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ABSTRACT

In domains where data are sensitive or private, there is great value in methods
that can learn in a distributed manner without the data ever leaving the local
devices. In light of this need, federated learning has emerged as a popular training
paradigm. However, many federated learning approaches trade transmitting data
for communicating updated weight parameters for each local device. Therefore, a
successful breach that would have otherwise directly compromised the data instead
grants whitebox access to the local model, which opens the door to a number
of attacks, including exposing the very data federated learning seeks to protect.
Additionally, in distributed scenarios, individual client devices commonly exhibit
high statistical heterogeneity. Many common federated approaches learn a single
global model; while this may do well on average, performance degrades when
the i.i.d. assumption is violated, underfitting individuals further from the mean
and raising questions of fairness. To address these issues, we propose Weight
Anonymized Factorization for Federated Learning (WAFFLe), an approach that
combines the Indian Buffet Process with a shared dictionary of weight factors
for neural networks. Experiments on MNIST, FashionMNIST, and CIFAR-10
demonstrate WAFFLe’s significant improvement to local test performance and
fairness while simultaneously providing an extra layer of security.

1 INTRODUCTION

With the rise of the Internet of Things (IoT), the proliferation of smart phones, and the digitization
of records, modern systems generate increasingly large quantities of data. These data provide rich
information about each individual, opening the door to highly personalized intelligent applications,
but this knowledge can also be sensitive: images of faces, typing histories, medical records, and
survey responses are all examples of data that should be kept private. Federated learning (McMahan
et al., 2017) has been proposed as a possible solution to this problem. By keeping user data on
each local client device and only sharing model updates with the global server, federated learning
represents a possible strategy for training machine learning models on heterogeneous, distributed
networks in a privacy-preserving manner. While demonstrating promise in such a paradigm, a number
of challenges remain for federated learning (Li et al., 2019).

As with centralized distributed learning settings (Dean et al., 2012), many federated learning algo-
rithms focus on learning a single global model. However, due to variation in user characteristics or
tendencies, personal data are highly likely to exhibit significant statistical heterogeneity. To simulate
this, federated learning algorithms are commonly tested in non-i.i.d. settings (McMahan et al., 2017;
Smith et al., 2017; Li & Wang, 2019; Peterson et al., 2019), but data are often equally represented
across clients and ultimately a single global model is typically learned. As is usually the case for
one-size-fits-all solutions, while the model may perform acceptably on average for many users, some
clients may see very poor performance. Questions of fairness (Mohri et al., 2019; Li et al., 2020)
may arise if performance is compromised for individuals in the minority in favor of the majority.

Another challenge for federated learning is security. Data privacy is the primary motivation for
keeping user data local on each device, rather than gathering it in a centralized location for training.
In traditional distributed learning systems, data are exposed to additional vulnerabilities while
being transmitted to and while residing in the central data repository. In lieu of the data, many
federated learning approaches require clients to send weight updates to train the aggregated model.
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Figure 1: In WAFFLe, the clients share a global dictionary of rank-1 weight factors {W `
a ,W

`
b }. Each

client uses a sparse diagonal matrix Λ`i , specifying the combination of weight factors that constitute
its own personalized model. Neither the client data Di nor factor selections Λ`i leave the local device.

However, the threat of membership inference attacks (Shokri et al., 2017; Nasr et al., 2019) or model
inversion (Fredrikson et al., 2015; Zhu et al., 2019) mean that private data on each device can still be
compromised if federated learning updates are intercepted or if the central server is breached.

We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), leveraging
Bayesian nonparametrics and neural network weight factorization to address these issues. Rather
than learning a single global model, we learn a dictionary of rank-1 weight factor matrices. By
selecting and weighting these factors, each local device can have a model customized to its unique
data distribution, while sharing the learning burden of the weight factors across devices. We employ
the Indian Buffet Process (Ghahramani & Griffiths, 2006) as a prior to encourage factor sparsity and
reuse of factors, performing variational inference to infer the distribution of factors for each client.
While updates to the dictionary of factors are transmitted to the server, the distribution capturing
which factors a client uses are kept local. This adds an extra insulating layer of security by obfuscating
which factors a client is using, hindering an adversary’s ability to perform membership inference
attacks or dataset reconstruction.

We perform experiments on MNIST (LeCun et al., 1998), FMNIST (Xiao et al., 2017), and CIFAR-
10 (Krizhevsky, 2009) in settings exhibiting strong statistical heterogeneity. We observe that the
model customization central to WAFFLe’s design leads to higher performance for each client’s local
distribution, while also being significantly fairer across all clients. Finally, we perform membership
inference (Shokri et al., 2017) and model inversion (Fredrikson et al., 2015) attacks on WAFFLe,
showing that it is much harder to expose user data than with FedAvg (McMahan et al., 2017).

