
On the Role of Generalization in Transferability of Adversarial Examples

Yilin Wang1 Farzan Farnia1

1 Department of Computer Science and Engineering,
The Chinese University of Hong Kong,

Hong Kong SAR

Abstract

Black-box adversarial attacks designing adversar-
ial examples for unseen deep neural networks
(DNNs) have received great attention over the past
years. However, the underlying factors driving the
transferability of black-box adversarial examples
still lack a thorough understanding. In this paper,
we aim to demonstrate the role of the generaliza-
tion behavior of the substitute classifier used for
generating adversarial examples in the transfer-
ability of the attack scheme to unobserved DNN
classifiers. To do this, we apply the max-min ad-
versarial example game framework and show the
importance of the generalization properties of the
substitute DNN from training to test data in the
success of the black-box attack scheme in applica-
tion to different DNN classifiers. We prove theo-
retical generalization bounds on the difference be-
tween the attack transferability rates on training
and test samples. Our bounds suggest that opera-
tor norm-based regularization methods could im-
prove the transferability of the designed adversar-
ial examples. We support our theoretical results by
performing several numerical experiments show-
ing the role of the substitute network’s generaliza-
tion in generating transferable adversarial exam-
ples. Our empirical results indicate the power of
Lipschitz regularization and early stopping meth-
ods in improving the transferability of designed
adversarial examples.

1 INTRODUCTION

Deep neural networks (DNNs) have attained impressive
results in many machine learning problems from image
recognition [Krizhevsky et al., 2009b], speech processing
[Deng et al., 2013], and bioinformatics [Alipanahi et al.,

2015]. The standard evaluation of a trained DNN machine
is typically performed over test samples drawn from the
same underlying distribution that has generated the empiri-
cal training data. The numerous successful applications of
deep learning models reported in the literature demonstrate
DNNs’ surprising generalization power from training sam-
ples to unseen test data. Such promising results on unob-
served data despite DNNs’ enormous capacity for memo-
rizing training examples have attracted a lot of attention in
the machine learning community.

While DNNs usually achieve satisfactory generalization
performance, they have been frequently observed to lack ro-
bustness against minor adversarial perturbations to their in-
put data [Szegedy et al., 2013, Biggio et al., 2013, Goodfel-
low et al., 2014], widely known as adversarial attacks. Ac-
cording to these observations, an adversarial attack scheme
can generate imperceptible perturbations that fools the
DNN classifier to predict wrong labels with high confi-
dence scores. Such adversarial perturbations are usually
created through maximizing a target DNN’s prediction loss
over a small neighborhood around an input sample. While
DNNs often show successful generalization behavior to test
samples drawn from the underlying distribution of training
data, the minor perturbations designed by adversarial attack
schemes can completely undermine their prediction results.

Specifically, adversarial examples have been commonly re-
ported to be capable of transferring to unseen DNN classi-
fiers [Tramèr et al., 2017a, Ilyas et al., 2018, Cheng et al.,
2018, Zhou et al., 2018]. Based on these reports, an ad-
versarial example designed for a specific classifier could
further alter the prediction of another DNN machine with
a different architecture and training set. Such observations
have inspired the development of several black-box adver-
sarial attack schemes in which the adversarial examples are
designed for a substitute classifier and then are evaluated on
a different target DNN.

Several recent papers have attempted to theoretically study
the transferability of black-box adversarial attacks. These
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works have mostly focused on the effects of non-robust fea-
tures [Tramèr et al., 2017b, Ilyas et al., 2019, Inkawhich
et al., 2019], causality [Zhang et al., 2021], and equilib-
rium [Bose et al., 2020, Meunier et al., 2021] in adver-
sarial training problems on transferable adversarial exam-
ples. The mentioned studies reveal the dependency of ad-
versarial examples on non-robust features that can be eas-
ily perturbed through minor adversarial noise, and also how
the transferability of adversarial examples depends on the
equilibrium in the game between the adversary and clas-
sifier players. On the other hand, the connection between
the train-to-test generalization performance of the substi-
tute network and the transferability of the designed exam-
ples has not been explored in the literature. Hence, it re-
mains unclear whether a substitute DNN with a smaller
generalization gap results in more transferable adversarial
examples.

In this work, we attempt to understand the interconnec-
tions between the train-to-test generalization error and the
attack transferability rate of DNNs in black-box adversar-
ial attacks. We aim to show that a smaller generalization
gap not only improves the classification accuracy on un-
seen test data, but further could result in higher transfer-
ability rates for the designed adversarial examples. To this
end, we analyze the transferability of adversarial examples
through the lens of the max-min framework of Adversarial
Example Game (AEG) introduced by Bose et al. [2020]. Ac-
cording to this approach, the adversary player searches for
the most transferable attack strategy that reaches the maxi-
mum prediction error under the most robust DNN classifier.
We focus on the generalization performance of the AEG
learner from training samples to test data, and demonstrate
its importance in the transferability power of the generated
adversarial perturbations.

