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Abstract001

Low-Rank Adaptation (LoRA) enables002
parameter-efficient fine-tuning of large lan-003
guage models by decomposing weight updates004
into low-rank matrices, significantly reducing005
storage and computational overhead. While006
effective, standard LoRA lacks mechanisms for007
uncertainty quantification, leading to overconfi-008
dent and poorly calibrated models. Bayesian009
variants of LoRA address this limitation, but010
at the cost of a significantly increased number011
of trainable parameters, partially offsetting012
the original efficiency gains. Additionally,013
these models are harder to train and may014
suffer from unstable convergence. In this015
work, we propose a novel parameter-efficient016
Bayesian LoRA, demonstrating that effective017
uncertainty quantification can be achieved in018
very low-dimensional parameter spaces. The019
proposed method achieves strong performance020
with improved calibration and generalization021
while maintaining computational efficiency.022
Our empirical findings show that, with the023
appropriate projection of the weight space:024
(1) uncertainty can be effectively modeled025
in a low-dimensional space, and (2) weight026
covariances exhibit low ranks.027

1 Introduction028

LoRA (Low-Rank Adaptation) (Hu et al., 2021) re-029

duces computational overhead by decomposing the030

update weights of pre-trained models into low-rank031

matrices, enabling efficient adaptation to down-032

stream tasks. Minimizing the number of trainable033

parameters reduces memory and storage require-034

ments, making large-scale model adaptation fea-035

sible. Reducing computational overhead speeds036

up training time and makes adaptation possible in037

resource-constrained settings.038

Unlike pre-trained models, which are relatively039

well-calibrated (OpenAI, 2023), fine-tuned large040

models (e.g., LLMs) often become overconfident041

and poorly calibrated (Jiang et al., 2021; Tian et al.,042
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Figure 1: Performance averaged over multiple GLUE
datasets (individual results in Fig. 3). Our method
achieves superior calibration (ECE) and competitive
predictive performance (Brier) while maintaining com-
putational efficiency. For example, at r “ 8 (Ĳ), we
reduce ECE by half with only 1/10th LoRA parameters.

2023; Xiao et al., 2022; He et al., 2023), especially 043

when trained on limited data. This hinders their 044

usability for applications where uncertainty-aware 045

decisions are performed. 046

Bayesian treatment is then frequently proposed 047

to address overconfidence in neural networks (Blun- 048

dell et al., 2015; Kristiadi et al., 2020; Aitchi- 049

son et al., 2021; Izmailov et al., 2021). Conse- 050

quently, recently proposed Bayesian variants of 051

LoRA (Onal et al., 2024; Robeyns, 2024; Doan 052

et al., 2025) address the aforementioned challenges 053

by introducing uncertainty estimation directly into 054

the fine-tuning process. During training, these mod- 055

els continuously adjust both the mean and covari- 056

ance of fine-tuned parameters to achieve better gen- 057

eralization and uncertainty quantification. 058

Learning the posterior covariance matrix is nec- 059

essary for modeling epistemic uncertainty. How- 060

ever, its size grows quadratically with the number 061

of parameters, which can easily cancel out the bene- 062

fits of LoRA, in addition to making learning signifi- 063

cantly harder. Using low-rank, Kronecker-factored, 064

or diagonal-only covariances partially alleviates 065

the problem, but as we demonstrate in Sec. 3, this 066

comes at the cost of results quality loss. Further- 067

more, even at rank = 2, the number of trainable pa- 068

rameters is quadrupled compared to vanilla LoRA. 069
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Figure 2: (left): Weight-adaptation approaches: LoRA vs. B-LoRA-XS. As indicated by the color coding, some
parameters remain frozen (blue), others are trained (orange) or obtained via SVD (green). (right): Number of
trainable parameters per method. XS variants remain computationally competitive even for ranks as large as r “ 25.