2 METHODOLOGY

2.1 LEARNING A SHARED DICTIONARY OF WEIGHT FACTORS

Single Global Model Consider N client devices, with the ith device having data distribution Di,
which may differ as a function of i. In many distributed learning settings, a single global model is
learned and deployed to all N clients. Thus, assuming a multilayer perceptron (MLP) architecture1

with layers ` = 1, ..., L, the set of weights θ = {W `}L`=1 is shared across all clients. To satisfy the
global objective, θ is learned to minimize the loss on average across all clients. This is the approach
of many federated learning approaches. For example, FedAvg (McMahan et al., 2017) minimizes the
following objective:

min
θ

L (θ) =

N∑
i=1

piLi(θ) (1)

where Li(θ) := Exi∼Di
[li(xi; θ)] is the local objective function, N is the number of clients, and

pi ≥ 0 is the weight of each device i. However, given statistical heterogeneity, such a one-size-fits-all
1While we restrict our discussion to fully connected layers here for simplicity, this can be generalized to

other types of layers as well. See Appendix A for 2D convolutional layers.
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approach may lead to the global model underfitting on certain clients; often this translates to how
close a particular client’s local distribution is to the population distribution. As a result, this model
may be viewed as less fair to these clients with less common traits.

Individual Local Models On the other extreme, we may alternatively consider learning N local
models θi = {W `

i }L`=1, each only trained on Di. In this case, each set of weights θi is maximally
specific to the data distribution of each client i. However, each client typically has limited data, which
may be insufficient for training a full model without overfitting; the total number of parameters that
must be learned across all clients scales with N . Additionally, learning N separate models does not
take advantage of similarities between client data distributions or the shared learning task.

Shared Weight Factors To make more efficient use of data, we instead propose a compromise
between a single global model and N individual local models. Specifically, we allow each client’s
model to be personalized to the client’s local distribution, but with all models sharing a dictionary of
jointly learned components. Using a layer-wise decomposition (Mehta et al., 2020), we construct
each weight matrix with the following factorization:

W `
i = W `

aΛ`iW
`
b (2)

Λ`i = diag(λ`i) (3)

where W `
a ∈ RJ×F and W `

b ∈ RF×M are global parameters shared across clients and λ`i ∈ RF is a
client-specific vector. This factorization can be equivalently expressed as

W `
i =

F∑
k=1

λ`i,k
(
w`
a,k ⊗w`

b,k

)
(4)

where w`
a,k is the kth column of W `

a , w`
b,k is the kth row of W `

b , and ⊗ represents an outer product.
Written in this way, the interpretation of the corresponding pairs of columns and rows w`

a,k and w`
b,k

as weight factors is more apparent: W `
a and W `

b together comprise a global dictionary of the weight
factors, and λ`i can be viewed as the factor scores of client i. Differences in λ`i between clients allows
for customization of the model to each client’s data distribution (see Figure 1), while sharing of the
underlying factors W `

a and W `
b enables learning from the data of all clients.

We constitute each of the client’s factor scores λ`i as the element-wise product:

λ`i = r` � b`i (5)

where r` ∈ RF indicates the strength of each factor and b`i ∈ {0, 1}F is a binary vector indicating
the active factors. As explained below, b`i is typically sparse, so in general each client only uses
a small subset of the available weight factors. Throughout this work, we use the absence of the `
superscript (e.g., λi) to refer to the entire collection across all layers for which this factorization is
done. We learn a point-estimate for Wa, Wb and r.

2.2 THE INDIAN BUFFET PROCESS

Desiderata Within the context of federated learning with statistical heterogeneity, there are a number
of desirable properties we wish the client factor scores to have collectively. Firstly, λi should be
sparse, which encourages consolidation of related knowledge while minimizing interference: client A
should be able to update the global factors during training without destroying client B’s ability to
perform its own task. This encourages fairness, as in settings with multiple subpopulations, this
interference is most likely to be at the smaller groups’ expense. On the other hand, we would also like
factors to be reused among clients. While data may be non-i.i.d. across clients, there are often some
similarities or overlap; thus, shared factors distribute learning across all clients’ data, avoiding the N
independent model’s scenario. Finally, in the distributed settings considered in federated learning, the
total number of nodes is rarely pre-defined. Therefore, there needs to be a way to gracefully expand
to accommodate new clients to the system without re-initializing the whole model. This includes
both increasing server-side capacity if necessary and initializing new clients.

Prior Given these desiderata, the Indian Buffet Process (IBP) (Ghahramani & Griffiths, 2006) is
a natural choice. As a prior, the IBP regularizes client factors to be sparse, and new factors are
introduced but at a harmonic rate, preferring reusing factors as much as possible over initializing
new ones. This Bayesian nonparametric approach allows the data to dictate client factor assignment,
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Algorithm 1 Weight Anonymized Factorization for Federated Learning (WAFFLe).

