Prioritizing Samples in Reinforcement Learning with
Reducible Loss

Shivakanth Sujit Somjit Nath
Mila, Quebec Al Institute, ETS Montréal Mila, Quebec Al Institute, ETS Montréal
shivakanth.sujit@gmail.com somjitnath@gmail.com
Pedro H.M. Braga

Mila, Quebec Al Institute, ETS Montréal, Universidade Federal de Pernambuco
pedromagalhaes.hb@gmail.com

Samira Ebrahimi Kahou
Mila, Quebec Al Institute, ETS Montréal, CIFAR AI Chair
samira.ebrahimi.kahou@gmail.com

Abstract

Most reinforcement learning algorithms take advantage of an experience replay
buffer to repeatedly train on samples the agent has observed in the past. Not
all samples carry the same amount of significance and simply assigning equal
importance to each of the samples is a naive strategy. In this paper, we propose
a method to prioritize samples based on how much we can learn from a sample.
We define the learn-ability of a sample as the steady decrease of the training
loss associated with this sample over time. We develop an algorithm to prioritize
samples with high learn-ability, while assigning lower priority to those that are
hard-to-learn, typically caused by noise or stochasticity. We empirically show
that across multiple domains our method is more robust than random sampling
and also better than just prioritizing with respect to the training loss, i.e. the
temporal difference loss, which is used in prioritized experience replay. The code
to reproduce our experiments can be found herel

1 Introduction

Deep reinforcement learning has shown great promise in recent years, particularly with its ability
to solve difficult games such as Go [Silver et al.,|2016]], chess [Silver et al.,[2018]], and Atari [Mnih
et al.,2015]. However, online Reinforcement Learning (RL) suffers from sample inefficiency because
updates to network parameters take place at every time-step with the data being discarded immediately.
One of the landmarks in the space of online RL learning has been Deep Q Networks (DQN) [Mnih
et al.,[2015]], where the agent learns to achieve human-level performance in Atari 2600 games. A
key feature of that algorithm was the use of batched data for online learning. Observed transitions
are stored in a buffer called the experience replay [Lin, [2004]], from which one randomly samples
batches of transitions for updating the RL agent.

Instead of randomly sampling from the experience replay, we propose to sample based on the learn-
ability of the samples. We consider a sample to be learnable if there is a potential for reducing the
agent’s loss with respect to that sample. We term the amount by which we can reduce the loss of a
sample to be its reducible loss (ReLo). This is different from vanilla prioritization in Schaul et al.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://shivakanthsujit.github.io/reducible-loss/

[2016] which just assigns high priority to samples with high loss, which can potentially lead to
repeated sampling of data points which can not be learned from due to noise.

In our paper, we first briefly describe the current methods for prioritization while sampling from
the buffer, followed by an intuition for reducible loss in reinforcement learning. We demonstrate
the performance of our approach empirically on the DeepMind Control Suite [Tassa et al., [2018]],
OpenAl Gym, MinAtar [Young and Tian, 2019]] and Arcade Learning Environment [Bellemare et al.|
2013]] benchmarks. These experiments show how prioritizing based on the reducible loss is a more
robust approach compared to just the loss term [Schaul et al.l 2016|] used in|Hessel et al.|[2017] and
that it can be integrated without adding any additional computational complexity.

2 Background and Related Work

In Reinforcement Learning (RL), an agent is tasked with maximizing the expected total reward it
receives from an environment via interaction with it. This problem is formulated using a Markov
Decision Process (MDP) [Bellmanl, [1957] that is described by < S, 4, R, P >, where S, A, R and
‘P represent the state space, the action space, the reward function, and the transition function of the
environment, respectively. The objective of RL is to learn an optimal policy 7*, which is a mapping
from states to actions that maximizes the expected discounted sum of rewards it receives from the
environment, that is

7 = argmax E, Z'ytrt|5t =s, A =al,)
g t=0

where «y € [0, 1] is the discount factor. Action value methods obtain a policy by learning the action
value (Q™ (s¢, ar)) of a policy which is the expected return by taking action a; in state s; and then
following the policy 7 to choose further actions. This is done using the Bellman equation, which
defines a recursive relationship in terms of the) value function, as follows

Q" (st,a¢) =1 + 7y max Q™ (S¢+1,) 2

The difference between the left and right sides of Eq.[2|is called the temporal difference error (TD
error), and Q) value methods minimize the TD error of the learned @ function Q? (implemented as a
neural network) using stochastic gradient descent. That is, the loss for the) network is

Ly = (Q°(st,ar) — (re + 7 max Q% (s141,0)))*. (3)

We can then use the () value to implicitly represent a policy by choosing actions with high () values.
While this is easy in discrete control tasks which have a small action space, it can be difficult in
continuous action spaces because finding the action that maximizes the () value can be an optimization
problem in itself. This can be computationally expensive to do at every instant, so recent methods
alleviate this problem through an actor network p¢ that learns the action that produces the maximum
@ value through stochastic gradient ascent, that is

Ho = argmax Q°(st, po(s1)).)

The loss for the @ network in Eq.[3]is then modified so that the argmax is evaluated using the actor
network,

Lo = (Q%(st,ar) — (re + 7 Q% (5141, 1o(s¢))))?)

2.1 Experience Replay

Online RL algorithms perform updates immediately after observing a transition. However, these
not only make learning inefficient but can cause issues in training due to high correlation between
recent transitions. To eliminate this problem, |Lin|[2004] introduced experience replay, which stores
the observed transitions and provides an interface to sample batches of transitions. This has been
successfully used in DQN [Mnih et al.| [2015] to play Atari 2600 games. Since Eqs. [3|and [5]do not
require that the states and actions are generated from the current policy, algorithms trained this way
are called off-policy RL algorithms. During training, data is collected from the environment and
stored in a replay buffer from which mini-batches are sampled to be trained on.

A naive method of sampling is to uniformly sample all data in the buffer, however, this is inefficient
because not all data is necessarily equally important. |Schaul et al. [2016] proposes Prioritized
Experience Replay (PER), that samples points with probabilities proportional to their TD error —
which has been shown to have a positive effect on performance by efficiently replaying samples that
the model has not yet learned, i.e., data points with high TD error. Each transition in the replay buffer
is assigned a priority p;, and the transitions are sampled based on this priority. To ensure that data
points, even with low TD error, are sampled sometimes by the agent, instead of greedy sampling
based on TD error, the replay buffer in PER stochastically samples points with probability P;.

p=_Pi (6)

2., Pf

where « € [0, 1) is a hyper-parameter introduced to smoothen out very high TD errors. Setting « to 0
makes it equivalent to uniform sampling. Since sampling points non-uniformly changes the expected
gradient of a mini-batch, PER corrects for this by using importance sampling (IS) weights w

B
Puniform
i = 7
w (P,) (N

where 8 € [0,1] controls the amount by which the change in gradient should be corrected and
Puniform = % where N is the number of samples in the replay buffer. The loss attributed to each
sample is weighed by the corresponding w; before the gradient is computed. In practice, S is either
set to 0.5 or linearly annealed from 0.4 to 1 during training.

2.2 Target Networks

In Egs. [3]and 3] the target action value depends not only on the rewards but also on the value of the
next state, which is not known. So, the value of the next state is approximated by feeding the next
state to the same network used for generating the current () values. As mentioned in DQN [Mnih
et al.l 2015]], this leads to a very unstable target for learning due to the frequent updates of the)
network. To alleviate this issue, [Mnih et al.|[2015]] introduce target networks, where the target)
value is obtained from a lagging copy of the () network used to generate the current () value. This
prevents the target from changing rapidly and makes learning much more stable. So Eq.[3]can be
suitably modified to

Ly = (Q%(st,ar) — (re + 7y max Q% (5041, a)))? (3)

respectively, where 6 are the parameters of the target network, which are updated at a low frequency.
Mnih et al.|[2015]] copies the entire training network 6 to the target network, whereas|Haarnoja et al.
[2018| performs a soft update, where the new target network parameters are an exponential moving
average (with a parameter 7) of the old target network parameters and the online network parameters.

