuracy Percentage-Point Change

0 0.010.05 0.1 0.5 1.0
QRC Threshold

0.15

0.3

0.5CA
D

 T
hr

es
ho

ld -24.4 -24.2 -26.2 -26.4 -27.4 -27.6

-21.0 -21.2 -25.9 -27.1 -28.0 -28.2

-18.3 -18.5 -21.6 -23.5 -24.2 -24.7

Token Reduction (%)

1

0

1

27.5

25.0

22.5

20.0

(a) DeepSeek-R1-Distill-Llama-8B, averaged on
CMIMC, HMMT, and BRUMO.

0 0.01 0.05 0.1 0.5 1.0
QRC Threshold

0.15

0.3

0.5CA
D

 T
hr

es
ho

ld -3.0 -2.6 -7.0 -8.0 -9.5 -9.5

+1.9 +1.9 -1.6 -3.9 -4.2 -4.2

+0.7 +0.7 -0.3 -2.3 -2.7 -2.7

Accuracy Percentage-Point Change

0 0.01 0.05 0.1 0.5 1.0
QRC Threshold

0.15

0.3

0.5CA
D

 T
hr

es
ho

ld -21.6 -21.9 -30.6 -33.8 -36.8 -37.0

-13.5 -13.8 -22.4 -27.1 -30.7 -30.8

-5.6 -6.0 -13.6 -17.0 -18.7 -18.7

Token Reduction (%)

5

0

30

20

10

(b) Qwen3-14B, averaged on CMIMC, HMMT, and
BRUMO.

0 0.010.05 0.1 0.5 1.0
QRC Threshold

0.15

0.3

0.5CA
D

 T
hr

es
ho

ld +0.8 +1.0 +0.3 +0.3 +0.3 +0.4

+0.6 +0.6 -0.4 -0.4 -0.2 -0.2

+0.6 +0.4 -0.3 -0.3 -0.6 -0.6

Accuracy Percentage-Point Change

0 0.010.05 0.1 0.5 1.0
QRC Threshold

0.15

0.3

0.5CA
D

 T
hr

es
ho

ld -22.8 -22.8 -24.3 -24.4 -25.3 -25.4

-20.8 -21.5 -25.0 -25.7 -26.6 -26.5

-16.2 -17.4 -23.6 -24.7 -25.7 -25.5

Token Reduction (%)

0.5

0.0

0.5

25

20

(c) DeepSeek-R1-Distill-Llama-8B, averaged
on Math, AMC, Olympiad Bench, AIME2024,
AIME2025.

0 0.01 0.05 0.1 0.5 1.0
QRC Threshold

0.15

0.3

0.5CA
D

 T
hr

es
ho

ld -0.4 -0.7 -2.5 -3.4 -3.7 -3.7

-0.2 -0.6 -1.5 -2.0 -2.4 -2.4

+0.4 +0.1 -0.6 -0.9 -1.4 -1.5

Accuracy Percentage-Point Change

0 0.01 0.05 0.1 0.5 1.0
QRC Threshold

0.15

0.3

0.5CA
D

 T
hr

es
ho

ld -25.3 -28.2 -38.4 -41.3 -43.9 -44.2

-16.1 -19.7 -31.9 -35.1 -38.2 -38.5

-8.1 -12.1 -24.9 -27.1 -29.5 -29.7

Token Reduction (%)

2

0

40

30

20

10

(d) Qwen3-14B, averaged on Math, AMC, Olympiad
Bench, AIME2024, AIME2025.

0 0.010.05 0.1 0.5 1.0
QRC Threshold

0.15

0.3

0.5CA
D

 T
hr

es
ho

ld +0.4 +1.5 +1.5 +1.6 +1.6 +1.6

-0.3 +0.6 +0.2 +0.3 +0.3 +0.3

+0.3 0.0 -0.8 -0.8 -0.8 -0.8

Accuracy Percentage-Point Change

0 0.010.05 0.1 0.5 1.0
QRC Threshold

0.15

0.3

0.5CA
D

 T
hr

es
ho

ld -21.5 -19.0 -17.9 -18.0 -18.2 -18.2

-20.6 -20.7 -23.2 -24.1 -24.4 -24.4

-15.3 -15.7 -20.8 -20.9 -21.4 -21.4

Token Reduction (%)

0

1

22.5

20.0

17.5

(e) DeepSeek-R1-Distill-Llama-8B, on AIME2025.

0 0.01 0.05 0.1 0.5 1.0
QRC Threshold

0.15

0.3

0.5CA
D

 T
hr

es
ho

ld -0.8 -1.9 -5.6 -6.5 -6.5 -6.5

-0.4 -1.6 -3.4 -4.1 -4.1 -4.1

+0.7 -0.1 -1.3 -1.5 -1.5 -1.5

Accuracy Percentage-Point Change

0 0.01 0.05 0.1 0.5 1.0
QRC Threshold

0.15

0.3

0.5CA
D

 T
hr

es
ho

ld -22.2 -26.4 -36.9 -38.0 -38.2 -38.2

-13.0 -19.2 -31.0 -33.0 -33.8 -33.8

-5.2 -12.0 -22.8 -23.8 -24.4 -24.4

Token Reduction (%)

6

4

2

0

30

20

10

(f) Qwen3-14B, on AIME2025.

Figure 17: Transferability of CAD and QRC trained on Qwen3-8B and applied to DeepSeek-R1-
Distill-Llama-8B and Qwen3-14B.

26

	Introduction
	Analyzing Reflections in Reasoning Models
	Reflection Extraction
	Reflection Analysis

	The Role of Reflection in Reasoning Model Training
	Training with Varying Amount of Reflections
	Training with Corrective Reflection Patterns

	Efficient Reasoning by Early Stopping
	Related Works
	Conclusions
	Prompt for Candidate Extraction
	Benchmark Statistics
	Human Evaluation
	Breakdown of Reflections
	Reflection Statistics
	Example of SFT data curation
	Rollout Analysis
	Token Usage and Accuracy
	Comparing Diversity between Rollouts
	Tests on Non-Mathematical Domains
	Discussion on Reinforcement Learning Stage
	Transferability of CAD and QRC

