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Figure 1: EVA3D generates high-quality and diverse 3D humans with photo-realistic RGB render-
ings and detailed geometry. Only 2D image collections are used for training.

ABSTRACT

Inverse graphics aims to recover 3D models from 2D observations. Utilizing dif-
ferentiable rendering, recent 3D-aware generative models have shown impressive
results of rigid object generation using 2D images. However, it remains challeng-
ing to generate articulated objects, like human bodies, due to their complexity and
diversity in poses and appearances. In this work, we propose, EVA3D, an un-
conditional 3D human generative model learned from 2D image collections only.
EVA3D can sample 3D humans with detailed geometry and render high-quality
images (up to 512×256) without bells and whistles (e.g. super resolution). At the
core of EVA3D is a compositional human NeRF representation, which divides the
human body into local parts. Each part is represented by an individual volume.
This compositional representation enables 1) inherent human priors, 2) adaptive
allocation of network parameters, 3) efficient training and rendering. Moreover, to
accommodate for the characteristics of sparse 2D human image collections (e.g.
imbalanced pose distribution), we propose a pose-guided sampling strategy for
better GAN learning. Extensive experiments validate that EVA3D achieves state-
of-the-art 3D human generation performance regarding both geometry and texture
quality. Notably, EVA3D demonstrates great potential and scalability to “inverse-
graphics” diverse human bodies with a clean framework. Our code is publicly
available at https://github.com/hongfz16/EVA3D.

1 INTRODUCTION

Inverse graphics studies inverse-engineering of projection physics, which aims to recover the 3D
world from 2D observations. It is not only a long-standing scientific quest, but also enables nu-
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merous applications in VR/AR and VFX. Recently, 3D-aware generative models (Chan et al., 2021;
Or-El et al., 2022; Chan et al., 2022) demonstrate great potential in inverse graphics by learning
to generate 3D rigid objects (e.g. human/animal faces, CAD models) from 2D image collections.
However, human bodies, as articulated objects, have complex articulations and diverse appearances.
Therefore, it is challenging to learn 3D human generative models that can synthesis animatable 3D
humans with high-fidelity textures and vivid geometric details.

To generate high-quality 3D humans, we argue that two main factors should be properly addressed:
1) 3D human representation; 2) generative network training strategies. Due to the articulated
nature of human bodies, a desirable human representation should be able to explicitly control the
pose/shape of 3D humans. With an articulated representation, a 3D human is modeled in its canon-
ical pose (canonical space), and can be rendered in different poses and shapes (observation space).
Moreover, the efficiency of the representation matters in high-quality 3D human generation. Previ-
ous methods (Noguchi et al., 2022; Bergman et al., 2022) fail to achieve high resolution generation
due to their inefficient human representations.

In addition, training strategies could also highly influence 3D human generative models. The issue
mainly comes from the data characteristics. Compared with datasets used by Noguchi et al. (2022)
(e.g. AIST (Tsuchida et al., 2019)), fashion datasets (e.g. DeepFashion (Liu et al., 2016)) are more
aligned with real-world human image distributions, making a favorable dataset choice. However,
fashion datasets mostly have very limited human poses and highly imbalanced viewing angles.
This imbalanced 2D data distribution could hinder 3D GAN learning, leading to difficulties in novel
view/ pose synthesis. Therefore, a proper training strategy is in need to alleviate the issue.

In this work, we propose EVA3D, an unconditional high-quality 3D human generative model from
sparse 2D human image collections only. To facilitate that, we propose a compositional human
NeRF representation to improve the model efficiency. We divide the human body into 16 parts and
assign each part an individual network, which models the corresponding local volume. Our hu-
man representation mainly provides three advantages. 1) It inherently describes the human body
prior, which supports explicit control over human body shapes and poses. 2) It supports adap-
tively allocating computation resources. More complex body parts (e.g. heads) can be allocated
with more parameters. 3) The compositional representation enables efficient rendering and achieves
high-resolution generation. Rather than using one big volume (Bergman et al., 2022), our com-
positional representation tightly models each body part and prevents wasting parameters on empty
volumes. Moreover, thanks to the part-based modeling, we can efficiently sample rays inside lo-
cal volumes and avoid sampling empty spaces. With the compact representation together with the
efficient rendering algorithm, we achieve high-resolution (512 × 256) rendering and GAN training
without using super-resolution modules, while existing methods can only train at a native resolution
of 1282. Moreover, we carefully design training strategies to address the human pose and viewing
angle imbalance issue. We analyze the head-facing angle distribution and propose a pose-guided
sampling strategy to help effective 3D human geometry learning.

