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ABSTRACT
Heart disease poses a serious threat to human health. As a non-
invasive diagnostic tool, the electrocardiogram (ECG) is one of the
most commonly used methods for cardiac screening. Obtaining
a large number of real ECG samples often entails high costs, and
releasing hospital data also necessitates consideration of patient pri-
vacy. Due to the shortage of medical resources, precisely annotated
ECG data are scarce. In the critical task of generating ECGs, work
on generating ECGs from text is extremely rare. Given the differ-
ing data modalities, incorporating patient-specific information into
the generation process is also challenging. To address these chal-
lenges, we propose DiffuSETS, the first method to use a diffusion
model architecture for text-to-ECG. Our method can accept various
modalities of clinical text reports and patient-specific information
as inputs and generates ECGs with high semantic alignment and
fidelity. In response to the lack of benchmarking methods in the
ECG generation field, we also propose a comprehensive evaluation
method to test the effectiveness of ECG generation. Our model
achieve excellent results in tests, further proving its superiority
in the task of text-to-ECG. Our code and trained models will be
released after the acceptance of our paper.
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1 INTRODUCTION
The electrocardiogram (ECG) is a non-invasive diagnostic tool for
heart disease and is widely used in clinical practice [Holst et al.
1999]. Many studies have focused on developing ECG classifiers
[Bian et al. 2022; Golany et al. 2021; Kiranyaz et al. 2015] and using
them for automated ECG analysis. However, due to patient privacy
concerns [Hazra and Byun 2020; Hossain et al. 2021], acquiring and
sharing real ECG signals is a huge challenge. Accurately labeled
ECG signals are also rare [Golany et al. 2020b], and obtaining them
is costly [Chen et al. 2022]. Considering these issues, a key upstream
task is to generate ECG signals [Golany et al. 2020b; Zhang and
Babaeizadeh 2021].

In the field of ECG signal generation, the main research goal
is to generate ECG signal samples with high fidelity and rich di-
versity. Many studies have adopted the Generative Adversarial
Network (GAN) architecture to generate ECG signals [Adib et al.
2021], and others have introduced Ordinary Differential Equation
(ODE) systems representing cardiac dynamics to create ECG sam-
ples [Golany et al. 2020b]. Recently, some new studies have incor-
porated patient-specific cardiac disease information into the ECG
generation process to improve the generated outcomes [Alcaraz
and Strodthoff 2023; Chen et al. 2022], and some have included the
content of patients’ clinical text reports during generation [Chung
et al. 2023]. However, current research in this field still has certain
deficiencies: (1) Dataset limitations. Many datasets contain a
limited variety of features and lack comprehensive patient-specific
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Figure 1: High level overview of our work.

information. Several datasets (such as PTB-XL) have low textual
richness in clinical text reports. Using MIMIC-IV-ECG [Gow et al.
2023] and MIMIC-IV-Clinical [Johnson et al. 2023] requires clinical
knowledge, which poses a challenge for algorithmic researchers.
(2) Difficulty in unifying features across different modalities.
Clinical text reports and patient-specific information contain data
in various modalities, each with different data distributions. During
the algorithmic processing, the corresponding feature vectors are
also different in dimensionality. Integrating all this information into
the model is challenging. (3) Lack of benchmarking methods.
In the field of ECG generation, there is still a lack of comprehensive
benchmarking methods, making it difficult to assess the relative
merits of models.

To address the aforementioned issues, this paper introduces Dif-
fuSETS, a diffusion model to synthesize 12-lead ECGs conditioned
on clinical text reports and patient-specific information. High level
overview of our model as shown in Figure 1. Our approach is the
first work to use diffusion models to handle ECGs generation from
text. DiffuSETS utilizes the MIMIC-IV-ECG dataset as the training
dataset, which features a wide variety of characteristics suitable for
ECG signal generation and enhances the diversity of the generated
signal samples. We also design a comprehensive evaluation, which
includes quantitative and qualitative analyses at the signal level,
feature level, and diagnostic level. Such testing allows for a compre-
hensive evaluation of the performance of generative models. We
have also incorporated a clinical Turing test in this comprehensive
evaluation, involving evaluations by cardiologists, to ensure the
high fidelity of the generated ECG samples.

The main contributions of this paper are as follows: (A) We
have integrated MIMIC-IV-ECG and MIMIC-IV-Clinical, focusing
on clinical knowledge during the processing. We have utilized these
datasets in the training and inference processes of our algorithms,
enabling the model to accept various modalities of different fea-
tures as inputs. This also provides more possibilities for future
expansion. (B)We introduce DiffuSETS, an ECG signal generator
that accepts clinical text reports and patient-specific information as
inputs. This is the first work to use diffusion models for generating
ECGs from text. ECG signal samples with high semantic alignment
can be generated by just inputting simple natural language text as a
description of the patient’s disease information. We can also accept
inputs such as heart rate, sex, and age, adding constraints to the
features of the generated ECG signals, thus making the generation
of ECG signals more detailed and diverse. (C) We have designed
a set of comprehensive evaluation to evaluate the effectiveness
of ECG signal generation, which can comprehensively assess the

performance of generative models. Our method was tested within
this comprehensive evaluation, and the results were very signif-
icant, demonstrating the fidelity and semantic alignment of the
model-generated ECG signal samples.