This creates a need for an alternative approach that070

retains covariance modeling capacity while reduc-071

ing the number of required parameters.072

We propose a method that learns Bayesian poste-073

riors for weights projected onto a low-dimensional074

manifold, hence maintaining parameter efficiency.075

The thoughtfully selected projection allows for the076

effective representation of the covariances between077

weights through covariances between representa-078

tions in the lower-dimensional space. In this design,079

we follow the work of Bałazy et al. (2024), who080

recently proposed a strategy for finding such pro-081

jections with SVD. We prove that they are effective082

for learning Bayesian models as well.083

Operating in such a reduced parameter space sig-084

nificantly improves the feasibility of Bayesian infer-085

ence. We show that correlations between weights086

can be represented very efficiently – unlike in the087

original weight space, we can use covariance matri-088

ces with ranks as low as k “ 2. Thanks to the low089

number of parameters, training is also more stable.090

Finally, the method achieves superior calibration091

and accuracy at low budgets (e.g., see Fig. 1).092

In the Appendix, we supplement the results pre-093

sented in the paper with a discussion of related094

work and a detailed overview of the experimental095

setup. We are currently preparing our method’s096

implementation for release.097

2 Method098

LoRA fine-tunes large pre-trained models by learn-099

ing low-rank weight updates ∆W instead of train-100

ing the weights W directly. For a pre-trained pa-101

rameter matrix W 0 P Rmˆn that is kept fixed,102

LoRA learns a rank-r update ∆W “ AB, where103

A P Rmˆr and B P Rrˆn have far fewer pa-104

rameters. The effective weight is then: W “105

W 0 ` ∆W “ W 0 ` AB, where only A and B106

are trained. Typically, LoRA is applied jointly at 107

multiple layers, yielding a set of updates t∆Wlu. 108

Bayesian treatment of a neural network in- 109

volves finding the posterior ppθ | Dq given train- 110

ing data D. By Bayes’ theorem: ppθ | Dq “ 111
ppD|θq ppθq

ppDq
, where θ represents the model’s pa- 112

rameters (i.e., weights) considered random vari- 113

ables. In particular, for the Bayesian LoRA set- 114

ting, θ denotes a set of the learned model up- 115

dates, while the remaining frozen weights are hid- 116

den inside the model likelihood, given by ppD | 117

θq “
ś

iPrDs ppyi|xi, θq. The learned posterior al- 118

lows Bayesian model averaging at inference as: 119

ppy˚ | x˚,Dq “
ş

ppy˚ | x˚, θq ppθ | Dq dθ « 120
1
S

ř

θ„ppθ|Dq ppy˚ | x˚, θq, where we use S “ 15 121

samples from the posterior. 122

Bayesian LoRAs obtain the posterior for 123

t∆Wlu through the learned posterior for θ “ 124

YltAl Y Blu, where l indexes the weight updates 125

(layers). The posterior itself is approximated either 126

using a set of particles or a closed-form distribu- 127

tion. Due to its superior performance, we rely on 128

the latter and assume ppθ|Dq « N pµ,Σq, where 129

µ is the vector of means (of size equal to the num- 130

ber of learned parameters) and Σ is the covariance 131

matrix, whose size grows quadratically with the 132

total number of parameters. Notably, we aim to 133

model cross-layer interdependencies, requiring co- 134

variance estimation also across weights in different 135

layers tlu. However, this results in an impractically 136

large number of parameters. Consequently, we ex- 137

plore methods to reduce this cost by representing 138

distributions ppt∆W u|Dq differently. 139

In LoRA-XS (Bałazy et al., 2024), the adap- 140

tation matrices A and B are initialized using the 141

truncated SVD of the corresponding pre-trained 142

weight matrices W 0. This initialization captures 143

the most informative singular components of the 144
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Figure 3: Median˘std. accuracy (left), ECE (middle), and NLL (right) on 4 GLUE tasks (rows) vs. total parameter
count for several methods and varying ranks r. B-LoRA-XS (our) achieves the accuracy and the calibration of
SWAG-LoRA while using significantly fewer parameters than LoRA. See Fig. 1 for averaged results.