Quantitative and qualitative experiments are performed on two fashion datasets (Liu et al., 2016; Fu
et al., 2022) to demonstrate the advantages of EVA3D. We also experiment on UBCFashion (Zablot-
skaia et al., 2019) and AIST (Tsuchida et al., 2019) for comparison with prior work. Extensive ex-
periments on our method designs are provided for further analysis. In conclusion, our contributions
are as follows: 1) We are the first to achieve high-resolution high-quality 3D human generation from
2D image collections; 2) We propose a compositional human NeRF representation tailored for effi-
cient GAN training; 3) Practical training strategies are introduced to address the imbalance issue of
real 2D human image collections. 4) We demonstrate applications of EVA3D, i.e. interpolation and
GAN inversion, which pave way for further exploration in 3D human GAN.

2 RELATED WORK

3D-Aware GAN. Generative Adversarial Network (GAN) (Goodfellow et al., 2020) has been a
great success in 2D image generation (Karras et al., 2019; 2020). Many efforts have also been put
on 3D-aware generation. Nguyen-Phuoc et al. (2019); Henzler et al. (2019) use voxels, and Pan et al.
(2020) use meshes to assist the 3D-aware generation. With recent advances in NeRF (Mildenhall
et al., 2020; Tewari et al., 2021), many have build 3D-aware GANs based on NeRF (Schwarz et al.,
2020; Niemeyer & Geiger, 2021; Chan et al., 2021; Deng et al., 2022). To increase the generation
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resolution, Gu et al. (2021); Or-El et al. (2022); Chan et al. (2022) use 2D decoders for super
resolution. Moreover, it is desirable to lift the raw resolution, by improving the rendering efficiency,
for more detailed geometry and better 3D consistency (Skorokhodov et al., 2022; Xiang et al., 2022;
Schwarz et al., 2022; Zhao et al., 2022). We also propose an efficient 3D human representation to
allow high resolution training.

Human Generation. Though great success has been achieved in generating human faces, it is still
challenging to generate human images for the complexity in human poses and appearances (Sarkar
et al., 2021b; Lewis et al., 2021; Sarkar et al., 2021a; Jiang et al., 2022c). Recently, Fu et al. (2022);
Frühstück et al. (2022) scale-up the dataset and achieve impressive 2D human generation results.
For 3D human generation, Chen et al. (2022) generate human geometry using 3D human dataset.
Some also attempt to train 3D human GANs using only 2D human image collections. Grigorev
et al. (2021); Zhang et al. (2021) use CNN-based neural renderers, which cannot guarantee 3D
consistency. Noguchi et al. (2022) use human NeRF (Noguchi et al., 2021) for this task, which
only trains at low resolution. Bergman et al. (2022); Zhang et al. (2022a) propose to increase the
resolution by super-resolution, which still fails to produce high-quality results. Hong et al. (2022b);
Zhang et al. (2022b) generate 3D avatars and motions from text inputs.

3D Human Representations. 3D human representations serve as fundamental tools for human
related tasks. Loper et al. (2015); Pavlakos et al. (2019b) create parametric human models, for
explicit modeling of 3D humans. To model human appearances, Habermann et al. (2021); Shysheya
et al. (2019); Yoon et al. (2021); Liu et al. (2021) further introduce UV maps. Parametric modeling
gives robust control over the human model, but less realism. Palafox et al. (2021) use implicit
functions to generate realistic 3D human body shapes. Embracing the development of NeRF, the
number of works about human NeRF has also exploded (Peng et al., 2021b; Zhao et al., 2021;
Peng et al., 2021a; Xu et al., 2021; Noguchi et al., 2021; Weng et al., 2022; Chen et al., 2021; Su
et al., 2021; Jiang et al., 2022a;b; Wang et al., 2022). Hong et al. (2022a) propose to learn modal-
invariant human representations for versatile down-stream tasks. Cai et al. (2022) contribute a large-
scale multi-modal 4D human dataset. Some propose to model human body in a compositional
way (Mihajlovic et al., 2022; Palafox et al., 2022; Su et al., 2022), where several submodules are
used to model different body parts, and are more efficient than single-network ones.

Compositional NeRF. The compositional representation has been long studied for its effectiveness
and efficiency. It has also been applied to NeRF for object, scene and human modeling. Tancik et al.
(2022); Kundu et al. (2022) model outdoor scene NeRF in an compositional way by splitting scenes
into block or object levels. Yang et al. (2021); Driess et al. (2022); Wang et al. (2021) decompose
multi-objects in a scene for further editing. Compositional NeRF generation has also been studied
in prior arts (Niemeyer & Geiger, 2021; BR et al., 2022).