2 RELATEDWORK
There are many studies currently attempting to address the genera-
tion of electrocardiogram (ECG) signals, but these methods have
several limitations. Firstly, many models can only generate short-
term time series [Delaney et al. 2019; Golany et al. 2020a; Li et al.
2022; Yoon et al. 2019], enabling them to produce only the con-
tent of a single heartbeat, rather than long-term ECG recordings.
Secondly, they are often trained on small datasets with a limited
number of patients [Zhu et al. 2019], or they use only a limited set of
conditional labels [Golany and Radinsky 2019; Golany et al. 2020b;
Sang et al. 2022]. In addition, many of these methods require ECG
segmentation as a pre-training step, rather than directly processing
continuous signals [Golany et al. 2020a,b; Li et al. 2022; Sang et al.
2022]. Moreover, many of these methods are capable of generating
and classifying for specific patients only [Golany and Radinsky
2019], and lack comprehensive training data and samples aimed at
the general population [Thambawita et al. 2021].

In recent studies, some researchers have attempted to apply dif-
fusion models to the generation of ECGs [Adib et al. 2023], treating
ECGs as images rather than time series, and their methods were
limited to the unconditional generation of single-lead ECGs. More-
over, from a quantitative performance evaluation perspective, these
methods have not surpassed those based on GANs for generat-
ing ECGs. ME-GAN [Chen et al. 2022] introduces a disease-aware
generative adversarial network for multi-view ECG synthesis, fo-
cusing on how to appropriately inject cardiac disease information
into the generation process and maintain the correct sequence be-
tween views. However, their approach does not consider text input,
and therefore cannot incorporate information from clinical text
reports. Auto-TTE [Chung et al. 2023] proposed a conditional gen-
erative model that can produce ECGs from clinical text reports, but
they also segmented the ECGs as a preprocessing step. SSSD-ECG
[Alcaraz and Strodthoff 2023] introduced a conditional generative
model of ECGs with a structured state space, encoding labels for 71
diseases and incorporating them into the model training as condi-
tions, but it cannot accept clinical text reports in the form of natural
language text, thus lacking some of the rich semantic information
inherent in disease diagnosis. At the same time, due to the lack of
a unified performance evaluation setup, it is often challenging to
quickly assess the relative merits of these methods.

3 METHOD
The architecture of DiffuSETS is illustrated in the Figure 2, involv-
ing three modalities: signal space, latent space, and conditional
information space (clinical text reports and patient-specific infor-
mation).

3.1 Model Architecture
The network architecture of DiffuSETS comprises a training phase
and an inference phase, as depicted in Figure 2. In the training
phase, we first extract 12-lead ECG signal 𝑥 from the ECG dataset.
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Figure 2: Overall architecture of DiffuSETS architecture,
which consists of four components: variational autoencoder,
semantic embedding model, denoising diffusion process,
noise prediction model.

The signal-space representations of 12-lead ECG is then compressed
by the encoder 𝐸𝜙 of variational autoencoder [Kingma and Welling
2013] to obtain latent-space representation of the ECGs, marked
as 𝑧0. Corresponding clinical text reports, after processing with
prompts and utilizing an LLM, are transformed into a text embed-
ding vector. Patient-specific information is also processed into a
patient-specific embedding vector and merged with the text embed-
ding vector to form a condition embedding vector 𝑐 , which is then
incorporated into the model’s training. Subsequently, the denois-
ing diffusion probabilistic model (DDPM, Ho et al. 2020) scheduler
continuously adds Gaussian noise 𝜖𝑡 to get the latent-space rep-
resentation 𝑧𝑡 at randomly sampled time step 𝑡 through forward
process formula: 𝑧𝑡 =

√
𝛼𝑡𝑧0 +

√
1 − 𝛼𝑡𝜖𝑡 , 𝜖 ∼ N(0, I) .

The noise predictor, fed with the noisy latent-space representa-
tion 𝑧𝑡 , current time step 𝑡 and the condition embedding vector 𝑐 ,
is trained to predict that noise. The loss function of the training
phase is defined as:

LDiffuSETS = ∥𝜖𝑡 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐)∥2
2 (1)

where 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐) stands for the output of noise prediction model.
By performing gradient descend on Equation 1, we can raise the
Evidence Lower BOund (ELBO) so as to maximize the log likelihood
of the training samples [Ho et al. 2020].

In the inference phase, the initial ECG signal latent 𝑧𝑇 is a
noise vector sampled from the standard normal distribution. At each
point during time step descends from 𝑇 to 1, the noise prediction
model attempts to predict a noise 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐) with the assistance of
the input clinical text reports and patient-specific information and
the denoising diffusion probabilistic model scheduler denoises the
latent-space representation 𝑧𝑡 to retrieve 𝑧𝑡−1 through a sampling
process:

𝑧𝑡−1 ∼ N(𝜇𝑞, 𝜎2
𝑡 I) (2)

𝜇𝑞 := [√𝛼𝑡 (1 − 𝛼𝑡−1)𝑧𝑡 +
√
𝛼𝑡−1 (1 − 𝛼𝑡 )𝑧0]/(1 − 𝛼𝑡 ) (3)

𝑧0 := [𝑧𝑡 −
√

1 − 𝛼𝑡𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐)]/
√
𝛼𝑡 (4)

𝜎2
𝑡 := (1 − 𝛼𝑡 ) (1 − 𝛼𝑡−1)/(1 − 𝛼𝑡 ) (5)

where 𝛼𝑡 is the hyperparameter related to diffusion forward process
noise. Finally, our trained decoder 𝐷𝜃 reconstructs the normal 12-
lead ECG signal based on the denoised latent-space representation,

producing a signal-space ECG waveform series that aligns with the
input descriptions.

3.2 Processing Clinical Text Reports
To achieve better semantic alignment with clinical text reports
and patient-specific information, we designed different processing
methods of conditions based on the diverse data types and distri-
butions. The results are then merged into an embedding vector
to represent the patient’s features. To enhance the model’s ability
to accept clinical text reports in natural language format as input,
we also devised prompts for these texts and utilized the semantic
embedding model "text-embedding-ada-002" provided by OpenAI
(referred to as ada v2).

