
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HMORA: MAKING LLMS MORE EFFECTIVE WITH HI-
ERARCHICAL MIXTURE OF LORA EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have combined Mixture of Experts (MoE) and Parameter-Efficient
Fine-tuning (PEFT) to fine-tune large language models (LLMs), holding excel-
lent performance in multi-task scenarios while remaining resource-efficient. Yet,
existing MoE methods still exhibit three major limitations: (1) Current multi-
granular routing methods overlook that different LLM layers capture features
at varying granularities, resulting in inefficient routing. (2) Task-level routing
methods are confined to tasks encountered during training, failing to general-
ize to unseen tasks. (3) The lack of certainty in existing MoE routing meth-
ods hinders the specialization of the experts. To address these challenges, we
propose HMoRA, a Hierarchical fine-tuning method that combines MoE and
LoRA, employing hybrid routing that integrates token-level and task-level rout-
ing in a hierarchical manner. This hierarchical hybrid routing allows the model
to more efficiently capture both fine-grained token information and broader task
contexts. To improve the certainty of expert selection, a novel routing auxiliary
loss is introduced. This auxiliary function also enhances the task router’s ability
to differentiate tasks and its generalization to unseen tasks. Additionally, sev-
eral optional lightweight designs have been proposed to significantly reduce both
the number of trainable parameters and computational costs. Experimental re-
sults demonstrate that HMoRA outperforms full fine-tuning across multiple NLP
benchmarks, while fine-tuning only 3.9% of the parameters. The code is available
on: https://anonymous.4open.science/r/HMoRA-2648.

1 INTRODUCTION

Large language models (LLMs) have made significant strides and achieved impressive capabilities
in various natural language processing (NLP) (Liu et al., 2023; Touvron et al., 2023; Team et al.,
2024) tasks, such as machine translation, text generation, and question answering. However, with
models reaching tens or hundreds of billions of parameters, the computational and memory costs
for training have increased substantially (Kaplan et al., 2020). Therefore, reducing these costs while
maintaining performance has become a critical challenge.

Parameter-Efficient Fine-tuning (PEFT) reduces the number of trainable parameters in LLMs, de-
creasing resource requirements while maintaining or improving task-specific performance (Han
et al., 2024). PEFT typically freezes most model parameters and fine-tunes a small subset tailored to
the target task. For example, LoRA (Hu et al., 2021), a widely used PEFT method, employs low-rank
decomposition to significantly reduce the number of fine-tuning parameters, achieving competitive
results across various tasks. However, these PEFT methods are better suited for fine-tuning on sim-
pler tasks, and often underperform when applied to more complex or multi-task scenarios.

Recent years, Mixture of Experts (MoE) (Jacobs et al., 1991; Cai et al., 2024) has emerged as a
promising solution for complex tasks and multi-task scenarios. MoE is a neural network architec-
ture that activates only a subset of expert modules for each input. Each expert specializes in specific
aspects of the data or tasks, with a routing mechanism deciding which experts are activated for each
input. Recent studies have successfully integrated MoE into LLMs, significantly improving scala-
bility and efficiency (Du et al., 2022; Lepikhin et al., 2020), enhancing generalization in multi-task
learning (Fedus et al., 2022). Furthermore, Shen et al. (2023) demonstrates additional performance
gains in LLMs by combining MoE with instruction fine-tuning. However, due to the presence of

1

https://anonymous.4open.science/r/HMoRA-2648

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Method
Stable Task-level Token-level Generalize to Hierarchical Training

Routing Routing Routing Unseen Task across Layers Complexity
StableMoE Yes No Yes - - Complex (two-stage + distill)
PanGu-Σ (Ren et al., 2023) No Yes Yes No No -
Kudugunta et al. (2021b) No Yes Yes No / Weak No -

HMoRA Yes Yes Yes Strong Yes Simple (auxiliary loss)

Table 1: Comparison of HMoRA with other representative MoE approaches.

multiple expert modules, standard MoE models suffer an extremely large number of parameters,
which poses challenges for storage, deployment, and practical application. Recent efforts have in-
tegrated LoRA and MoE for LLM fine-tuning, combining the parameter efficiency of LoRA with
enhanced model performance in complex and multi-task scenarios (Zadouri et al., 2023; Li et al.,
2024; Tian et al., 2025).

However, existing MoE models still face several challenges.: (1) Combining MoE routing at dif-
ferent granularities can enable the model to better capture information at varying levels of detail.
However, existing approaches that integrate task-level and token-level routing overlook the fact that
different layers of LLMs capture features at different granularities (Geva et al., 2021). As a result,
the efficiency of capturing multi-granular information remains suboptimal. (2) Most current task
routers rely on task labels, limiting their ability to generalize to unseen tasks (Ren et al., 2023;
Feng et al., 2024; Liu et al., 2024). While Kudugunta et al. (2021a) uses sentence representations
for routing, thereby eliminating the dependency on task labels, our experiments reveal that directly
using sentence representations for routing struggles to effectively differentiate unseen tasks. (3)
Additionally, the routing in existing MoE methods lacks certainty, leading to unstable routing and
undermining the specialization of experts. Although StableMoE (Dai et al., 2022) mitigates this
issue through a two-stage training and distillation process, the training remains overly complex.

To address these challenges, we propose a hierarchical hybrid MoE routing method and an auxiliary
loss, built upon a PEFT architecture that integrates MoE and LoRA. We refer to this method as
HMoRA. A comparison of HMoRA with other representative MoE approaches is shown in Table
1. Specifically, HMoRA employs a hybrid routing method that combines task-level and token-level
routing in a hierarchical manner, allowing shallow layers of LLMs capture fine-grained token-level
nuances, while deeper layers focus on broader task-level understanding. To tackle the issue of un-
certainty in existing routing methods, a novel auxiliary function is proposed to enhance the certainty
of expert selection and maintain balanced experts selection, improving expert specialization. More-
over, applying the auxiliary loss to the task routers enhances their ability to differentiate tasks in an
unsupervised manner, including those tasks unseen during training. Additionally, some lightweight
designs are offered to reduce both the trainable parameters and computational costs without signifi-
cantly compromising performance. Our contributions can be summarized as follows:

• We propose a hierarchical hybrid routing mechanism that more efficiently captures infor-
mation at different granularities across various layers of LLMs.

• We introduce a novel auxiliary function that enhances the certainty of routing methods
while maintaining balance in the experts selection, thereby improving expert specialization.

• By incorporating our auxiliary loss, the task router can learn to differentiate tasks in an
unsupervised manner and generalize to unseen tasks.

• We provide several optional lightweight designs that further reduce both trainable parame-
ters and computational costs.

• We train on a multi-task dataset and evaluate performance across various NLP benchmarks.
With only 3.9% of the parameters compared to full fine-tuning, our method outperforms
full fine-tuning on multiple benchmarks.

2 PREILIMINARY

Our work builds on widely adopted causal decoder LLMs (Radford et al., 2019; Touvron et al., 2023;
Yang et al., 2024), functioning as a plugin integrated into the dense layers of these models. Below,
we will briefly introduce the dense layers in causal decoder LLMs and the mutil-task fine-tuning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Dense layers in Causal Decoder LLMs. Causal decoder-based LLMs are built on the Transformer
decoder architecture. Each layer contains a self-attention mechanism and a feed-forward network
(FFN). The self-attention mechanism can vary across different LLMs, such as the multi-head at-
tention or the multi-query attention (Ainslie et al., 2023). In general, it involves three dense layers
(Wq, Wk, Wv) computing the query, key, and value, and a fourth dense layer (Wo) aggregating the
attention heads. FFN typically consists of two dense layers with a non-linear activation function, as
described by the following equation:

FFN(X) = ϕ(XWup)Wdown. (1)

Here, X is the input to the FFN. While some LLMs may include bias terms in these dense layers,
they are omitted here for simplicity. If the activation function ϕ is a gated activation function like
SwiGLU (Shazeer, 2020), it introduces an additional dense layer, Wgate. Our work focus on these
dense layers (Wq, Wk, Wv, Wo, Wup, Wdown, and Wgate) where HMoRA will be integrated.

Multi-Task Fine-tuning. Fine-tuning is a method specifically tailored to adapt LLMs to generate
outputs that align with given instructions or prompts. Multi-task fine-tuning trains the model on a
variety of tasks and input formats, enabling it to acquire general problem-solving skills rather than
being specialized to a single dataset (Wei et al., 2021; Chung et al., 2024). During fine-tuning, each
training sample consists of an input token sequence T in and a corresponding target token sequence
T tg. The loss function for fine-tuning is defined as:

LLM = −
n∑

i=1

log(PLM(T tg
i | T in : T tg

<i)). (2)

Here, n is the length of the target sequence T tg, PLM(·) represents the predicted probability of
the i-th target token T tg

i , conditioned on the input sequence T in and all predicted tokens in the
target sequence. The model is optimized to maximize the likelihood of generating the correct target
sequence.