3 METHODOLOGY

3.1 PREREQUISITES

NeRF (Mildenhall et al., 2020) is an implicit 3D representation, which is capable of photorealistic
novel view synthesis. NeRF is defined as {c, σ} = FΦ(x,d), where x is the query point, d is
the viewing direction, c is the emitted radiance (RGB value), σ is the volume density. To get the
RGB value C(r) of some ray r(t) = o + td, namely volume rendering, we have the following
formulation, C(r) =

∫ tf
tn

T (t)σ(r(t))c(r(t),d)dt , where T (t) = exp(−
∫ t

tn
σ(r(s))ds) is the

accumulated transmittance along the ray r from tn to t. tn and tf denotes the near and far bounds.
To get the estimation of C(r), it is discretized as

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci, where Ti = exp(−
i−1∑
j=1

σjδj), δi = ti+1 − ti. (1)

For better geometry, Or-El et al. (2022) propose to replace the volume density σ(x) with SDF
values d(x) to explicitly define the surface. SDF can be converted to the volume density as σ(x) =
α−1sigmoid (−d(x)/α), where α is a learnable parameter. In later experiments, we mainly use SDF
as the implicit geometry representation, which is denoted as σ for convenience.
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Figure 2: Rendering Process of the Compositional Human NeRF Representation. For shape
and pose specified by SMPL(β, θ), local bounding boxes are constructed. Rays that intersect with
bounding boxes are sampled and transferred to the canonical space using inverse LBS. Subnetworks
corresponding to bounding boxes are queried, results of which are integrated to produce final ren-
derings.

SMPL (Loper et al., 2015), defined as M(β,θ), is a parametric human model, where β,θ
controls body shapes and poses. In this work, we use the Linear Blend Skinning (LBS) al-
gorithm of SMPL for the transformation from the canonical space to observation spaces. For-
mally, point x in the canonical space is transformed to an observation space defined by pose θ as
x′ =

∑K
k=1 wkGk(θ,J)x, where K is the joint number, wk is the blend weight of x against joint

k, Gk(θ,J) is the transformation matrix of joint k. The transformation from observation spaces to
the canonical space, namely inverse LBS, takes a similar formulation with inverted transformation
matrices.

3.2 COMPOSITIONAL HUMAN NERF REPRESENTATION

The compositional human NeRF representation is defined as FΦ, corresponding to a set of local
bounding boxes B. For each body part k, we use a subnetwork Fk ∈ FΦ to model the local bounding
box {bkmin, b

k
max} ∈ B, as shown in Fig. 2 b). For some point xi in the canonical coordinate with

direction di and falling inside the k-th bounding box, the corresponding radiance cki and density σk
i

is queried by

{cki , σk
i } = Fk(x̂

k
i ,di), where x̂k

i =
2xi − (bkmin + bkmax)

bkmax − bkmin

. (2)

If the point xi falls in multiple bounding boxes Ai, a window function (Lombardi et al., 2021) is
applied to linearly blend queried results. The blended radiance ci and density σi of xi is calculated
as

{ci, σi} =
1∑
ωa

∑
a∈Ai

ωa{cki , σk
i }, where ωa = exp(−m(x̂k

i (x)
n + x̂k

i (y)
n + x̂k

i (z)
n)). (3)

m,n are chosen empirically. Different from Palafox et al. (2022); Su et al. (2022), we only query
subnetworks whose bounding boxes contain query points. It increases the efficiency of the query
process and saves computational resources.

Taking advantages of the compositional representation, we also adopt an efficient volume rendering
algorithm. Previous methods need to sample points, query, and integrate for every pixel of the
canvas, which wastes large amounts of computational resources on backgrounds. In contrast, for
the compositional representation, we have pre-defined bounding boxes to filter useful rays, which is
also the key for our method being able to train on high resolution.

As shown in Fig. 2, for the target pose θ, shape β and camera setup, our rendering algorithm
R(FΦ,β,θ, cam) is described as follows. Firstly, ray r(t) = o + td is sampled for each pixel
on the canvas. Then we transform the pre-defined bounding boxes B to the target pose θ using
transformation matrices Gk defined by SMPL. Rays that intersect with the transformed bounding
boxes are kept for further rendering. Others are marked to be the background color. For ray r(t) =
o+ td that intersects with single or multiple bounding boxes, we get the near and far bounds tn, tf .

4



Published as a conference paper at ICLR 2023

𝑝!"#
𝛽
𝜃
cam

~

SMPL(𝛽, 𝜃)
cam

𝑝$ ~ 𝒛 mapping ~ 𝑝%!&'

D
iscrim

inator

Real /
Fake ?

𝜃
Pose-Guided Sampling

Query
Integrate

Sample Ray
Inverse LBS

Figure 3: 3D Human GAN Framework. With the estimated SMPL and camera parameters distri-
bution pest, 3D humans are randomly sampled and rendered conditioned on z ∼ pz . The renderings
are used for adversarial training against real 2D human image collections preal.