original weights. Under the assumption that the145

fine-tuned task is similar to the original task, these146

projections retain the functional properties also for147

downstream adaptations. LoRA-XS then freezes148

A and B and inserts a small trainable matrix149

R P Rrˆr between them, reducing the number150

of trainable parameters to r2 (r2 ! pn ` mq ¨ r)151

per weight matrix. Then, the fine-tuning update152

is: h “ xW 0 ` x∆W “ xW 0 ` xARB, where153

A P Rmˆr and B P Rrˆn are low-rank matrices154

obtained from the truncated SVD of W 0, specifi-155

cally A “ UrSr and B “ V T
r .156

B-LoRA-XS, proposed in this paper, leverages157

the frozen projections A and B for effective and158

efficient Bayesian learning. In Sec. 3, we empir-159

ically demonstrate that A and B, obtained from160

the SVD of the pre-trained weights, are not only161

effective for point-wise fine-tuning but also en-162

able effective uncertainty quantification for t∆Wlu163

through modeling covariances for tRlu. Although164

we never compute it explicitly, the covariance ma-165

trix for individual ∆W is expressed as Σ∆W “166

pBT b AqΣRpBT b AqT , where ΣR is the (intra-167

layer) covariance matrix for R and b denotes the168

Kronecker product.169

In practice, we simply learn the joint posterior170

ppθ “ YlRl|Dq « N pµ,Σq for the inner matrices171

R. The covariance matrix Σ captures both inter-172

layer and intra-layer dependencies, allowing the173

model to learn complex relationships. At inference,174

similar to LoRA, we use samples of R along with175

the respective projections A and B to obtain h, as176

realized through samples of ∆W , however without177

ever computing it explicitly.178

The parameters µ and Σ are learned efficiently 179

using SWAG (Maddox et al., 2019) (though Vari- 180

ational Inference or the Laplace approximation 181

could also be used). After a burn-in phase (a fixed 182

10 or 25 epochs) of the gradient-based optimiza- 183

tion, the algorithm maintains µ̂ – a running av- 184

erage of θ – along with k vectors of differences 185

D̂last “ θlast ´ µ̂ for the last k values of θ, and 186

a running average of θ2. Based on these aver- 187

ages, we estimate the variances σ̂2 for individ- 188

ual parameters and approximate the covariance as 189

Σ̂ « 1
2pD̂ ¨ D̂T ` diagpσ̂2qq, which constitutes a 190

rank-k approximation to the covariance matrix. 191

We illustrate B-LoRA-XS method in Fig. 2. Our 192

method uses the total of |θ| ¨ pk ` 2q parameters, 193

where |θ| “
ř

l r
2
l . 194

3 Experiments 195

Setup: We performed experimental evaluation on 196

four GLUE tasks (Wang et al., 2019) (RTE, MRPC, 197

CoLA, and SST-2) using RoBERTA-large (Liu 198

et al., 2019). We compare our method (B-LoRA- 199

XS) against the standard LoRA, LoRA-XS – a 200

parameter efficient variant, and against SWAG- 201

LoRA (Onal et al., 2024) – a Bayesian variant. 202

For LoRA-XS and B-LoRA-XS we considered 203

ranks r P t2, 8, 16, 25u and for LoRA and SWAG- 204

LoRA due to limited budget we were able to test 205

r P t2, 8u. The number of parameters (a proxy for 206

storage and computation costs) as a function of 207

ranks r and k is summarized in Fig. 2. We report 208

accuracy (higher is better), ECE and NLL (lower 209

is better) of median˘std across 5 runs. 210
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Performance analysis: Fig. 3 compares accu-211

racy and calibration against total parameter count212

across 4 datasets. Bayesian variants, including B-213

LoRA-XS (ours) and SWAG-LoRA, outperform214

their non-Bayesian counterparts, particularly in215

ECE and NLL. However, our model achieves the216

best results with 5–15 times fewer parameters.217
Apart from very tight budgets (e.g., #parameters218