Specifically, we focus on the standard class of norm-
bounded adversarial attacks and define the train-to-test gen-
eralization error of a function class’s minimum risk under
norm-bounded adversarial perturbations. Subsequently, we
prove theoretical bounds on the defined generalization error
for multi-layer DNNs with spectrally-normalized weight
matrices, which enables us to bound the generalization gap
between the training and test transferability rates of norm-
bounded attack schemes. Also, the shown generalization
bound suggests the application of Lipschitz regularization
methods in training a substitute DNN with improved trans-
ferability of generated adversarial examples.

Finally, we numerically evaluate our theoretical results on
multiple standard image recognition datasets and DNN ar-
chitectures. Our empirical results further support the ex-
isting connections between the generalization and trans-
ferability properties of black-box adversarial attacks. The
numerical findings demonstrate that a better generaliza-
tion score for the substitute DNN could significantly boost
the transferability rate of designed adversarial examples.

In addition, we empirically demonstrate that both explicit
and implicit regularization techniques can help generate
more transferable examples. We validate this result for ex-
plicit Lipschitz regularization and implicit early-stopping
schemes. We can summarize the main contributions of our
work as follows:

• Drawing connections between the generalization proper-
ties of the substitute DNN classifier and the transferability
rate of designed adversarial examples

• Proving generalization error bounds on the difference be-
tween the transferability rates of DNN-based adversarial
examples designed for training and test data

• Demonstrating the power of Lipschitz regularization and
early stopping methods in generating more transferable ad-
versarial examples

• Conducting numerical experiments on the generalization
and transferability aspects of black-box adversarial attacks

2 RELATED WORK

Transferability of adversarial examples has been exten-
sively studied in the deep learning literature. The related
literature includes a large body of papers [Ilyas et al., 2018,
Cheng et al., 2018, Bhagoji et al., 2018, Alzantot et al.,
2019, Cheng et al., 2019, Moon et al., 2019, Guo et al.,
2019, Mohaghegh Dolatabadi et al., 2020, Wang et al.,
2020] proposing black-box adversarial attack schemes aim-
ing to transfer from a source DNN to an unseen target DNN
classifier and several related works [Levine and Feizi, 2020,
Salman et al., 2020, Singla and Feizi, 2020, Li et al., 2020]
on developing robust training mechanisms against black-
box adversarial attacks. Regarding the relationship between
accuracy and transferability, [Wu et al., 2018] observes a
positive correlation between the clean accuracy and trans-
ferability of adversarial examples following the neural net.
On the other hand, Gubri et al. [2022] report that the best
clean test accuracy does not provide the highest transfer-
ability rate. [Qin et al., 2022, Gubri et al., 2022] also study
the relationship between transferability rate and the loss
function’s sharpness.

In addition, several game theoretic frameworks have been
proposed to analyze the transferability of adversarial exam-
ples. The related works [Bose et al., 2020, Meunier et al.,
2021] study the adversarial example game between the clas-
sifier and adversary players. However, these works mostly
focus on the equilibrium and convergence behavior in ad-
versarial example games and do not discuss the generaliza-
tion aspect of the game. In another related work, Pal and
Vidal [2020] study the adversarial learning task through
the lens of game theory. Unlike our work, the generaliza-
tion analysis in [Pal and Vidal, 2020] focuses only on the
generalization behavior of the robust classification rule and



not on the generalization properties of the transferable ad-
versary player.

Furthermore, the generalization properties of adversarially-
learned models have been the topic of several related pa-
pers. References [Schmidt et al., 2018, Raghunathan et al.,
2019] discuss numerical and theoretical results that gen-
eralization of adversarially-trained neural nets is inferior
to that of standard ERM-learned models with the same
number of training data. The related work by Rice et al.
[2020] empirically studies the overfitting phenomenon in
adversarial training problems and reveals the different gen-
eralization properties of standard and adversarial training
schemes. In another study, Wu et al. [2020] show the con-
nection between the generalization of adversarially-learned
models and the flatness of the weight loss landscape. [Yin
et al., 2019, Awasthi et al., 2020] develop Rademacher-
complexity-based generalization bounds for adversarially-
trained models which suggest the application of norm-
based regularization techniques for improving the gener-
alization behavior of adversarial training methods. Farnia
et al. [2018] prove Pac-Bayes generalization bounds for
adversarially-learned DNNs with bounded spectral norms
for their weight matrices. Also, Attias et al. [2019] perform
VC-based generalization analysis for adversarial training
schemes and derives upper-bounds on their sample com-
plexity. However, we note that all these papers focus on the
generalization of adversarially-trained models and do not
study the connection between generalization and transfer-
ability of black-box attacks.

