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Abstract

Human physical reasoning relies on internal “body” repre-
sentations — coarse, volumetric approximations that capture
an object’s extent and support intuitive predictions about mo-
tion and physics. While psychophysical evidence suggests
humans use such coarse representations, their internal struc-
ture remains largely unknown. Here we test whether vision
models trained for segmentation develop comparable rep-
resentations. We adapt a psychophysical experiment con-
ducted with 50 human participants to a semantic segmenta-
tion task and test a family of seven segmentation networks,
varying in size. We find that smaller models naturally form
human-like coarse body representations, whereas larger mod-
els tend toward overly detailed, fine-grain encodings. Our re-
sults demonstrate that coarse representations can emerge un-
der limited computational resources, and that machine repre-
sentations can provide a scalable path toward understanding
the structure of physical reasoning in the brain.

Introduction
Human perception is concerned with what entities are
present, where the entities are, and how a scene will unfold
(Marr 2010; Freyd 1987). The problems of ‘what’, ‘where,
and ‘how’ are coupled but separate, and it is likely that they
are supported by different computations and representations.
In particular, for the purposes of inferring the identity of ob-
jects (e.g. telling apart a thermos and a water bottle), it may
be important to have detailed object segmentations. But for
the purposes of estimating how a physical scene will un-
fold, which objects will collide and where they will end up,
it is sufficient and more cost-effective to have more coarse
object-representations (e.g. if all that matters is catching
them, a bottle and a cup can roughly be approximated by
a cylinder).

The separation between coarse and fine-grain object seg-
mentations for different purposes is widely used in engineer-
ing, in particular, in simulated environments such as games
and animations. In humans, it has been suggested that the
brain has a similar processing split between physics and
graphics (Ullman et al. 2017; Balaban and Ullman 2025),
with fine-grain meshes being used for the purposes of ren-
dering and recognition, and coarse-grain bodies for the pur-
poses of prediction and action. This split maps onto a neural
division between the dorsal and ventral streams in human

vision, and there is psychophysical evidence that humans
make use of coarse body approximations (Li et al. 2023a)
(see Figure 1a) in physical reasoning. Developmental stud-
ies also show that infants first carve the visual field into co-
hesive but rough volumetric entities with approximate spa-
tial extent, before they infer contact relations, support, or
motion trajectories (Spelke 1990; Baillargeon 2004). This
coarse-object representation has proven useful in machine
learning as well, as the basis for computational studies that
built models of human core knowledge (Smith et al. 2019).

While psychophysical studies (Li et al. 2023a) suggest
that humans rely on approximate internal representations
of object bodies, the nature and structure of these rep-
resentations remain largely unknown. Behavioral methods
can only offer indirect, low-resolution glimpses into these
internal encodings, and cannot reveal their geometric or
computational form. Humans construct their understand-
ing of objects through a largely bottom-up visual pro-
cess—segmenting, grouping, and localizing entities before
reasoning about their dynamics and causal relations (Spelke
1990; Baillargeon 2004). Artificial segmentation models,
which are trained to perform a similar decomposition of
scenes into discrete entities, therefore offer a natural compu-
tational proxy for exploring how such representations might
form in the human brain (Gizdov, Ullman, and Harari 2025).
If modern vision models trained for segmentation or predic-
tion share representational structure with humans (which is
not clear a priori), they could help reveal the hidden organi-
zation of object representations that support intuitive physics
and action.

Given this potential, a central question emerges: do the
latent object representations that arise in vision models re-
semble the coarse body representations humans rely on for
physical reasoning (see Figure 1)? In nearly all segmentation
models and datasets where an explicit teaching signal, re-
ward, or loss function is used, the gold standard for accuracy
is ground-truth segmentation or pixel-perfect human anno-
tation. Such fine-grained segmentation may diverge from
the approximate object representations that underpin human
physical intuition. This misalignment is both inefficient and
risky: fine-grain representations waste computation and may
lead agents to mispredict human behavior, since people act
based on intuitive, coarse-grain physics rather than exact ge-
ometric detail (Li et al. 2023a). Unlike in the study of lan-
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(a) Humans.
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Figure 1: Stimuli vs Body representations (dotted lines) in
(A) humans and (B) vision models.

guage models, there has been little exploration of the align-
ment between the body representations humans use when
reasoning about physics and the object representations arti-
ficial intelligence (AI) models use for vision, which is often
a first bottom-up step for physical reasoning systems.
Contributions. In this work, we make the following contri-
butions:

1. Object representations in vision models are similar to
the body representations in humans. We show that ar-
tificial segmentation networks form coarse body repre-
sentations similar to those discovered in humans, partic-
ularly in the context of intuitive physical reasoning. To
compare the two, we propose a framework that adapts
a psychophysical experiment given to 50 human partici-
pants to vision models (Section ’Human-like body repre-
sentations in vision models’).