2.3 Reducible Loss

The work of Mindermann et al.| [2022]] proposes prioritized training for supervised learning tasks
based on focusing on data points that reduce the model’s generalization loss the most. Prioritized
training keeps a held-out subset of the training data to train a small capacity model, 6}, at the
beginning of training. During training, this hold-out model is used to provide a measure of whether
a data point could be learned without training on it. Given training data (x;,y;) € D, the loss of
the hold-out model’s prediction, g;;, on a data point z; could be considered an estimate of the
remaining loss after training on datapoints other than (z;,y;), termed the irreducible loss. This
estimate becomes more accurate as one increases the size of the held-out dataset. The difference
between the losses of the main model, #, and the hold-out model on the actual training data is called
the reducible loss, L, which is used for prioritizing training data in mini-batch sampling. L, can be
thought of as a measure of information gain by also training on data point (x,).

L, = Loss(§ | 2,6) — Loss(j | . 610) ©)

2.4 Prioritization Schemes

Alternate prioritization strategies have been proposed for improvements in sample efficiency. [Sinha
et al.|[2020] proposes an approach that re-weights experiences based on their likelihood under the
stationary distribution of the current policy in order to ensure small approximation errors on the value
function of recurring seen states. [Lahire et al.[[2021] introduces the Large Batch Experience Replay
(LaBER) to overcome the issue of the outdated priorities of PER and its hyperparameter sensitivity by
employing an importance sampling view for estimating gradients. LaBER first samples a large batch
from the replay buffer then computes the gradient norms and finally down-samples it to a mini-batch
of smaller size according to a priority. [Kumar et al.|[2020] presents Distribution Correction (DisCor),
a form of corrective feedback to make learning dynamics more steady. DisCor computes the optimal
distribution and performs a weighted Bellman update to re-weight data distribution in the replay
buffer. Inspired by DisCor, Regret Minimization Experience Replay (ReMERN) [Liu et al.| 2021]]
estimates the suboptimality of the Q value with an error network. Yet, [Hong et al.| [2022] uses
Topological Experience Replay (TER) to organize the experience of agents into a graph that tracks
the dependency between Q-value of states.

3 Reducible Loss for Reinforcement Learning

While PER helps the agent to prioritize points that the model has not yet learned based on high TD
error, we argue that there are some drawbacks. Data points could have high TD error because they are
noisy or not learnable by the model. It might not be the case that a data point with high TD error is
also a sample that the model can actually learn or get a useful signal from. In supervised learning, a
known failure condition of loss based prioritization schemes is when there are noisy points which can
have high loss but are not useful for repeated training [Hu et al., 2021]). Instead of prioritization based
on the TD error, we propose that the agent should focus on samples that have higher reducible TD
error. This means that instead of the TD error, we should use a measure of how much the TD error
can be potentially decreased, as the priority p; term in Eq.[6] We contend that this is better because
it means that the algorithm can avoid repeatedly sampling points that the agent has been unable
to learn from and can focus on minimizing error on points that are learnable, thereby improving
sample efficiency. Motivated by prioritized training in supervised learning, we propose a scheme of
prioritization tailored to the RL problem.

In the context of supervised learning, learn-ability and reducible loss for a sample are well-defined as
one has access to the true target. However, in RL, the true target is approximated by a bootstrapped
target (TD methods) or the return obtained from that state (Monte Carlo). For policy evaluation with
a fixed policy, the true value function can be obtained, however, since we are interested in control, it
will be computationally intensive to capture the true value function with every change in policy as in
policy iteration. Thus, to determine the learn-ability of a sample, we need access to how the targets
of the sample behave and how it changes across time. Since the concepts of a hold-out dataset or
model are ill-defined in the paradigm of RL, we replace them with a moving estimate of the targets.
Unlike in supervised learning, where we draw i.i.d. batches from a fixed training set, the training
data in RL are not i.i.d since they are generated by a changing policy. So the holdout model would
need to be updated from time to time. Thus, in () learning-based RL methods, a good proxy for the
hold-out model is the target network used in the Bellman update in Eq.[§] Since the target network is
only periodically updated with the online model parameters, it retains the performance of the agent
on older data which are trained with outdated policies. |Schaul et al.|[2022] demonstrates how the
policies keep changing with more training even when the agent receives close to optimal rewards.
Thus, the target network can be easily used as an approximation of the hold out model that was not
trained on the new samples. Therefore, we define the Reducible Loss (ReLo) for RL as the difference
between the loss of the data point with respect to the online network (with parameters #) and with
respect to the target network (with parameters 6). So the Reducible Loss (ReLo) can be computed as

Relo = Lg — Lg (10)

There are similarities between ReLo as prioritization scheme in the sampling behavior of low priority
points when compared to PER. Data points that were not important under PER, i.e. they have low Ly,
will also remain unimportant in ReLo. This is because if Ly is low, then as per Eq. ReLo will also
be low. This ensures that we retain the desirable behavior of PER, which is to not repeatedly sample
points that have already been learned.

However, there is a difference in sampling points that have high TD error. PER would assign high
priority to data points with high TD error, regardless of whether or not those data points are noisy
or unlearnable. For example, a data point can have a high TD error which continues to remain high
even after being sampled several times due to the inherent noise of the transition itself, but it would
continue to have high priority with PER. Thus, PER would continue to sample it, leading to inefficient
learning. But, its priority should be reduced since there might be other data points that are worth
sampling more because they have useful information which would enable faster learning. The ReLo
of such a point would be low because both Ly and L would be high. In case a data point is forgotten,
then the Ly would be higher than L, and the ReLo would ensure that these points are revisited. Thus
ReLo can also help to overcome forgetting.

3.1 Implementation

The probability of sampling a data point is related to the priority through Eq. [f] and requires the
priority to be non-negative. Since () value methods use the mean-squared error (MSE) loss, the
priority is guaranteed to be non-negative. However, ReLo computes the difference between the MSE
losses and it does not have the same property. This value can go to zero when the target network is
updated with the main network using hard updates. However, it quickly becomes non-zero after one
update. So, we should create a mapping fy,,qp for the ReLo error that is monotonically increasing
and non-negative for all values. In practice, we found that clipping the negative values to zero,
followed by adding a small € to ensure samples had some minimum probability, worked well. That
is, p; = max(ReLo, 0) + e. This is not the only way we can map the negative values and we have
studied one other mapping in the supplementary material. Note also that during initial training when
the agent sees most of the points for the first time, it would assign low priority to all depending on the
value of ReLo and the sampling would be close to random. However, the priority will never go to
zero because of €, so we will always have a non-zero probability of drawing the sample. Once it is
sampled and the loss goes down, then the priority would again increase as per Rel.o and it would
prioritize such points until the ReL.o becomes low again. Thus, it kind of achieves the best of both
worlds, where initially with less information we sample uniformly, but once ReLo increases we
sample points more frequently.

ReLo is not computationally expensive since it does not require any additional training. It only
involves one additional forward pass of the states through the target network. This is because the
Bellman backup (i.e., the right hand side of Eq.[2) is the same for Ly and Lg. The only additional
term that needs to be computed for ReLo is Q¢ (s¢, a¢) to compute Lg.

Algorithm 1 Computing ReLo for prioritization

Given off-policy algorithm A with loss function L9, online) network parameters 0, target ()
network parameters 6, replay buffer 3, max priority p,,q., ReLo mapping fiqp, epsilon priority €,
training timesteps 7', gradient steps per timestep T},q4, batch size b.
fortinl,2,3,...7T do

Get current state s; from the environment

Compute action a; from the agent

Store the transition < s;, a¢, ¢, S¢+1 > in the replay buffer B with priority p,,qq-

forstepsin1,2,3,...Tg.qq do

Sample minibatch of size b from replay buffer

Compute the loss Lglg and update the agent parameters 6

Compute Lgigt and calculate ReLo as per Eq.