3 PRELIMINARIES: ADVERSARIAL
ATTACKS AND TRAINING

In this section, we give a brief review of standard norm-
bounded adversarial attack and training schemes. Consider
a supervised learning problem where the learner seeks a
prediction rule f from function space F to predict a label
variable Y ∈ Y from the observation of a d-dimensional
feature vector X ∈ X . In this work, we focus on the follow-
ing set of L-layer neural network functions with activation
function ψ:

FV =
{
fv : fv(x) = VLψ

(
· · ·ψ(V0x)·

)
, v ∈ V

}
(1)

In the above, we use vector v belonging to feasible set V to
parameterize the L-layer neural net fv. According to this
notation, v concatenates all the entries of the neural net’s
weight matrices V0, . . . , VL.

Given a loss function ℓ and n training samples in dataset
S = {(xi, yi)

n
i=1}, the standard risk minimization ap-

proach aims to find the prediction rule f∗ ∈ FV minimiz-
ing the expected loss (risk) E[ℓ(f(X), Y )] where the expec-
tation is taken according to the underlying distribution of
data PX,Y . Since the supervised learner only observes the

training samples and lacks any further knowledge of the
underlying PX,Y , the empirical risk minimization (ERM)
framework sets out to minimize the empirical risk function
estimated using the training examples:

min
v∈V

1

n

n∑
i=1

ℓ
(
fv(xi), yi

)
. (2)

However, the ERM learner typically lacks robustness to
norm-bounded adversarial perturbations. A standard ap-
proach to generate a norm-bounded adversarial perturba-
tion is through maximizing the loss function over a norm
ball around a given data point (x, y):

max
δ: ∥δ∥≤ϵ

ℓ
(
f(x+ δ), y

)
. (3)

Here δ ∈ Rd represents the d-dimensional perturbation
vector added to the feature vector x, and ∥·∥ denotes a norm
function used to measure the attack power that is bounded
by parameter ϵ ≥ 0.

In order to gain robustness against norm-bounded perturba-
tions, the adversarial training (AT) scheme [Madry et al.,
2017] alters the ERM objective function to the expected
worst-case loss function over norm-bounded adversarial
perturbations and solves the following min-max optimiza-
tion problem:

min
v∈V

1

n

n∑
i=1

[
max

δi: ∥δi∥≤ϵ
ℓ
(
fv(xi + δi), yi

)]

≡ min
v∈V

max
δ1,...,δn:
∀i, ∥δi∥≤ϵ

1

n

n∑
i=1

[
ℓ
(
fv(xi + δi), yi

)] (4)

Note that the above minimax problem indeed estimates the
solution to the following learning problem formulated over
the true distribution of data PX,Y :

min
v∈V

E(X,Y )∼P

[
max

δ: ∥δ∥≤ϵ
ℓ
(
fv(X+ δ), Y

)]
. (5)

It can be seen that the above optimization problem is in-
deed equivalent to the following min-max problem where
the maximization is performed over ∆ϵ containing all map-
pings δ : X × Y → Rd whose output is ϵ-norm-bounded,
i.e. ∀x, y : ∥δ(x, y)∥ ≤ ϵ:

min
v∈V

max
δ∈∆ϵ

EX,Y∼P

[
ℓ
(
fv(X+ δ(X, Y )), Y

)]
. (6)

In next sections, we will discuss the association between
the above min-max problem and the adversarial example
game for generating transferable adversarial examples.

4 A MAX-MIN APPROACH TO
TRANSFERABLE ADVERSARIAL
EXAMPLES

The transferability of adversarial examples has been ex-
tensively studied in the literature. A useful framework to



theoretically study transferable examples is the max-min
framework of adversarial example game (AEG) proposed
by Bose et al. [2020]. According to this approach, the ad-
versary searches for the most transferable attack scheme
δ ∈ ∆ from a set of attack strategies ∆ that achieves the
maximum expected loss under the most robust classifier
fv ∈ FV from DNN function space FV . Therefore, the
AEG approach reduces the transferable adversary’s task to
solving the following max-min optimization problem:

max
δ∈∆

min
v∈V

1

n

n∑
i=1

[
ℓ
(
fv(xi + δ(xi, yi)), yi

)]
(7)

The above bi-level optimization problem indeed swaps the
maximization and minimization order of the AT optimiza-
tion problem, and focuses on the max-min version of the
min-max AT optimization task. Note that as shown by Me-
unier et al. [2021], the adversarial example game is in gen-
eral not guaranteed to have a pure Nash equilibrium where
each player’s deterministic strategy is optimal when fixing
the other player’s strategy. Due to the lack of pure Nash
equilibria, the AEG max-min and AT min-max optimiza-
tion problems may not share any common solutions.