2. Coarse body representations emerge naturally as a
consequence of small network size. We test 6 image
segmentation architectures from the same family of mod-
els, varying in size, and discover that human-like coarse
representations emerge as a consequence of small net-
work size and limited training compute. We hypothesize
that the resource-constrained nature of the human brain
similarly favors efficient, coarse-grain representations
that balance predictive power with computational effi-
ciency (Section ’Human-like representations as a con-
sequence of resource constraints’).

This work provides a comparison of object representations
in humans and vision models. Such alignment is important
both for safety and interpretability in human–robot interac-
tion, and for using machine models as computational probes
of the brain’s internal representations, offering a scalable
route to understanding how humans encode and reason about
the physical world.

Related Work
People can reason efficiently about the physical dynamics
of everyday objects, though they are also prone to system-
atic biases and errors under certain conditions (Kubricht,
Holyoak, and Lu 2017). This ‘intuitive physics’ develops

early, has a dedicated neural architecture, and is likely
shared with non-human animals (Fischer et al. 2016; Spelke
and Kinzler 2007; Spelke 2022). There are ongoing debates
about the specific format of the representations and com-
putations that support intuitive physics in humans, and pro-
posals over the years have included (among others) first or-
der logic, pre-Newtonian intuitive theories, heuristics and bi-
ases, and qualitative reasoning (Hartshorne and Jing 2025).

One prominent proposal for the computation that under-
lies human intuitive physics posits that people can carry out
an internal mental simulation, similar to the computations
that support engineered physical engines and game engines
(Battaglia, Hamrick, and Tenenbaum 2013; Ullman et al.
2017). This ‘mental game engine’ proposal has been ap-
plied to people’s reasoning about collisions, liquids, rigid-
and soft-body motion, physical prediction, counterfactual
and causal reasoning, and more (Smith et al. 2024). While
research into mental simulation is ongoing, even if such a
mental simulation exists, it cannot be perfectly accurate. En-
gineered simulations make heavy use of various approxima-
tions and workarounds, and it is likely that people’s mental
simulation uses approximations as well (Ullman et al. 2017;
Balaban and Ullman 2025; Wang and Ullman 2025; Bass
et al. 2021).

One major approximation in simulated environments is
the use of simplified objects for the purposes of physi-
cal tracking. To clarify by example: While an advanced
game may use fine-grain meshes to graphically display high-
resolution images, it will often use only rough bodies for the
purposes of collision detection. In line with this, there are
theoretical reasons (Ullman et al. 2017) and recent empir-
ical evidence (Li et al. 2023a) to suggest that people also
make use of approximate object representations in physical
reasoning.

Paralleling the interest in cognitive science, researchers in
machine learning have studied the possibility of endowing
machines with a sense of intuitive physics. Many datasets
and challenges exist in this domain (e.g. Bear et al. 2021;
Bakhtin et al. 2019; Yi et al. 2019; Riochet et al. 2021), and
several different frameworks have been proposed, ranging
from those that emphasize built-in structure (Smith et al.
2019) to those that emphasize learned representations (Pi-
loto et al. 2022; Garrido et al. 2025), with various hybrid
proposals in between (Duan et al. 2022).

Despite this interest in machine learning, there hasn’t
been direct investigation (to the best of our knowledge) of
whether the approximate object representations learned by
vision models match the approximations used by humans in
the context of physical reasoning. Smith et al. (2019) explic-
itly uses approximate bodies and credits them with success-
ful generalization, but does not compare these to people. Li
et al. (2023a) used a model based on α-shapes to examine
people’s object approximations, but does not explicitly en-
dorse this as a cognitive model, but as a way of teasing apart
different degrees of approximation.