3 THE HMORA METHOD

In this section, we will elaborate on HMoRA as illustrated in Figure 1. We first introduce how
to combine LoRA and MoE, leveraging the strengths of both approaches (Section 3.1). Then, we
present the hybrid routing mechanism which combines both token-level and task-level routing in a
hierarchical manner to capture fine-grained and broader contextual information (Section 3.2). Next,
we introduce a novel auxiliary loss aimed at enhancing routing certainty while maintaining a bal-
anced selection of experts, thereby improving expert specialization. The combination of our auxil-
iary loss with hybrid routing enhances the task router’s ability to distinguish between tasks and even
generalize to unseen tasks, improving overall performance in multi-task scenarios (Section 3.3).

3.1 MIXTURE OF LORA EXPERTS

We insert MoRA blocks (mixture of LoRA expert blocks), which consist of a set of LoRA experts
and a router R, as plugins into the dense layers of LLMs. This combination of LoRA and MoE
leverages the parameter efficiency of LoRA while benefiting from the strong multi-task performance
of MoE. The forward pass for each expert is defined as:

Ei = XWAi
WBi

, (3)

where WAi ∈ Rdin×r and WBi ∈ Rr×dout are low-rank matrices, with r ≪ din, dout. WAi is randomly
initialized, while WBi is set to zero, ensuring consistency with the pre-trained state at the start of
fine-tuning. X is the input to the dense layer, with a dimension of din, and is processed in batches.
The forward pass of the dense layer, with the MoRA block inserted, is defined as:

Y =

e∑
i=1

giEi, (4)

Z = XW + Y, (5)
where Ei is the output of the i-th expert, gi represents the gate value computed by the router for the
i-th expert, e is the number of experts, and W is the original dense layer. The final output Z denotes

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Token RTask R

Token RTask R

Token RTask R

pretrained
weight

Token-level
Router

Task-level
Router

Embed(𝑇𝑡𝑔)Embed(𝑇𝑖𝑛)𝒆𝐭𝐚𝐬𝒌

Task Encoder

Self
Attention

FFN

𝐻𝑡𝑎𝑠𝑘

Dense Layer

Transformer Decoder in LLMs

FFN

Self AttentionTask R Token R Task R Token R

Mixture of LoRA Experts

MoRA Block

𝐻𝑡𝑎𝑠𝑘 (Task representations

corresponding to 𝑇𝑖𝑛)

𝐺𝑡𝑜𝑘𝑒𝑛
+

⊙

𝐺𝑡𝑎𝑠𝑘

+

𝑋
(Hidden state corresponding to tokens)

𝐿 ×

𝑁 ×

Trainable

Frozen
Embeddings:

Task R Token R

Embed 𝑇𝑖𝑛 : 𝑒task

Task R

Token R

Task Router

Token Router

Embed 𝑇𝑖𝑛 : Embed(𝑇𝑡𝑔)

Figure 1: The HMoRA architecture combines token-level and task-level routing, utilizing a task
encoder and task embedding to obtain task representations. MoRA blocks are integrated into the
dense layers of LLMs.

the combination of the expert outputs Y with the output of original dense layer. During training and
inference of LLMs, we replace the original dense layer output with Z. Here, we freeze W and only
update the parameters of experts and router, significantly reducing the parameter count compared to
full fine-tuning and standard MoE approaches.

The router R can be viewed as a function fR(·) : Rdin → Re that maps the input X to a distribution
g ∈ Re, where g represents the gate values used to select experts. In this paper, we investigate soft
routing and top-k routing, combined with different auxiliary losses, as the routing methods for the
routers. A detailed explanation of routing methods is provided in Appendix A.

3.2 HIERARCHICAL HYBRID ROUTING

Most previous MoE methods use token-level routing, which helps experts learn token-level features
but fails to capture task-level information. Methods like MoELoRA (Liu et al., 2024) and MoA
(Feng et al., 2024) use task-level routing but overlook fine-grained token-level details, crucial for
capturing data subtleties. Although Ren et al. (2023) and Kudugunta et al. (2021a) incorporate both
token-level and task-level routing, they overlook the fact that shallow layers in LLMs primarily cap-
ture token-level information, while deeper layers focus more on semantic-level information (Geva
et al., 2021), leading to suboptimal performance. To address this, we propose a hierarchical hybrid
approach that more efficiently leverages multi-granular information for routing.

To perform task-level routing, we first need to derive a task representation from the input. We define
a task embedding etask, which is concatenated with the embeddings of the input tokens T in and
processed by a task encoder, TaskEncoder(·). This process is formalized as

Htask = TaskEncoder(Embed(T in) : etask), (6)

where TaskEncoder(·) can be a single or multi-layer Transformer encoder. The output of the task
encoder corresponding to etask serves as the task representation. Embed(·) is the LLM’s embed-
ding layer, with etask being trainable while the rest of the embeddings remain frozen. We initialize
etask using the question mark symbol’s embedding, providing a meaningful starting point for task
differentiation.

To combine token-level and task-level routing, we merge a task router Rs and a token router Rt into a
unified router. The task router computes the task-level routing results, denoted as gtask = fRs

(Htask),
which is calculated once for each input T in. The token router computes the token-level routing
results, denoted as gtoken = fRt(X), which is calculated for each token in both T in and T tg. We then

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Router

Router

shallow layer

…

deep layer
Translate or

Math ?

Noun or
Verb?

(a)

Router 𝑊𝑞

Self Attention

Self Attention

Router 𝑊𝑜

+ + +
Router 𝑊𝑞

+
𝑊𝑜

(b)

Base

+ Hyd
ra

LoR
A

+ Si
ng

le
LoR

A

+ Ro
ter

 Sh
ari

ng + All
0

250

500

750

1000

1250

1500

1750

2000

Ti
m

e
(s

)

1619.00 1597.00

1372.00 1335.00

1091.00

Time
Trainable Parameters

0

1

2

3

4

5

6

7

Tr
ai

na
bl

e
Pa

ra
m

et
er

s (
%

)6.31

4.46
4.77

6.22

3.90

 Comparison of Training Time for 1k Steps
 and Trainable Parameters

(c)

Figure 2: (a) More hierarchical LLMs by applying hierarchical hybrid routing, where shallow layers
focus on fine-grained token-level distinctions and deeper layers shift towards broader task-level
understanding. (b) A more lightweight architecture by router sharing, applying single LoRA to
Wo,Wdown and using hydra LoRA. (c) A comparison of the time required for 1k steps of training
and the proportion of trainable parameters across models with different lightweight designs.

combine the task-level and token-level routing results to form the final gate values for each token,

g = α(l)gtask + (1− α(l))gtoken, (7)

where α(l) represents the proportion of the two types of routing results and l indicates that the router
is at Layer l of the LLM. We define α(l) as follows:

α(l) = σ

(
−ϵ+ 2× ϵ× l

L
+ µ

)
(8)

Here, σ(·) represents the sigmoid function, and L is the total number of layers in the LLM. ϵ and
µ are hyperparameters that flexibly control the variation of α(l) as l changes. This allows different
layers to capture information at varying granularities, rather than uniformly combining both types
of information across all layers. Further explanations and examples are provided in Appendix B.
Experiments in Appendix E.5 demonstrate that increasing α(l) with l improves model perfor-
mance. Under this setup, shallow layers focus more on token-level information, while deeper
layers emphasize task-level information, as shown in Figure 2(a).

Additionally, in Appendix C, we introduce a series of lightweight designs to further reduce the
number of learnable parameters and enhance computational efficiency. Figure 2(b) provides a brief
overview of these designs. A comparison of their training time and parameter efficiency is shown in
Figure 2(c).

3.3 ENHANCE CERTAINTY AND MAINTAIN BALANCE OF ROUTING RESULTS

In this section, we will discuss the limitations of soft routing and top-k routing introduced in Ap-
pendix A and propose a novel auxiliary function to address these issues. Moreover, we find that
combining the auxiliary loss with the task router enhances its ability to differentiate between tasks
and allows it to generalize to unseen tasks.

We begin by introducing the concept of entropy (Shannon, 1948), which measures the certainty of a
probability distribution. Given the gate values g produced by a router, the entropy of g is calculated
as:

H(g) = −
e∑

j=1

gj log(gj), (9)

where e is the number of experts. The maximum entropy log e indicates maximum routing
uncertainty (uniform distribution), while the minimum entropy of 0 represents complete cer-
tainty in expert selection (point distribution). Consider a router performing N routing opera-
tions in a batch, resulting in a set of distributions G = {g(1), . . . , g(N)}. The average distribution

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

1
N

∑N
i=1 g

(i) reflects the balance in routing decisions. The closer this average is to a uniform
distribution, the more balanced the selection of experts, with the entropy approaching log e.

We conduct experiments to assess the certainty and balance of top-k and soft routing (see Sec-
tion 4.1). In soft routing, the shallow layers of LLMs exhibit near-uniform gate values, with entropy
approaching log e, indicating random expert selection and a lack of specialization. In deeper layers,
while certain experts are more clearly preferred, the selection becomes imbalanced, with a small
subset of experts overused, leading to underutilization of others and reduced model performance.
A similar issue is observed in top-k routing (Figure 3(b)). Although the load balancing loss helps
mitigate imbalance, it comes at the cost of reduced routing certainty.

To address these issues, we propose a novel auxiliary loss function that not only ensures balanced
expert selection but also promotes greater certainty in routing results, thereby encouraging more
effective specialization of experts across all layers.