ă 300k) where LoRA-XS excels, B-LoRA-XS is219

also the best option in terms of accuracy. While220

SWAG-LoRA sometimes performs well, its results221

vary significantly between runs. In contrast, B-222

LoRA-XS exhibits stable and consistent conver-223

gence. Finally, as results for MRPC and CoLA224

suggest, its performance remains robust across dif-225

ferent values of k, whereas SWAG-LoRA’s ECE226

deteriorates significantly at k “ 2.227

Covariance matrix rank analysis: Figure 4228

compares the sensitivity of the Bayesian LoRA229

variants to changes in covariance matrix rank k.230

Markers indicate model sizes (e.g., SWAG-LoRA231

" B-LoRA-XS). As expected, SWAG-LoRA de-232

teriorates proportionally as rank decreases. On233

the other hand, B-LoRA-XS maintains its perfor-234

mance across a wide range of k. Significant degra-235

dation occurs only when off-diagonal covariance236

values are entirely ignored (i.e., at k “ 0). Notably,237

B-LoRA-XS achieves the best calibration at low238

ranks, particularly at k “ 2 or k “ 5. This demon-239

strates that the SVD-based projection effectively240

disentangles parameters, enabling low-dimensional241

uncertainty modeling.242

Data size reduction analysis: Figure 5 com- 243

pares how accuracy, ECE, and NLL degrade when 244

training data is subsampled. All methods pre- 245

dictably lose accuracy as data size decreases, with 246

little difference between the various LoRA-based 247

approaches. We conclude that Bayesian learning 248

does not improve robustness in this case. However, 249

we note variations across datasets in terms of accu- 250

racy. For example, in MRPC, the decline is more 251

pronounced, likely due to the dataset smaller size. 252

4 Conclusion 253

B-LoRA-XS addresses the lack of uncertainty 254

quantification in LoRA fine-tuning while maintain- 255

ing parameter efficiency. It utilizes truncated SVD 256

to project model updates into a lower-dimensional 257

space and leverages the Bayesian framework to 258

enhance uncertainty estimation. 259

Our method consistently achieves lower ex- 260

pected calibration error and negative log- 261

likelihood compared to the standard and parameter- 262

efficient LoRA. Moreover, it matches or surpasses 263

the accuracy of the Bayesian LoRA baseline while 264

using significantly fewer parameters, exhibiting 265

greater training stability, and relying on simpler, 266

lower-rank covariance representations. 267

We conclude that, with an appropriate weight 268

space transformation, combining low-rank parame- 269

ter updates with suitably low-rank covariance ap- 270

proximations consistently improves both predictive 271

performance and calibration. 272

4



Limitations273

B-LoRA-XS relies on SWAG for posterior learning,274

though alternative methods may further improve its275

performance. It incorporates SVD computation as276

an additional step; however, this is a one-time oper-277

ation that is computationally efficient and negligi-278

ble compared to fine-tuning time. Our experimental279

evaluation was conducted on GLUE benchmarks280

using RoBERTa-Large. We used the number of pa-281

rameters as a proxy for computational and storage282

costs, and evaluated performance using accuracy,283

ECE, and NLL metrics.284
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A Related Work425