Update priorities of samples in mini-batch with the new ReLo values as fyqp(ReLo;) + €
end for
Update target network following the original RL algorithm A
end for

In our implementation, we saw a negligible change in the computational time between PER and ReLo.
ReLo also does not introduce any additional hyper-parameters that need to be tuned and works well
with the default hyper-parameters of a and 5 in PER. An important point to note is that ReL.o does not
necessarily depend on the exact loss formulation given in Eq. [8|and can be used with the loss function

L;lg of any off-policy () value learning algorithm. In order to use ReL.o, we only have to additionally

IQM Optimality Gap

LaBER 1 1 QM Optimality Gap
Baseline L] | Baseline m— i
PER 1 1 PER 1 1
RelLo Il . Relo L1 |
0.72 0.78 0.84 0.90 0.20 0.25 0.30 05 06 0.7 0.8 0.3 0.4 0.5
Max Normalized Score
Max Normalized Score
(a) DeepMind Control Suite (b) OpenAl Gym
QM Optimality Gap
LaBER I 1
Baseline) i i i} QM Optimality Gap
PER 1 I Rainbow 1 1
Relo == Rainbow+ReLo S I
0.48 0.54 0.60 0.44 0.48 0.52 0.56 1.04 1.12 120 1.280.30 0.32 0.34 0.36
Human Normalized Score
Max Normalized Score
(c) MinAtar (d) Atari

Figure 1: Metrics aggregated across each benchmark based on proposed metrics from|Agarwal et al.
[2021]). 10 seeds per environment-algorithm pair.

compute L9 with respect to the target network parameters 6. If the loss is just the mean square
error, then ReLo can be simplified and can be represented by the difference between (g and Q5. But
other extensions to off policy Q learning methods modify this objective, for example distributional
learning [Bellemare et al.,[2017] minimizes the KL divergence and the difference between two KL
divergences can not be simplified the same way. To make Rel.o a general technique that can be used
across these methods, we define it in terms of Ly and Lg. Our experiments also show that ReLo is
robust to the target network update mechanism, whether it is a hard copy of online parameters at a
fixed frequency (as in DQN [Mnih et al.} 2015[], and Rainbow [Hessel et al., 2017]]) or if the target
network is an exponential moving average of the online parameters (as in Soft Actor Critic [Haarnoja
et al.,2018]).

4 Experimental Results

4.1 GridWorld Experiments

The major goal of these Gridworld studies is to draw attention to two PER issues: subpar performance
when faced with stochasticity and forgetting when faced with many tasks. We also highlight how
ReLo can potentially solve both issues.

4.1.1 Pitfalls of TD Error Prioritization

To illustrate the potential downsides of using PER with TD error prioritization, we created a 7 x 7
empty gridworld with a single goal. The agent always spawns at the top left corner and it has to reach
the goal at the bottom right for a reward of +2. The reward is zero everywhere else except, near the
center of the grid, where there is another state with a reward sampled uniformly from [—0.5, O.S]EI
The presence of this critical point would mean that during the initial phase of training, PER would
keep prioritizing transitions to that state due to the unpredictable reward and the corresponding high
TD error, and fail to learn about the true goal. Given a sufficient number of samples, all algorithms
would ultimately converge to the optimal policy. The ReLo criterion, however, does not prioritize
unlearnable points and prioritizes other points where it can receive a larger reward. Fig. [2]shows that
PER samples this unlearnable point very often and with limited experience is unable to solve the task.
In contrast, both uniform experience replay and ReLLo do not over-sample this transition and thus
can perform better in this scenario. This is further affirmed by the number of updates each algorithm
makes in the neighborhood of the unlearnable point as visualized in Fig.[2| Prioritization using ReLo
enables the agent to sample more from the transitions leading to the main reward which explains its
better performance.

'A detailed description of the environment is given in the supplementary material.

Gridworld-Sparsestochastic-V0 1e5 Gridworld

—— Baseline
— PER
101 — Relo

5
0
5
0
5

2.
2.
1.
1
0.
0.

Re
Number of times sampled

0
Steps 1es Baseline PER Relo

Figure 2: Left: The rewards obtained after 50K episodes across 50 runs in the gridworld domain with
an unlearnable point. Right: Number of times a transition containing the unlearnable state and its
neighbors were sampled.

4.1.2 Mitigating forgetting with ReLo

To study how ReLo can help reduce forgetting in RL, we design a multi task version of the gridworld.
We create a 6 x 6 gridworld consisting of two rooms A and B and a goal state in each room. Task
A is defined as starting in Room A and reaching the goal state in Room A, and Task B is defined
similarly for Room B. There is a single gap in between the rooms, allowing the agent to explore both
rooms but a time limit is introduced so that the agent can not reach both goals in one episode. During
training, for the first 100k steps, the agent starts in Room A with access to Room B blocked. So
during this stage, the agent observes only Task A. After 100K steps, the agent starts only in Room B,
thereby no longer collecting data about Task A and must retain its ability on the task by replaying
relevant transitions from the buffer. We train three agents, a baseline DQN agent, a PER agent and
a ReLo agent and monitor performance on both tasks during training. We provide average success
rates over 60 seeds after 1M steps in Table[T]and Appendix [J} It shows how ReLo exhibits the least
degradation in performance on Task A compared to the other baselines. From the training curves,
we can see that there is a clear drop off in performance on Task A after 100K steps when the agent
can no longer actively collect data on the task. However the ReLo agent exhibits least degradation
in Task A while also outperforming the baseline and PER agent on Task B. This experiment clearly
shows how ReLo helps the agent replaying relevant data points that could have been forgotten.

Table 1: Performance on Forgetting Task. Confidence intervals in brackets.

ALGORITHM TASK A TASK B

UNIFORM 0.43 (0.32,0.54) 0.40 (0.29, 0.51)
PER 0.29 (0.19,0.39) 0.26 (0.16, 0.36)
RELO 0.63 (0.52,0.74) 0.74 (0.65, 0.84)

4.2 Comparison of PER and ReLo

We study the effectiveness of RelLo on several continuous and discrete control tasks. For continuous
control, we evaluate on 9 environments from the DeepMind Control (DMC) benchmark [Tassa et al.,
2018] as they present a variety of challenging robotic control tasks with high dimensional state and
action spaces. We also include 3 environments from the OpenAl Gym benchmark for continuous
control. For discrete control, we use the MinAtar suite [[Young and Tian, 2019] which consists of
visually simpler versions of games from the Arcade Learning Environment (ALE) [Bellemare et al.,
2013|]. The goal of MinAtar is to provide a benchmark that does not require the vast amounts of
compute needed for the full ALE evaluation protocol, which usually involves training for 200M
frames across 10 runs per game. This can be prohibitively expensive for researchers and thereby the
MinAtar benchmark reduces the barriers present in studying deep RL research. We include scores on
24 games from the ALE benchmark for a reduced number of steps to observe if there are signs of
improvement when using ReLLo over PER. We provide full training curves for each environment in
the supplementary material. We compare ReLo with LaBER [Lahire et al.| 2021]] on the DeepMind
Control Suite and MinAtar benchmarks using the codebase released by the authors.

In addition to the per environment scores, we report metrics aggregated across environments based
on recommendations from |Agarwal et al.|[2021] in Fig. [l We can see that across a diverse set of

tasks and domains, ReLo outperforms PER as a prioritization scheme, with higher IQM and lower
optimality gap scores. This highlights the generality of ReLo.

42.1 DMC

In the continuous control tasks, Soft Actor Critic (SAC) [Haarnoja et al., 2018]] is used as the base
off-policy algorithm to which we add ReLo. SAC has an online and an exponential moving average
target () network which we use to generate the ReLo priority term as given in Eq. For comparison,
we also include SAC with PER to showcase the differences in performance characteristics of PER
and ReLo. The results are given in Figs. On 6 of the 9 environments, ReLo outperforms the
baseline SAC as well as SAC with PER. This trend in performance is visible in the aggregated scores
in Fig.|la|where ReLo has a higher IQM score along with a lower optimality gap when compared to
SAC, SAC with PER and LaBER.

