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Abstract

Model misspecification is a major consideration in applications of statistical methods and machine
learning. However, it is often neglected in contextual bandits. This paper studies a common form
of misspecification, an inter-arm heterogeneity that is not captured by context. To address this is-
sue, we assume that the heterogeneity arises due to arm-specific random variables, which can be
learned. We call this setting a robust contextual bandit. The arm-specific variables explain the un-
known inter-arm heterogeneity, and we incorporate them in the robust contextual estimator of the
mean reward and its uncertainty. We develop two efficient bandit algorithms for our setting: a UCB
algorithm called RoLinUCB and a posterior-sampling algorithm called RoLinTS. We analyze both
algorithms and bound their n-round Bayes regret. Our experiments show that RoLinTS is com-
parably statistically efficient to the classic methods when the misspecification is low, more robust
when the misspecification is high, and significantly more computationally efficient than its naive
implementation.

1 Introduction

A stochastic contextual bandit (Auer et al., 2002; Li et al., 2010; Lattimore & Szepesvari, 2019) is an online learning
problem where a learning agent sequentially interacts with an environment over n rounds. In each round, the agent
observes context, pulls an arm conditioned on the context, and receives a corresponding stochastic reward. Contextual
bandits have many applications in practice, such as in personalized recommendations (Li et al., 2010; Jeunen &
Goethals, 2021). This is because the mean rewards of the arms are tied together through known context and learned
model parameters. Thus the contextual approach can be more statistically efficient than a naive multi-armed bandit
solution (Auer et al., 2002; Agrawal & Goyal, 2012). The linear model, where the mean reward of an arm is the dot
product of its context and an unknown parameter, is versatile and popular (Dani et al., 2008; Rusmevichientong &
Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011; Agrawal & Goyal, 2013), and we consider it in this work.

There are two common approaches to using linear models in contextual bandits. One maintains a separate parameter
per arm (Section 3.1 in Li et al. (2010)). While this approach can learn complex models, it is not very statistically
efficient because the arm parameters are not shared. This is especially important when each arm is pulled a different
number of times. The other approach maintains a single shared parameter for all arms. While this approach can be
statistically efficient, it is more rigid and likely to fail due to model misspecification; when the optimal arm under the
assumed model is not the actual optimal arm.

To address the above issues, we propose a new contextual linear model. This model assumes that the mean reward of
an arm is a dot product of its context and an unknown shared parameter, which is offset by an arm-specific variable.
This approach is statistically efficient because the model parameter is shared by all arms; yet flexible because the
arm-specific variables can address model misspecification. We call this setting a robust contextual linear bandit. To
provide an efficient solution to the problem, we assume that the arm-specific variables are random and drawn from
a distribution known by the agent. This allows us to develop a joint estimator of the shared parameter and the arm-
specific variables, which interpolates between the two and also uses the context.

One motivating example for our setting are recommender systems, where redeach item is considered as an arm and
the features of an item cannot explain all information about the item, such as its intrinsic popularity (Koren et al.,
2009). This is why the so-called behavioral features, the features that summarize the past engagement with the item,
exist. The intrinsic popularity can be viewed as the average engagement, click or purchase rate, in the absence of
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any other information. The item features then offset the engagement, either up or down, depending on their affinity.
For instance, a feature representing the position of the item in the recommended list would have a negative weight,
meaning that lower ranked items are less likely to be clicked, no matter how engaging they are. Luckily, our method
can address it by defining item-specific variables to explain the intrinsic popularity.

We make the following contributions. First, we propose robust contextual linear bandits, where the model misspeci-
fication can be learned using arm-specific variables (Section 3). Under the assumption that the variables are random,
both the Bayesian and random-effect viewpoints can be used to derive efficient joint estimators of the shared model
parameter and arm-specific variables. We derive the estimators in Section 4, and show how to incorporate them in
the estimate of the mean arm reward and its uncertainty. Second, we propose upper confidence bound (UCB) and
Thompson sampling (TS) algorithms for this problem, RoLinUCB and RoLinTS (Section 5). Both algorithms are com-
putationally efficient and robust to model misspecification. We analyze both algorithms and derive upper bounds on
their n-round Bayes regret (Section 6). Our proofs rely on analyzing an equivalent linear bandit, and the resulting
regret bounds improve in constants due to the special covariance structure of learned parameters. Our algorithms are
also significantly more computationally efficient than naive implementations, which take O((d + K)3) time for d
dimensions andK arms, instead of ourO(d2(d+K)). Finally, we evaluate RoLinTS on both synthetic and real-world
problems. We observe that RoLinTS is comparably statistically efficient to the classic methods when the misspecifi-
cation is low, more robust when the misspecification is high, and significantly more computationally efficient than its
naive implementation.

2 Related Work

Our model is related to a hybrid linear model (Section 3.2 in Li et al. (2010)) with shared and arm-specific parameters.
Unlike the hybrid linear model, where the coefficients of some features are shared by all arms while the others are
not, we introduce arm-specific random variables to capture the model misspecification. We further study the impact
of this structure on regret and propose an especially efficient implementation for this setting. Another related work
is hLinUCB of Wang et al. (2016). hLinUCB is a variant of LinUCB that learns a portion of the feature vector and we
compare to it in Section 7.