Aside from offering glimpses into potential parallels be-
tween human and model representations, our work takes a
more detailed view of how such representations evolve dur-
ing training. Rather than focusing on global alignment met-



rics, we investigate the micro-level dynamics of segmenta-
tion learning—how sensitivity to different geometric struc-
tures, particularly concavities, changes as models grow or
train longer. This approach complements broader forecast-
ing efforts that aggregate model performance as a function of
scale or time (Hestness et al. 2017; Kwa et al. 2025; Sevilla
et al. 2022), by revealing the finer representational shifts that
underlie those macro-level trends

Methods

Datasets and training paradigm

Human–tested dataset. Here we revisit prior work by
Li et al. (2023a) that this study builds upon. Each trial
performed on a human subject (50 total participants)
consists of a pair of black background RGB images of a
polygon (see Figure 1): before (Iinit) and after (Iout). Iout is
the same image as Iinit, only with a small segment added
(or not) at one of three locations: CONCAVE, NOFILL, or
CONVEX (see Figure 2b). Participants are shown Iinit for
1s, then a blank screen for 2s, then Iout for another 1s.
The participants are then asked to tell whether the polygon
changed, and their accuracy is measured across the three
conditions listed. We refer the reader to Li et al. (2023a),
Experiment 3b, for a more detailed description of how
the human data was collected. In this section, we aim to
establish a pipeline for adapting pure segmentation models
to the same experimental task.

Model training dataset. To compare model and human
representations, we used the experimental stimuli from
Li et al. (2023a) for evaluation. Because psychophysical
datasets are too small to train deep networks, we generated
a larger synthetic dataset designed to approximate their ge-
ometric and visual statistics. The goal was not to reproduce
the exact human stimuli, but to expose models to similar
shape statistics and scene composition. Each training image
contains a single uniformly colored polygon on a black
background, making our model more accustomed to the
data shown to humans. The dataset will be released publicly
upon paper acceptance.

Synthetic dataset generation. We developed a procedural
polygon generator to produce geometrically diverse yet
controlled stimuli. Each polygon is created by sampling:
(1) a vertex count uniformly from 5–12; (2) a number
of concavities (0–3); and (3) irregularity and spikiness
parameters controlling local curvature and edge variance.
Polygons are rendered on black backgrounds using one
of 24 bright colors sampled from a palette matched to
the luminance distribution of the experimental stimuli.
The generator thus produces a broad range of shapes that
maintain the key structural properties of the human-tested
stimuli while preventing any overlap between training and
evaluation data. It will be publicly available upon paper
acceptance.
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(a) Humans vs DETR vision model. (b)

Figure 2: (a) Change detection experiment: Humans (left)
vs. Model (right). (b) A small local piece added to one of
three locations: Nofill, Concave, and Convex body parts.

Models and fine-tuning
We use publicly available SegFormer models that were pre-
trained on the ADE20K dataset (Zhou et al. 2017; Xie et al.
2021): a hierarchical transformer encoder with a lightweight
MLP decoder. We tested six sizes (B0–B5) with parameter
counts ∼3.8M (B0) to ∼84.7M (B5), covering over an order
of magnitude in capacity. We then fine-tune each variant on
our synthetic polygon dataset using custom training settings:
AdamW optimizer with learning rate 5×10−5, cosine learn-
ing rate schedule with warmup, batch size of 4, weight de-
cay of 0.01, and 15 epochs. The training was performed on
NVIDIA A100 GPUs with mixed precision (bfloat16) and
TF32 optimizations enabled. The models are trained with a
combination of cross-entropy and Dice loss to segment the
binary segmentation task. Additionally, we tested a publicly
available version of the DETR model (Carion et al. 2020)
for a total of 7 architectures.

From model masks to change detection
Mask extraction. For each image I ∈ {Iinit, Iout} the model
outputs logits L(I). We apply softmax and argmax to get
class predictions, then extract the foreground class (1: object
class; 0: background class):

M(pred)(I) = 1[argmax(softmax(L(I))) = 1]

The object area is computed as the sum of object class pix-
els:

Ainit =
∑
i,j

M(pred)(Iinit)i,j , Aout =
∑
i,j

M(pred)(Iout)i,j

Relative Area Change (segment–normalized). Let A(gt)
seg

be the ground–truth pixel area of the edited segment (the
small local piece added/removed between Iinit and Iout, see
Figure 2). We define the Relative Area Change (RAC):

RACseg =
Aout −Ainit

A
(gt)
seg

.

RACseg > 0 for additions (mask grows), RACseg < 0
for removals (mask shrinks), and RACseg measures how



Figure 3: Mean RACseg during fine-tuning per category across models.

strongly the mask responds locally at the manipulated re-
gion. A simple way to think about this is the local resolution
or sensitivity of a model. A model that perfectly segments
the ground truth will always have RACseg = 1, while a
model incapable of perceiving a given local change will
always have RACseg ≈ 0.

Change/no–change decision. We label a pair {Iinit,
Iout} DETECTED iff RACseg > τ , with τ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, ..., 20}%. Each τ allows us to derive
a change/no-change decision for each condition: CONCAVE,
NOFILL, CONVEX.