PEFT: As large language models continue to426

grow, parameter-efficient fine-tuning (PEFT) has427

become a popular approach to reducing compu-428

tational and storage costs. Among various meth-429

ods (Houlsby et al., 2019; Guo et al., 2021; Li430

and Liang, 2021; Lester et al., 2021), LoRA (Hu431

et al., 2021) has emerged as one of the most widely432

used. Building on its success, several approaches433

have been proposed to enhance different aspects of434

PEFT (Kopiczko et al., 2023; Zhang et al., 2023;435

Dettmers et al., 2024). One such method, LoRA-436

XS (Bałazy et al., 2024), further optimizes parame-437

ter efficiency by enabling flexible control over the438

number of trainable parameters per adaptation mod-439

ule. B-LoRA-XS reuses the idea of SVD-based440

projections to reduce the parameter space dimen-441

sionality.442

Bayesian LoRAs: Standard LoRA (Hu et al.,443

2021) does not account for uncertainty, mak-444

ing fine-tuned models susceptible to miscalibra-445

tion. Then, Bayesian LoRA approaches integrate446

Bayesian inference techniques into LoRA to im-447

prove uncertainty estimation and generalization.448

Several Bayesian LoRA methods have been pro-449

posed, each employing different Bayesian tech-450

niques to address these challenges. SWAG-LoRA451

(Onal et al., 2024) combines Stochastic Weight452

Averaging-Gaussian (SWAG) with LoRA to en-453

able approximate Bayesian inference, significantly454

improving model calibration and reducing overcon-455

fidence. Laplace-LoRA (Robeyns, 2024) applies a456

Laplace approximation to the posterior over LoRA457

parameters. Bella (Doan et al., 2025) introduces458

an approach that reduces the cost of Bayesian deep459

ensembles by applying multiple low-rank perturba-460

tions to a pre-trained model. BLoB (Bayesian Low-461

Rank Adaptation by Backpropagation) (Wang et al.,462

2024) jointly learns both the mean and covariance463

of model parameters throughout the fine-tuning pro-464

cess using Variational Inference. B-LoRA (Meo465

et al., 2024) introduces a Bayesian perspective to466

both quantization and rank selection by using a467

prior distribution over these hyperparameters, op-468

timizing model efficiency and reducing bit opera-469

tions.470

The key challenge lies in balancing uncertainty471

modeling with parameter efficiency, as Bayesian in-472

ference typically increases both the number of train-473

able parameters and computational cost. Despite474

their advantages, Bayesian LoRA methods face475

challenges related to increased parameter count and 476

computational cost. One major issue is the higher 477

storage and memory requirements, as Bayesian 478

methods often require additional parameters to 479

model uncertainty, particularly those involving co- 480

variance estimation, such as SWAG-LoRA. Scala- 481

bility remains a concern for methods that explicitly 482

model uncertainty across a large number of param- 483

eters. 484

B Scientific Artifacts Licenses 485

Listed below are the licenses for the scientific ar- 486

tifacts used in this research. For complete infor- 487

mation, please use the links below and refer to the 488

original sources. 489

Scientific Artifacts: RoBERTa-large (MIT), 490

MRPC (Unknown), RTE (Unknown), COLA (Un- 491

known), SST-2 (Unknown), HuggingFace Trans- 492

formers Library (Apache-2.0), SWAG-LoRa repos- 493

itory1 (MIT), LoRa-XS repository2 (Unknown). 494

C Model Size And Budget 495

• RoBERTA-large: 355M parameters 496

• GPUs: RTX4090 and V100-SXM2-32GB, 497

each run was performed on a single GPU 498

• GPU total time: « 63 days 499

D Statistics For Data 500

We followed the original GLUE train-validation 501

split 502

• MRPC - train: 3’668, val: 408 503

• RTE - train: 2’490, val: 277 504

• CoLa - train: 8’551, val: 1043 505

• SST2 - train: 67’349, val: 872 506

E Experimental Setup Details 507

The study was conducted on a subset of the GLUE 508

benchmark (Wang et al., 2019), specifically on 509

RTE, MRPC, CoLA, and SST-2 tasks (with the 510

original train-validation split), using RoBERTa- 511

large (Liu et al., 2019) checkpoints from the 512

HuggingFace Transformers library (Wolf et al., 513

2020). For the RTE and MRPC tasks, we followed 514

LoRA-XS and initialized LoRA-XS modules with 515

1https://github.com/fortuinlab/swag-lora
2https://github.com/MohammadrezaBanaei/

LoRA-XS
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weights fine-tuned on the MNLI task. We inte-516

grated B-LoRA-XS/LoRA-XS modules into the517

Query, Value, Attention Output, and Output Fully518

Connected weight matrices in all transformer lay-519

ers (Vaswani et al., 2017), whereas due to budget520

limits, standard LoRA and SWAG-LoRA modules521

were added only to the Query and Value matrices.522

Note, this is sufficient for SWAG-LoRA to achieve523

its best performance.524

For each dataset, for the burn-in stage of training,525

we adopted hyperparameters from the LoRA-XS526

paper. These include: learning rate, batch size,527

AdamW optimizer (Loshchilov and Hutter, 2019),528

linear scheduler with warm-up, dropout, and the529

LoRA scaling factor α. For standard LoRA we530

followed the same setup, except for the learning531

rate, which was determined through grid search.532

Similarly, the SWAG starting epoch (e.g. 10 or 25)533

was selected through grid search. Based on the find-534

ings from SWAG-LoRA, we used a constant learn-535

ing rate scheduler (SWALR) with warm-up. The536

SWAG learning rate was set to the maximum learn-537

ing rate from the first (burn-in) phase of training.538

Unless stated otherwise, we used a low-rank covari-539

ance matrix approximation with the rank k “ 10.540

In all our experiments, SWAG estimation was ap-541

plied exclusively to the LoRA modules, and SWAG542

predictions were consistently obtained with S “ 15543

model samples.544
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