N points are randomly sampled on each ray as

ti ∼ U
[
tn +

i− 1

N
(tf − tn), tn +

i

N
(tf − tn)

]
. (4)

Next, we transform sampled points back to the canonical space using inverse LBS. Similar to Zheng
et al. (2021), we inverse not only the pose transformation, but also the shape/ pose blend shapes
BS(β),BP (θ) to be able to generalize to different body shapes. For sampled point r(ti), the
nearest k points N = {v1...vk} are found among the vertices of the posed SMPL mesh M(β,θ).
The transformation of point r(ti) from the observation space to the canonical space is defined as[

x0
i
1

]
=
∑
vj∈N

ωj∑
ωj

(Mj)
−1

[
r(ti)
1

]
, where Mj =

(
K∑

k=1

wj
kGk

)[
I Bj

S +Bj
P

0 I

]
. (5)

ωj = 1/∥r(ti)− vj∥ is the inverse distance weight. Mj is the transformation matrix of the SMPL
vertex vj . Then we query the compositional human NeRF representation F with point x0

i to get its
corresponding radiance ci and density σi as defined in Eq. 2 and 3. Finally, we integrate the queried
results for the RGB value of ray r(t), as defined in Eq. 1.

3.3 3D HUMAN GAN FRAMEWORK

With the compositional human NeRF representation, we construct a 3D human GAN framework as
shown in Fig. 3. The generator is defined as G(z,β,θ, cam; ΦG) = R(FΦG

(z),β,θ, cam). Similar
to pi-GAN (Chan et al., 2021), each subnetwork of FΦ consists of stacked MLPs with SIREN activa-
tion (Sitzmann et al., 2020). To generate fake samples, z ∼ pz is sample from normal distribution.
{β,θ, cam} ∼ pest are sampled from the estimated distribution from 2D image collections. We use
off-the-shelf tools (Pavlakos et al., 2019a; Kocabas et al., 2020) to estimate {β,θ, cam} for the 2D
image collections. Unlike ENARF-GAN(Noguchi et al., 2022), where these variables are sampled
from the distribution of motion datasets (Mahmood et al., 2019), the real 2D image collections do
not necessarily share the similar pose distribution as that of motion datasets, especially for fashion
datasets, e.g. DeepFashion, where the pose distribution is imbalanced. Finally, the fake samples
If = G(z,β,θ, cam; ΦG), along with real samples Ir ∼ preal are sent to discriminator D(I; ΦD)
for adversarial training. For more implementation details, please refer to the supplementary material.

3.4 TRAINING

Delta SDF Prediction. Real-world 2D human image collections, especially fashion datasets, usu-
ally have imbalanced pose distribution. For example, as shown in Fig. 6, we plot the distribution
of facing angles of DeepFashion. Such heavily imbalanced pose distribution makes it hard for the
network to learn correct 3D information in an unsupervised way. Therefore, we propose to introduce
strong human prior by utilizing the SMPL template geometry dT (x) as the foundation of our human
representation. Instead of directly predicting the SDF value d(x), we predict an SDF offset ∆d(x)
from the template (Yifan et al., 2022). Then dT (x) + ∆d(x) is used as the actual SDF value of
point x.

Pose-guided Sampling. To facilitate effective 3D information learning from sparse 2D image col-
lections, other than introducing a 3D human template, we propose to balance the input 2D images
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Figure 4: Generation Results of EVA3D. The 3D-aware nature and inherent human prior of EVA3D
enable explicit control over rendering views, human poses, and shapes.

based on human poses. The intuition behind the pose-guided sampling is that different viewing an-
gles should be sampled more evenly to allow effective learning of geometry. Empirically, among all
human joints, we use the angle of the head to guide the sampling. Moreover, facial areas contain
more information than other parts of the head. Front-view angles should be sampled more than
other angles. Therefore, we choose to use a Gaussian distribution centered at the front-view angle
µθ, with a standard deviation of σθ. Specifically, M bins are divided on the circle. For an image
with the head angle falling in bin m, its probability pm of being sampled is defined as

pm =
1

σθ

√
2π

exp

(
−1

2

(
θm − µθ

σθ

)2
)

, where θm =
2πm

M
. (6)

We visualize the balanced distribution in Fig. 6. The network now has higher chances of seeing
more side-views of human bodies, which helps better geometry generation.