Human-like body representations in vision
models

We begin this section by stating an important takeaway
from the above work by Li et al. (2023b); people’s repre-
sentation of concave body parts appears more coarse than
their representation of convex body parts. That is, people
tend to ”fill in” or ”diffuse” concavities in the context of
physical reasoning, which doesn’t appear to be the case
with convex body parts (see Figure 1). In the context of
the change/no-change experiment discussed above, this
is particularly evident in Figure 2a (left). We see that the
same holds for image segmentation models following the
pipeline described above in Figure 2a (right). This result is
dependent on τ = 1%, which is the optimal threshold value
that minimizes the RMSE with human data, but given that

we apply the same τ to concave, nofill, and convex changes,
we are simply showing that the model perceives changes
in concavities as smaller, analogous to the more coarse
representations formed by humans.

Probability maps. We refer the reader to Figure 4. On the
top row, segmented masks show clear outward diffusion
around concavities, while corners and convex edges remain
stable. The same pattern appears in the bottom row of
probability maps, where activations spread beyond concave
boundaries. This consistent “filling-in” effect suggests
that models, like humans, simplify concave regions into
smoother, coarser body representations.

Training dynamics. As an additional test, we measured
the average RACseg on the test set for each change type
throughout fine-tuning (Figure 3). Concave changes consis-
tently remain at lower RACseg values (y-axis), even with
extended training, indicating that models remain less re-
sponsive to changes inside concavities. We hypothesize that
this reflects a representational bias toward compact, convex-
like encodings. Representing objects through their convex
hulls—or approximations close to it—requires fewer ver-
tices and less spatial detail (Duan and Lafarge 2015), re-
ducing both memory load and computational cost. More-
over, such coarse representations generalize more effectively
across object categories by capturing global shape structure
rather than local irregularities. This consistent pattern be-



Figure 4: Mask overlays (first row) and probability heatmaps after 10 epochs of training across models.

tween humans and vision models may hint at the underlying
mechanisms and specific geometric forms that approximate
body representations take in the human brain.

Human-like representations as a consequence of
resource constraints
Probability maps. We refer the reader to Figure 4. Notably,
the “filling-in” effect discussed above is much stronger in
smaller models, whereas larger models preserve sharper
boundaries and show reduced diffusion in concavities.

Training dynamics. Similarly, we measured the average
RACseg for each change type throughout the fine-tuning
(Figure 3). The gap between concave and convex changes
diminishes both with increased training compute and with
larger model size. As models grow and train longer, they be-
come more sensitive to local geometric variations and less
reliant on coarse, convex approximations. This pattern sup-
ports our hypothesis that human-like body representations
emerge partly as a consequence of resource constraints:
smaller or less-trained models favor compact, efficient rep-
resentations that smooth concavities, while larger, more ca-
pable systems can afford finer geometric detail.
Together, these findings suggest that human-like coarse
body representations may reflect an efficient encoding strat-
egy that emerges naturally when computational or biological
systems must balance representational detail with resource
efficiency.

Discussion
People reason about the physical world using approximate
rather than exact representations of objects. These coarse
body representations are efficient for predicting how objects
move or interact, without encoding every geometric detail.
In this work, we asked whether such approximations natu-
rally emerge in vision models trained for segmentation.

Across experiments, we found consistent parallels be-
tween human and model behavior. Both humans and mod-
els tend to simplify concavities, effectively “filling in”

missing regions and producing smoother object representa-
tions. Quantitatively, models show lower sensitivity to local
changes inside concavities, similar to the coarse representa-
tions observed in people’s reasoning about intuitive physics.

Importantly, these effects vary with model capacity and
training compute. Smaller networks and shorter training pro-
duce stronger concavity-smoothing effects, while larger or
more extensively trained models develop sharper, more fine-
grained boundaries. The same effect is not observed for con-
vex object parts, which are more stable and detailed. This
pattern supports our hypothesis that human-like coarse body
representations can emerge as an efficient solution under re-
source constraints: when capacity is limited, both biological
and artificial systems favor compact, convex-like encodings
that balance accuracy with computational efficiency.

Understanding this tradeoff may help clarify how efficient
object representations arise in both minds and machines.
While precise segmentations are essential for many applica-
tions, there is also value in representations that are “not too
fine, not too coarse” — the kind that support intuitive, gen-
eralizable physical reasoning. This balance, much like in the
tale of Goldilocks, may reflect the sweet spot of perception.
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