Note that the AEG framework introduces the following
metric for evaluating the transferability of an attack scheme
δ : X × Y → Rd:

L̂transfer(δ) := min
v∈V

1

n

n∑
i=1

[
ℓ
(
fv(xi + δ(xi, yi)), yi

)]
(8)

The above transferability score indeed estimates the follow-
ing score measuring transferability under the underlying
distribution PX,Y :

Ltransfer(δ) := min
v∈V

EPX,Y

[
ℓ
(
fv(X+ δ(X, Y )), Y

)]
.

(9)
Based on this discussion, the AEG optimization problem
in (7) similarly estimates the solution to the following max-
min AEG problem formed around the underlying distribu-
tion PX,Y :

max
δ∈∆

Ltransfer(δ) ≡

max
δ∈∆

min
v∈V

E(X,Y )∼P

[
ℓ
(
fv(X+ δ(X, Y )), Y

)]
.

(10)

Therefore, the primary goal of the transferable adversary is
to solve the above problem targeting the distribution of test
data instead of training examples. However, since the true
distribution is unknown to the adversary, the AEG frame-
work switches to the empirical max-min problem (7). This
discussion motivates the following definition of the gener-
alization error for adversarial examples’ transferability per-
formance:

Definition 1. We define the generalization error of an at-
tack scheme δ : X × Y → Rd over DNN classifier space
FV as follows:

ϵgen(δ) := L̂transfer(δ)− Ltransfer(δ) (11)

= min
v∈V

{
1

n

n∑
i=1

[
ℓ
(
fv(xi + δ(xi, yi)), yi

)]}
−min

v∈V

{
E
[
ℓ
(
fv(X+ δ(X, Y )), Y

)]}
.

Note that the above definition is consistent with the stan-
dard definition of generalization error in minimax learn-
ing frameworks such as generative adversarial network
(GAN) and adversarial training approaches in the literature
[Arora et al., 2017, Yin et al., 2019, Farnia and Ozdaglar,
2020, Xing et al., 2021, Farnia and Ozdaglar, 2021, Lei
et al., 2021] where the generalization error of the min (or
max) player is defined as the difference between the worst-
case empirical and population objectives under the other
player’s optimal action. Therefore, in order for a black-
box adversarial attack to be effective, we need the attack
scheme to generalize well from training samples to test
data, and based on the max-min AEG framework the gen-
eralization error is defined in the sense of Definition 1.

5 A GENERALIZATION BOUND FOR
ADVERSARIAL EXAMPLE GAMES

In this section, we aim to analyze the generalization er-
ror of a black-box adversarial attack scheme based on the
substitute classifier of a L-layer DNN HW . To character-
ize a one-to-one correspondence between the choice of the
DNN weights and the assigned attack scheme, we consider
the following definition of an optimal attack scheme for a
substitute neural net hw ∈ HW , which revisits the distri-
butionally robust optimization approach to the adversarial
training problem [Sinha et al., 2017].

Definition 2. Given a classifier hw, we call the attack
scheme δ∗w : X × Y → Rd λ-optimal if it solves the fol-
lowing optimization problem:

max
δ:X×Y→Rd

E
[
ℓ
(
hw(X+δ(X, Y )), Y

)]
−λ
2
E
[
∥δ(X, Y )∥2

]
.

The above definition of a λ-optimal attack revisits the no-
tion of Wasserstein-based distributional adversarial attacks
in the distributionally robust optimization literature [Sinha
et al., 2017], where the attack norm bound parameterized
by ϵ implicitly depends on coefficient λ. Here, the defini-
tion of λ-optimal attacks employs a regularization term to
penalize the averaged norm-squared of perturbations. As
shown in Proposition 1, this definition allows us to estab-
lish a one-to-one correspondence between λ-optimal attack



schemes and λ-smooth DNN classifiers. The one-to-one
correspondence property addresses the intractable nature
of the analysis of an optimal ϵ-norm bounded adversarial
attack scheme which could be non-unique for non-convex
neural nets.

Proposition 1. Consider the L2-norm function ∥ · ∥2
for measuring the attack power. Suppose that the com-
position ℓ ◦ hw is a λ-smooth differentiable function
of x, i.e. for every x,x′, y we have ∥∇xℓ(hw(x), y) −
∇xℓ(hw(x′), y)∥2 ≤ λ∥x − x′∥2. Then, there exists a
unique λ-optimal attack scheme δ∗(x, y) for hw given by:

δ∗(x, y) =

(
Idx − 1

λ
∇xℓ ◦ hw

)−1

(x, y) − x.