To introduce our auxiliary loss, we first present the Generalized Jensen-Shannon (GJS) divergence
(Nielsen & Nock, 2009), an extension of the JS divergence (Lin, 1991), which measures the similar-
ity across multiple probability distributions. In GJS, each distribution is assigned a weight, with the
sum of these weights equal to 1. We assign a weight of 1

N to each gate values. The GJS divergence
for N gate values is computed as:

GJS(G) = H

(
1

N

N∑
i=1

g(i)

)
− 1

N

N∑
i=1

H(g(i)), (10)

where H(·) denotes entropy. Maximizing H
(

1
N

∑N
i=1 g

(i)
)

encourages the average distribution
to approximate a uniform distribution, promoting the balancing of experts selection. Minimizing
H(g(i)) increases certainty by driving each individual distribution toward a point distribution. Thus,
the GJS divergence, used as an auxiliary loss, promotes both load balancing and more decisive
routing decisions. However, our experiments show that directly optimizing this auxiliary loss can
reduce model performance by overly constraining model’s flexibility. To mitigate this, we propose
the Constrained GJS (CGJS) divergence:

CGJS(G) = min

(
H

(
1

N

N∑
i=1

g(i)

)
, γb log e

)
−max

(
1

N

N∑
i=1

H(g(i)), γc log e

)
. (11)

Here, γb and γc are hyperparameters in [0, 1]. γb controls routing balance, with values closer to
1 promoting more balanced experts selection. γc regulates routing certainty, with values closer to
0 increasing certainty. Fine-tuning γb and γc preserves model flexibility, mitigating performance
degradation while maintaining expert specialization and balanced experts selection. The definition
of the auxiliary loss is as follows:

Laux =
max ((γb − γc) log e− CGJS(G), 0)

log e
. (12)

The loss is normalized by dividing by log e, ensuring consistency as the number of experts e changes.
We apply the auxiliary loss separately to the gate values generated by each task or token router within
each batch. The auxiliary function essentially performs a clustering-like effect. When applied to
task routers, the routing results for similar tasks are brought closer together in the latent space, while
dissimilar tasks are driven further apart. This clustering-like approach enhances the task router’s
ability to differentiate tasks in an unsupervised manner and generalizes well to unseen tasks.
In Appendix D, we explain in detail, from the perspective of clustering theory, why our auxiliary
loss achieves this effect.

Finally, we only optimize the parameters associated with the experts, router, task encoder, and task
embedding to minimize the combined language model loss and auxiliary loss. The loss function is
defined as:

L = LLM + λ
∑
R∈S

L(R)
aux , (13)

where λ is a hyperparameter that adjusts the weight of the auxiliary loss in the overall optimization
process. S represents the set of task routers and token routers, and L(R)

aux denotes the auxiliary loss
computed for each individual task or token router R.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

We fine-tune our model on Flan v2 (Chung et al., 2024; Longpre et al., 2023), a dataset designed for
instruction fine-tuning across 1,836 tasks such as natural language inference, question answering,
translation, and sentiment analysis, among others. Fine-tuning on this diverse multi-task dataset
enables the model to acquire general problem-solving capabilities rather than simply fitting to a
specific dataset.

Benchmarks and Metrics. To evaluate multitask performance, we test on several NLP bench-
marks, including MMLU (Hendrycks et al., 2020), MMLU-Pro (Wang et al., 2024), ARC-Easy,
ARC-Challenge (Clark et al., 2018), OpenBookQA (Mihaylov et al., 2018), SWAG (Zellers et al.,
2018), and CommonsenseQA (Talmor et al., 2018). These benchmarks consist of multiple-choice
questions, assessing various aspects of the model’s natural language understanding. For MMLU
and MMLU-Pro, we use macro accuracy, which averages accuracy across all tasks, while for the
other benchmarks, we use accuracy as the evaluation metric. More detailed information about the
training data and benchmarks is provided in Appendix E.1.

Base Model and Baseline. We utilize Qwen2 1.5B (Yang et al., 2024) as our base models. For
baseline comparisons, we compare HMoRA with full fine-tuning (Full FT), LoRA (r = 8 and
r = 64) and methods incorporating mixtures of LoRA experts. These methods include MoLoRA
(Zadouri et al., 2023), MixLoRA (Li et al., 2024) and HydraLoRA (Gao et al., 2024). These models
were selected due to their similarity in training setup to HMoRA. In contrast, other methods may
require predefined task-specific datasets or pretrained LoRA modules, which differ significantly in
setup and assumptions. We provide a brief introduction to the baselines in Appendix E.2.

Training and Evaluation Setup. We limit the maximum number of training steps to 10,000, con-
ducting evaluations every 200 steps on the validation sets of all benchmarks. If there is no improve-
ment on the validation set for 10 consecutive evaluations, we will terminate the training early. The
best checkpoint, determined by the highest averaged accuracy across all benchmarks, is selected for
evaluation on the test set. Each experiment is repeated 5 times with different random seed, and we
report the mean of the evaluation metrics.

4.1 ROUTING METHODS COMPARISON

We compare the performance of soft routing and top-k routing, as well as the impact of our auxiliary
loss (Laux) and load balancing loss (Lblc) mentioned in Appendix A.

RM Laux Lblc MMLU MMLU-Pro ARC-C ARC-E OpenBook SWAG Comm Avg

Soft - - 55.16 24.81 69.07 85.44 81.33 53.91 70.05 62.83
yes - 54.85 26.40 70.12 85.36 81.68 56.15 70.99 63.65

Top-k
- - 54.16 25.55 69.41 85.15 81.58 53.82 70.41 62.87
- yes 54.09 25.44 69.12 85.56 82.02 54.63 71.42 63.19

yes - 54.79 26.01 69.67 85.48 82.36 55.76 71.99 63.72

Table 2: Performance comparison for different routing methods (RM). We calculate the average
accuracy (Avg) across seven benchmarks as a measure of the model’s capability in multi-task sce-
narios. The best result for soft or top-k routing on each dataset is highlighted in bold.

Implementation Details. For the MoRA block, we set r = 8 and e = 8, applying MoRA to all
dense layers of Qwen2, including Wq,Wk,Wv,Wo,Wgate,Wup, and Wdown. We only use token-level
routing in this section. For Lblc, we used the recommended λ = 0.01. For Laux, we set λ = 0.003,
γc = 0.4, and γb = 1. For top-k routing, we set k = 2. More training and implementation details as
show in Appendix E.3.

Main Results. As shown in Table 2, incorporating Laux consistently enhances performance, with
both soft routing and top-k routing achieving significant accuracy improvements. To further analyze
routing certainty and balance, we visualize the entropy of the gate values across different layers
in Figure 3. Figure 3 demonstrates that our auxiliary function enhances routing certainty while
maintaining relative balance. Although Lblc improves routing balance, it reduces routing certainty
and does not achieve the same performance gains as Laux. Notably, top-k routing with Laux achieves

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50
Router index in different layers of LLMs

0.5

1.0

1.5

2.0

En
tro

py

(a)

Soft certainty
Soft balance
Soft certainty with our loss
Soft balance with our loss

0 10 20 30 40 50
Router index in different layers of LLMs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

En
tro

py

(b)

Top-2 certainty
Top-2 balance
Top-2 certainty with balance loss
Top-2 balance with balance loss
Top-2 certainty with our loss
Top-2 balance with our loss

(a) Soft routing0 10 20 30 40 50
Router index in different layers of LLMs

0.5

1.0

1.5

2.0

En
tro

py

(a)

Soft certainty
Soft balance
Soft certainty with our loss
Soft balance with our loss

0 10 20 30 40 50
Router index in different layers of LLMs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

En
tro

py

(b)

Top-2 certainty
Top-2 balance
Top-2 certainty with balance loss
Top-2 balance with balance loss
Top-2 certainty with our loss
Top-2 balance with our loss

(b) Top-k routing

Figure 3: Visualizing the entropy of the gate values produced by routers across different layers. The
base model has 28 layers, but for clarity, we start at layer 4 and sample every 4 layers, resulting in 7
layers. Each layer contains 7 routers (corresponding to Wq, Wk, Wv, Wo, Wgate, Wup, and Wdown),

totaling 49 routers. The dotted lines represent H
(

1
N

∑N
i=1 g

(i)
)

, indicating the balance of expert

selection — higher values suggest more balanced routing. The solid lines show 1
N

∑N
i=1 H(g(i)),

reflecting the certainty of routing decisions — lower values indicate greater certainty.