Additionally, to study the effect of stochastic dynamics in a non-gridworld setting, we conducted
an experiment on stochastic versions of DMC environments. Specifically, we added noise sampled
from (0, 02) to the environment rewards during training. During evaluation episodes, no noise is
added to the reward. This is similar to the stochastic environments used by [Kumar et al.|[2020]]. For
Quadruped Run, Quadruped Walk, Walker Run we used o = 0.1, and for Walker Walk we used a
higher level of noise (¢ = 1) since there wasn’t much change in the performance when using o = 0.1
compared to deterministic version. The results are presented in Fig.[3]and Table[2] These experiments
highlight how ReLo outperforms uniform sampling and PER in stochastic dynamics while also
attaining lower TD error and reinforce our claim that ReLo can effectively handle stochasticity in
environments.

Quadruped Run (0=0.1) Quadruped Walk (0=0.1) Walker Run (0=0.1) Walker Walk (0=1)

0.0 02 0.4 0.6 08 10 0.0 0.2 0.4 06 0.8 1.0 00 0.2 0.4 0.6 0.8 10 00 02 0.4 0.6 08 10
1e6 1e6 1e6 e

— PER — RHOLoss — Baseline

Figure 3: Performance on Stochastic DMC. Performance aggregated over 5 seeds.

Table 2: Validation TD Error on Stochastic DMC. Performance aggregated over 5 seeds.

QUADRUPED RUN QUADRUPED WALK WALKER RUN WALKER WALK
UNIFORM 0.5 (0.34, 0.66) 1.27 (1.07, 1.47) 0.04 (0.04, 0.04) 1.98 (1.96, 2.0)
PER 5.22 (3.39,7.05) 0.53(0.47,0.59) 0.06 (0.05,0.07) 3.62(3.47,3.78)
RELO 0.19 (0.17,0.2) 0.12 (0.11, 0.12) 0.03 (0.02,0.03) 1.94(1.92,1.96)

4.2.2 OpenAl Gym Environments

In addition to the DeepMind Control Suite, we also evaluate ReL.o on environments from the OpenAl
Gym suite, namely HalfCheetah-v2, Walker2d-v2 and Hopper-v2 and the results are available in
Fig.[Tb] There is a general trend where PER leads to worse performance when compared to the
baseline algorithm, in line with previous work by |Wang and Ross|[2019]] that shows that the addition
of PER to SAC hurts performance. However, this is not the case when using ReLo as a prioritization
scheme. It is very clear how the PER degrades performance while ReL.o does not adversely affect
the learning ability of the agent and in fact leads to higher scores in each of the tested environments.
We believe that the degraded performance of PER in the Gym environments is due to instability in
training caused by rapidly varying value estimates. We provide experiments to back up this claim
in Appendix [[] We should that early terminations in the OpenAlI Gym environments cause the PER
agent to have the highest variance in the estimate of the fail state distribution. These results are
presented in Table [3] When we disable early terminations, the PER agent is able to learn in these
environments, though it is still worse than the ReL.o agent.

Table 3: Variance in Value Estimate of Fail State Distribution.

METHOD MEAN (CIS) MIN MAX
BASELINE ~ 29.055 (-62.551, 120.662) -87.8392 258.484
PER 149.982 (-76.382, 376.346) -115.291 793.237
RELO 18.225 (-0.307, 36.756) -14.4796 49.37
Cheetah Run Quadruped Run Alien Amidar
_ 0.39 44 N 31 34
£ 021 £ 21 2
Fo1d QM:! 4 %] El* 19
0.0 0 04 04
0.0 0:2 014 016 018 1.0 0.0 04‘2 0.‘4 0.‘6 0.‘8 1.0 0.0 0‘.5 1‘.0 1‘.5 2.0 0.0 0‘.5 1‘,0 14‘5 2.0
Quadruped Walk Walker Run Bank Heist Jamesbond
e 0.75 1 3 3
£ 0.50 £ 2
024 o
= 0.25 F 1 14
- o.oo—wé‘ggg"““ — o4 o
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 00 05 1.0 15 20 00 05 1.0 15 20
Steps le6 Steps le6 Steps le6 Steps le6
— PER — Relo — Baseline — Rainbow — Rainbow+RelLo
(a) DMC (b) Atari

Figure 4: Comparison of training TD error for PER and ReLo based sampling in a) DMC and b)
Atari benchmarks. Calculated over 5 seeds.

4.2.3 MinAtar

In the MinAtar benchmark, we use DQN [Mnih et al.,[2015]] as a baseline algorithm and compare its
performance with PER and ReLo on the 5 environments in the benchmark. DQN does not have a
moving average target () network and instead performs a hard copy of the online network parameters
to the target network at a fixed interval. Similar to the implementation of ReLo in SAC, we use
the online and target () network in the ReLLo equation for calculating priorities. The results on the
benchmark are given in Fig. PER performs poorly on Seaquest and Spacelnvaders, with scores
lower than the baseline DQN. These results are consistent with observations by |Obando-Ceron and
Castro|[2021]] which analyzed the effect of the components of Rainbow in the MinAtar environment.
In contrast, ReL.o consistently outperforms PER and is comparable to or better than the baseline. Our
previous observation that ReL.o tends to help improve performance in situations where PER hurts
performance is also true here.

424 ALE

As an additional test, we modified the Rainbow [Hessel et al., [2017] algorithm, which uses PER by
default, to instead use ReLo as the prioritization scheme and compared it against Rainbow with PER
on 24 environments from the ALE benchmark. Instead of the usual 200M frames of evaluation, we
trained each agent for 2M frames to study if there are gains that can be observed in this compute-
constrained setting. As shown in Fig.[Td| we see that Rainbow with ReLo achieves better performance
than Rainbow with PER. These experiments show the versatility of ReLo as a prioritization scheme.

4.3 Analysis of TD Loss Minimization

To verify if using ReLo as a prioritization scheme leads to lower loss values during training, we
logged the TD error of each agent over the course of training and these loss curves are presented
in Fig. @] As we can see, ReLo does indeed lead to lower TD errors, empirically validating our
claims that using ReLo helps the algorithm focus on samples where the loss can be reduced. Another
interesting point is that in Fig. SAC with PER has the highest reported TD errors throughout
training. This is due to PER prioritizing data points with high TD error which might not be necessarily
learnable. Data points with higher TD error are repeatedly sampled and thus making the overall

losses during training higher. In contrast, ReLo addresses this problem by sampling data points that
are learnable and leads to the lowest TD errors during training.

Table 4: Comparison of validation TD Errors on DM Control Suite

BASELINE PER RELO

CHEETAHRUN 0.02 £0.002 0.03 £0.003 0.12 +£0.033
QUADRUPEDRUN 0.62 +0.055 2.24 +0.127 0.35 £0.067
QUADRUPEDWALK 3.17 +0.252 2.11 0180 1.07 +0.146
WALKERRUN 0.08 +£0.015 0.15 0018 0.06 +0.008

Table 5: Comparison of validation TD Errors on Atari

RAINBOW RAINBOW+RELO

ALIEN 2.329 +0.408 2.331 +o0.251
AMIDAR 2.157 +o0.120 2.055 +0.143
BANK HEIST 2.044 +o0.222 2.018 +0.261
JAMESBOND 1.653 + 03819 1.142 +0.174

Validation TD Error: We also compared the validation TD errors of each method after training in
Tables and |5} This was done by collecting 10* frames from the environment and computing
the mean TD errors of these transitions. These results show that the validation TD errors [Li et al.|
2023]] obtained at the evaluation phase are actually lower for ReLo. This analysis is very similar to
observations in [Li et al., [2023]] where the authors find that lower validation TD error is a reliable
indicator of good sample efficiency for off-policy RL algorithms. ReLo achieves lower validation
TD error compared to uniform sampling and PER on DM Control Suite and Atari. When we study
the correlation between validation TD error and performance in Appendix|l1|and observe a strong
correlation between the two metrics, confirming the findings of [Li et al.| [2023]]. These results
highlight another crucial reason for the robustness and good performance of ReL.o across multiple
domains.