1: Input: Communication rounds T , local training epochs E, learning rate η
2: Server initializes global weight factor dictionaries Wa and Wb, factor strengths r
3: Clients each initialize variational parameters πi, ci,di
4: for t = 1, · · · , T do
5: Server randomly selects subset St of clients and sends {Wa, r,Wb}
6: for client i ∈ St in parallel do
7: Wa, r,Wb,πi, ci,di ← CLIENTUPDATE(Wa, r,Wb,πi, ci,di)
8: Send {Wa, r,Wb} to the server.
9: end for

10: Server aggregates and averages updates {Wa, r,Wb}
11: end for

12: function CLIENTUPDATE(Wa, r,Wb,πi, ci,di)
13: for e = 1, · · · , E do
14: for minibatch b ∈ Di do
15: Update {Wa, r,Wb,πi, ci,di} by minimizing (12)
16: end for
17: end for
18: Return {Wa, r,Wb,πi, ci,di}
19: end function

factor reuse, and server-side model expansion. We use the stick-breaking construction of the IBP as a
prior for factor selection:

v`i,κ ∼ Beta(α, 1) (6)

π`i,k =

k∏
κ=1

v`i,κ (7)

b`i,k ∼ Bernoulli(π`i,k) (8)

with α a hyperparameter controlling the expected number of active factors and the rate of new factors
being incorporated, and k indexes the factor.

Inference We learn the posterior distribution for the random variablesφi = {bi,vi}. Exact inference
of the posterior is intractable, so we employ variational inference with mean-field approximation to
determine the active factors for each client device, using the following variational distributions:

q(b`i ,v
`
i ) = q(b`i)q(v

`
i ) (9)

b`i ∼ Bernoulli(π`i ) (10)

v`i ∼ Kumaraswamy(c`i ,d
`
i) (11)

learning the variational parameters {πi, ci,di} for each queried client using Bayes by Back-
prop (Blundell et al., 2015). Needing a differentiable parameterization, we use the Kumaraswamy
distribution (Kumaraswamy, 1980) as a replacement for the Beta distribution of vi and utilize a soft
relaxation of the Bernouilli distribution (Maddison et al., 2017). The objective for each client is to
maximize the variational lower bound:

Li(θ) =

|Di|∑
n=1

Eq log p
(
y
(n)
i

∣∣φi, x(n)i ,Wa,Wb, r
)
−KL (q (φi) ||p (φi))︸ ︷︷ ︸

R

(12)

R =

L∑
`=1

KL
(
q(b`i)||p(b`i |v`i )

)
+ KL

(
q(v`i )||p(v`i )

)
(13)

where θ = {Wa,Wb, r, bi} and |Di| is the number of training examples at client i. Note that in (12)
the first term provides label supervision and the second term (R) regularizes the posterior not to stray
far from the IBP prior.
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2.3 CLIENT-SERVER COMMUNICATION

Training Before the training begins, the global weight factors {Wa,Wb} and the factor strengths r
are initialized by the server. Once initialized, each training round begins with {Wa,Wb, r} being
sent to the selected subset of clients. Each sampled client then trains the model on their own private
dataset Di for E epochs, updating not only the weight factor dictionary {Wa,Wb} and the factor
strengths r, but also its also own variational parameters {πi, ci,di}, which controls which factors
it uses. Once local training is finished, each client sends {Wa,Wb, r} back to the server, but not
{πi, ci,di}, which remain with the client with data Di. After the server has received back updates
from all clients, the various new values for {Wa,Wb, r} are aggregated with a simple averaging step.
The process then repeats, with the server selecting a new subset of clients to query, sending the new
updated set of global parameters, until the desired number of communication rounds have passed.
This process is summarized in Algorithm 1.

Evaluation When a client enters the evaluation mode, it requests the current version of global
parameters {Wa,Wb, r} from the server. If the client has been previously queried for federated
training, the local model consists of the aggregated global parameters and the factor score vector
generated by its own local variational parameters {πi}. Otherwise, the client uses only the aggregated
{Wa,Wb, r}. Note that if a client has been previously queried, the most recently cached copy of
the global parameters is an option if a network connection is unavailable or too expensive; in our
experiments, we assume clients are able to request the most up-to-date parameters.

Security Data security is one of the central tenets of federated learning. Simpler, more standard
methods of training a model could be utilized if all data were first aggregated at a central server.
However, sensitive client data being intercepted during transmission or the server’s data repository
being breached by an attacker are major concerns, motivating federated learning’s approach of
keeping the data on the local device. On the other hand, keeping the data client-side may not be
sufficient. Just as data can be compromised in transit or at the central database in non-federated
settings, federated training updates are similarly vulnerable. In methods like FedAvg, this update is
the entirety of the model’s parameters. Effectively, this means that FedAvg trades yielding the data
immediately for surrendering whitebox access to the model, which opens the model to a wide range
of malicious activities (Szegedy et al., 2014; Fredrikson et al., 2015; Shokri et al., 2017; Wang et al.,
2019; Zhu et al., 2019), including, critically, exposing the very data that federated learning aims to
protect. With WAFFLe, clients transmit back the entire dictionary of weight factors {Wa,Wb} and r,
but not {πi, ci,di}. As such, the knowledge of which specific factors that a particular client uses is
kept local. Therefore, even if messages are intercepted, an adversary cannot completely reconstruct
the model, hampering their ability to perform attacks to recover the data.