In the above equation Idx represents the identity function
on feature vector x, and (·)−1 denotes the inverse of an
invertible transformation.

Proof. We defer the proof to the Appendix.

The above proposition reveals a bijection between smooth
DNN classifiers and optimal attack schemes. Therefore, in
our generalization analysis, we focus on bounding the gen-
eralization error for the resulting λ-optimal attack schemes
corresponding to λ-smooth DNN substitute classifiers.

In the following theorem, we show a generalization error
bound for the class of λ-optimal black-box attack schemes
coming from spectrally-regularized DNN functions. This
theorem extends the uniform convergence generalization
bounds [Bartlett et al., 2017, Neyshabur et al., 2017] from
standard deep supervised learning problems to the max-
min adversarial example game learning framework. In the
theorem, we use the following set of assumptions on the
loss function ℓ and the target and substitute classes of neu-
ral networks. Also, note that ∥ · ∥2 denotes the L2-operator
(spectral) norm in application to a matrix, i.e. the matrix’s
maximum singular value, and ∥ · ∥2,1 denotes the (2, 1)-
norm of a matrix which is the summation of the L2-norms
of the matrix’s rows.

Assumption 1. Loss function ℓ(y, y′) is a c-bounded,
1-Lipschitz, and 1-smooth function of the input y, i.e.
for every y1, y2, y

′ ∈ Y we have |ℓ(y1, y′)| ≤ c,
|ℓ(y1, y′) − ℓ(y2, y

′)| ≤ ∥y1 − y2∥2, and ∥∇yℓ(y1, y
′) −

∇yℓ(y2, y
′)∥2 ≤ ∥y1 − y2∥2.

Assumption 2. The set of substitute DNNs in the
black-box attack scheme HW = {hw : w ∈
W} contains L-layer neural networks hw(x) =
WLϕL

(
WL−1ϕL−1(· · ·W1ϕ1(W0x)·

)
. We suppose that

the dimensions of matrices W0, . . . ,Wk is bounded by D,
and assume every activation ϕi satisfies ϕi(0) = 0 and is
γi-Lipschitz and γi-smooth, i.e. max{|ϕ′i(z)|, |ϕ′′i (z)|} ≤
γi holds for every z ∈ R.

Assumption 3. The class of target classifiers FV = {fv :
v ∈ V} consists of K-layer neural network functions
fv(x) = VKψL

(
VL−1ψL−1(· · ·V1ψ1(V0x)·

)
with activa-

tion function ψi’s. We suppose that the dimensions of matri-
ces V0, . . . , Vk is bounded by D. Also, we assume every ψi

satisfies ψi(0) = 0 and is ξi-Lipschitz, i.e. maxz |ψ′
i(z)| ≤

ξi. Also, we define the capacity RV as

RV := sup
v∈V

( K∏
i=0

ξi∥Vi∥2
)( K∑

i=0

∥V ⊤
i ∥2/32,1

∥Vi∥2/32

)3/2
 .

Theorem 1. Suppose that the loss function, substitute
DNN, and target DNN in a black-box adversarial at-
tack satisfy Assumptions 1, 2 and 3. Assuming ∥X∥2 ≤
B for the n × d data matrix X and λ(1 − τ) ≥
(
∏L

i=0 γi∥Wi∥2)
∑L

i=0

∏L
j=0 γj∥Wj∥2 holds for constant

τ > 0 and every w ∈ W , then for every ω > 0 with proba-
bility at least 1−ω the following bound will hold for every
w ∈ W:

ϵgen(δ
∗
w) ≤O

(
c

√
log(1/ω)

n
(12)

+
(B + Lw

λ )
(
RV + 1

τ2LwRw

)
log(n) log(D)

n

)
where the Lipschitz and capacity terms Lw, Rw are de-
fined as:

Lw :=

L∏
i=0

γi∥Wi∥2,

Rw :=

 L∑
i=0

i∏
j=0

γj∥Wj∥2

( L∑
i=0

∥W⊤
i ∥2/32,1

∥Wi∥2/32

)3/2

.

(13)

Proof. We defer the proof to the Appendix.

The above theorem bounds the generalization error of the
attack scheme δ∗w corresponding to the substitute DNN fw
in terms of the spectral capacity of the substitute network.
As a result, this bound motivates norm-based spectral regu-
larization [Yoshida and Miyato, 2017, Miyato et al., 2018,
Farnia et al., 2018] for improving the generalization perfor-
mance of black-box attack schemes.