Loss Functions. For the adversarial training, we use the non-saturating GAN loss with R1 regular-
ization (Mescheder et al., 2018), which is defined as

Ladv(ΦG,ΦD) = Ez∼pz,{β,θ,cam}∼pest
[f(D(G(z,β,θ, cam; ΦG); ΦD))] (7)

+EIr∼preal
[f(−D(Ir; ΦD)) + λ|∇D(Ir; ΦD)|2], (8)

where f(u) = −log(1 + exp(−u)). Other than the adversarial loss, some regularization terms are
introduced for the delta SDF prediction. Firstly, we want minimum offset from the template mesh
to maintain plausible human shape, which gives the minimum offset loss Loff = Ex[∥∆d(x)∥22].
Secondly, to ensure that the predicted SDF values are physically valid (Gropp et al., 2020), we
penalize the derivation of delta SDF predictions to zero Leik = Ex[∥∇(∆d(x))∥22]. The overall loss
is defined as L = Ladv + λoffLoff + λeikLeik, where λ∗ are loss weights defined empirically.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on four datasets: DeepFashion (Liu et al., 2016), SHHQ (Fu
et al., 2022), UBCFashion (Zablotskaia et al., 2019) and AIST (Tsuchida et al., 2019). The first
two are sparse 2D image collections, meaning that each image has different identities and poses
are sparse, which makes them more challenging. The last two are human video datasets containing
different poses/ views of the same identities, which is easier for the task but lacks diversity.

Comparison Methods. We compare with three baselines. ENARF-GAN (Noguchi et al., 2022)
makes the first attempt at human NeRF generation from 2D image collections. EG3D (Chan et al.,
2022) and StyleSDF (Or-El et al., 2022) are state-of-the-art methods for 3D-aware generation, both
requiring super-resolution modules to achieve high-resolution generation.

Evaluation Metrics. To evaluate the quality of rendered images, we adopt Frechet Inception Dis-
tance (FID) (Heusel et al., 2017) and Kernel Inception Distance (KID) (Bińkowski et al., 2018).
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Figure 5: Qualitative Comparison Between EVA3D and Baseline Methods. Rendered 2D im-
ages and corresponding meshes are placed side-by-side. Both the 2D renderings and 3D meshes
generated by our method achieve the best quality among SOTA methods. Zoom in for the best view.

Following ENARF-GAN, we use Percentage of Correct Keypoints (PCKh@0.5) (Andriluka et al.,
2014) to evaluate the correctness of generated poses. Note that PCKh@0.5 can only be calculated
on methods that can control generated poses, i.e. ENARF-GAN and EVA3D. To evaluate the cor-
rectness of geometry, we use an off-the-shelf tool (Ranftl et al., 2022) to estimate depth from the
generated images and compare it with generated depths. 50K samples, padded to square and re-
sized to the same resolution (DeepFashion, SHHQ, UBCFashion at 5122; AIST at 2562), are used
to compute FID and KID. PCKh@0.5 and Depth are evaluated on 5K samples.

4.2 QUALITATIVE EVALUATIONS

Generation Results and Controlling Ability of EVA3D. As shown in Fig. 4 a), EVA3D is capable
of generating high-quality renderings in novel views and remain multi-view consistency. Due to the
inherent human prior in our model design, EVA3D can control poses and shapes of the generated 3D
human by changing β and θ of SMPL. We show novel pose and shape generation results in Fig. 4
b)& c). We refer readers to the supplementary PDF and video for more qualitative results.

Comparison with Baseline Methods. We show the renderings and corresponding meshes generated
by baselines and our method in Fig. 5. EG3D trained on DeepFashion, as well as StyleSDF trained
on SHHQ, generate reasonable RGB renderings and geometry. However, without explicit human
modeling, complex human poses make it hard to align and model 3D humans in observation spaces,
which leads to distorted generation. Moreover, because of the use of super resolution, their geometry
is only trained under low resolution (642) and therefore lacks details. EG3D trained on SHHQ and
StyleSDF trained on DeepFashion fail to capture 3D information and collapse to the trivial solution
of painting on billboards. Limited by the inefficient representation and computational resources,
ENARF-GAN can only be trained at a resolution of 1282, which leads to low-quality rendering
results. Besides, lacking human prior makes ENARF-GAN hard to capture correct 3D information
of human from sparse 2D image collections, which results in broken meshes. EVA3D, in contrast,
generates high-quality human renderings on both datasets. We also succeeded in learning reasonable
3D human geometry from 2D image collections with sparse viewing angles and poses, thanks to the
strong human prior and the pose-guided sampling strategy. Due to space limitations, we only show
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Table 1: Comparison with State-of-the-Art Methods. * The training code of ENARF-GAN is im-
plemented based on the official inference code.