5 Conclusion

In this paper, we have proposed a new prioritization scheme for experience replay, Reducible Loss
(ReLo), which is based on the principle of frequently sampling data points that have the potential
for loss reduction. We obtain a measure of the reducible loss through the difference in loss of the
online model and a hold-out model on a data point. In practice, we use the target network in () value
methods as a proxy for a hold-out model.

ReLo avoids the pitfalls that come with naively sampling points based only on the magnitude of the
loss since having a high loss does not imply that the data point is actually learnable. While alleviating
this issue, ReLo retains the positive aspects of PER, thereby improving the performance of deep RL
algorithms. It is very simple to implement, requiring just the addition of a few lines of code to PER,
and similar to PER it can be applied to any off-policy algorithm. Since it requires only one additional
forward pass through the target network, the computational cost of ReLo is minimal, and there is
very little overhead in integrating it into an algorithm.

While the reducible loss can be intuitively reasoned about and tested empirically, future work should
theoretically analyze the sampling differences between ReLLo and PER about the kind of samples that
they tend to prioritize or ignore. This deeper insight would allow us to find flaws in how we approach
non-uniform sampling in deep RL algorithms similar to work done in|Fujimoto et al.|[2020]. It would
provide an analysis of the change in learning dynamics induced by PER and ReLo.

10

Acknowledgments and Disclosure of Funding

The authors would like to thank the Digital Research Alliance of Canada for compute resources,
NSERC, Google and CIFAR for research funding. We would like to thank Nathan Rahn and Pierluca
D’Oro for their feedback and comments. We also thank Nanda Krishna, Jithendaraa Subramanian,
Vincent Michalski, Soma Karthik and Kargil Mishra for reviewing early versions of this paper.

References

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Information
Processing Systems, 2021.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253-279, 2013.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pages 449—458. PMLR, 2017.

Richard Bellman. A markovian decision process. Journal of Mathematics and Mechanics, 6(5):
679-684, 1957. URL http://www. jstor.org/stable/24900506.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband,
Alex Graves, Volodymyr Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell,
and Shane Legg. Noisy networks for exploration. In 6¢h International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=rywHCPkAW.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1587-1596. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.press/
v80/fujimotol8a.html,

Scott Fujimoto, David Meger, and Doina Precup. An equivalence between loss functions and non-
uniform sampling in experience replay. Advances in neural information processing systems, 33:
14219-14230, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmdssan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pages 1856—1865. PMLR, 2018. URL http://proceedings.
mlr.press/v80/haarnojal8b.html.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Daniel Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. CoRR, abs/1710.02298, 2017. URL http://
arxiv.org/abs/1710.02298,

Zhang-Wei Hong, Tao Chen, Yen-Chen Lin, J. Pajarinen, and Pulkit Agrawal. Topological experience
replay. ICLR, 2022. doi: 10.48550/arXiv.2203.15845.

Yuenan Hou, Lifeng Liu, Qing Wei, Xudong Xu, and Chunlin Chen. A novel ddpg method with
prioritized experience replay. In Systems, Man, and Cybernetics (SMC), 2017 IEEE International
Conference on, pages 316-321. IEEE, 2017.

Niel Teng Hu, Xinyu Hu, Rosanne Liu, Sara Hooker, and Jason Yosinski. When does loss-based

prioritization fail? arXiv preprint arXiv: Arxiv-2107.07741, 2021.

11

http://www.jstor.org/stable/24900506
https://openreview.net/forum?id=rywHCPkAW
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforcement
learning via distribution correction. Advances in Neural Information Processing Systems, 33:

18560-18572, 2020.
Thibault Lahire, M. Geist, and E. Rachelson. Large batch experience replay. ICML, 2021.

Qiyang Li, Aviral Kumar, Ilya Kostrikov, and Sergey Levine. Efficient deep reinforcement learning
requires regulating overfitting, 2023.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun, editors, 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1509.02971.

Longxin Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine Learning, 8:293-321, 2004.

Xu-Hui Liu, Zhenghai Xue, Jing-Cheng Pang, Shengyi Jiang, Feng Xu, and Yang Yu. Regret
minimization experience replay in off-policy reinforcement learning. NEURIPS, 2021.

Soren Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch,
Winnie Xu, Benedikt Holtgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, and Yarin
Gal. Prioritized training on points that are learnable, worth learning, and not yet learnt. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 15630-15649. PMLR, 17-23 Jul 2022. URL
https://proceedings.mlr.press/v162/mindermann22a.html,

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529-533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/naturel4236.

Johan Samir Obando-Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insightful
and inclusive deep reinforcement learning research. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 1373—-1383.
PMLR, 2021. URL http://proceedings.mlr.press/v139/ceron2ia.html,

Youngmin Oh, Jinwoo Shin, Eunho Yang, and Sung Ju Hwang. Model-augmented prioritized
experience replay. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=WuEiafqdy9H.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning Representa-
tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.
URL http://arxiv.org/abs/1511.05952,

Tom Schaul, André Barreto, John Quan, and Georg Ostrovski. The phenomenon of policy churn,
2022. URL https://arxiv.org/abs/2206.00730.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv: Arxiv-1707.06347,2017.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484—-489, January 2016. doi:
10.1038/nature16961. URL https://doi.org/10.1038/nature16961.

12

http://arxiv.org/abs/1509.02971
https://proceedings.mlr.press/v162/mindermann22a.html
http://dx.doi.org/10.1038/nature14236
http://proceedings.mlr.press/v139/ceron21a.html
https://openreview.net/forum?id=WuEiafqdy9H
https://openreview.net/forum?id=WuEiafqdy9H
http://arxiv.org/abs/1511.05952
https://arxiv.org/abs/2206.00730
https://doi.org/10.1038/nature16961

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140-1144, 2018. doi: 10.1126/science.
aar6404. URL https://wuw.science.org/doi/abs/10.1126/science.aar6404,

Samarth Sinha, Jiaming Song, Animesh Garg, and S. Ermon. Experience replay with likelihood-free
importance weights. L4DC, 2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.
Deepmind control suite. arXiv preprint arXiv: Arxiv-1801.00690, 2018.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pages
2094-2100. AAAI Press, 2016. URLhttp://www.aaai.org/ocs/index.php/AAAT/AAAT16/
paper/view/12389.

Che Wang and Keith Ross. Boosting soft actor-critic: Emphasizing recent experience without
forgetting the past. arXiv preprint arXiv: Arxiv-1906.04009, 2019.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.
Dueling network architectures for deep reinforcement learning. In Maria-Florina Balcan and
Kilian Q. Weinberger, editors, Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop
and Conference Proceedings, pages 1995-2003. JMLR.org, 2016. URL http://proceedings,
mlr.press/v48/wangf16.html!

Denis Yarats and Ilya Kostrikov. Soft actor-critic (sac) implementation in pytorch. https://github.
com/denisyarats/pytorch_sac, 2020.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Brian D Ziebart, Andrew L Maas, J] Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pages 1433-1438. Chicago, IL, USA, 2008.