6 NUMERICAL RESULTS

In this section, we provide the results of our numerical ex-
periments for validating the connection between the gen-
eralization and transferability properties of black-box ad-
versarial attacks. The numerical discussion focuses on the
question of whether achieving a better generalization score
for the substitute DNN can improve the success of the
designed perturbations in application to a different DNN



Figure 1: Generalization errors of substitute DNNs (the lower the better), and transferability rates of adversarial examples generated from
the substitute model (the higher the better) for CIFAR-10 (rows 1-2), CIFAR-100 (rows 3-4) and SVHN (rows 5-6) datasets. ResNet18
and VGG-16 architectures were used as the target DNNs.

classifier. To answer this question, we tested an explicit
norm-based regularization method, spectral normalization
[Yoshida and Miyato, 2017, Tsuzuku et al., 2018, Farnia
et al., 2018], as well as an implicit regularization technique,
early stopping [Yao et al., 2007, Rice et al., 2020], to eval-
uate the power of these regularization methods in attaining
more transferable black-box attacks.

For generating norm-bounded perturbations, we used stan-
dard projected gradient descent (PGD) and fast gradient
method (FGM) [Goodfellow et al., 2014] to design pertur-
bations. We implemented the PGD and FGM algorithms by
projecting the perturbations according to both standard L2-
norm and L∞-norm, where the latter results in the widely-
used fast gradient sign method (FGSM) attack scheme
[Goodfellow et al., 2014] in the FGM case. For simulating

L2-norm-bounded perturbations, we chose the maximum
L2-norm (attack power) as ϵ = γEP̂ [∥X∥2] with γ = 0.05
unless stated otherwise. ForL∞-norm-bounded attacks, we
chose ϵ = 8/255 for the normalized samples. For opti-
mizing PGD perturbations, we applied r = 15 PGD steps,
where we used the standard rule α = 1.5ϵ/r to choose the
stepsize parameter α. We trained every DNN model for 100
epochs using the Adam optimizer [Kingma and Ba, 2014]
with a batch-size of 128. The numerical experiments were
implemented using the PyTorch platform and were run on
one standard RTX-3090 GPU.

In our experiments, we used three standard image recog-
nition datasets: 1) CIFAR-10, 2) CIFAR-100 [Krizhevsky
et al., 2009a], 3) SVHN [Netzer et al., 2011], and the
following four neural network architectures: 1) AlexNet



Dataset Model Method
Generalization

Error
Transferability Rate

(VGG-16)
Transferability Rate

(ResNet-18)
∞ 0.545± 0.031 0.105±0.011 0.087±0.009PGD 1.0 0.342±0.022 0.162±0.012 0.139±0.01
∞ 0.512±0.022 0.093±0.014 0.077±0.031I-FGM 1.0 0.414±0.018 0.149±0.022 0.123±0.009
∞ 0.505±0.028 0.089±0.007 0.070±0.007

AlexNet

FGM 1.0 0.451±0.022 0.147±0.014 0.122±0.011
∞ 0.508±0.020 0.104±0.009 0.084±0.010PGD 1.0 0.258±0.015 0.150±0.008 0.134±0.007
∞ 0.487±0.011 0.093±0.010 0.081±0.010I-FGM 1.0 0.288±0.017 0.113±0.011 0.122±0.011
∞ 0.466±0.019 0.092±0.012 0.078±0.011

Cifar10

Inception

FGM 1.0 0.320±0.031 0.136±0.018 0.113±0.015
∞ 0.789±0.055 0.229±0.032 0.260±0.031PGD 1.0 0.601ś 0.043 0.323±0.023 0.353±0.025
∞ 0.777±0.033 0.265±0.028 0.277±0.021I-FGM 1.0 0.655±0.030 0.313±0.021 0.321±0.026
∞ 0.758±0.041 0.258±0.019 0.232±0.023

AlexNet

FGM 1.0 0.611±0.037 0.342±0.022 0.310±0.020
∞ 0.602±0.03 0.303±0.017 0.270±0.021PGD 1.0 0.494±0.028 0.330±0.017 0.301±0.020
∞ 0.700±0.040 0.288±0.054 0.255±0.019I-FGM 1.0 0.565±0.031 0.331±0.037 0.288±0.043
∞ 0.717±0.033 0.268±0.017 0.236±0.017

Cifar100

Inception

FGM 1.0 0.558±0.030 0.313±0.020 0.275±0.019
∞ 0.298±0.020 0.211±0.018 0.225±0.017PGD 1.0 0.199±0.012 0.276±0.008 0.292±0.011
∞ 0.334±0.015 0.187±0.018 0.199±0.018I-FGM 1.0 0.211±0.015 0.279±0.013 0.287±0.014
∞ 0.373±0.021 0.134±0.013 0.126±0.013

AlexNet

FGM 1.0 0.203±0.013 0.277±0.014 0.257±0.016
∞ 0.342±0.021 0.193±0.017 0.177±0.018PGD 1.0 0.115±0.010 0.339±0.021 0.313±0.019
∞ 0.366±0.011 0.156±0.011 0.166±0.015I-FGM 1.0 0.187±0.012 0.301±0.009 0.288±0.011
∞ 0.373±0.022 0.134±0.015 0.126±0.016

SVHN

Inception

FGM 1.0 0.203±0.014 0.277±0.018 0.257±0.016

Table 1: Generalization error (Gen. Err.) and L2-norm-based adversarial examples’ transferability rates on three image datasets, with
and without spectral regularization (β = ∞ means no spectral regularization).