Due to our focus on robustness, our work is related to misspecified linear bandits. Ghosh et al. (2017) proposed
an algorithm that switches from a linear to multi-armed bandit algorithm when the linear model is detected to be
misspecified. Differently from this work, we adapt to misspecification. We do not compare to this algorithm in the
main paper because it is non-contextual; and thus would have a linear regret in our setting. However, we conduct
a comparison in a non-textual setting in Appendix C. Foster et al. (2020) and Krishnamurthy et al. (2021) proposed
oracle-efficient algorithms that reduce contextual bandits to online regression, and are robust to misspecification. Since
Safe-FALCON of Krishnamurthy et al. (2021) is an improvement upon Foster et al. (2020), we discuss it in more detail.
Safe-FALCON is more general than our approach because it does not make any distributional assumptions. On the
other hand, it is very conservative in our setting because of inverse gap weighting. We compare to it in Section 7.
Takemura et al. (2021) proposed the first algorithm for the misspecified linear contextual bandit problem without
knowledge of the approximation parameter. This algorithm is an extension of SupLinUCB (Chu et al., 2011) and, at
round t iteratively narrows down the set of arms in each stage until an arm is chosen from the set. It operates under
the assumption that the approximation error is bounded. In contrast to their approach, our algorithm takes a Bayesian
approach to estimate the approximation error in a Bayesian framework and subsequently constructs the corresponding
UCB or TS algorithm. Dong & Yang (2023) investigated the role of sparsity in improving misspecified bandit learning,
and Zhang et al. (2023) studied how the interplay between the misspecification level and the sub-optimality gap affects
the performance of linear contextual bandits. These theoretical studies differs from ours in terms of motivation and
content. In our work, we focus on modeling the misspecified component and developing efficient algorithms tailored
to address this aspect. Finally, Bogunovic et al. (2021) and Ding et al. (2022) proposed linear bandit algorithms that
are robust to adversarial noise attack. The notion of robustness in these works is very different from ours.

Our work is also related to random-effect bandits (Zhu & Kveton, 2022). As in Zhu & Kveton (2022), we assume that
each arm is associated with a random variable that can help with explaining its unknown mean reward. Zhu & Kveton
(2022) used this structure to design a bandit algorithm that is comparably efficient to TS without knowing the prior.
Their algorithm is UCB not contextual. A similar idea was explored by Wan et al. (2022) and applied to structured
bandits. This work is also non-contextual. Wan et al. (2021) assumed a hierarchical structure over tasks and modeled
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inter-task heterogeneity. We focus on a single task and model inter-arm heterogeneity. Our work is also related to
recent papers on hierarchical Bayesian bandits (Kveton et al., 2021; Basu et al., 2021; Hong et al., 2022). All of these
papers considered a similar graphical model to Wan et al. (2021) and therefore model inter-task heterogeneity.

3 Robust Contextual Linear Bandits

We adopt the following notation. For any positive integer n, we denote by [n] the set {1, . . . , n}. We let 1{·} be the
indicator function. For any matrix M ∈ Rd×d, the maximum eigenvalue is λ1(M) and the minimum is λd(M). The
big O notation up to logarithmic factors is Õ.

We consider a contextual linear bandit (Li et al., 2010), where the relationship between the mean reward of an arm and
its context is represented by a model. In round t ∈ [n], an agent pulls one of K arms with feature vectors xi,t ∈ Rd
for i ∈ [K]. The vector xi,t summarizes information specific to arm i in round t and we call it a context. Compared to
context-free bandits (Lai & Robbins, 1985; Auer et al., 2002; Agrawal & Goyal, 2012), contextual linear bandits have
more practical applications because they model the reward as a function of context. For instance, in online advertising,
the arms would be different ads, the context would be user features, and the contextual bandit agent would pull arms
according to user features (Li et al., 2010; Agrawal & Goyal, 2013). More formally, in round t, the agent pulls arm
It ∈ [K] based on context and rewards in past rounds; and receives the reward of arm It, rIt,t, whose mean reward
depends on the context xIt,t. Since the number of contexts is large, the agent assumes some generalization model,
such as that the mean reward is linear in xi,t and some unknown parameter. When this model is incorrectly specified,
the contextual bandit algorithm may perform poorly.