The processing workflow for clinical text reports in this paper is
shown in Figure 7. We employed a pretrained language model to
process the clinical text reports. Specifically, for handling natural
language text in clinical text reports, we use ada v2 to generate
text embedding vectors. Before inputting the clinical text reports
into ada v2, we designed prompts for processing. If only one re-
port is inputted, the prompt is "The report of the ECG is that
{text}." However, it is common for the dataset tables to show that
one ECG corresponds tomultiple clinical text reports, for which
we have made special arrangements. In clinical datasets, the pres-
ence of multiple clinical text reports often serves to complement
each other; typically, the most important report is placed first, with
the remaining content supplementing the first report from various
perspectives. Therefore, we designed specific ordered prompts for
them. For the first clinical text report, our prompt is "Most impor-
tantly, The 1st diagnosis is {text}." For the subsequent reports,
our prompt is "As a supplementary condition, the 2nd/3rd/...
diagnosis is {text}." This enables the model to recognize the dif-
ferences when processing multiple clinical text reports, thereby
better understanding the semantic information contained within
the reports.

3.3 Processing Patient-Specific Information
In the MIMIC-IV-ECG and MIMIC-IV-Clinical datasets, there is a
wealth of tabular data recording patient-specific information. We
categorize these characteristics into three types: categorical demo-
graphic condition, numerical demographic condition, and other
health condition. We have designed specific processing methods for
each type of data and used a large language model (LLM) to process
the tabular headers in the tabular data, consolidating their informa-
tion into a patient-specific embedding. Then, we concatenate the
processed patient-specific embedding with the text embedding vec-
tor generated from the clinical text reports to obtain the conditions
embedding vector 𝑐 (Using sex, age, and heart rate as examples,
see Equation 6). This vector is used for both model training and
inference, facilitating the model’s understanding of the semantic
information included in the input. The above content is illustrated
in the Figure 8.

𝑐 = Concat (ada_v2(𝑡𝑒𝑥𝑡), ℎ𝑟, 𝑎𝑔𝑒, 𝐺 (𝑠𝑒𝑥)) , 𝐺 (𝑥) =
{

0, 𝑥 = F
1, 𝑥 = M (6)
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Figure 3: The design of evaluation of ECGgeneration at signal
level, feature level and diagnostic level.

3.4 Comprehensive Evaluation of ECG
Generation

Our performance metrics involves experiments and analysis at the
signal level, feature level, and diagnostic level. At the signal level,
we focus on the stability of the generated signals. We compute
the error between the generated and original signals to assess the
effectiveness of the ECG signal generation. At the feature level,
we examine whether the ECG signals generated by the model align
with the input descriptions of patient-specific information. Consid-
ering that sex and age are difficult to measure through quantitative
analysis, we have chosen heart rate as the focal point for testing.
At the diagnostic level, we assess whether the generated ECGs
conform to the descriptions of the disease, that is, the content of
the clinical text reports. We use a pretrained model to compare
the generated ECG signals with the clinical text reports. This pre-
trained model can be viewed as a text-ECG encoder that has already
achieved semantic alignment, acting like a classifier to measure
whether the outcomes generated by our model match the disease
conditions. Our design is shown in Figure 3.

4 EXPERIMENTS
4.1 Experimental Setup
In setting up the dataset, we use the MIMIC-IV-ECG dataset [Gow
et al. 2023] to train the DiffuSETS model. MIMIC-IV project covers
hospital admission records of 299, 712 patients from 2008 to 2019
at the Beth Israel Deaconess Medical Center, including patient
personal information such as age and sex. The ECG dataset within it
contains 800, 035 records with ECG signals, patient IDs, RR intervals,
and machine-generated clinical text reports. For each signal, we
search the sex and age characteristics of the ECG owners in MIMIC-
IV-Clinical dataset [Johnson et al. 2023] by the patient IDs, and
calculate the heart rate using the RR intervals. However, some RR
intervals showed anomalies, such as 0 ms or 65, 535 ms. Therefore,
for data samples where the RR intervals fall outside the range
of 300 ms to 1, 500 ms, we use the XQRS detector from the wfdb
toolkit [Sharma and Kohli 2023] to obtain the QRS intervals through
waveform analysis to calculate the heart rate. Samples that could
not calculate a heart rate from all 12 waveforms are considered
to have abnormal heart rate records and are discarded along with
samples missing sex or age information. After the preprocessing, we
retain 794, 372 records. Each lead’s original data is a 10-second ECG
signal at a sampling rate of 500 Hz, resulting in 5, 000 time samples.
We down-sample these to 1, 024 time samples for model training

Table 1: Signal level results: MAE of generated and reference
ECG. Random means randomly sample neglecting the clini-
cal text reports.

MIMIC-IV-ECG PTB-XL
DiffuSETS Sinus Sinus Sinus Abnormal Random RandomModel rhythm bradycardia tachycardia ECG

DiffuSETS 0.0864 0.0697 0.0861 0.0863 0.0908 0.0990
w/o PS-info 0.0898 0.0807 0.0978 0.0991 0.0910 0.1019
w/o VAE 0.0886 0.0704 0.1144 0.1002 0.0942 0.1048

w/o PS-info&VAE 0.0949 0.0806 0.1240 0.1196 0.1101 0.1077

DiffuSETS: Default DiffuSETS model
w/o PS-info: Without Patient-specific Information
w/o VAE: Without VAE Encoder-Decoder
w/o PS-info&VAE: Without VAE Encoder-Decoder and Patient-specific Information.

and internal validation. We also use the PTB-XL dataset for external
validation, which contains 21, 799 clinical entries, each with a 10-
second ECG signal, along with patient-specific information and
doctor-recorded ECG reports. The PTB-XL labels do not include
records of heart rate, so we directly use the waveforms to calculate
the heart rate. Similarly, we sample the ECGs at a rate of 500 Hz and
down-sample them to 1, 024 time samples, following the processing
method used for MIMIC-IV-ECG dataset.