3 RELATED WORK

3.1 STATISTICAL HETEROGENEITY

Statistical heterogeneity of the data distributions of client devices has long been recognized as a
challenge for federated learning. Despite acknowledging statistical heterogeneity, many federated
learning algorithms focus on learning a single global model (McMahan et al., 2017); such an approach
often suffers from model divergence, as local models may vary significantly from each other. To
address this, a number of works break away from the single-global-model formulation. Several
(Smith et al., 2017; Corinzia & Buhmann, 2019) have cast federated learning as a multi-task learning
problem, with each client treated as a separate task. FedProx (Li et al., 2018) adds a proximal
term to account for statistical heterogeneity by limiting the impact of local updates. Others study
federated learning within a model-agnostic meta-learning framework (Jiang et al., 2019; Khodak
et al., 2019). Zhao et al. (2018) recognize performance degradation from non-i.i.d. data and propose
global sharing of a small subset of data, which while effective, may compromise privacy. In settings
of high statistical heterogeneity, fairness is also a natural question. AFL (Mohri et al., 2019) and
q-FFL (Li et al., 2020) propose methods of focusing the optimization objective on the clients with the
worst performance, though they do not change the network itself to model different data distributions.

3.2 PRESERVING PRIVACY

While much progress has been made in machine learning with public datasets (LeCun et al., 1998;
Krizhevsky, 2009; Deng et al., 2009), in real-world settings, data are often sensitive, potentially
for propriety (Sun et al., 2017), security (Liang et al., 2018), or privacy (Ribli et al., 2018) reasons.
Protecting user data is one of the primary motivations for federated learning in the first place.
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Approaches include releasing artificial data (Triastcyn & Faltings, 2020; Goetz & Tewari, 2020),
homomorphic encryption (Hardy et al., 2017), or differential privacy (Dwork et al., 2006; Abadi
et al., 2016; Melis et al., 2015). However, artificial data can still strongly resemble the original data,
and sharing the model architecture and its parameters presents risks associated with whitebox access,
leaving the data vulnerable to attacks such as membership inference (Shokri et al., 2017) or model
inversion (Fredrikson et al., 2015; Wang et al., 2019; Zhu et al., 2019).

3.3 BAYESIAN NONPARAMETRIC FEDERATED LEARNING

Several previous works have applied Bayesian nonparameterics to federated learning, primarily as a
means for parameter matching during aggregation. Instead of averaging the parameters weight-wise
without considering the meaning of each parameter, past works have proposed using the Beta-
Bernouilli Process (Thibaux & Jordan, 2007) for matching parameters, first with fully connected
layers (Yurochkin et al., 2019), but later also extended by Wang et al. (2020) to convolutions and
LSTMs (Hochreiter & Schmidhuber, 1997). In contrast, our method utilizes Bayesian nonparametrics
for modeling rank-1 factors for multitask learning, instead of the aggregation stage.

4 EXPERIMENTS

4.1 EXPERIMENTAL SET-UP

Settings with higher statistical heterogeneity are more challenging for federated learning than when
data are i.i.d. across clients, as well as more representative of the real-world, so we focus our
experiments on the former. We consider two forms of statistical heterogeneity. The first is the simple
non-i.i.d. construction introduced by McMahan et al. (2017), in which the data are sorted by class,
sharded, and then randomly distributed to the N clients such that each client only has data from Z
classes; many federated learning works consider the highly non-i.i.d. setting of Z = 2, which we also
default to. While this setting can be challenging, it has the property that the classes present in every
client’s data is equally represented in the global data distribution. As a result, a single global model
may perform reasonably uniformly across all clients. We thus refer to this as unimodal non-i.i.d.

However, this assumption of equal representation is generally not true in practice, as some character-
istics or modes of the global distribution are inevitably less prevalent in the overall population than
others. In the real world, this can correspond to age, gender, ethnicity, wealth, or a number of other
demographic factors. To emulate this, we modify the above non-i.i.d. setting by first splitting the data
and clients into two groups, with more clients in one group than the other. For MNIST (LeCun et al.,
1998) for example, we partition the odd digits to 100 clients and the even digits to 20 clients. As
before, each client still receives data from Z = 2 classes, with an equal number of data samples per
client (the unallocated even digit samples are left unused); the difference is that there is now a 5 : 1
ratio of odd to even digits in the total population, resulting in the clients with only even digits being
in the minority of the global population. We call this setting multimodal non-i.i.d. Further details on
the data allocation process and splits for FMNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky,
2009) can be found in Appendix B.