Method TP MMLU MMLU-Pro ARC-C ARC-E OpenBook SWAG Comm Avg
Full FT 100% 54.12 25.09 69.13 85.10 82.35 55.11 71.16 63.15

LoRA r = 8 0.60% 52.89 23.77 67.52 83.92 79.96 50.51 66.72 60.76
LoRA r = 64 4.78% 53.34 24.24 68.60 84.90 80.93 53.33 70.64 62.28
MoLoRA 3.82% 53.95 25.26 69.10 85.44 81.98 54.43 70.98 63.02
MixLoRA 3.97% 53.95 24.81 68.94 85.09 81.15 52.44 70.31 62.38
HydraLoRA 3.20% 54.10 25.08 69.32 85.11 81.29 53.66 70.33 62.70

HMoRA w LW 3.90% 54.02 25.61 70.73 85.63 82.20 56.40 72.59 63.88
HMoRA w/o LW 6.31% 54.63 26.59 71.47 85.87 83.23 55.28 72.08 64.16

Table 3: Results of baseline comparison experiments across multiple NLP benchmarks. TP refers to
the percentage of trainable parameters relative to full fine-tuning. The best result for each benchmark
is highlighted in bold. “w LW” and “w/o LW” refer to using and not using lightweight designs,
respectively.

the best average accuracy. Further experimental results on the hyperparameters of Laux, along with
additional analysis of the balance and certainty of routing results, are provided in Appendix E.4.

4.2 BASELINE COMPARISON

Implementation Details. We compare HMoRA with other fine-tuning methods, employing top-
2 routing and the auxiliary function Laux, along with the hierarchical hybrid routing mentioned
in Appendix B. The hyperparameters for hierarchical hybrid routing are set as follows: ϵ = 4,
µ = −2, βlow = 0.2, and βhigh = 0.8. All other hyperparameters are consistent with those outlined
in Section 4.1. We also compare HMoRA with lightweight designs mentioned in Appendix C,
setting ηB = 2. For LoRA, we conducted experiments with both r = 8 and r = 64. For other
mixtures of LoRA experts models, we fixed e = 8 and r = 8. Additionally, we performed a
hyperparameter search for these baselines and report the best results.

Main Results. As shown in Table 3, HMoRA w LW designs outperforms full fine-tuning on 5 out of
7 benchmarks, while requiring only 3.9% of the trainable parameters. Even on the two benchmarks

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

where HMoRA w LW slightly lags behind, the performance gap is minimal. HMoRA w/o LW
surpasses full fine-tuning across all benchmarks. Moreover, HMoRA w/o LW significantly out-
performs LoRA and other mixture of LoRA experts methods, demonstrating superior performance
across all benchmarks. HMoRA w/o LW also achieves higher average accuracy. These results
demonstrate the effectiveness of HMoRA in efficiently fine-tuning LLMs in a multi-task setting.

We also conducted baseline comparison experiments on LLaMA 3.2 1B, with the results and anal-
ysis provided in Appendix E.7.

4.3 ABLATION STUDY

Ablation Study on the Hyperparameters of the Auxiliary Function. In Appendix E.4, we con-
duct ablation experiments primarily on the hyperparameter γc, finding that setting γc around 0.4
yields better model performance.

Ablation Study on the Hyperparameters ϵ and µ for Hierarchical Hybrid Routing. In Ap-
pendix E.5, we perform ablation experiments on the hyperparameters ϵ and µ. We find that setting
ϵ > 0, i.e., increasing α(l), generally leads to better performance and the model’s performance is not
sensitive to µ.

Ablation Study on Lightweight Designs. In Appendix E.6, we examine the impact of each
lightweight design on model performance.

Quantitative Study on the Ability of Task Routers to Differentiate Unseen Tasks. We con-
duct a quantitative study on the performance of task router on unseen tasks in Appendix E.8. The
experimental results show that the task router using Laux is able to effectively differentiate 42 out
of 57 sub-tasks (73.68%) in MMLU. Without any auxiliary function, none of these tasks can be
distinguished, while using Lblc can differentiate just 7 tasks (12.28%).

60 40 20 0 20 40

10

5

0

5

10

t-SNE Visualization of Task Routing Results for Different Tasks in MMLU

high school computer science
college computer science
high school mathematics
college mathematics
high school psychology
professional psychology

(a) Visualization of gate values from task router with auxiliary loss.

20 10 0 10 20 30

20

10

0

10

20

30
t-SNE Visualization of Task Routing Results for Different Tasks in MMLU

high school computer science
college computer science
high school mathematics
college mathematics
high school psychology
professional psychology

(b) Visualization of gate values from task router without auxiliary loss.

Figure 4: t-SNE visualization of the gate values computed by the final task router in LLMs for
different tasks in the MMLU dataset.

Qualitative Study on the Ability of Task Routers to Differentiate Unseen Tasks. To more intu-
itively reveal the impact of the auxiliary loss on the task router, we selected 3 pairs of tasks from
MMLU, with each pair containing 2 similar tasks and 100 samples per task. We routed the ques-
tions of these tasks and visualized the routing results from the task router in the last laye of LLM
with t-SNE (Van der Maaten & Hinton, 2008). As shown in Figure 4(a), when the task router uses
Laux, each task forms a distinct cluster, with similar tasks (represented by the same shape) positioned

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

closer together, while dissimilar tasks are clearly separated. In contrast, the visualization of the rout-
ing results from task router without Laux is shown in Figure 4(b). The routing results for these tasks,
although forming some clusters, are noticeably less distinguishable compared to those using Laux.
This demonstrates that using Laux enhances the task router’s ability to differentiate tasks, leading to
more accurate and distinct routing decisions. Notably, no explicit task labels were provided during
training, and the tasks from MMLU were unseen during training. This suggests that the task router
learned to differentiate tasks in an unsupervised manner and can generalize to unseen tasks.

MMLU MMLU-Pro ARC-C ARC-E OpenBook SWAG Comm Avg
HMoRA 54.63 26.59 71.47 85.87 83.23 55.28 72.08 64.16
w/o Laux for Task Router 53.83 25.33 70.96 85.43 82.13 53.48 71.09 63.18

Table 4: Ablation study results on the impact of the auxiliary loss for the task router.

As shown in Table 4, when the auxiliary loss is not applied to the task router, the model’s perfor-
mance significantly declines on all benchmarks. This indicates that the auxiliary loss plays a crucial
role in the task router’s performance.

5 RELATED WORK

Mixture of Experts (MoE). MoE was introduced by Jacobs et al. (1991) as a framework that divides
complex problems into simpler tasks, each handled by a specialized expert. Shazeer et al. (2017) im-
proved the efficiency of this approach by activating only a subset of experts for each input using the
Sparsely-Gated MoE layer. Building on this, Lepikhin et al. (2020) scaled MoEs to a 600-billion-
parameter multilingual Transformer, enhancing scalability. Du et al. (2022) further scaled this to 1.2
trillion parameters with GLaM, activating a small fraction of the model for each input, resulting in
significant computational savings while outperforming GPT-3 on 29 NLP benchmarks. Fedus et al.
(2022) simplified the MoE routing algorithm, allowing each token to select one expert, speeding up
training without sacrificing quality. Shen et al. (2023) demonstrated that combining MoEs with in-
struction fine-tuning in LLMs improves performance on task-specific benchmarks while maintaining
computational efficiency.

Combining MoE with LoRA. Combining MoE with LoRA enhances LLMs for multi-task learning
while significantly reducing the number of trainable parameters. MoLoRA (Zadouri et al., 2023)
integrates LoRA with MoEs, achieving performance comparable to full fine-tuning. Luo et al. (2024)
employs contrastive learning to promote expert diversity, while Dou et al. (2024) introduces an
auxiliary function to specialize experts in either world knowledge or downstream tasks, enhancing
overall effectiveness. Xu et al. (2024), Feng et al. (2024), and Zhao et al. (2024) dynamically
compose independently trained LoRA experts for different tasks, albeit at the cost of labor-intensive
training. Architecturally, MixLoRA (Li et al., 2024) applies MoE to the feed-forward network and
LoRA to self-attention, whereas HydraLoRA (Tian et al., 2025) uses an asymmetric design of LoRA
experts to reduce parameters. Gao et al. (2024) demonstrates that assigning more experts to deeper
layers improves performance. Task-level routing, as used by Liu et al. (2024) and Feng et al. (2024),
assigns tokens based on tasks, improving expert specialization in multi-task scenarios.

6 CONCLUSION

This paper introduces HMoRA, an approach that enhances LLMs by integrating a mixture of LoRA
experts with hierarchically combined token-level and task-level routing. This design enables the
model to capture both fine-grained and global information across different layers of the LLM. We
propose a novel auxiliary loss that enhances routing certainty while maintaining a balanced selec-
tion of experts, thereby improving expert specialization. It also strengthens task differentiation and
enhances generalization to unseen tasks. Additionally, our lightweight designs reduce the parameter
size and computational cost, increasing the model’s practicality. Experimental results demonstrate
that HMoRA outperforms both full-parameter fine-tuning and other LoRA-based approaches across
multiple NLP tasks. Our auxiliary loss and hybrid routing suggest promising directions for future
work, with the potential to improve the balance and efficiency of expert utilization in standard MoE
architectures, which may benefit a variety of NLP applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 4895–4901, 2023.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
mixture of experts. arXiv preprint arXiv:2407.06204, 2024.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang Sui, Baobao Chang, and Furu Wei. Stable-
moe: Stable routing strategy for mixture of experts. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7085–7095, 2022.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei Shen, Limao Xiong, Yuhao Zhou, Xiao
Wang, Zhiheng Xi, Xiaoran Fan, et al. Loramoe: Alleviating world knowledge forgetting in
large language models via moe-style plugin. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1932–1945, 2024.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–
5569. PMLR, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han, and Hao Wang. Mixture-of-loras: An effi-
cient multitask tuning for large language models. arXiv preprint arXiv:2403.03432, 2024.