13

https://www.science.org/doi/abs/10.1126/science.aar6404
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://proceedings.mlr.press/v48/wangf16.html
http://proceedings.mlr.press/v48/wangf16.html
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac

A Implementation Details

We build our experiments on top of existing implementations of SAC, DQN and Rainbow. For the
DeepMind Control Suite experiments, we modify Yarats and Kostrikov|[2020], adding a prioritized
replay buffer and the ReL.o version. We use an open source implementation of Rainbowﬂ for the
Arcade Learning Environment and the DQN implementation from the MinAtar authors Young and
Tian|[2019]. Aside from the collected frames and number of seeds, we have not modified any of the
hyper-parameters from these original implementations. The hyper-parameters as well as hardware
and software used are given in Table[6]

Table 6: Hyper-Parameters of all experiments

Environments Algorithm Algorithm Parameters Hardware & Software

Hardware-
CPU: 6 Intel Gold 6148 Skylake

_ 6
Frames =2 x 10 GPU: 1 NVidia V100

seeds =5 .
ALE Rainbow RAM: 32 GB
Remaining hyper-parameters _
same as Hessel et al.|[2017]] }ng:)‘:cag?l 10.0
Python: 3.8
Hardware-

CPU: 6 Intel Gold 6148 Skylake

_ 6
Frames =1 x 10 GPU: 1 NVidia V100

seeds =5

DeepMind Control Suite SAC RAM: 32 GB
Remaining hyper-parameters)
same as Haarnoja et al.|[2018]] ISD;f:)Ycalfl 10.0
Python: 3.8
Hardware-

CPU: 6 Intel Gold 6148 Skylake

_ 6
Frames =5 x 10 GPU: 1 NVidia V100

seeds =5 .
MinAtar DON RAM: 32 GB
Remaining hyper-parameters
- Software-
same as Mnih et al.| [2015]] Pytorch: 1.10.0
Python: 3.8

Figure 5: Visualization of a few environments from each benchmark. Left to right: DeepMind Control
Suite, MinAtar, Arcade Learning Environment

B Mapping Functions for ReLo

Prioritized experience replay buffers expect the priorities assigned to data points to be non-negative.
While the MSE version of the TD error used in PER satisfies this constraint, ReLLo does not. Therefore,
there must be a non-negative, monotonically increasing mapping from ReLo to p;. In our main
experiments, we clipped negative ReLo values to zero. Another mapping we tried was to set
p; = ef**L°_in which case the probability of sampling a data point P;, from Eq. 6, corresponds to the
softmax over ReLo scores. However, for this choice the priority would explode if the ReLo crossed

*https://github.com/Kaixhin/Rainbow

14

Quadruped Run Quadruped Walk

750
- 750
£ 5009 500
&
250 250
0 0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Walker Run Walker Walk

04
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps le6 Steps 1e6

— ClipBelowZero — ExpLinear

Figure 6: Comparison of different mapping functions from ReLo to p; on a subset of environments
from the DMC benchmark. Performance is evaluated over 3 seeds.

10 Method = PER Method = ReLo 10 Method = PER Method = ReLo
0.8 0.8
0.6 0.6
% Beta Czy Beta
=04 04 204 0.4
0.5
0.2 0.2
0.0 T T T T T T 0.0 T T T T T T
0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6
a a a a
(a) DMC (b) OpenAl Gym

Figure 7: Sensitivity of ReLo and PER to « and f3.

values above 40 which happened occasionally during the initial stages of learning in Rainbow. The
second mapping function candidate was exponential when Rel.o is negative and linear otherwise,
that is,

, . eRelo if ReLo < 0
fEapLinear = RelLo+ 1 otherwise

The linear part is shifted so that the mapping is smooth around ReLo = 0. As shown in Fig. [
JSExpLinear performs worse compared to just clipping negative ReLLo values to zero. When the ReLo
values during training are analysed, we observe that the average of ReLo values (before the mapping)
tends to be positive, so clipping does not lead to a large loss in information.

C Hyperparameter Sensitivity

We used the default hyperparameters that were given by Schaul et al.| [2016]], i.e « = 0.5, 8 = 0.4
for all benchmarks for PER and Rel.o. Rainbow [Hessel et al.l [2017]] used these values for the
ALE benchmark after extensive grid search. |(Obando-Ceron and Castro|[[2021]], which studied DQN
and Rainbow on the MinAtar benchmark, used the same values for a and 3 after hyperparameter
tuning, hence we reused these values in our experiments. These values transferred well to the
DMC domain and so we used them for all continuous control experiments too. We performed a
hyperparameter sweep over « and 3 for DMC and OpenAl gym and the results can be found in Fig
ReLo consistently outperforms PER in these sweeps highlighting the robustness of ReLo across
benchmarks. These sweeps also show that the performance of ReLo varied with changing the value
of o which implies that the priorities assigned by ReLo are not close to zero and hence the sampling
behavior of ReLo is not uniform. If the priorities were close to zero, then performance would not
change when we vary the value of « since Eq. @ would then reduce t0 pyn;form regardless of the
value of « .

D Extended Related Work

D.1 Prioritization Schemes

Prioritization strategies have been leading to important improvements in sample efficiency. |Sinha
et al.|[2020] proposes an approach that re-weights experiences based on their likelihood under the

15

stationary distribution of the current policy in order to ensure small approximation errors on the value
function of recurring seen states. [Lahire et al.[[2021] introduces the Large Batch Experience Replay
(LaBER) to overcome the issue of the outdated priorities of PER and its hyperparameter sensitivity by
employing an importance sampling view for estimating gradients. LaBER first samples a large batch
from the replay buffer then computes the gradient norms and finally down-samples it to a mini-batch
of smaller size according to a priority.

Kumar et al.[[2020] presents Distribution Correction (DisCor), a form of corrective feedback to
make learning dynamics more steady. DisCor computes the optimal distribution and performs a
weighted Bellman update to re-weight data distribution in the replay buffer. Inspired by DisCor,
Regret Minimization Experience Replay (ReMERN) [Liu et al.|[2021]] estimates the suboptimality
of the Q value with an error network. Yet,[Hong et al.| [2022]] uses Topological Experience Replay
(TER) to organize the experience of agents into a graph that tracks the dependency between Q-value
of states.

While PER was initially proposed as an addition to DQN-style agents, Hou et al.| [2017] have shown
that PER can be a useful strategy for improving performance in Deep Deterministic Policy Gradients
(DDPG) [Lillicrap et al.|[2016]. Another recent strategy to improve sample efficiency was to introduce
losses from the transition dynamics along with the TD error as the priority |Oh et al.|[2022]. Although
this has shown improvements, it involves additional computational complexity since it also requires
learning a reward predictor and transition predictor for the environment. Our proposal does not
require training additional networks and hence is similar in computational complexity to PER. This
makes it very simple to integrate into any existing algorithm. [Wang and Ross| [2019] propose an
algorithm to dynamically reduce the replay buffer size during training of SAC so that the agent
prioritizes recent experience while also ensuring that updates performed using newer data are not
overwritten by updates from older data. However, they do not distinguish between points based on
learn-ability and only assume that newer data is more useful for the agent to learn.

D.2 Off-Policy Algorithms

Off-policy algorithms are those that can learn a policy by learning from data not generated from
the current policy. This improves sample efficiency by reusing data collected by old versions of
the policy. This is in contrast to on-policy algorithms such as PPO |Schulman et al|[2017]], which
after collecting a batch of data and training on it, discard those samples and start data collection
from scratch. Recent state-of-the-art off-policy algorithms for continuous control include Soft Actor
Critic (SAC)|Haarnoja et al.| [2018]] and Twin Delayed DDPG (TD3) Fujimoto et al.|[2018]]. SAC
learns two () networks together and uses the minimum of the () values generated by these networks
for the Bellman update equation to avoid over estimation bias. The () target update also includes a
term to maximize the entropy of the policy to encourage exploration, a formulation that comes from
Maximum Entropy RL [Ziebart et al.| [2008[]. TD3 is a successor to DDPG |Lillicrap et al.| [2016]]
which addresses the overestimation bias present in DDPG in a similar fashion to SAC, by learning
two Q) networks in parallel, which explains the “twin” in the name. It learns an actor network
following Eq. 4 to compute the maximum over () values. TD3 proposes that the actor networks be
updated at a less frequent interval than the () networks, which gives rise to the “delayed” name. In
discrete control, Rainbow |[Hessel et al.|[2017]] combines several previous improvements over DQN,
such as Double DQN jvan Hasselt et al.|[2016]], PER |Schaul et al.|[2016], Dueling DQN |Wang et al.
[2016], Distributional RL [Bellemare et al.|[2017] and Noisy Nets |Fortunato et al.[[2018]].