Our method is trained on a GeForce RTX 3090 using PyTorch 2.1.
Batch size is set to 512, with a learning rate of 5 × 10−4. The latent
space is set toR4×128. The number of time step𝑇 in training phase is
set to 1, 000 while noise 𝛽𝑡 of diffusion forward process are assigned
to linear intervals of [0.00085, 0.0120]. Noise predictor has 5 layers
and the kernel size of convolution is 7. It iterates approximate 60
time steps per second within the same environment in inference
phase.

In the setup of our control experiments, due to the scarcity of
open sourced pre-existing deep generative models for ECGs, we set
up several variations of our DiffuSETS model for comparison and
ablation study. These variations allow us to assess the performance
improvements brought by each module in DiffuSETS, as well as to
more comprehensively validate the rationality of the settings in
each module of our method. Detailed descriptions can be found in
Section 4.5.

4.2 Performance Metrics
4.2.1 Signal Level. At the signal level, we compute the stability
of the generated ECG signals. We directly input the conditions
extracted from the real samples of ECG dataset into the model, and
then test the Mean Absolute Error (MAE) between the ECGs output
by the model and the original ECGs to measure the stability of the
generated signals. The results are categorized by clinical text report
and are displayed in the Table 1. It can be observed that the MAE
value between the 12-lead ECGs generated by our model and the
original ECGs of the ground truth is very small. This indicates that
when our model receives ECG signals as input, the results deviate
minimally from the original ECGs, demonstrating the stability of
our method.

4.2.2 Feature Level. At the feature level, we track the heart rate
consistency between generated ECG and input feature. Our ap-
proach involves using the condition in ground truth sample as the
input and obtaining heart rate value of generated ECG. The scatter
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Table 2: Diagnostic level results.

DiffuSETS CLIP Clip Score rCLIP rFID Precision Recall F1 ScoreModel* Score Ground Truth Score Score

DiffuSETS 0.38 0.45 0.84 0.48 0.97 0.72 0.83
w/o PS-info 0.37 0.45 0.81 0.87 0.99 0.60 0.75
w/o VAE 0.33 0.45 0.74 1.31 0.93 0.68 0.79

w/o PS-info&VAE 0.32 0.45 0.71 2.23 0.83 0.70 0.76

* Code names of DiffuSETS models are the same with those in Table 1

plot of this experiment is depicted in Figure 4 right and the MAE
result is recorded at Figure 4 left. It is suggested that patient-specific
information significantly reduces the heart rate deviation, which
demonstrates that our model can generate conditional ECGs finely
based on the heart rate information contained in the patient-specific
information. Besides, in the generation of conditional ECGs, the
addition of heart rate information also makes the generated ECGs
more consistent with the characteristics of the disease.

DiffuSETS Real Condition (MAE)
Model* MIMIC-IV-ECG PTB-XL

DiffuSETS 1.75 5.56
w/o PS-info 8.92 12.54
w/o VAE 5.06 11.96

w/o PS-info&VAE 15.11 13.51

* Code names of DiffuSETS models are the
same with those in Table 1
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Figure 4: Feature level results of generated ECG heart rate
and reference heart rate.

4.2.3 Diagnostic Level. At the diagnostic level, we use CLIP scores
[Hessel et al. 2021] to assess the semantic alignment between the
ECG signals generated by the model and the input features. Using
the Contrastive Language-Image Pre-Training (CLIP), we modify
its image encoder into an ECG encoder, implementing it with a
method similar to that in METS [Li et al. 2024], using Resnet1d-18
[He et al. 2016; Hong et al. 2020] as the backbone network. To
mitigate errors inherent in the CLIP model itself, we evaluate the
CLIP score with the original ECG as input and divide the CLIP score
obtained from the generated data by the ground truth CLIP score to
yield a relative CLIP score (rCLIP score). Additionally, We generate
feature vectors for both the ground truth and the generated ECG
signals from the test set using the pre-trained model, which are then
used for FID score assessment. In calculating the FID score, we also
test the ground truth FID value and calculate the rFID score using
the same method as for the rCLIP scores. Furthermore, we compute
the precision and recall score following the steps of [Kynkäänniemi
et al. 2019]. The results of this Section are all shown in Table 2.

4.3 Expert Evaluation
We conducted two kinds of cardiologist evaluation test. In the
fidelity evaluation, we extracted feature information from 50
records in the MIMIC-IV-ECG dataset, used them as input to gen-
erate 50 ECGs, and randomly selected another 50 ECGs from the
MIMIC-IV-ECG dataset. We provided these generated data along-
side the real data to cardiologists for Turing test assessment. The
cardiologists were tasked with determining whether the provided

Table 3: Expert evaluation on fidelity and semantic alignment
of generated ECG.

Fidelity Test (Turing Test) Alignment Test
Label Real ECG Generated ECG ACCJudgment Real (TP) Generated (FN) Real (FP) Generated (TN)

Expert 1 48 2 31 19 63%
Expert 2 47 3 30 20 59%
Expert 3 46 4 49 1 47%

ECGs were generated by a machine. In the test for semantic
alignment, we provided 100 generated ECGs (using different con-
ditions, especially clinical text report, recorded in MIMIC-IV-ECG).
Experts were asked to determine whether our generated results
matched the descriptions in the clinical text reports. The results are
recorded in Table 3. From the perspective of the high FP value in
Turing test, the majority of generated ECGs successfully deceive the
cardiology experts, thus are comparable to real ones. In alignment
test, more than half of generated ECGs are considered matching to
input clinical text reports, which indicates that DiffuSETS model do
grasp the diagnostic information between signal and text modalities
when expanding the diversity of generated ECGs.