Methods, Resolution DeepFashion SHHQ
FID↓ KID↓ PCK↑ Depth↓ FID↓ KID↓ PCK↑ Depth↓

EG3D, 5122 26.38 0.014 - 0.0779 32.96 0.033 - 0.0296
StyleSDF, 5122 92.40 0.136 - 0.0359 14.12 0.010 - 0.0300
ENARF-GAN*, 1282 77.03 0.114 43.74 0.1151 80.54 0.102 40.17 0.1241
Ours, 5122 15.91 0.011 87.50 0.0272 11.99 0.009 88.95 0.0177

Methods, Resolution UBCFashion AIST
FID↓ KID↓ PCK↑ Depth↓ FID↓ KID↓ PCK↑ Depth↓

EG3D, 5122 23.95 0.009 - 0.1163 34.76 0.022 - 0.1165
StyleSDF, 5122 18.52 0.011 - 0.0311 199.5 0.225 - 0.0236
ENARF-GAN*, 1282 - - - - 73.07 0.075 42.85 0.1128
Ours, 5122 12.61 0.010 99.17 0.0090 19.40 0.010 83.15 0.0126

Table 2: Ablation Study. †Depth
is evaluated with SMPL depth.
We report Depth×103 for sim-
plicity.

Methods FID↓ †Depth↓
Baseline, 2562 31.14 3.57
+ Composite, 5122 17.81 5.02
+ Delta SDF, 5122 15.62 3.69
+ Pose-guide, 5122 15.91 3.04

Table 3: Trade-Off Between
RGB and Geometry.

Distribution FID↓ †Depth↓
Original 15.62 3.69
σθ = 15◦ 15.91 3.04
σθ = 30◦ 19.05 2.58
σθ = 45◦ 19.56 2.65
σθ = 60◦ 25.08 2.91
Uniform 25.82 2.92

0
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0 60 120 180 240 300
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Figure 6: PDF of Different Pose-
Guided Sampling Distributions.

results of DeepFashion and SHHQ here. For visual comparisons on UBCFashion and AIST, please
refer to the supplementary material.

4.3 QUANTITATIVE EVALUATIONS

As shown in Tab. 1, our method leads all metrics in four datasets. EVA3D outperforms ENARF-
GAN in all settings thanks to our high-resolution training ability. EG3D and StyleSDF, as the
SOTA methods in the 3D generation, can achieve reasonable scores in some settings (e.g. StyleSDF
achieves 18.52 FID on UBCFashion) for their super-resolution modules. But they also fail on some
datasets (e.g. StyleSDF fails on AIST with 199.5 FID) for complexity in human poses. In the
contrast, EVA3D achieves the best FID/KID scores under all settings. Moreover, unlike EG3D
or StyleSDF, EVA3D can control the generated pose and achieve higher PCKh@0.5 score than
ENARF-GAN. For the geometry part, we also achieve the lowest depth error, which shows the
importance of natively high-resolution training.

4.4 ABLATION STUDIES

Ablation on Method Designs. To validate the effectiveness of our designs on EVA3D, we sub-
sequently add different designs on a baseline method, which uses one large network to model the
canonical space. Experiments are conducted on DeepFashion. The results are reported in Tab. 2.
Limited by the inefficient representation, the “Baseline” can only be trained at 256 × 128, which
results in the worst FID score. Adding compositional design (“+Composite”) makes the network
efficient enough to be trained at a higher resolution of 512 × 256 and achieve higher generation
quality. We further introduce human prior by predicting delta SDF (“+Delta SDF”), which gives the
best FID score. Finally, using the pose-guided sampling (“+Pose-guide”), we further decrease the
depth error. We refer readers to the supplementary material for qualitative evaluations of ablation
studies.

Analysis on Pose-Guided Sampling. We analyze the importance of the sampling strategy in 3D
human GAN training. Three types of distributions pest are experimented, including the original
dataset distribution (“Original”), pose-guided Gaussian distribution (“σθ = ∗”), and pose-guided
uniform distribution (“Uniform”). The results are reported in Tab. 3. Firstly, uniform sampling is
not a good strategy for that the information density is different between different parts of human.

8



Published as a conference paper at ICLR 2023

a) Interpolation on Latent Space b) Target Inversion Result

Figure 7: Applications of EVA3D. a) Interpolation on the latent space gives smooth transition
between two samples. b) Inversion result (right) of the target image (left).

Secondly, the original distribution gives the best visual quality but the worst geometry. It could result
in the trivial solution of painting on billboards. Thirdly, the pose-guided Gaussian sampling can
avoid damaging visual quality too much and improve geometry learning. As the standard deviation
σθ increases, FID increases while the depth error decreases. Therefore, it is a trade-off between
visual quality and geometry quality. In our final experiments, we choose σθ = 15◦ which is a
satisfying balance between the two factors.

4.5 APPLICATIONS

Interpolation on Latent Space. As shown in Fig. 7 a), we linearly interpolate two latent codes
to generate a smooth transition between them, showing that the latent space learned by EVA3D is
semantically meaningful. More results are provided in the supplementary video.