E DeepMind Control Suite

We choose 9 environments from the DeepMind Control Suite Tassa et al.| [2018]] for testing the
performance of ReL.o on continuous control tasks. Each agent was trained on proprioceptive inputs
from the environment for 1M frames with an action repeat of 1. The training curves for the baselines
and RelLo are given in Fig.

16

Table 7: Comparison of PER and ReLo on the DMC benchmark

BASELINE PER LABER RELO
CHEETAH RUN 761.89 £112.38 831.87 + 38.90 579.80 £ 60.61 660.29 £ 141.22
FINGER SPIN 966.68 £ 29.40 975.40 £ 6.75 884.46 + 20.23 978.78 + 14.46
HoPPER HoOP 264.75 £37.90 217.35+113.79 90.85 £57.76 247.81 £51.01

QUADRUPED RUN 612.67 £ 143.90 496.42+216.01 544.80+41.84 833.92 + 81.05
QUADRUPED WALK 831.92 £74.34 766.30 £200.86 716.61 £270.36 942.64 £9.75

REACHER EASY 983.06 + 2.70 981.58 £6.33 947.20 £ 14.46 979.08 + 11.02
REACHER HARD 955.08 + 38.52 935.08 £ 47.94 951.08 £ 6.70 956.80 + 38.73
WALKER RUN 759.13 £23.91 755.49 £ 64.35 551.81 +58.41 795.14 £+ 42.52
WALKER WALK 943.67 + 30.28 957.38 £ 8.24 863.89 +112.60 963.28 + 5.03
Cheetah Run Finger Spin Hopper Hop
1000 1000 4
300
750 750
E 200 A
5 500 500
* 50 250 1007
o o 0 -
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Quadruped Run Quadruped Walk Reacher Easy
1000 4 1000 4
750
. 750 750
g 500 500 00
< 250 250 250
01 i i i i o1 i i i i 0 i i i i
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Reacher Hard Walker Run Walker Walk
1000 800 1000
750 600 750 1
% 500 4 400 500 4
® 250 A 200 A 250
0 0 0

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Steps le6 Steps le6 Steps 1le6

— Baseline — PER — Relo LaBER

Figure 8: Training curves of environments from the DeepMind Control Suite. Performance is
evaluated for 10 episodes over 5 random seeds.

F OpenAl Gym Environments

We evaluate agents for 1M timesteps on each environment and similar to DM Control, they are
trained using proprioceptive inputs from the environment. The hyperparameters for this benchmark

are shared with those used for the DM Control Suite experiments.

Table 8: Comparison of PER and ReL.o on OpenAl Gym environments

BASELINE PER RELO
GYM HALFCHEETAH 9579.60 £ 1331.00 9549.424+917.92 11590.63 £+ 670.36
GYM HOPPER 2795.18 £ 659.19 2175.09 £456.11 2527.93 £ 648.61
GYM WALKER 2854.20 £ 623.69 735.16 £474.89 3514.39 + 676.80

G MinAtar

We evaluate the baselines against all 5 environments in the MinAtar suite Young and Tian| [2019].
A visualization of a few environments from the suite is presented in Fig.[5] Each agent receives

17

Gym Halfcheetah Gym Hopper Gym Walker

4000
10000 40004
. 3000 1 3000]
g 2000 4]
§ 5000 2000
-4 1000 1000 q
0+ 0 o]

00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Steps le6 Steps le6 Steps le6

— Baseline — PER — Relo

Figure 9: Training curves of environments from the OpenAI Gym benchmark. Performance is
evaluated for 10 episodes over 5 random seeds.

the visual observations from the environment and is trained for SM frames following the evaluation
methodology outlined in|[Young and Tian| [2019]. The training curves are given in Fig.[T0]

Asterix Breakout Freeway
20
60 4
10
154
e 40
10
5 204
0 T T T T 01 T T T T 0 T T T T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Seaquest Space Invaders
201 40
T
S
210 20
0 0

0 1 2 3 4 5 0 1 2 3 4 5
Steps le6 Steps le6

— Baseline — PER — Relo LaBER

Figure 10: Training curves of environments from the MinAtar benchmark. Performance is evaluated
using a running average over the last 1000 episodes over 5 random seeds.

Table 9: Comparison of PER and ReLo on the MinAtar benchmark

BASELINE PER LABER RELO
ASTERIX 12.54 £1.08 16.16 £1.02 1551 +1.11 15.68 £0.89
BREAKOUT 9.36 + 0.29 8.88 £0.72 8.81 £0.61 8.98 £0.75
FREEWAY 52.80£0.35 52.75+£0.22 41.98+20.99 53.25+0.37
SEAQUEST 16.13 £2.88 6.02+£1.92 14.63 £2.98 18.13 +1.25

SPACE INVADERS 45.36 == 1.65 37.36 +4.45 43.67 +£3.17 38.54 +£2.60

H Arcade Learning Environment

We evaluate agents on a compute-constrained version of the Arcade Learning Environment Bellemare
et al.| [2013], training each agent for 2M frames. We chose the standard 24 environments from the
suite for our evaluation. ReLo is competitive with PER |Schaul et al.|[2016] in the tested environments.
The training curves for the Temporal Difference Error and the rewards are given in Fig. [TT] & Fig.[12]
respectively.

I Gridworld

We implement a simple GridWorld for the experiments that highlights the drawbacks of PER with
TD loss prioritization in Section 5.6. It consists of a 7 x 7 grid. A visualization of the grid is given in
Fig.[[3] The start state of the agent, represented by the blue point, is at the top left and the goal state
is at the bottom right, represented by the green point. The agent is represented by the black point. The

18

Alien Amidar Assault Asterix Bank Heist Boxing

j
|
i
|
{
:

10 15 05 10 15 200 05 10 1S 05 10 1S 05 10 1S 05 10 1S
Breakout Chopper Command Demon Attack Freeway Frostbite Gopher

i
{
{
(
{
j

10 15 05 10 1S 05 10 1S 0 15 05 10 15
Hero Jamesbond Kangaroo Krull Kung Fu Master Ms Pacman

I
[
{
[
3
{

10 15 05 10 1S 05 10 1S 05 10 1S 05 10 1S 05 10 1S
Pong Private Eye Qbert Road Runner Seaquest Up N Down

I
[
|
|
I
|

0

00 05 10 15 2000 05 10 1s 2000 05 10 15 2000 05 10 15 20 00 05 10 15 20 00 05 10 15 20
Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6

— Rainbow — Rainbow+ReLo

Figure 11: Temporal difference loss curves for Rainbow (with PER) and Rainbow with Relo.
Rainbow with ReLo achieves lower loss compared to PER, showing that ReLo is able to prioritize
samples with reducible loss. The dark line represents the mean and the shaded region is the standard
deviation over 3 seeds.

Alien Amidar Assault Asterix Bank Heist Boxing

)
3

00 05 10 15 0 05 10 15 2 0 05 10 15 2 05 10 15 0 05 10 15 05 10 15
Breakout Chopper Command Demon Attack Freeway Frostbite Gopher

5
.
\

00 05 10 15 0 05 10 15 0 05 10 15 05 10 15 0 05 10 15 2 05 10 15
Hero Jamesbond Kangaroo Krull Kung Fu Master Ms Pacman

A

00 05 10 15

0 05 10 15

05 10 15

05 10 15

0 05 10 15

05 10 15

Pong Private Eye Qbert Road Runner Seaquest Up N Down
10 200 40000 2000 40000
0 o W 10000 30000 1500 30000
: -200 20000 1000 20000
2y 5000
-a00 10000 500 10000
-20 600 o 0 o o
00 05 10 15 20 00 05 10 15 20 00 05 10 15 20 00 05 10 15 20 00 05 10 15 20 00 05 10 15 20
Steps 1e6 Steps 1e6 Steps 1e6 Steps 166 Steps 1e6 Steps 1e6
— Rainbow — Rainbow-+Relo

Figure 12: Training curves of 24 environments from the ALE benchmark. Performance is evaluated
for 10 episodes over 5 random seeds.

agent gets a reward of +2 when it reaches the goal state, but does not receive reward anywhere else
other than the stochastic point. The red point marks the state with a corresponding reward uniformly
sampled from [—0.5, 0.5]. The locations of these points is fixed and does not change during training
or evaluation. The state that the agent receives is (x, y) where x and y are the coordinates of the
agent’s location, z,y € [—3,3] and z, y € Z. The agent has 4 actions, to move up, down, left or right
which will deterministically move the agent in that direction by 1 unit. If the agent is at the edge
of the grid and takes an action that will move it out of the 7 x 7 grid, then it remains in the same
location.