4.4 Case Study
As an extension to the semantic alignment test in expert evalua-
tion, here we post a picture of generated ECG and explain why
it coordinates with the input clinical text reports. In Appendix D,
we introduce more case studies and further prove that our model
is compatible with generating semantic aligned ECGs from the
general waveform perspective down to the single beat view.

Atrial fibrillation accompanied by slow ventricular response and
paroxysmal ectopic ventricular rhythm is a relatively rare complex
cardiac arrhythmia, and our method accurately generated this com-
plex ECG, as shown in Figure 5. First, the patient is an atrial fibrilla-
tion sufferer, primarily characterized by irregular RR intervals and
the absence of P waves, both of which are consistently represented
in the generated ECG (marked as red rectangle). Secondly, the pa-
tient’s ventricular rate is slow, and the generated ECG showed a
ventricular rate of 56 beats per minute, matching the textual descrip-
tion. This is particularly challenging since most atrial fibrillation
patients have a fast heart rate, and slow ventricular atrial fibrillation
is rare in the training dataset. This accuracy is largely due to the
method of integrating patient-specific information proposed in this
paper. Finally, the generated ECG displayed broad, abnormal QRS
waves (marked as blue rectangle), consistent with descriptions of
paroxysmal ectopic ventricular rhythms. Overall, the consistency
across multiple leads of the generated ECG is very good, both in
terms of waveform alignment and the direction of the QRS main
wave, aligning well with the actual conditions.

4.5 Ablation Study
We conducted ablation study on DiffuSETS and evaluated them
using the methods described in Section 4.2, with the related perfor-
mance data presented in the Tables 1 2 4. Among them, "Without
VAE Encoder-Decoder" refers to the absence of the VAE encoder-
decoder during training and inference, using original ECG signals
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Figure 5: The electrocardiogram generated based on the clin-
ical text report "atrial fibrillation with slow ventricular re-
sponse with paroxysmal idioventricular rhythm."

as intermediate data in the DDPM module of DiffuSETS. "With-
out Patient-specific Information" indicates that the training and
inference processes used only clinical text reports as input, without
incorporating any additional patient-specific information for infer-
ence. The experimental results from the table above demonstrate
that incorporating a VAE encoder-decoder significantly enhances
the signal-level performance of the generated results. Moreover, in-
cluding patient-specific information during the generation process
slightly improves the outcomes at both the signal and diagnostic
levels, with substantial improvements at the feature level. These re-
sults confirm that the modular design used in our method is highly
effective and well-suited for the task of generating ECGs.

5 CONCLUSION
We propose a novel electrocardiogram (ECG) generative model, Dif-
fuSETS, which integrates clinical text reports and patient-specific
information to generate ECGs with high fidelity and semantic align-
ment. Additionally, we present a comprehensive evaluation for
assessing generative models of ECG signals, allowing for a thor-
ough evaluation of their performance and the fidelity and semantic
alignment of generated samples.
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A DETAILED STRUCTURE OF DIFFUSETS
A.1 Variational Autoencoder
The variational autoencoder [Kingma and Welling 2013] consists of two
parts: a encoder 𝐸𝜙 to compute the mean and variance of latent normal
distribution of input ECG signal𝑥 and a decoder𝐷𝜃 to reconstruct the latent
vector 𝑧 back to ECG signal. The latent-space representation is computed
through reparameterization method (Equation 7) to enable the gradient pass
through the discrete sampling process.

𝑧 ∼ N(𝜇, 𝜎2 ) ⇐⇒ 𝑧 = 𝜇 + 𝜎 × 𝜖, 𝜖 ∼ N(0, I) (7)

We train the variational autoencoder separately and whose loss function
comprises two parts: reconstruction error and KL divergence. The recon-
struction error uses Mean Squared Error (MSE) to measure the difference
between the input ECG and the reconstructed ECG, while the KL divergence
measures the difference between the encoded latent distribution and the
standard normal distribution 𝑁 (0, 1) . Combining these two parts, our loss
function expression is:

Lvae = MSE(𝑥input, 𝑥recons ) + 𝜆 · 𝐷𝐾𝐿
(
𝑞𝜙 (𝑧 |𝑥 ) ∥ N(0, I)

)
(8)

=
1
𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝐷𝜃 (𝑧𝑖 ) )2 − 𝜆

2

𝑁∑︁
𝑗=1

(1 + log(𝜎 𝑗 ) − 𝜇2
𝑗 − 𝜎2

𝑗 ) (9)

where 𝑞𝜙 (𝑧 |𝑥 ) is the latent-space variable distribution and 𝜇 𝑗 , 𝜎 𝑗 are the
outputs of encoder 𝐸𝜙 . In order to alleviate the KL vanishing problem [Bow-
man et al. 2015], we adopt the monotonic KL-annealing where coefficient 𝜆
starts at 0 and increases linearly with the growth of epochs.