Inversion. We use Pivotal Tuning Inversion (PTI) (Roich et al., 2021) to inverse the target image and
show the results in Fig. 7 b). Reasonable novel view synthesis results can be achieved. The geometry,
however, fails to capture geometry details corresponding to RGB renderings, which can be caused by
the second stage generator fine-tuning of PTI. Nevertheless, we demonstrate the potential of EVA3D
in more related downstream tasks. For more results and comparison with baseline methods, please
refer to the supplementary material.

5 DISCUSSION

To conclude, we propose a high-quality unconditional 3D human generation model EVA3D that only
requires 2D image collections for training. We design a compositional human NeRF representation
for efficient GAN training. To train on the challenging 2D image collections with sparse viewing
angles and human poses, e.g. DeepFashion, strong human prior and pose-guided sampling are intro-
duced for better GAN learning. On four large-scale 2D human datasets, we achieve state-of-the-art
generation results at a high resolution of 512× 256.

Limitations: 1) There still exists visible circular artifacts in the renderings, which might be caused
by the SIREN activation. A better base representation, e.g. tri-plane of EG3D, and a 2D decoder
might solve the issue. 2) The estimation of SMPL parameters from 2D image collections is not ac-
curate, which leads to a distribution shift from the real pose distribution and possibly compromises
generation results. Refining SMPL estimation during training would make a good future work. 3)
Limited by our tight 3D human representation, it is hard to model loose garments, accessories or
body parts (like hair). The apparent geometric line artifact around the neck and shoulder areas of
samples from DeepFashion training (see Fig. 5) could be caused by the compositional represen-
tation having trouble modeling long hair hanging down. Using separate modules to handle loose
parts might be a promising direction. 4) It is known that state-of-the-art 3D-aware generation meth-
ods (Chan et al., 2022; Or-El et al., 2022) have not achieved comparable quality with that of 2D
generation (Karras et al., 2020; 2021). To investigate if that is still the case in terms of human gener-
ation, we further train StyleGAN2 (Karras et al., 2020) on DeepFashion. StyleGAN2 achieves 6.52
FID, which is much lower than our FID of 15.91. This indicates that 3D-aware generation still has
a long way to develop.
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ETHICS STATEMENT

Although the results of EVA3D are yet to the point where they can fake human eyes, we still need
to be aware of its potential ethical issues. The generated 3D humans might be misused to create
contents that are misleading. EVA3D can also be used to invert real human images, which can be
used to create fake videos of real humans and cause negative social impacts. Moreover, the generated
3D humans might be biased, which is caused by the inherent distribution of training datasets. We
make our best effort to demonstrate the impartiality of EVA3D in Fig. 1.

REPRODUCIBILITY STATEMENT

Our method is thoroughly described in Sec. 3. Together with implementation details included in the
supplementary material, the reproducibility is ensured. Moreover, Our code is publicly available at
https://github.com/hongfz16/EVA3D.
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Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. arXiv preprint arXiv:1801.01401, 2018.

Mallikarjun BR, Ayush Tewari, Xingang Pan, Mohamed Elgharib, and Christian Theobalt. gcorf:
Generative compositional radiance fields. arXiv preprint arXiv:2210.17344, 2022.

Zhongang Cai, Daxuan Ren, Ailing Zeng, Zhengyu Lin, Tao Yu, Wenjia Wang, Xiangyu Fan, Yang
Gao, Yifan Yu, Liang Pan, et al. Humman: Multi-modal 4d human dataset for versatile sensing
and modeling. arXiv preprint arXiv:2204.13686, 2022.

Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-gan: Periodic
implicit generative adversarial networks for 3d-aware image synthesis. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 5799–5809, 2021.

Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware
3d generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16123–16133, 2022.

Jianchuan Chen, Ying Zhang, Di Kang, Xuefei Zhe, Linchao Bao, Xu Jia, and Huchuan Lu. An-
imatable neural radiance fields from monocular rgb videos. arXiv preprint arXiv:2106.13629,
2021.

Xu Chen, Tianjian Jiang, Jie Song, Jinlong Yang, Michael J Black, Andreas Geiger, and Otmar
Hilliges. gdna: Towards generative detailed neural avatars. arXiv, 2022.

Yu Deng, Jiaolong Yang, Jianfeng Xiang, and Xin Tong. Gram: Generative radiance manifolds for
3d-aware image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 10673–10683, June 2022.

Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint. Learning multi-object
dynamics with compositional neural radiance fields. arXiv preprint arXiv:2202.11855, 2022.

Anna Frühstück, Krishna Kumar Singh, Eli Shechtman, Niloy J Mitra, Peter Wonka, and Jingwan
Lu. Insetgan for full-body image generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7723–7732, 2022.