In our experiments, the server selects a fraction C = 0.1 of clients during each communication round,
with T = 100 total rounds for all methods. Each selected client trains their own model for E = 5

Table 1: Local Test Performance for Z = 2

Dataset Method # of parameters ↓ Unimodal ↑ Multimodal ↑

MNIST

FedAvg 155,800 94.46±0.84 91.57±1.42
FedProx 155,800 94.44±1.15 91.53±1.05
q-FFL 155,800 91.46±1.07 88.42±1.24
WAFFLe 120,200 96.23±0.31 95.41±0.36

FMNIST

FedAvg 28,880 83.96±0.91 83.43±2.27
FedProx 28,800 84.19±0.99 83.59±2.30
q-FFL 28,800 83.10±0.36 85.73±0.21
WAFFLe 18,155 87.12±0.89 86.09±0.92

CIFAR-10

FedAvg 61,770 52.54±0.14 45.46±1.69
FedProx 61,770 52.36±0.11 44.95±1.17
q-FFL 61,770 43.82±0.52 38.25±1.12
WAFFLe 42,780 71.30±0.92 66.35±0.72
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Table 2: Sub-population Local Test Performance Analysis

Dataset Method Majority ↑ Minority ↑ Gap ↓ Variance ↓

MNIST

FedAvg 96.63±0.70 67.40±11.26 29.23±11.79 199±106
FedProx 96.43±0.67 68.60±9.44 27.83±10.03 186±92
q-FFL 94.93 ±0.31 54.20±7.37 40.73±7.55 355±117
WAFFLe 95.93±0.16 93.87±0.66 2.07±0.77 26±6

FMNIST

FedAvg 89.75±1.76 68.05±4.43 21.70±4.21 231±35
FedProx 89.95±1.73 67.50±4.50 22.45±4.38 233±42
q-FFL 88.73±0.17 69.40±1.48 19.33±1.43 212±19
WAFFLe 88.91±2.07 79.67±1.52 9.25±0.61 145±27

CIFAR-10

FedAvg 51.98±1.69 16.83±4.42 35.15±4.12 338±59
FedProx 51.26±1.44 16.56±3.32 32.70±6.99 318±36
q-FFL 42.00±0.29 18.14±3.05 23.87±3.00 220±17
WAFFLe 68.37±1.01 55.00±6.00 13.37±2.61 182±27

(a) (b) (c)

Figure 2: FedAvg and WAFFLe performance distribution across clients in the multimodal non-
i.i.d. setting for (a) MNIST, (b) FMNIST and (c) CIFAR-10.

local epochs with mini-batch size B = 10, and the FedProx (Li et al., 2018) proximal parameter µ is
set to 1.0. For q-FFL (Li et al., 2020), we searched q ∈ {0.001, 0.005, 0.01, 0.1, 1, 3, 5} and found
q = 0.001 as the best setting, matching the settings of Li et al. (2020) on more complex data. Model
architectures, settings of F and α, and training schedules for each of the datasets are described in
Appendix C. Ablation studies over the number of local epochs E, number of classes per client Z, and
IBP parameters α and F are provided in Appendix E, demonstrating robustness.

4.2 LOCAL TEST PERFORMANCE

We compare WAFFLe with FedAvg (McMahan et al., 2017), the fairness-oriented q-FFL (Li et al.,
2020), and FedProx (Li et al., 2018), which augments FedAvg with a proximal term designed high
statistical heterogeneity. We record local test performance averaged across all clients for both types
of non-i.i.d. data allocation in Table 1, along with the total number of learnable parameters; plots of
the training curves can be found in Appendix D. WAFFLe performs well despite strong statistical
heterogeneity, as each client can learn a personalized model by selecting different factors from
{Wa,Wb}; having a model specific to each data distribution results in higher local test performance
than the baselines. This advantage is especially apparent when the data are distributed multimodal
non-i.i.d., mainly because WAFFLe more effectively models underrepresented clients.

Interestingly, we find that WAFFLe outperforms the baselines particularly significantly for CIFAR-10,
the most challenging of the tested datasets, with WAFFLe’s local test performance outstripping
the other methods by 18.8% and 20.9% for unimodal and multimodal settings, respectively. This
demonstrates WAFFLe’s ability to scale to complex tasks beyond MNIST, a common federated
learning test bed. Notably, even though WAFFLe effectively learns a different model for each client,
this does not lead to the computation or memory costs typically associated with independent models.
WAFFLe’s number of communication rounds is largely the same (Appendix D), and by sharing rank-1
factors, each weight factor can be represented compactly, resulting in a total number of parameters
that is fewer than the single model used by the baselines, despite using the same architecture.