A.2 Noise Prediction Model
Our noise predictor follows the architecture of U-Net [Ronneberger et al.
2015], which contains a group of down-sampling layers 𝐷𝑖 , a group of
up-sampling layers𝑈 𝑗 and a bottleneck block concatenating two groups.
The detailed architecture of noise predictor model are shown in Figure 6.
Passing through a down-sampling layer, the latent vector 𝑧 ∈ R𝐶×𝐿 would
be enriched in channel dimension while be shortened in length dimension
and vice versa. Besides the directly information flow from anterior layer
𝑈𝑖 to subsequent layer 𝑈𝑖+1 within the up-sampling groups, there also
exist skip connections linking the down-sampling layer at the same level.
Therefore the input expression of layer𝑈𝑖 can be written as:

𝐼𝑛 (𝑈𝑖 ) = Concat(𝑂𝑢𝑡 (𝑈𝑖−1 ), 𝑂𝑢𝑡 (𝐷𝑖 ) ) (10)

The noise prediction model takes three input: time step 𝑡 , current latent-
space representation 𝑧𝑡 and the condition embedding vector 𝑐 . For time
step 𝑡 , we build a trainable embedding table to fetch time embedding and
then add to 𝑧𝑡 . The 𝑡 -th row of time embedding table is initialized as:

time emb = Concat ©«
{
sin(𝑡 · 𝑒−

10𝑖
𝑑/2−1 )

} 𝑑
2 −1

𝑖=0
,

{
cos(𝑡 · 𝑒−

10𝑖
𝑑/2−1 )

} 𝑑
2 −1

𝑖=0

ª®¬
(11)

where 𝑑 is the dimension of embedding length, and is assigned to 64 in our
model.

For condition embedding vector 𝑐 , it is embraced in the cross attention
block [Vaswani et al. 2017] in both sampling block and bottleneck block.
Moreover, we deploy the self attention block [Vaswani et al. 2017] to consider
the global details in latent vector, which promotes the consistency in QRS
complex amplitude of generated ECG waveform.
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Figure 6: The detail architecture of noise predictor model in
DiffuSETS.

A.3 Processing of clinical text reports in
DiffuSETS

Figure 7: Processing of clinical text reports in DiffuSETS.

A.4 Processing of patient-specific information
in DiffuSETS

A.4.1 Categorical Demographic Condition. We categorize discrete, categor-
ical conditions such as sex and race as categorical demographic conditions.
This type of data can be processed to generate embedding vectors using a
learnable classifier, or results can be directly obtained using a large language
model. In our DiffuSETS method, we use the feature of sex to represent
categorical demographic conditions in experiments. Since sex is binary data,
it can be represented simply using 0 or 1.

A.4.2 Numerical Demographic Condition. We categorize continuous, nu-
merical conditions such as age and weight as numerical demographic condi-
tions. These types of data are stored in tables in numerical form. During the
training and inference processes of the model, they can be directly utilized.
In our DiffuSETS method, we use the feature of age to represent numerical
demographic conditions in experiments. For this category of conditions, it
is important to consider the data distribution and the removal of outliers.

A.4.3 Other Health Condition. Specifically, we categorize data related to
patient health metrics such as heart rate and left ventricular ejection fraction
(LVEF) as other health conditions. They can also affect the morphology of
the ECG. Many of these types of data are recorded in dataset tables, and
others require processing to be obtained. Notably, when an ECG is provided,
these values can often be calculated. Therefore, in the task of generating
ECGs, we can perform calculations on the generated ECGs to intuitively
assess the generation effectiveness. In our DiffuSETS method, we use heart
rate to represent other health conditions in experiments and have conducted

feature-level evaluation and analysis of this characteristic after generating
the ECG, making full use of the data’s intrinsic properties.

Figure 8: Processing of patient-specific information in Dif-
fuSETS.

B SUPPLEMENTAL EXPERIMENT
Besides the experimentwementioned in Section 4.2.2We also try to generate
ECGs condition on different given heart rate feature while fixing other
conditions. Specifically, we choose the clinical text report to the normal
’sinus rhythm’, age to 50 and gender to female. Then we change the value of
heart rate from 30 bpm to 150 bpm to test the mean and standard variance
of generated ECG heart rate. The result are shown in Table 4

Also, we perform the diagnostic level test on PTB-XL dataset, and the
result is shown in Table 5

Table 4: Feature level test result by DiffuSETS and ablation
models.

DiffuSETS Heart Rate Under Given Condition (Mean & Std)
Model* 30 bpm 60 bpm 90 bpm 120 bpm 150 bpm

DiffuSETS 46.78 58.43 89.30 121.94 149.69
9.23 5.13 0.58 3.74 8.54

w/o PS-info† - - - - -
- - - - -

w/o VAE 62.27 61.04 90.08 123.68 135.12
11.39 6.30 2.95 4.97 14.37

w/o PS-info&VAE† - - - - -
- - - - -

* Code names of DiffuSETS models are the same with those in Table 1
† No Patient-specific model cannot be specified with heart rate features.

Table 5: Diagnostic test result by DiffuSETS and ablation
models on PTB-XL dataset.

DiffuSETS CLIP Clip Score rCLIP rFID Precision Recall F1 ScoreModel* Score Ground Truth Score Score

DiffuSETS 0.27 0.60 0.45 2.15 0.88 0.50 0.64
w/o PS-info 0.23 0.60 0.39 2.95 0.61 0.32 0.42
w/o VAE 0.18 0.60 0.31 3.05 0.84 0.30 0.44

w/o PS-info&VAE 0.14 0.60 0.23 3.86 0.51 0.62 0.56
* Code names of DiffuSETS models are the same with those in Table 1

C EXPERT EVALUATION SAMPLE LIST



DiffuSETS: 12-lead ECG Generation Conditioned on Clinical Text Reports and Patient-Specific Information KDD-AIDSH ’24, August 25–29, 2024, Barcelona, Spain

Table 6: List of conditions for ECG generation in semantic
alignment test of expert evaluation. Part I