Chongyang Gao, Kezhen Chen, Jinmeng Rao, Baochen Sun, Ruibo Liu, Daiyi Peng, Yawen Zhang,
Xiaoyuan Guo, Jie Yang, and VS Subrahmanian. Higher layers need more lora experts. arXiv
preprint arXiv:2402.08562, 2024.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5484–5495, 2021.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Sneha Kudugunta, Yanping Huang, Ankur Bapna, Maxim Krikun, Dmitry Lepikhin, Minh-Thang
Luong, and Orhan Firat. Beyond distillation: Task-level mixture-of-experts for efficient inference.
In Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 3577–3599,
2021a.

Sneha Kudugunta, Yanping Huang, Ankur Bapna, Maxim Krikun, Dmitry Lepikhin, Minh-Thang
Luong, and Orhan Firat. Beyond distillation: Task-level mixture-of-experts for efficient inference.
In Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 3577–3599,
2021b.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhiyuan Cheng, Lei Duan, Jie Zuo, Cal Yang, and
Mingjie Tang. Mixlora: Enhancing large language models fine-tuning with lora based mixture of
experts. arXiv preprint arXiv:2404.15159, 2024.

Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Information
theory, 37(1):145–151, 1991.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, and Yefeng Zheng.
When moe meets llms: Parameter efficient fine-tuning for multi-task medical applications. In
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 1104–1114, 2024.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 2023.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective
instruction tuning. In International Conference on Machine Learning, pp. 22631–22648. PMLR,
2023.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Tongxu Luo, Jiahe Lei, Fangyu Lei, Weihao Liu, Shizhu He, Jun Zhao, and Kang Liu. Moelora:
Contrastive learning guided mixture of experts on parameter-efficient fine-tuning for large lan-
guage models, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Frank Nielsen and Richard Nock. Sided and symmetrized bregman centroids. IEEE transactions on
Information Theory, 55(6):2882–2904, 2009.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Xiaozhe Ren, Pingyi Zhou, Xinfan Meng, Xinjing Huang, Yadao Wang, Weichao Wang, Pengfei
Li, Xiaoda Zhang, Alexander Podolskiy, Grigory Arshinov, et al. Pangu-{\Sigma}: To-
wards trillion parameter language model with sparse heterogeneous computing. arXiv preprint
arXiv:2303.10845, 2023.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer,
January 2017. URL https://arxiv.org/abs/1701.06538v1.

Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won Chung, Bar-
ret Zoph, William Fedus, Xinyun Chen, et al. Mixture-of-experts meets instruction tuning: A
winning combination for large language models. arXiv preprint arXiv:2305.14705, 2023.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

GLM Team, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b
to glm-4 all tools. arXiv e-prints, pp. arXiv–2406, 2024.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Chengzhong Xu. Hydralora: An asymmetric lora
architecture for efficient fine-tuning. Advances in Neural Information Processing Systems, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574, 2024.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jingwei Xu, Junyu Lai, and Yunpeng Huang. Meteora: Multiple-tasks embedded lora for large
language models. arXiv preprint arXiv:2405.13053, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, Acyr Locatelli, and Sara Hooker. Push-
ing mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning,
2023.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Swag: A large-scale adversarial
dataset for grounded commonsense inference. arXiv preprint arXiv:1808.05326, 2018.

Ziyu Zhao, Leilei Gan, Guoyin Wang, Yuwei Hu, Tao Shen, Hongxia Yang, Kun Kuang, and Fei
Wu. Retrieval-augmented mixture of lora experts for uploadable machine learning. arXiv preprint
arXiv:2406.16989, 2024.

A ROUTING METHODS

The routing methods fR(·) used in existing MoE methods can be broadly divided into two cate-
gories: soft routing and top-k routing. The soft routing is formulated as follows:

g = fR(X) = softmax(h(X)) (14)

Here, h(·) : Rdin → Re represents the routing function of the router. It can be implemented using
a simple dense layer or a multi-layer perceptron (MLP). While soft routing is simple, it requires the
activation of all experts. This approach is only applied in the mixture of LoRA experts method. In
standard MoE models, using soft routing would result in substantial computational overhead. To

13

https://arxiv.org/abs/1701.06538v1

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

address this, standard MoE models typically activate only a few experts sparsely, necessitating the
use of top-k routing. The corresponding formula is as follows:

g = fR(X) = softmax(KeepTopK(softmax(h(X)), k)) (15)

KeepTopK(v, k)i =

{
vi vi is among the top k in v.

−∞ otherwise.
(16)

This approach retains only the top k experts with the highest gate values, setting the rest to zero.
Sparse activation is achieved by activating only experts with non-zero gate values. However, top-k
routing can easily lead to certain experts being selected frequently, while others are rarely or never
selected. This imbalance can degrade the model’s generalization ability.

To address this issue, Shazeer et al. (2017) and Fedus et al. (2022) have proposed load balancing
techniques, which use an auxiliary function to ensure that the selection of experts are more evenly
distributed, thereby enhancing the performance of top-k routing. The load balancing loss introduced
in Fedus et al. (2022) encourages a uniform distribution of tokens across the e experts. However, the
loss function in the original work is applicable only to top-1 routing. In this paper, we extend it to
top-k routing. The auxiliary loss for a batch of gate values G is formulated as:

Lblc = e ·
e∑

i=1

Fi · Pi (17)

where Fi is the fraction of tokens routed to expert i, given by:

Fi =
1

k · |G|
∑
g∈G

1 [gi in top-k of g] (18)

and Pi is the average router probability for expert i, defined as:

Pi =
1

|G|
∑
g∈G

gi (19)

This auxiliary loss encourages uniform token routing across experts by minimizing the difference
between Fi and Pi, ensuring balanced selection of expert.

B HOW TO MAKE HYBRID ROUTING MORE HIERARCHICAL AND EFFICIENT

In Equation 8, there are two hyperparameters, ϵ and µ. As l increases from 0 to L, the value of α(l)

transitions from σ(−ϵ + µ) to σ(ϵ + µ). If ϵ is positive, α(l) increases with l; conversely, if ϵ is
negative, α(l) decreases as l increases. The larger the value of ϵ, the more rapid this transition. The
parameter µ can be tuned to favor either task routing or token routing across more layers. To provide
a better understanding, we present examples of various configurations of ϵ and µ in Table ??.

ϵ µ α(0) α(1) α(2) α(3) α(4) α(5)

2 0 0.12 0.23 0.40 0.60 0.77 0.88
-2 0 0.88 0.77 0.60 0.40 0.23 0.12
10 0 0 0 0.12 0.88 1 1
10 4 0 0.12 0.88 1 1 1
0 0 0.5 0.5 0.5 0.5 0.5 0.5

Table 5: Example of different setups of α(l). Here, we set L = 5.

Additionally, if α(l) is too small, the task router contributes very little to the final gate values. Con-
versely, if α(l) is too large, the token router has minimal influence on the final gate values. So we set
two thresholds, βlow and βhigh. When α(l) < βlow, we only use token routing, and when α(l) > βhigh,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

we only use task routing. While this approach has little impact on the number of trainable
parameters, it significantly reduces the computational costs.

Our experiments in Appendix E.5 showed that setting ϵ > 0 significantly enhances the performance
of hybrid routing. In this configuration, α(l) increases across layers. This enables the shallow layers
of LLMs to capture fine-grained token-level details, which are critical for understanding the nuances
of individual tokens in the early layers. As the depth increases, the deeper layers gradually shift
their focus toward sentence-level and task-specific information, which is essential for generating
and understanding contextually coherent sentences.

C LIGHTER AND MORE EFFECTIVE HMORA

The inclusion of task encoders and task routers significantly increased the number of trainable pa-
rameters. In this section, we explore several designs to reduce the parameter count and computa-
tional costs of HMoRA, making it more lightweight and efficient.

Single LoRA. First, as shown in Figure 3, we observed that the mean entropy of the gate values at
Wo and Wdown was relatively high without Laux. Even with Laux, the mean entropy of the gate values
at Wo remained higher than the others. This suggests that the inputs to these two dense layers do not
demonstrate a clear preference for different experts. As a result, we opted to apply a single LoRA
to these dense layers instead of using MoRA.

Router Sharing. Most existing methods assign a separate router to each dense layer. We argue that
this approach is unnecessary, as the inputs to Wq, Wk, and Wv are identical, as are the inputs to Wup
and Wgate. Moreover, the outputs of these dense layers are integrated later. For example, the outputs
of Wq, Wk, and Wv are combined to compute the self-attention result, while Wgate generates the
gating weights for the output of Wup. Assigning separate routers to each dense layer may complicate
their subsequent collaboration. To address this, we assign a shared router to Wq, Wk, and Wv, and
another shared router to Wup and Wgate.

Hydra LoRA+. Hydra LoRA (Tian et al., 2025) found that the LoRA matrix WA, when trained
on different tasks, tends to show similarities across those tasks, with the primary differences man-
ifesting in matrix WB. As a result, matrix WA can be shared among different experts, capturing
task-agnostic knowledge, while matrix WB specializes in learning domain-specific expertise. Addi-
tionally, LoRA+ (Hayou et al., 2024) proposed assigning a higher learning rate (e.g., ηB times, where
ηB > 1) to matrix WB compared to WA, which accelerates convergence and improves performance.
In HMoRA, we integrate these approaches.