4.3 FAIRNESS

Average performance over all clients as in Table 1 is a commonly reported metric, but we argue that it
does reveal the full story. We report subpopulation mean performance and overall population variance
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in Table 2. We observe that FedAvg, which learns a single global model, focuses on minimizing mean
error across the population, resulting in stronger performance for the clients in the majority. However,
as a result, clients in the minority are severely compromised, as evidenced by the large difference
(“Gap”) between majority and minority values in Table 2; for example, FedAvg’s performance for
the “evens” group of clients is almost 30% lower than that of the “odds” group. This is gap is
especially clear when visualizing the distributions of final local test performance for each client in
the majority and minority groups (Figure 2). This underfitting can also be seen to exist throughout
training from the “FedAvg_Minority” curve in Figure 6 of Appendix D, which lags far below the
“FedAvg_Majority” in all three datasets. On the other hand, because of WAFFLe’s shared weight
factor dictionary design, different knowledge can be encoded in separate weight factors, which can be
used by different parts of the population. As a result, despite certain classes being underrepresented
(both in terms of clients, and total samples) in the training set, WAFFLe is able to successfully
model them, with performances on par with the overall population. Notably, we achieve this without
explicitly enforcing fairness through client sampling during training (Mohri et al., 2019; Li et al.,
2020), which can be incorporated to further encourage uniform performance across clients.

4.4 PRIVACY ATTACKS

A primary objective of federated learning is to keep data safe. However, as mentioned in Section 2.3,
the predominant federated learning strategy of each client sending their entire updated model’s
weights still leaves the client’s data vulnerable. We demonstrate this with both membership inference
and model inversion attacks.

Table 3: Membership Inference Attacks

Methods Accuracy F1-score

FedAvg 83.85± 1.62 83.72 ± 2.19
WAFFLe 56.20 ± 1.40 54.39 ± 1.85

Membership inference attacks (MIAs) (Shokri et al., 2017;
Nasr et al., 2019) can be used to infer whether a given data
query was used for model training, leveraging the tendency
of machine learning to overfit or memorize training data.
As such, a successful MIA can be used by an attacker to
surmise the content of a client’s private data from the model. We compare a LeNet (LeCun et al.,
1998) FedAvg (McMahan et al., 2017) model with an analogous WAFFLe model, training both on
1000 CIFAR-10 samples per client. We attack both with a MIA inspired by Shokri et al. (2017), using
a small ensemble of 3 “shadow” models. As shown in Table 3, this simple attack achieves a high
success rate at identifying a FedAvg client’s training data, as intercepting the training update gives
the full model. On the other hand, WAFFLe’s training update only send partial model information, as
the identity of the active factors is kept private. As a result, MIA success rate on WAFFLe is only
moderately higher than random chance (50%). This means it is significantly harder to identify the
private training data for WAFFLe, relative to FedAvg.

Figure 3: FMNIST
model inversion attacks.

We also perform a model inversion attack (Fredrikson et al., 2015; Wang
et al., 2019) on both FedAvg and WAFFLe. Unlike MIAs, which must
start from a query data input, model inversion attacks seek to reconstruct
the inputs used to train a model from the trained model itself; successful
inversion attacks pose a significant risk from a data security perspective.
We perform a model inversion attack on FedAvg and WAFFLe models
trained on FMNIST, showing randomly selected results in Figure 3 recov-
ered from an individual user. Importantly, reconstructions on FedAvg are
significantly sharper, with the class identity far clearer than for WAFFLe,
meaning FedAvg is more vulnerable to model inversion attacks.

5 CONCLUSION

We have introduced WAFFLe, a Bayesian nonparametric framework for federated learning, employing
shared rank-1 weight factors. This approach allows for learning individual models for each client’s
specific data distributions while still sharing the underlying learning problem in a parameter-efficient
manner. Our experiments demonstrate that this model customizability makes WAFFLe successful at
improving local test performance and, more importantly, significantly improves fairness in model
performance when the data distribution among clients is multimodal. Furthermore, we are able to scale
our results to CIFAR-10 and convolutional networks, where we observe the biggest improvements.
We also show that by keeping the active factors selected by each model private on each device along
with the data, WAFFLe’s communication rounds only send partial model information, making it
significantly harder to perform attacks on the private data.
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A GENERALIZING WEIGHT FACTORIZATION TO CONVOLUTIONAL KERNELS

While introducing WAFFLe’s formulation in Section 2.1, we assumed a multilayer perceptron
(MLP) model, as illustrating our proposed shared dictionary with the 2D weight matrices composing
fully connected layers is made especially clearer. While MLPs are sufficient for simple datasets
such as MNIST, more challenging datasets require more complex architectures to achieve the most
competitive results. For computer vision, for example, this often means convolutional layers, whose
kernels are 4D. While 4D tensors can be similarly decomposed into rank-1 factors with tensor rank
decomposition, such an approach would result in a large increase in the number of parameters in the
weight factor dictionary due to the low spatial dimensions of the convolutional kernels (e.g., 3× 3)
in most commonly used architectures. Instead, we reshape the 4D convolutional kernels into 2D
matrices by combining the three input dimensions (number of input channels, kernel width, and
kernel height) into a single input dimension. We then proceed with the formulation in (2). Similar
approaches can be taken to generalize our formulation to other types of layers.