Image No. age gender heart rate clinical text report

0 55 F 59 abnormal ecg.
1 50 M 88 atrial premature complexes.
2 75 M 114 incomplete rbbb.
3 80 M 59 anterolateral st-t changes may be due to hypertrophy and/or ischemia.
4 58 F 98 extensive st-t changes may be due to myocardial ischemia.
5 76 M 53 sinus bradycardia with 1st degree a-v block.
6 55 F 78 sinus rhythm.
7 91 M 63 sinus arrhythmia with borderline 1st degree a-v block.
8 61 M 79 repol abnrm suggests ischemia, lateral leads.
9 83 F 107 left axis deviation.
10 91 M 71 sinus rhythm with pvc(s) with pac(s).
11 31 M 56 inferior and anterior t wave changes are abnormal.
12 83 F 61 possible anterior infarct - age undetermined.
13 74 F 48 st junctional depression is nonspecific.
14 22 F 91 normal ecg.
15 62 M 60 low qrs voltages in precordial leads.
16 75 M 52 poor r wave progression - probable normal variant.
17 58 F 66 prolonged qt interval.
18 73 M 56 abnormal t, probable ischemia, lateral leads.
19 89 F 52 possible ectopic atrial bradycardia.
20 57 M 71 sinus rhythm with borderline 1st degree a-v block.
21 83 F 72 intraventricular conduction defect.
22 85 M 79 lateral st elevation - cannot rule out myocardial injury.
23 47 F 96 lateral st-t changes are nonspecific.
24 38 M 73 borderline ecg.
25 55 M 135 septal t wave changes are nonspecific.
26 31 M 125 short pr interval.
27 58 M 70 nonspecific t abnormalities, lateral leads.
28 65 F 60 left bundle branch block.
29 70 F 59 rightward axis.
30 69 M 121 atrial flutter.
31 72 M 67 leftward axis.
32 85 M 74 lateral t wave changes are probably due to ventricular hypertrophy.
33 88 F 123 probable accelerated junctional rhythm.
34 68 F 41 inferior/lateral st-t changes may be due to hypertrophy and/or ischemia.
35 82 F 92 possible atrial flutter.
36 77 F 84 qrs changes v3/v4 may be due to lvh but cannot rule out anterior infarct.
37 72 F 76 i.v. conduction defect.
38 25 F 87 lateral st changes are nonspecific.
39 75 F 74 lateral t wave changes are nonspecific.
40 68 F 56 probable old inferior infarct.
41 55 M 87 inferior infarct - age undetermined.
42 55 M 73 possible inferior infarct - age undetermined.
43 89 M 87 atrial fibrillation.
44 71 F 81 rsr’(v1) - probable normal variant.
45 58 M 97 - premature ventricular contractions.
46 70 F 56 normal ecg except for rate.
47 53 F 106 ventricular pacing.
48 83 F 58 irregular ectopic atrial bradycardia.
49 78 F 69 pacemaker rhythm - no further analysis.

Table 7: List of conditions for ECG generation in semantic
alignment test of expert evaluation. Part II

Image No. age gender heart rate clinical text report

50 74 M 79 possible anteroseptal infarct - age undetermined.
51 89 M 69 right bundle branch block.
52 21 F 63 sinus rhythm with pac(s).
53 67 M 69 *** consider acute st elevation mi ***.
54 20 M 98 sinus tachycardia.
55 91 F 69 probable left atrial enlargement.
56 82 F 103 lateral st-t changes may be due to myocardial ischemia.
57 74 F 105 atrial fibrillation with rapid ventricular response.
58 60 M 88 inferior t wave changes are nonspecific.
59 44 F 62 inferior st-t changes are nonspecific.
60 78 M 72 abnormal r-wave progression, early transition.
61 39 F 72 st elev, probable normal early repol pattern.
62 61 F 87 — recording unsuitable for analysis - please repeat —.
63 56 F 55 atrial fibrillation with slow ventricular response.
64 53 F 103 possible biatrial enlargement.
65 70 F 73 inferior infarct, old.
66 34 m 115 anteroseptal t wave changes are nonspecific.
67 73 F 70 inferior/lateral st-t changes are probably due to ventricular hypertrophy.
68 73 F 69 possible left atrial abnormality.
69 83 M 74 iv conduction defect.
70 87 F 70 - premature ventricular contractions or aberrant ventricular conduction.
71 50 F 85 poor r wave progression v2-v4.
72 59 M 62 nonspecific t abnormalities, anterior leads.
73 80 M 65 demand pacing.
74 70 M 97 rbbb with left anterior fascicular block.
75 58 F 82 possible right atrial abnormality.
76 61 M 44 sinus bradycardia with sinus arrhythmia with 1st degree a-v block.
77 82 M 57 extensive infarct - age undetermined.
78 82 M 65 dual chamber pacemaker.
79 60 M 64 anteroseptal infarct - age undetermined.
80 57 F 67 anterior t wave changes are nonspecific.
81 54 F 56 sinus bradycardia with borderline 1st degree a-v block.
82 78 M 56 atrial fibrillation with slow ventricular response with paroxysmal id-

ioventricular rhythm.
83 62 F 79 extensive st-t changes may be due to hypertrophy and/or ischemia.
84 51 M 83 septal and lateral st-t changes are nonspecific.
85 91 F 100 possible atrial flutter with rapid ventricular response.
86 51 F 47 - paroxysmal idioventricular rhythm or aberrant ventricular conduction.
87 63 M 80 rbbb and lpfb.
88 66 F 83 t wave changes in lateral leads.
89 74 F 132 these minor changes are of equivocal significance only.
90 75 F 52 inferior/lateral t changes are probably due to ventricular hypertrophy.
91 55 M 105 — suspect arm lead reversal - only avf, v1-v6 analyzed —.
92 84 F 100 lvh with secondary repolarization abnormality.
93 64 F 86 nonspecific repol abnormality, diffuse leads.
94 18 M 84 low voltage, precordial leads.
95 80 M 88 nonspecific t abnrm, anterolateral leads.
96 70 F 51 extensive st-t changes are nonspecific.
97 65 F 47 sinus bradycardia.
98 82 F 69 a-v sequential pacemaker.
99 62 F 103 low qrs voltages in limb leads.
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D MORE EXAMPLES OF GENERATED ECG
Here we list more generated ECG data. These results show that our model
can generate ECGs properly reflecting input clinical text report no matter
from general view or from single beat view.