10

https://github.com/hongfz16/EVA3D


Published as a conference paper at ICLR 2023

Jianglin Fu, Shikai Li, Yuming Jiang, Kwan-Yee Lin, Chen Qian, Chen Change Loy, Wayne Wu,
and Ziwei Liu. Stylegan-human: A data-centric odyssey of human generation. arXiv preprint
arXiv:2204.11823, 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Artur Grigorev, Karim Iskakov, Anastasia Ianina, Renat Bashirov, Ilya Zakharkin, Alexander Vakhi-
tov, and Victor Lempitsky. Stylepeople: A generative model of fullbody human avatars. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5151–
5160, 2021.

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regu-
larization for learning shapes. arXiv preprint arXiv:2002.10099, 2020.

Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. Stylenerf: A style-based 3d-aware
generator for high-resolution image synthesis. arXiv preprint arXiv:2110.08985, 2021.

Marc Habermann, Lingjie Liu, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll, and Christian
Theobalt. Real-time deep dynamic characters. ACM Transactions on Graphics (TOG), 40(4):
1–16, 2021.

Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Escaping plato’s cave: 3d shape from adver-
sarial rendering. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 9984–9993, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Fangzhou Hong, Liang Pan, Zhongang Cai, and Ziwei Liu. Versatile multi-modal pre-training for
human-centric perception. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16156–16166, 2022a.

Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang Cai, Lei Yang, and Ziwei Liu. Avatarclip:
Zero-shot text-driven generation and animation of 3d avatars. arXiv preprint arXiv:2205.08535,
2022b.

Boyi Jiang, Yang Hong, Hujun Bao, and Juyong Zhang. Selfrecon: Self reconstruction your digital
avatar from monocular video. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 5605–5615, 2022a.

Wei Jiang, Kwang Moo Yi, Golnoosh Samei, Oncel Tuzel, and Anurag Ranjan. Neuman: Neural
human radiance field from a single video. arXiv preprint arXiv:2203.12575, 2022b.

Yuming Jiang, Shuai Yang, Haonan Qiu, Wayne Wu, Chen Change Loy, and Ziwei Liu.
Text2human: Text-driven controllable human image generation. ACM Transactions on Graphics
(TOG), 41(4):1–11, 2022c. doi: 10.1145/3528223.3530104.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Alias-free generative adversarial networks. In Proc. NeurIPS, 2021.

Muhammed Kocabas, Nikos Athanasiou, and Michael J Black. Vibe: Video inference for human
body pose and shape estimation. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 5253–5263, 2020.

11



Published as a conference paper at ICLR 2023

Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Caroline Pantofaru, Leonidas Guibas, An-
drea Tagliasacchi, Frank Dellaert, and Thomas Funkhouser. Panoptic Neural Fields: A Semantic
Object-Aware Neural Scene Representation. In CVPR, 2022.

Kathleen M Lewis, Srivatsan Varadharajan, and Ira Kemelmacher-Shlizerman. Tryongan: Body-
aware try-on via layered interpolation. ACM Transactions on Graphics (TOG), 40(4):1–10, 2021.

Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu Sarkar, Jiatao Gu, and Christian
Theobalt. Neural actor: Neural free-view synthesis of human actors with pose control. ACM
Transactions on Graphics (TOG), 40(6):1–16, 2021.

Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. Deepfashion: Powering robust
clothes recognition and retrieval with rich annotations. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer, Yaser Sheikh, and Jason
Saragih. Mixture of volumetric primitives for efficient neural rendering. ACM Transactions on
Graphics (TOG), 40(4):1–13, 2021.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl:
A skinned multi-person linear model. ACM transactions on graphics (TOG), 34(6):1–16, 2015.

Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Gerard Pons-Moll, and Michael J Black.
Amass: Archive of motion capture as surface shapes. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 5442–5451, 2019.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do
actually converge? In International conference on machine learning, pp. 3481–3490. PMLR,
2018.

Marko Mihajlovic, Shunsuke Saito, Aayush Bansal, Michael Zollhoefer, and Siyu Tang. Coap:
Compositional articulated occupancy of people. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13201–13210, 2022.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
conference on computer vision, pp. 405–421. Springer, 2020.

Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang Yang. Holo-
gan: Unsupervised learning of 3d representations from natural images. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 7588–7597, 2019.

Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional genera-
tive neural feature fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11453–11464, 2021.

Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya Harada. Neural articulated radiance field.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5762–5772,
2021.

Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya Harada. Unsupervised learning of efficient
geometry-aware neural articulated representations. arXiv preprint arXiv:2204.08839, 2022.

Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman, Jeong Joon Park, and Ira Kemelmacher-
Shlizerman. Stylesdf: High-resolution 3d-consistent image and geometry generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13503–
13513, 2022.
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