We conducted experiments on the aforementioned lightweight designs in Appendix E.6, and the
results showed that the number of trainable parameters was reduced by about half, while the training
speed significantly improved. The performance of HMoRA did not noticeably degrade, and in some
cases, it even enhanced performance on certain datasets.

D ENABLING UNSUPERVISED LEARNING THROUGH AUXILIARY LOSS

In this section, we offer an explanation from the perspective of clustering theory, detailing how ap-
plying Laux enables the task router to distinguish between different tasks in an unsupervised manner
and how this capability generalizes to unseen tasks.

From the perspective of clustering theory, the role of our auxiliary function in the task router can be
understood as driving the model to automatically discover and distinguish the underlying structures
of different tasks. One of the core objectives of clustering theory is to maximize the distance between
different clusters (i.e., different tasks), ensuring significant separability between clusters. Another
key objective is to minimize the distance or increase the similarity between data points within the
same cluster, so that the data points within a cluster are more tightly grouped. Our auxiliary function
achieves these goals in the following ways:

• Maximizing H(1
N

∑N
i=1 g

(i)): The auxiliary function encourages the routing decisions to
be distributed more uniformly. This ensures that, on a global scale, routing is not overly
concentrated on a few experts but instead utilizes all experts in a balanced manner, ensuring

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

greater differentiation between tasks when selecting experts. This is analogous to the clus-
tering objective of ”maximizing inter-cluster distance,” where different tasks are assigned
to distinct expert clusters.

• Minimizing 1
N

∑N
i=1 H(g(i)): The auxiliary function drives the entropy of each individual

routing decision toward zero, making the routing decisions more deterministic. This en-
sures that different inputs from the same task are consistently routed to the same expert,
thereby reducing intra-task variability. This is akin to the clustering objective of ”mini-
mizing intra-cluster variance,” ensuring that all instances of the same task are routed to the
same or similar experts.

With this design, the task encoder and task embedding map the task information from the input into
a feature space, where similar tasks are positioned closer together, while dissimilar tasks are pushed
further apart. The router then utilizes the routing function to assign different task clusters in the
feature space to corresponding combinations of experts. This process resembles unsupervised clus-
tering, where the model, by optimizing the auxiliary function, automatically discovers the structural
relationships between tasks.

Even when faced with unseen tasks, the task encoder captures the relevant task information from
the input and maps it into the feature space. The router then routes the task to the most similar
expert cluster based on its position in this space. This capability is analogous to how clustering
algorithms assign new data points to the most appropriate cluster by evaluating their proximity to
existing clusters.

In summary, the auxiliary function promotes intra-cluster consistency and inter-cluster separability
within the framework of clustering theory, enabling the task router to automatically differentiate
between tasks in an unsupervised manner. Furthermore, this differentiation capability generalizes to
unseen tasks. This mechanism not only enhances the model’s performance in multi-task scenarios
but also improves its adaptability and robustness in dynamic, evolving environments.

E ADDITIONAL EXPERIMENT INFORMATION, RESULTS, AND ANALYSIS

E.1 DATASET STATISTICS

For training, we utilize the Flan v2 dataset, which is derived from 473 individual datasets, spanning
146 task categories and encompassing a total of 1,836 tasks. The dataset is divided into four mix-
tures: T0-SF, Muffin, SNI, and CoT. We use a 10-million-sample subset of Flan v21 and adjust the
proportions of the four mixtures, as shown in Table 6.

T0-SF Muffin SNI CoT
Proportion (%) 52.5 31.5 10.4 5.6

Table 6: Proportion of different mixtures in Flan v2.

To evaluate multitask performance, we test on several well-established NLP benchmarks:

• MMLU (Massive Multitask Language Understanding): This benchmark covers 57 tasks
across various domains, assessing a model’s ability to generalize across different subjects.

• MMLU-Pro: An extension of MMLU, this variant increases the difficulty by expanding
the number of multiple-choice options to ten, making the evaluation more challenging.

• ARC (AI2 Reasoning Challenge): This benchmark tests grade-school science questions,
divided into two subsets: ARC-Easy, which involves straightforward questions, and ARC-
Challenge, which requires more complex reasoning and deeper knowledge.

• OpenBookQA: A benchmark focused on science questions that require the combination
of provided facts with external common knowledge, testing the model’s applied reasoning
abilities.

1https://huggingface.co/datasets/sordonia/flan-10k-flat

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• SWAG (Situations With Adversarial Generations): This benchmark evaluates common-
sense reasoning by asking the model to predict the most plausible next action in a given
scenario.

• CommonsenseQA: A multiple-choice dataset that tests commonsense reasoning, requiring
models to apply implicit world knowledge to answer questions correctly.

Each of these benchmarks is designed to probe different dimensions of generalization, reasoning,
and knowledge application in natural language understanding, providing a comprehensive evaluation
of multitask learning performance. Detailed information about these datasets is shown in Table 7.

Dataset train validation test Number of Options Metrics
MMLU 99842 1531 14042 4 Macro accuracy
MMLU-Pro - 70 12032 10 Macro accuracy
ARC-C 1119 299 1172 4 Accuracy
ARC-E 2251 570 2376 4 Accuracy
OpenBookQA 4957 500 500 4 Accuracy
SWAG 73546 20006 20005 5 Accuracy
CommonsenseQA 9741 1221 1140 4 Accuracy

Table 7: Information of the original datasets.

Dataset validation test
MMLU 300 2000
MMLU-Pro 70 2000
ARC-C 299 1172
ARC-E 570 2376
OpenBookQA 500 500
SWAG 300 2000
CommonsenseQA 300 900

Table 8: Number of samples in validation and test splits from the subsets of original datasets.

For each evaluation, testing on full datasets would be highly time-consuming, even exceeding the
training time. To address this, we split these benchmarks into smaller subsets. For MMLU, we
randomly sample 300 examples from the validation set as the new validation set and 2,000 examples
from the test set as the new test set. For MMLU-Pro, we randomly sample 2,000 examples from
the test set as the new test set. For SWAG, we randomly sample 300 examples from the original
validation set to create a new validation set, and 2,000 examples to form a new test set. For Com-
monsenseQA, we randomly sample 300 examples from the original validation set to create a new
validation set, and 900 examples to form a new test set. The number of samples in the subsets we
created for each benchmark is shown in Table 8. All of our experiments are evaluated on this newly
created subset.

E.2 BRIEF INTRODUCTION OF BASELINE

In this section, we introduce three approaches that combine MoE with LoRA: MoLoRA, MixLoRA,
and HydraLoRA. These methods, like our own, do not require datasets with specific task labels or
pre-trained LoRA experts, making them suitable for a broad range of tasks. This is the primary
reason we selected them as baselines. Below is a brief overview of each method:

• MoLoRA: MoLoRA employs token-level soft routing and applies MoRA only to the dense
layers within the FFN.

• MixLoRA: MixLoRA utilizes token-level top-k routing and applies MoRA to the dense
layers within the FFN, while simultaneously fine-tuning each dense layer in the self-
attention module using LoRA. Additionally, MixLoRA incorporates a load-balancing loss,
Lblc.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• HydraLoRA: HydraLoRA introduces a novel structure for LoRA experts, where a shared
LoRA matrix WA is used among all experts, while each expert has its own unique LoRA
matrix WBi

. This design significantly reduces the number of parameters by sharing part
of the LoRA components, which makes the model more parameter-efficient. HydraLoRA
employs token-level soft routing.

These methods offer distinct advantages over other PEFT approaches by combining the strengths of
MoE and LoRA, making them highly relevant for comparison with our proposed method.

E.3 TRAINING AND IMPLEMENTATION DETAILS

General Experimental Setup. We set the learning rate to 2 × 10−5, with a warm-up period of
500 steps during which the learning rate increases linearly. We use the AdamW Loshchilov (2017)
optimizer, with a dropout rate of 0.1 and label smoothing set to 0.1. We simulate a base size of 12
using gradient accumulation. The maximum input length is set to 1024, and the maximum output
length is set to 512. All the experiments are conducted on NVIDIA A40 GPUs.

HMoRA Implementation Details. For the router, we implement it using a single dense layer and
apply dropout to its inputs during training. We also apply dropout to the inputs of the experts. For
the task encoder, we use a single-layer Transformer encoder (as implemented in PyTorch2), ensuring
that the model dimension of task encoder is consistent with the LLM. The number of attention heads
is set to 16, and the hidden layer size in the FFN is set to twice the model dimension.

E.4 ANALYSIS OF THE CERTAINTY AND BALANCE OF DIFFERENT ROUTING METHODS

In this section, we further analyze the impact of the auxiliary loss on the determinism and balance
of the routing results. The experimental setup is consistent with that in Section 4.1, except that we
adjust the parameter γc for Laux. We primarily experiment with γc, which affects the certainty of
routing results. We fix γb = 1 as we aim for the routing to be as balanced as possible. If the training
data itself is imbalanced, setting γb to a lower value may yield better results. We select γc values
from {0, 0.2, 0.4, 0.6, 0.8}. The experimental results are shown in Table 9. We observe that for both
the top-2 routing and soft routing, setting γc to 0.4 yields better results, while setting γc too high or
too low negatively affects the performance of the auxiliary function.