B DATA PARTITIONING
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Figure 4: Example data allocation process to N clients for MNIST and Z = 2 in the unimodal
i.i.d. (left) and multimodal i.i.d. (right) settings. Notice that the primary difference is the grouping of
the data into two subpopulations (here referred to as “Majority” and “Minority”) before sharding and
allocating Z shards to each client.

Because statistical heterogeneity is an inherent property of federated learning paradigms, we focus
our evaluation in this setting, testing WAFFLe in two different types of non-i.i.d. partitions of the
data. A diagram showing the differences of the data allocation process for the two considered settings
is shown for MNIST (LeCun et al., 1998) in Figure 4.

11



Under review as a conference paper at ICLR 2021

B.1 UNIMODAL NON-I.I.D.

We first consider the non-i.i.d. setting introduced by McMahan et al. (2017). This is a widely used
evaluation setting, commonly referred to as “non-i.i.d.” or “heterogeneous” in other federated learning
works, to distinguish it from completely i.i.d. data splits. We refer to this as unimodal non-i.i.d. to
distinguish it from our second setting, which is also non-i.i.d. The primary purpose of such a partition
is to investigate the behavior of federated average algorithms when each client has data from only a
subset (Z) of classes.

This type of partition begins by sorting all data by class. Given N client devices, the samples from
each class are evenly divided into shards of data, each consisting of a single class, resulting in NZ
shards across all classes. These shards are then randomly distributed to the N clients such that each
receives Z shards. The data in the Z shards for each client is then shuffled together and split into a
local training and test set. This ensures that the local test set for each client is representative of its
own private data distribution.

B.2 MULTIMODAL NON-I.I.D.

While the above partition does explore the non-i.i.d. nature of class distribution among clients, it does
not adequately characterize the tendency for subpopulations to exist, with some being more prevalent
than others. We propose a new non-i.i.d. setting to capture this, which we call multimodal non-i.i.d.,
as each subpopulation group can be thought of as a mode of the overall distribution.

This partition begins similarly to unimodal non-i.i.d., with the data being sorted by class. Before
sharding, however, classes are assigned to modes. The number of modes is arbitrary, but we choose
two for simplicity, creating “majority” and “minority” subpopulations. In our experiments, the two
modes are odd digits (N1 = 100) versus even digits (N2 = 20) for MNIST (LeCun et al., 1998),
footwear and shirts (N2 = 20) versus everything else (N1 = 90) for FMNIST (Xiao et al., 2017),
and animals (N1 = 90) versus vehicles (N2 = 20) for CIFAR-10 (Krizhevsky, 2009), where N1 and
N2 are the number of clients in the majority and minority subpopulations, respectively. Once the
classes have been separated by group, the process proceeds similarly to the unimodal i.i.d. partition
process, with the data being divided into shards and then randomly allocated to clients within each
subpopulation. We make the shards equal in size both within and across modes, so in instances where
there are more data shards available than there are clients, we discard the unallocated data. Just as for
unimodal non-i.i.d., local training and test sets are created for each client from its allocated data.

C ADDITIONAL EXPERIMENTAL SET-UP DETAILS

MNIST For MNIST (LeCun et al., 1998) digit recognition, we use a multilayer perceptron with
1-hidden layer with 200 units using ReLU activations (Nair & Hinton, 2010). Based on this model,
we constructed WAFFLe with F = 120 factors. The traditional 60K training examples are partitioned
into local training and test sets as described in Section 4.1. Stochastic gradient descent (SGD) with
learning rate η = 0.04 is employed for all methods.

FMNIST For FMNIST (Xiao et al., 2017) fashion recognition, we use a convolutional network
consisting of two 5 × 5 convolution layers with 16 and 32 output channels respectively. Each
convolution layer is followed by a 2 × 2 maxpooling operation with ReLU activations. A fully
connected layer with a softmax is added for the output. Based on this model, we construct WAFFLe
by only factorizing the convolution layers, with F = 25 factors. As with MNIST, the traditional 60K
training examples are used to form the two local sets. SGD with learning rate η = 0.02 is used as the
optimizer for all methods.

CIFAR-10 For CIFAR-10 (Krizhevsky, 2009), we use we use a convolutional network consisting of
two 3× 3 convolution layers with 16 and 16 output channels respectively. Each convolution layer
is followed by a 2 × 2 maxpooling operation with ReLU activations. These two convolutions are
followed by two fully-connected layers with hidden size 80 and 60, with a softmax applied for the
final output probabilities. To construct WAFFLe, we set the number of factors F = 10 for the two
convolution layers, F = 80 for the first fully connected layer, and F = 40 for the second fully
connected layer. The 50K training examples are used for constructing the local train and test sets.
SGD with learning rate η = 0.02 is utilized for all methods.
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(a) (b) (c)

Figure 5: Local test performance for unimodal non-i.i.d. degree Z = 2. (a) MNIST; (b) FMNIST; (c)
CIFAR-10.