D.1 Mostly normal ECG. The diagnosis text of
the following ECG will be reflected at the
overall level.

Figure 9: Age: 55; Heart Rate: 59; Text: abnormal ecg.

Figure 10: Age: 22; Heart Rate: 91; Text: normal ecg.

Figure 11: Age: 38; Heart Rate: 73; Text: borderline ecg.

Figure 12: Age: 74; Heart Rate: 132; Text: these minor changes
are of equivocal significance only.

Figure 13: Age: 70; Heart Rate: 56; Text: normal ecg except
for rate.

Figure 14: Age: 20; Heart Rate: 98; Text: sinus tachycardia.

Figure 15: Age: 65; Heart Rate: 47; Text: sinus bradycardia.

D.2 Pacemaker ECG. The diagnosis text of the
following ECG will be reflected at the
overall level.

Figure 16: Age: 78; Heart Rate: 69; Text: pacemaker rhythm -
no further analysis.

D.3 Axis abnormal ECG. The diagnosis text of
the following ECG can be reflected from
some leads together.
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Figure 17: Age: 83; Heart Rate: 107; Text: left axis deviation.

Figure 18: Age: 70; Heart Rate: 59; Text: rightward axis.

D.4 Conduction abnormal ECG. The diagnosis
text of the following ECG can be reflected
from every beat level.

Figure 19: Age: 83; Heart Rate: 74; Text: iv conduction defect.

Figure 20: Age: 83; Heart Rate: 72; Text: intraventricular con-
duction defect.

Figure 21: Age: 72; Heart Rate: 76; Text: i.v. conduction defect.

Figure 22: Age: 89; Heart Rate: 69; Text: right bundle branch
block.

Figure 23: Age: 54; Heart Rate: 56; Text: sinus bradycardia
with borderline 1st degree a-v block.

Figure 24: Age: 61; Heart Rate: 44; Text: sinus bradycardia
with sinus arrhythmia with 1st degree a-v block.

D.5 Cardiac structure abnormal ECG. The
diagnosis text of the following ECG can be
reflected from every P wave.
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Figure 25: Age: 73; Heart Rate: 69; Text: possible left atrial
abnormality.

D.6 Premature contractions ECG. The diagnosis
text of the following ECG can be reflected
from a single occasional beat. Multiple
abnormalities are also present.

Figure 26: Age: 21; Heart Rate: 63; Text: sinus rhythm with
pac(s).

Figure 27: Age: 87; Heart Rate: 70; Text: - premature ventric-
ular contractions or aberrant ventricular conduction.

Figure 28: Age: 91; Heart Rate: 71; Text: sinus rhythm with
pvc(s) with pac(s).

D.7 Atrial flutter and atrial fibrillation ECG.
The diagnosis text of the following ECG can
be reflected in rhythm level. Every beats are
slightly abnormal. Multiple abnormalities
are also present.

Figure 29: Age: 91; Heart Rate: 100; Text: possible atrial flutter
with rapid ventricular response.

Figure 30: Age: 74; Heart Rate: 105; Text: atrial fibrillation
with rapid ventricular response.

Figure 31: Age: 78; Heart Rate: 56; Text: atrial fibrillation with
slow ventricular response with paroxysmal idioventricular
rhythm.

D.8 Possible myocardial ischemia ECG. Very
dangerous. The diagnosis text of the
following ECG can be reflected in every
beat, but only specific lead(s) might present
this change.
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Figure 32: Age: 80; Heart Rate: 59; Text: anterolateral st-t
changes may be due to hypertrophy and/or ischemia.

Figure 33: Age: 73; Heart Rate: 56; Text: abnormal t, probable
ischemia, lateral leads.

Figure 34: Age: 58; Heart Rate: 70; Text: nonspecific t abnor-
malities, lateral leads.

Figure 35: Age: 68; Heart Rate: 41; Text: inferior/lateral st-t
changes may be due to hypertrophy and/or ischemia.

Figure 36: Age: 77; Heart Rate: 84; Text: qrs changes v3/v4
may be due to lvh but cannot rule out anterior infarct.

Figure 37: Age: 75; Heart Rate: 74; Text: lateral t wave changes
are nonspecific.

Figure 38: Age: 44; Heart Rate: 62; Text: inferior st-t changes
are nonspecific.

Figure 39: Age: 59; Heart Rate: 62; Text: nonspecific t abnor-
malities, anterior leads.
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Figure 40: Age: 82; Heart Rate: 57; Text: extensive infarct -
age undetermined.

Figure 41: Age: 60; Heart Rate: 64; Text: anteroseptal infarct -
age undetermined.

Figure 42: Age: 80; Heart Rate: 88; Text: nonspecific t abnrm,
anterolateral leads.



DiffuSETS: 12-lead ECG Generation Conditioned on Clinical Text Reports and Patient-Specific Information KDD-AIDSH ’24, August 25–29, 2024, Barcelona, Spain

D.9 Low voltages ECG. The diagnosis text of the
following ECG can be reflected at the
overall level, but only specific leads.

Figure 43: Age: 62; Heart Rate: 60; Text: low qrs voltages in
precordial leads.

Figure 44: Age: 18; Heart Rate: 84; Text: low voltage, precor-
dial leads.

Figure 45: Age: 62; Heart Rate: 103; Text: low qrs voltages in
limb leads.
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