[Krizhevsky et al., 2012], 2) Inception-Net [Szegedy et al.,
2015], 3) VGG-16 [Simonyan and Zisserman, 2015], 4)
ResNet-18 [He et al., 2016]. In the reported results, we
evaluate a prediction model’s generalization performance
using the accuracy gap between the training and test sets.
For evaluating the transferability performance, we used the
generated black-box adversarial examples and measured
the transferability rate as the target network’s averaged clas-
sification error over the designed adversarial examples on
the test set. Therefore, a higher transferability rate implies
more transferable adversarial examples, which implies that
under a worse transferability score for training data, which
is the case under a stronger norm-based regularization, the
generalization of the attack scheme has improved.

In the transferability evaluation of the generated adversarial
examples, we considered only the samples for which their

clean data had been labeled correctly by the target network,
because we expect the clean version of an adversarial ex-
ample to be labeled correctly by the target network. Also,
we used different training sets for the substitute and target
classifiers to separate the generalization effects of the sub-
stitute and target DNNs. To do this, we split the training set
in half and used each half for training one of the classifiers.
Finally, consistent to our theoretical analysis, we used PGD
adversarial training for training the substitute DNN and ap-
plied standard ERM training for training the target DNNs.

6.1 TRANSFERABILITY UNDER SPECTRAL
REGULARIZATION

We evaluated the generalization and transferability per-
formance of the discussed black-box attack schemes for



Dataset Model Method
Generalization

Error
Transferability Rate

(VGG-16)
Transferability Rate

(ResNet-18)
PGD 0.517±0.027 0.127±0.013 0.104±0.012

PGD-ES 0.073±0.018 0.198±0.014 0.172±0.011
I-FGM 0.488±0.017 0.114±0.014 0.108±0.012

I-FGM-ES 0.112±0.016 0.181±0.015 0.156±0.014
FGM 0.467±0.017 0.100±0.012 0.089±0.012

Inception

FGM-ES 0.126±0.031 0.170±0.010 0.147±0.014
PGD 0.579±0.037 0.098±0.009 0.077±0.007

PGD-ES 0.061±0.041 0.154±0.017 0.136±0.017
I-FGM 0.533±0.054 0.102±0.023 0.098±0.016

I-FGM-ES 0.077±0.054 0.149±0.031 0.132±0.014
FGM 0.520±0.039 0.100±0.007 0.087±0.005

Cifar10

AlexNet

FGM-ES 0.092±0.007 0.152±0.010 0.127±0.011
PGD 0.646±0.017 0.283±0.016 0.258±0.009

PGD-ES 0.137±0.014 0.330±0.011 0.286±0.012
I-FGM 0.688±0.016 0.284±0.022 0.254±0.021

I-FGM-ES 0.165±0.010 0.333±0.024 0.289±0.019
FGM 0.711±0.013 0.270±0.017 0.239±0.013

Inception

FGM-ES 0.146±0.013 0.327±0.014 0.289±0.008
PGD 0.764±0.012 0.252±0.011 0.227±0.016

PGD-ES 0.091±0.010 0.294±0.015 0.266±0.017
I-FGM 0.744±0.010 0.252±0.021 0.221±0.017

I-FGM-ES 0.097±0.015 0.303±0.018 0.256±0.021
FGM 0.756±0.022 0.261±0.025 0.232±0.017

Cifar100

AlexNet

FGM-ES 0.122±0.019 0.291±0.017 0.259±0.032
PGD 0.341±0.028 0.207±0.015 0.220±0.014

PGD-ES 0.057±0.006 0.298±0.017 0.322±0.021
I-FGM 0.336±0.041 0.188±0.026 0.176±0.036

I-FGM-ES 0.066±0.040 0.233±0.035 0.220±0.028
FGM 0.380±0.039 0.136±0.017 0.129±0.019

Inception

FGM-ES 0.180±0.022 0.213±0.019 0.219±0.020
PGD 0.307±0.041 0.211±0.011 0.228±0.012

PGD-ES 0.030±0.004 0.256±0.011 0.278±0.013
I-FGM 0.337±0.012 0.187±0.012 0.200±0.023

I-FGM-ES 0.067±0.022 0.255±0.023 0.267±0.018
FGM 0.373±0.029 0.157±0.021 0.170±0.019

SVHN

AlexNet

FGM-ES 0.064±0.011 0.241±0.015 0.260±0.014

Table 2: Generalization error and adversarial examples’ transferability with and without early stopping (ES)