(a) (b) (c)

Figure 6: Local test performance for majority and minority subpopulations for multimodal non-
i.i.d. degree Z = 2. (a) MNIST; (b) FMNIST; (c) CIFAR-10.

D TRAINING CURVES

We plot local test accuracy against the global epoch for FedAvg, FedProx and WAFFLe on MNIST,
FMNIST, and CIFAR-10 averaged over all clients for unimodal non-i.i.d. data in Figure 5. A similar
comparison is made between FedAvg and WAFFLe for multimodal non-i.i.d. data in Figure 6, with
the majority and minority learning curves separately shown. For both cases, the clear gap between
curves shows that WAFFLe achieves better performance throughout training. Notably, WAFFLe
converges at a similar rate as FedAvg with respect to the global epoch number; this is important as
the number of communication rounds is often considered one of the primary bottlenecks in federated
learning.

In the multimodal non-i.i.d. case, the difference is especially stark for the minority subpopulation,
which lags significantly behind the majority when modeled with FedAvg’s one-size-fits-all approach.
Interesting, in addition to having lower value, the FedAvg minority’s training curve is not as smooth,
with large dips and spikes, especially when compared with the majority subpopulation’s curve.
We hypothesize that this may be due to the smaller subpopulation being more vulnerable to being
unrepresented during client sampling, which may lead to catastrophic forgetting (Shoham et al.,
2019). We find this to be an interesting future direction of research. In comparison, the WAFFLe
minority, with its separate set of customized weight factors, has a much smoother training trajectory.

E ABLATION STUDIES

Statistical Heterogeneity (Z) WAFFLe is specifically designed for statistical heterogeneity, as
each client can select different weight factors, effectively learning personalized models. WAFFLe
was shown to excel when Z = 2, as this is a strongly non-i.i.d. setting: as each client only has
samples from two classes. In Figure 7, we show how WAFFLe performs in unimodal settings with
less statistical heterogeneity, for Z = {3, 4}. Although it takes longer to converge in these cases,
WAFFLe still outperforms FedAvg by 7.20% and 2.74%, respectively.

Local epochs (E) Training client devices for more local epochs allows each server to collect a bigger
update from each device, increasing local computation in exchange for fewer total communication
rounds. This is often a desirable trade-off, as communication costs are commonly viewed as the
primary bottleneck for federated learning. However, too many local epochs can lead to divergence
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(a) (b)

Figure 7: CIFAR-10 local test performance for statistical heterogeneity: (a) Z = 3; (b) Z = 4.

Table 4: Unimodal Local Test Accuracy vs
Local Epochs

Dataset Method E=10 E=20 E=30

MNIST FedAvg 92.95 93.36 93.55
WAFFLe 95.10 96.32 96.43

FMNIST FedAvg 85.32 85.13 85.14
WAFFLe 87.52 87.07 89.25

CIFAR-10 FedAvg 47.40 47.60 55.39
WAFFLe 64.18 71.92 74.50

Table 5: Multimodal Local Test Accuracy vs
Local Epochs

Dataset Method E=10 E=20 E=30

MNIST FedAvg 88.70 89.27 89.03
WAFFLe 95.37 94.87 95.07

FMNIST FedAvg 86.21 86.58 86.47
WAFFLe 87.03 89.15 91.33

CIFAR-10 FedAvg 40.91 42.09 42.00
WAFFLe 58.79 57.00 62.61

Table 6: Unimodal Local Test Accuracy vs α
and F

F=80 F=100 F=150

α/F = 0.4 93.20 94.07 94.42
α/F = 0.6 95.08 94.48 95.56
α/F = 0.8 95.56 95.15 96.08
α/F = 1.0 96.33 95.63 96.45

Table 7: Multimodal Local Test Accuracy vs
α and F

F=80 F=100 F=150

α/F = 0.4 91.83 92.70 93.23
α/F = 0.6 94.23 94.48 95.26
α/F = 0.8 94.76 95.15 95.70
α/F = 1.0 94.70 94.93 95.93

during the aggregation step. We study the influence of local epochs E for unimodal non-i.i.d. in
Table 4 and for multimodal non-i.i.d. in Table 5, using the same settings as in Section 4.1 except
for reducing the global training epochs T to 50 and the learning rate η to 0.02 for all methods in
multimodal non-i.i.d scenario. We observe that WAFFLe can handle increased number of local
epochs, improving performance for all three datasets.

Indian Buffet Process Sparsity (α) and Number of Factors (F ) At the cost of more parameters,
an increasing number factors F and higher IBP parameter α gives client more expressivity for
modeling its local distribution. We study the influence of α and F for an MLP architecture on MNIST
partitioned in both non-i.i.d. settings in Tables 6 and 7. As expected, the higher α and F are, the better
performance we observe, though in practice we prefer lower α and F for efficiency. On the other
hand, the overall difference in local test accuracy does not vary drastically, meaning that WAFFLe is
fairly robust to both hyperparameters.
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