Routing Method γc MMLU MMLU-Pro ARC-C ARC-E OpenBook SWAG Comm Avg

Top-2

0.0 53.87 25.00 69.18 84.90 81.21 57.14 70.59 63.13
0.2 54.47 25.57 69.12 85.00 81.14 53.44 70.25 62.71
0.4 54.79 26.01 69.67 85.48 82.36 55.76 71.99 63.72
0.6 54.59 25.13 69.49 85.44 82.76 56.14 71.39 63.56
0.8 54.39 24.25 68.89 85.25 81.08 54.41 70.70 62.71

Soft

0 54.81 24.72 69.78 85.79 82.09 55.42 70.70 63.33
0.2 53.64 25.96 69.52 85.14 81.75 56.02 70.93 63.28
0.4 54.85 26.40 70.12 85.36 81.68 56.15 70.99 63.65
0.6 53.19 25.04 69.09 85.17 81.41 53.29 70.16 62.48
0.8 53.94 25.23 69.78 85.59 81.82 53.56 71.16 63.01

Table 9: Performance comparison of Top-2 and Soft routing methods across various γc settings on
multiple NLP benchmarks.

Furthermore, to intuitively illustrate the impact of γc on the certainty of routing, we randomly sam-
pled a data point from the training set and input it into the model. We then visualized the gate
values, computed by the final router over the first 200 tokens, using t-SNE. As shown in Figure 5,
dark blue points represent gate values with very low entropy, indicating a high level of certainty, as
they approach a single-point distribution. In contrast, yellow points represent higher entropy values,
indicating lower certainty. The eight dark blue clusters in the figure correspond to eight distinct ex-
perts. It can be observed that when γc = 0, most of the gate values are highly concentrated, forming
near single-point distributions. As γc increases, the certainty of the routing decreases, leading to
more dispersed gate values.

2https://pytorch.org/

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

20 10 0 10 20

20

10

0

10

20

t-SNE Visualization of Gate Values from Top-2 Routing with Our Auxiliary Loss
gamma_c = 0
gamma_c = 0.4
gamma_c = 0.8

0.25

0.50

0.75

1.00

1.25

1.50

1.75

En
tro

py

Figure 5: t-SNE visualization of gate values from the top-2 routing with our auxiliary loss at dif-
ferent γc values. Dark blue points (low entropy) represent high certainty, while yellow points (high
entropy) represent low certainty.

30 20 10 0 10 20 30

30

20

10

0

10

20

30

40

t-SNE Visualization of Gate Values from Different Routing Strategies
Top-2 with our loss (gamma_c = 0)
Top-2 with our loss (gamma_c = 0.4)
Top-2 with load balance loss
Top-2

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

En
tro

py
Figure 6: t-SNE visualization of gate values from different routing methods. The plot compares
four routing methods: top-2 routing without any auxiliary loss (rhombic), top-2 routing with Lblc
(triangles), and top-2 routing with Laux at γc = 0 (circles) and γc = 0.4 (squares). The color scale
represents entropy, with darker colors indicating lower entropy (higher certainty) and lighter colors
indicating higher entropy (lower certainty).

We compare the certainty of standard top-2 routing, top-2 routing with Laux, and top-2 routing
with Lblc. The results are shown in Figure 6. In top-2 routing without any auxiliary loss, despite
the high certainty of the gate values, there is a severe imbalance, with nearly all routing decisions
biased toward a single expert (as seen in the upper-middle part of the figure). This causes the
MoE model to effectively degrade into a non-MoE model. Conversely, top-2 routing with load
balancing loss results in a lack of certainty, with most gate values approaching a uniform distribution,
which undermines expert specialization. In contrast, top-2 routing with our auxiliary loss achieves
both a relatively balanced selection of experts and greater determinism, thereby enhancing expert
specialization.

We further analyze the balance of these routing methods by counting the number of experts activated
by the top-2 routing for the first 200 tokens of input and calculating the proportion of activations for
each expert relative to the total number of expert activations. Since top-2 routing activates both the
expert with the highest probability and the expert with the second-highest probability, the maximum
activation proportion for any single expert can reach 50%. The results are shown in Figure 7. With-
out any auxiliary loss, top-2 routing is the most imbalanced, with Expert 7 being activated nearly
50% of the time, while Expert 1, 4, and 6 are almost never used. A similar imbalance occurs when

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 Expert 80.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

ns

gamma_c = 0
gamma_c = 0.4
gamma_c = 0.8
load balancing
top-2 only

Figure 7: Proportion of activations for each expert in top-2 routing across different configurations.
The plot compares the impact of Laux with varying γc values (0, 0.4, and 0.8), and load balancing
Lblc on the selection of experts (1-8).

Laux is applied with γc = 0. However, when γc is set to 0.4 or 0.8, this imbalance is significantly
reduced. The most balanced routing is achieved with top-2 routing using Lblc. However, as noted
in the previous analysis, this balance comes at the cost of reduced certainty. Furthermore, given
that the data itself is imbalanced, enforcing strict balance can even hinder the specialization of the
experts. The experimental results in Section 4.1 also demonstrate that using our auxiliary loss leads
to better overall performance.

E.5 EXPLORING THE EFFECTS OF HYBRID ROUTING

In this section, we investigate how combining task-level and token-level routing can enhance the
performance of LLMs. In this set of experiments, we do not apply the lightweight designs. For the
auxiliary loss, we set γc = 0.4, γb = 1, and λ = 0.003. The upper and lower bounds for hybrid
routing are set to βdown = 0.2 and βup = 0.8, respectively. We conduct experiments by varying ϵ
and µ.

Manner ϵ µ α(l) TP MMLU MMLU-Pro ARC-C ARC-E OpenBook SWAG Comm Avg

Constant

0 -2 0 5.04% 54.79 26.01 69.67 85.48 82.36 55.76 71.99 63.72
0 -.135 0.2 6.42% 54.62 25.57 69.29 84.91 81.68 56.98 70.93 63.43
0 -0.4 0.4 6.42% 54.76 24.72 69.81 85.22 83.03 54.41 71.39 63.34
0 0.4 0.6 6.42% 54.26 25.42 69.55 85.44 82.42 53.27 70.22 62.94
0 1.35 0.8 6.42% 53.43 25.09 69.18 85.20 82.36 54.48 71.31 63.01
0 2 1 6.16% 53.96 26.11 69.21 85.07 82.15 54.87 70.93 63.19

Hierarchical

-4 0 ↓ 6.29% 54.30 25.47 69.55 85.69 82.42 54.78 71.05 63.32
4 0 ↑ 6.29% 53.67 26.09 69.92 85.58 83.43 54.64 72.59 63.70
4 -2 ↑ 6.31% 54.63 26.59 71.47 85.87 83.23 55.28 72.08 64.16
4 2 ↑ 6.26% 54.50 26.14 69.89 85.66 83.42 55.89 72.23 63.96

Table 10: The performance on 7 benchmarks when α(l) is set to constant or hierarchical. For the
constant group of experiments, α(l) is set to a fixed constant across all layers. The value of α(l)

shown in the table represents the approximate value under the corresponding settings of ϵ and µ. For
the hierarchical group of experiments, ↑ indicates that α(l) increases with layer l, while ↓ indicates
that it decreases with layer l.

As shown in Table 10, we observe that an increasing α(l) across layers significantly boosts the
model’s performance compared to both decreasing α(l) and constant α(l). The configuration where
α(l) increases progressively across layers achieves relatively better average performance, with the
setting ϵ = 0 and µ = −2 yielding the best results. This outcome underscores the effectiveness
of hierarchical hybrid routing, which enables the model to shift its focus from token-level details
in the early layers to broader task-level understanding in the deeper layers. Setting ϵ > 0 (with
α(l) increasing) generally yields better performance. The model appears to be less sensitive to the
parameter µ.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E.6 EFFICIENCY ANALYSIS OF LIGHTWEIGHT DESIGNS

In this section, we evaluate the lightweight designs discussed in Appendix C. All methods were
tested under the same hardware configuration, and we measured the time required to train for 1,000
steps to estimate the computational cost of each lightweight design. For hierarchical hybrid routing,
we set ϵ = 4 and µ = −2, with all other settings consistent with those outlined in Appendix E.5.
We set the actual batch size to 4, but accumulate gradients over 3 steps to simulate a batch size of
12.

As depicted in Figure 2(c), router sharing does not significantly reduce the number of trainable
parameters, but it substantially lowers computational cost. Conversely, both Hydra LoRA and Single
LoRA greatly decrease the number of trainable parameters. When these designs are combined, we
observe nearly a one-third reduction in both computational cost and trainable parameters.