Table 10: Comparison of Rainbow with PER and Rainbow with ReLo on the ALE benchmark

RAINBOW

RAINBOW W/ RELO

ALIEN

AMIDAR
ASSAULT
ASTERIX
BANKHEIST
BOXING
BREAKOUT
CHOPPERCOMMAND
DEMONATTACK
FREEWAY
FROSTBITE
GOPHER

HERO
JAMESBOND
KANGAROO
KRULL
KUNGFUMASTER
MSPACMAN
PoNG
PRIVATEEYE
QBERT
ROADRUNNER
SEAQUEST
UPNDOWN

1278.70 + 223.14
376.20 + 81.07
2241.78 £+ 648.17
3214.50 £ 323.70
526.80 £277.83
76.65 = 14.58
82.03 +46.10
2794.00 + 732.87
25500.50 £ 16311.26
32.58 £0.31
2850.60 4+ 1553.34
5336.60 £ 1023.75
9907.15 +2108.71
810.00 +£412.00
8904.00 + 3879.97
6553.18 £ 803.15
29371.00 + 8525.69
2094.70 + 614.58
3.18£9.02
100.00 £ 0.00
8382.00 £ 2935.16
29333.00 + 9465.78
1377.20 £ 362.57
17065.40 £ 7637.25

1352.90 £ 535.70
410.10 £ 85.63
2617.37 + 555.97
3352.00 + 431.98
641.80 + 284.67
76.21 £11.59
68.36 = 45.39
4974.00 + 2801.93
29294.30 + 15905.25
32.35+£0.25
3532.30 +1270.73
5679.80 + 1199.68
8830.30 £ 1894.51
902.00 + 469.40
8091.00 &+ 3618.47
6718.67 + 799.47
23654.00 £ 12360.40
1755.80 +374.32
5.96 £ 6.45
100.00 £ 0.00
10900.25 + 2704.23
29222.00 £ 8696.91
1848.80 + 788.85
21241.50 + 8599.97

Figure 13: A top down view of the GridWorld. The agent is the black point. It starts at the blue point

and the goal state is the green point. The red point represents the location of the stochastic reward.

J Forgetting Experiment

We visualize the gridworld used for the forgetting experiment in Fig.[T4] The training curves are

given in Fig.

K Correlation between Validation TD Error and Policy Performance

We study the correlation between validation TD error and the performance of the policy and are able
to reproduce the findings of |Li et al.|[2023]], showing that there is indeed high correlation between

the validation TD error and the performance. The results are in Table[TT} We performed a paired
t-test and bold entries where the results are significant.

20

,, ®

3 2 1 1] 1 2 3

Figure 14: Visualization of Grid Room. Cyan is goal state in Room A, green is goal state in Room B.
Goal A gives a reward of +1 and Goal B gives +5.

Task A Task B
1.00 1
0.8

o 0.75
s 0.6 4
0
© 0.50
S 0.4
3
(2]

0.251 0.21

0.00 T T T T 0.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Step le6 Step le6
— PER — Uniform — Relo

Figure 15: Performance curves of Uniform sampling, PER and ReLo on the forgetting task. Success
rates are averaged over 60 seeds and shaded regions indicate standard deviation. Once the agent is no
longer able to collect data about Task A (>100K steps), performance on the Task A decreases, but
ReLo exhibits the least degradation in performance on Task A while still learning to solve Task B.

Table 11: Validation TD Error and Policy Performance on the DMC benchmark

METHOD TD ERRORBgsr RETURNBgst
CHEETAHRUN PER PER
FINGERSPIN RELO RELO
HoprPERHOP RELO BASELINE
QUADRUPEDRUN RELO RELO
QUADRUPEDWALK LABER RELO
REACHEREASY RELO BASELINE
REACHERHARD BASELINE RELO
WALKERRUN RELO RELO
WALKERWALK RELO RELO

L Instability of PER in Mujoco Environments

We believe that degraded performance of the PER agent in Mujoco is because of instability in
learning caused by rapidly varying value estimates. To test this hypothesis we studied the Walker2d
environment, where PER obtains a mean reward of 700, compared to the baseline (uniform sampling)
which obtains a mean reward of 2800. This is surprising since PER does learn to perform well in
WalkerWalk, which is the DMC equivalent of Walker2d (they have similar agent morphologies).

An important difference in the two environments is that Walker2d has early termination (episode ends
when the walker falls down) while WalkerWalk does not. This meant that the early terminations could
make predicting the value of the fail state distribution difficult as the walker falls in different ways.
There could be a lot of noise in the reward at that stage which can make the TD estimate noisy too.

21

We hypothesize that since PER only samples datapoints proportional to the TD error, these states
would be repeatedly sampled as the noisy estimate would make the TD error high. This means it
would be less likely to prioritize the samples corresponding to good behavior which could have lower
TD error than the noisy fail states. We looked at the value estimate of the fail state in the baseline,
PER and ReLo agent and observed this was the case. This is presented in Table[I2]and estimates are
calculated over 40 episodes.

Table 12: Variance in Value Estimate of Fail State Distribution.

METHOD MEAN (CISs) MIN MAX
BASELINE ~ 29.055 (-62.551, 120.662) -87.8392 258.484
PER 149.982 (-76.382, 376.346) -115.291 793.237
RELO 18.225 (-0.307, 36.756) -14.4796 49.37

There is high variance in the predicted value of the fail state for PER, meaning that invariably the
TD error for these points would be high. But further training on noisy points does not help and
instead makes the problem worse, causing the value estimate to diverge. This can cause instabilities
in training and potentially derail learning.

Finally we created a modified version of Walker2d without early terminations and PER acheives
much better performance (Mean score of 1943.65 compared to 700.5 in the original Walker2d) in this
environment, validating our hypothesis. Besides removing early termination, other parameters of the
environment and the hyperparameters of the PER agent were the same in both experiments. We also
looked at the value of the initial states (the environment is randomly initialized so there is an initial
state distribution) in Table[T3]and PER has higher variance in the predicted value even here.

Table 13: Variance in Value Estimate of Fail State Distribution.

METHOD MEAN MIN MAX

BASELINE 227.916 (215.415, 240.417) 215.929 252.337
PER 249.379 (177.265,321.494) 177.968 337.663
RELO 203.893 (195.357,212.428) 193.014 214.811

This analysis adds credence to our hypothesis that PER suffers from high variance in value estimates
which hurt learning. Additionally, the experiments also show that ReLo has the least variance in the
predicted value of the state (initial or fail state), highlighting how ReLo is a more stable prioritization
scheme.

22

	Introduction
	Background and Related Work
	Experience Replay
	Target Networks
	Reducible Loss
	Prioritization Schemes

	Reducible Loss for Reinforcement Learning
	Implementation

	Experimental Results
	GridWorld Experiments
	Pitfalls of TD Error Prioritization
	Mitigating forgetting with ReLo

	Comparison of PER and ReLo
	DMC
	OpenAI Gym Environments
	MinAtar
	ALE

	Analysis of TD Loss Minimization

	Conclusion
	Implementation Details
	Mapping Functions for ReLo
	Hyperparameter Sensitivity
	Extended Related Work
	Prioritization Schemes
	Off-Policy Algorithms

	DeepMind Control Suite
	OpenAI Gym Environments
	MinAtar
	Arcade Learning Environment
	Gridworld
	Forgetting Experiment
	Correlation between Validation TD Error and Policy Performance
	Instability of PER in Mujoco Environments