Lipschitz-regularized neural nets. To apply spectral regular-
ization, we used the spectral normalization method [Miy-
ato et al., 2018, Farnia et al., 2018] constraining the L2-
operator norm of the substitute DNN’s weight matrices.
We define hyper-parameter β as the maximum allowed L2-
operator norm. Then, the standard spectral normalization
method modifies each weight matrix Wi in (1) to W̃i:

W̃i :=
Wi

max{1, ∥Wi∥2

β }
=

{
Wi if ∥Wi∥2 ≤ β,

β
∥Wi∥2

Wi otherwise.

The above operation will regularize the matrix’s operator
norm to be upper-bounded by β.

Figure 1 shows the generalization error of the model and
attack transferability rates of the generated perturbations

using the substitute classifier AlexNet and Inception-Net
under different spectral-norm hyperparameter β’s. The nu-
merical results show that in all cases through applying
the stronger regularization coefficients β = 1.0, 1.3, the
AlexNet and Inception classifiers achieve the highest gen-
eralization performance and attack transferability rates to
the target ResNet18 and VGG16. Therefore, spectral reg-
ularization not only helped the DNN classifier gain a bet-
ter generalization score, which is an expected outcome, but
further improved the transferability of the perturbations to
unseen DNNs with different architectures. These numerical
results suggest the impact of the substitute DNN’s general-
ization on the transferability of the adversarial examples.

Table 1 shows our numerical results validating the connec-
tion between the substitute DNN’s generalization and L2-



Figure 2: Visualization of adversarial perturbations. Each set of three pictures shows the original sample, the untransferable perturbation
from the unregularized DNN, and the transferable perturbation generated by the regularized model (left to right). The perturbation is
re-scaled to 0-255 for visualization. A → B indicates the groundtruth label A and the transferable example’s predicted label B.

norm-based designed adversarial examples’ transferability.
In this table, we report the performance of spectral regular-
ization under the best β hyperparameter for validation sam-
ples. As can be seen in this table, spectral regularization
manages to consistently improve the transferability rates
of the adversarial examples, which confirms our hypothe-
sis that better generalization will lead to more transferable
adversarial examples. The numerical results for L∞-norm-
based adversarial examples can be found in the Appendix.

6.2 TRANSFERABILITY VIA EARLY STOPPING

Next, we used the implicit regularization mechanism of
early stopping [Yao et al., 2007] to validate that better gen-
eralization achieved under early stopping can help to gen-
erate more transferable adversarial examples. To perform
early stopping, we used 30% of the original test set as
the validation set, and used the remaining 70% to measure
the test accuracy. We stopped the DNN training when the
trained model achieved its best performance on the valida-
tion samples.

We present the CIFAR-10 and SVHN numerical results in
Table 2, and the complete set of obtained numerical results
is in the Appendix. Our numerical results suggest that both
the generalization and transferability scores considerably
improve under early stopping regularization. The observa-
tion is consistent with the results reported in the literature
[Benz et al., 2021] and our hypothesis on the impact of the
generalization of the substitute network on the transferabil-
ity of adversarial examples.

Finally, Figure 2 illustrates 12 uniformly-sampled transfer-
able adversarial examples under spectral regularization and
early stopping. We note that the adversarial examples de-
signed by the unregularized DNN for these test samples
failed to transfer to the target DNNs. We also observed that
the transferable perturbations generated from a regularized

DNN had sharper edges and less noise power in the back-
ground, and concentrated the power on the central part.

7 CONCLUSION

In this paper, we provided theoretical and numerical evi-
dence on how the generalization properties of a substitute
neural network can influence the transferability of the gen-
erated adversarial examples to other classifiers. While the
transferability of black-box adversarial attacks and gener-
alization power of the substitute classifier may seem two
orthogonal factors, our results indicate existing intercon-
nections between the two aspects. However, our bounds
were based on uniform convergence analysis which cannot
directly capture the interconnections between the general-
ization and optimization properties. An interesting future
direction is to extend the generalization analysis to over-
parameterized function spaces in order to understand the
role of benign overfitting in the transferability of adversar-
ial examples. Also, our experimental results motivate fur-
ther studies of how other popular regularization methods
in deep learning, such as batch normalization and dropout,
can affect the transferability of adversarial perturbations.
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