Method TP ηB MMLU MMLU-Pro ARC-C ARC-E OpenBook SWAG Comm Avg
Base 6.31% - 54.63 26.59 71.47 85.87 83.23 55.28 72.08 64.16
+ Router Sharing 6.22% - 54.52 25.68 71.27 85.41 82.83 56.58 72.08 64.05
+ Single LoRA 4.77% - 53.41 25.23 69.81 85.18 81.35 56.13 70.88 63.14
+ Hydra LoRA 4.46% - 53.75 26.27 70.01 85.41 81.55 55.64 71.11 63.39
+ Hydra LoRA+ 4.46% 1.2 53.78 25.39 69.35 85.41 82.82 54.30 71.36 63.20
+ Hydra LoRA+ 4.46% 1.4 53.53 25.27 69.15 85.38 81.68 54.85 71.16 63.00
+ Hydra LoRA+ 4.46% 1.6 53.17 25.08 69.47 85.58 81.35 54.55 71.93 63.02
+ Hydra LoRA+ 4.46% 1.8 53.79 24.99 68.89 85.52 83.50 54.78 71.65 63.30
+ Hydra LoRA+ 4.46% 2.0 53.40 26.81 70.89 85.35 82.76 55.68 71.97 63.84

+ All 3.90% 2.0 54.02 25.61 70.73 85.63 82.20 56.40 72.59 63.88

Table 11: Performance comparison of various lightweight design strategies, including Router Shar-
ing, Single LoRA, Hydra LoRA, and Hydra LoRA+ with different ηB settings. The table shows the
percentage of trainable parameters (TP), as well as performance across multiple benchmarks. The
“+ All” row represents the integration of all lightweight designs.

In terms of performance, as shown in Table 11, router sharing not only maintains performance levels
comparable to the base method but even improves the model’s performance on the SWAG bench-
mark. However, both Hydra LoRA and Single LoRA introduce some performance degradation. The
combination of Hydra LoRA and LoRA+ helps mitigate the performance drop when ηB = 2 is ap-
plied. Integrating all of the lightweight designs results in only a minimal decrease in performance,
demonstrating that these approaches effectively reduce both computational and memory costs with-
out significantly compromising the model’s accuracy on benchmark tests. These findings highlight
the practicality of adopting lightweight designs, especially in resource-constrained environments, as
they enable substantial efficiency gains while preserving competitive performance.

E.7 BASELINE COMPARISON ON LLAMA 3.2 1B

We conducted baseline comparison experiments on LLaMA 3.2 1B. We set γc to 0.8 and ηB to 4.
We increased the maximum training steps to 20,000, and evaluated on the validation set every 1,000
steps. All other parameters are consistent with those described in Section 4.2. The experimental
results are shown in Table 12.

TP MMLU MMLU-Pro ARC-C ARC-E OpenBook SWAG Comm Avg
fine-tuning 100% 27.42 12.05 27.51 41.22 50.91 28.47 47.75 33.61

LoRA r=8 0.45% 31.4 12.21 33.42 46.63 51.82 37.62 45.81 36.99
LoRA r=64 3.64% 33.82 12.11 39.12 57.57 55.15 39.44 47.59 40.68
MoLoRA 2.67% 25.02 9.67 26.31 26.74 27.07 25.31 22.51 23.23
MixLoRA 2.81% 34.18 12.76 38.26 54.07 50.91 42.08 46.2 39.78
HydraLoRA 2.37% 34.39 12.56 36.68 58.63 58.99 39.82 45.81 40.98

HMoRA w/o LW 6.61% 32.69 13.34 37.26 56.01 59.07 38.29 50.78 41.06
HMoRA w LW 4.63% 35.19 12.91 38.6 58.84 61.72 39.29 54.25 42.97

Table 12: Baseline comparison based on LLaMA 3.2 1B.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Analysis. The experimental results on LLaMA 3.2 1B differ somewhat from those on Qwen2 1.5B.
Compared to Qwen2 1.5B, LLaMA 3.2 1B requires more fine-tuning steps for the average accu-
racy across multiple benchmarks to gradually converge. With full fine-tuning, an increased number
of fine-tuning steps may impair the knowledge learned during pre-training. Additionally, since
our fine-tuning data does not include training data specific to the benchmarks, full fine-tuning per-
forms worse than other PEFT methods. Full fine-tuning shows almost no improvement in accu-
racy on knowledge-intensive benchmarks like MMLU and MMLU-Pro. It only achieves improve-
ments in simpler reasoning tasks such as ARC-E, OpenBookQA, and CommonsenseQA. Further-
more, MoLoRA fine-tuning proved completely ineffective, which we suspect is due to the fact that
MoLoRA does not fine-tune the attention layers. Other fine-tuning methods, which freeze the pa-
rameters of the initial LLM, preserve the pre-trained knowledge and outperform full fine-tuning.
Surprisingly, HMoRA+lw achieved the best average accuracy and performed best on 4 out of 7
benchmarks, even surpassing HMoRA, which has a larger parameter count.

E.8 QUANTITATIVE EXPERIMENTS AND ANALYSIS ON TASK ROUTER

In the ablation experiments presented in the paper, we tested 6 unseen tasks from MMLU and used
visualizations to verify the task router’s ability to differentiate between unseen tasks. Here, we
further explore this capability through quantitative analysis. We sampled 100 examples from each
of the 57 tasks in MMLU and analyzed the task router’s routing results for these samples. First, we
recorded the proportion of expert activations relative to the total number of activations, as shown in
Table 13.

Expert 0 1 2 3 4 5 6 7
with Laux 10.21 0.45 5.21 34.11 10.67 1.72 31.25 6.34
without any loss 0 0.5 0.5 0 0 0 0 0
with Lblc 8.47 2.11 18.37 27.87 5.62 37.55 0 0

Table 13: Proportion of expert activations across different settings, showing the distribution of expert
usage with and without auxiliary loss functions.

It is important to note that, since we use top-2 routing, each sample activates two experts (an expert
pair). The results show that, without any auxiliary function, all tasks are routed exclusively to experts
1 and 2.

Further, we analyzed the expert pairs activated for each task. For each task, we identified the most
frequently activated expert pair from the 100 samples as the main expert pair (MEP). We then
examined the distribution of main expert pairs across the 57 tasks, calculating the proportion of
tasks where the main expert pair activation exceeded a certain threshold. The results are presented
in the table below.

Proportion Threshold ≥ 0.7 ≥ 0.8 ≥ 0.9 ≥ 1

with Laux 78.94% 73.68% 54.38% 14.03%
without any loss 100% 100% 100% 100%
with Lblc 21.05% 12.28% 3.5% 1.75%

Table 14: Proportion of tasks where the main expert pair activation exceeds different thresholds.

We define tasks with a main expert pair proportion exceeding 0.8 as recognizable by the router,
as this indicates consistent and reliable routing. Although this proportion is consistently 100%
without any auxiliary function, it simply routes all tasks to a pair of experts (1, 2), which we do not
consider indicative of its ability to differentiate between tasks.

We further analyzed the main expert pairs for all tasks. The statistics of main expert pairs using
Laux and Lblc are shown in Table 15 and Table 16, respectively. As shown in Table 15, the task
router grouped all MMLU tasks into three clusters, with 42 tasks (73.68%) being effectively rec-
ognized. In contrast, when using Lblc, although the number of primary expert pairs increased, only

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Main Expert Pair (3, 6) (2, 7) (0, 4) All

All Tasks 44 5 8 57
MEP Proportion ≥ 0.8 Tasks 34 3 5 42

Ratio 77.27% 60% 62.5% 73.68%

Table 15: Statistics of main expert pairs using Laux, showing the number of tasks for each main
expert pair and the proportion of tasks where the main expert pair activation exceeds 0.8.

Main Expert Pair (0, 5) (1, 3) (2, 3) (2, 4) (2, 5) (3, 5) All

All Tasks 2 3 1 4 11 36 57
MEP Proportion ≥ 0.8 Tasks 0 1 0 0 0 6 7

Ratio 0% 33.33% 0% 0% 0% 16.67% 12.28%

Table 16: Statistics of main expert pairs using Lbcl, showing the number of tasks for each main
expert pair and the proportion of tasks where the main expert pair activation exceeds 0.8.

two clusters, (1, 3) and (3, 5), were significant, and only 7 tasks (12.28%) were effectively recog-
nized overall. The above quantitative analysis demonstrates that our auxiliary function enhances the
task router’s ability to differentiate between tasks, even for those that were not encountered during
training.

23

	Introduction
	Preiliminary
	The HMoRA Method
	Mixture of LoRA Experts
	Hierarchical Hybrid Routing
	Enhance Certainty and Maintain Balance of Routing Results

	Experiments
	Routing Methods Comparison
	Baseline Comparison
	Ablation Study

	Related Work
	Conclusion
	Routing Methods
	How to Make Hybrid Routing More Hierarchical and Efficient
	Lighter and More Effective HMoRA
	Enabling Unsupervised Learning Through Auxiliary Loss
	Additional Experiment Information, Results, and Analysis
	Dataset Statistics
	Brief Introduction of Baseline
	Training and Implementation Details
	Analysis of the Certainty and Balance of Different Routing Methods
	Exploring the Effects of Hybrid Routing
	Efficiency Analysis of Lightweight Designs
	Baseline Comparison on LLaMA 3.2 1B
	Quantitative Experiments and Analysis on Task Router