To improve the robustness of contextual linear bandits to misspecification, we introduce a Bayesian hierarchical mod-
eling assumption. Specifically, the reward ri,t of arm i in round t is generated as

ri,t = µi,t + εi,t , (1)

µi,t = x>i,tθ + vi , (2)

θ ∼ Pθ(0, λ−1Id) , (3)

vi ∼ Pv(0, σ2
0) , (4)

εi,t ∼ Pε(0, σ2) . (5)

Here µi,t and εi,t are the mean reward and reward noise, respectively, of arm i in round t. The mean reward µi,t has
two terms: a linear function of context xi,t and parameter θ ∈ Rd shared by all arms, and the inter-arm heterogeneity
vi ∈ R, which is an unobserved arm-specific random variable. The distributions of θ, vi, and εi,t are denoted by Pθ,
Pv , and Pε; and their hyper-parameters are λ, σ2

0 , and σ2. We call our model a robust contextual linear bandit because
vi makes it robust to the misspecification due to context. Our model can be viewed as an instance of unobserved-effect
models commonly used in panel and longitudinal data analyses (Wooldridge, 2001; Diggle et al., 2002). For brevity,
and since we only study linear models, we often call our model a robust contextual bandit.

Our goal is to design an algorithm that minimizes its regret with respect to the optimal arm-selection strategy. The
n-round Bayes regret R(n) of an agent is defined as

R(n) = E

[
n∑
t=1

µI∗
t ,t
− µIt,t

]
, (6)

where I∗t is the arm with highest mean reward in round t and It is the pulled arm in round t. The expectation is under
the randomness of It and I∗t ; and those of θ, vi, and εi,t. Given that our model is within a Bayesian setting, this paper
focuses on the Bayesian regret, wherein the expectation is taken with respect to the distribution over the inter-arm
heterogeneity. Through an analysis of Bayesian regret, we quantify the expected regret concerning vi.

3.1 Discussion

We introduce an unobserved effect vi, which can be interpreted as capturing the characteristics of arm i that is not
explained by context, but is assumed not to change over n rounds. We call it the inter-arm heterogeneity. For example,
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in online advertising, the arms would be different ads and the context would be user features. In this problem, vi may
contain unobserved ad characteristics, such as its intrinsic quality, that can be viewed as roughly constant.

We assume that the parameter θ is shared by all arms, while the inter-arm heterogeneity is modeled by arm-specific
variables. From the statistical-efficiency viewpoint, this model reduces the number of parameters compared to model-
ing arms separately, and therefore increases statistical efficiency. Li et al. (2010) proposed hybrid linear models, where
the coefficients of some features are shared by all arms while the others are arm-specific. However, choosing features
to share may be challenging in practice. From the practical viewpoint, it is more convenient to apply the robust con-
textual bandit, as it avoids the challenging choice of the shared features. In particular, the model is still flexible enough
because it uses the unobserved effect vi to capture inter-arm heterogeneity, information not explained by the context.
For instance, imagine a contextual recommendation problem with K arms, where arms represent items. In addition
to what the item and user features can explain, there may still be item-specific biases (Koren et al., 2009). The main
difference from the work of Li et al. (2010) is that our approach is a two-level Bayesian model. We model the linear
relationship between rewards and contexts. At the arm level, we incorporate a Bayesian assumption, positing that the
inter-arm heterogeneity vi follows the distribution in (4). This assumption translates to how we estimate µi,t, which
is a weighted average of the linear model and the inter-arm heterogeneity. These weights are adjusted to reflect the
relative magnitudes of the lack of fit of the linear model and the variance of the inter-arm heterogeneity. We present
more details in Section 4.

4 Estimation

This section introduces our estimators for robust contextual bandits. In Section 4.1, we derive the estimators of θ and
vi for i ∈ [K]. In Section 4.2, we derive the estimator of µi,t = x>i,tθ + vi and its uncertainty.

4.1 Maximum a Posteriori Estimation of θ and vi

Fix round t. Let Ti,t be the set of rounds where arm i is pulled by the beginning of round t and ni,t = |Ti,t| be the
size of Ti,t. Let ri,t = (ri,`)>`∈Ti,t

be the column vector of rewards obtained by pulling arm i, εi,t = (εi,`)>`∈Ti,t
be the

column vector of the corresponding reward noise, and Xi,t = (xi,`)>`∈Ti,t
be a ni,t × d matrix with the corresponding

contexts. From (1) and (2),
ri,t = Xi,tθ + vi1ni,t

+ εi,t ,
where 1k is a vector of length k whose all entries are one. The covariance matrix Vi,t for the vector ri,t is given
by Vi,t = σ2

01ni,t
1>ni,t

+ σ2Ini,t
, where Ik is the identify matrix of size k × k. The terms σ2

01ni,t
1>ni,t

and σ2Ini,t

represent the randomness from vi and εi,t, respectively. By the Woodbury matrix identity,

V−1
i,t = σ−2Ini,t − σ−2n−1

i,t wi,t1ni,t1Tni,t
. (7)

Assuming that Pθ, Pv , Pε are Gaussian, the maximum a posteriori (MAP) estimation is equivalent to minimizing the
following loss function

L(v1, · · · , vK ,θ) =
K∑
i=1

[
σ−2‖ri,t −Xi,tθ − vi‖2 + σ−2

0 v2
i

]
+ λ‖θ‖2 (8)

with respect to (vi)i∈[K] and θ, where ‖ · ‖ is the Euclidean norm. The term σ−2∑K
i=1 ‖ri,t −Xi,tθ − vi‖2 is from

the conditional likelihood of ri,t given (vi)i∈[K] and θ. The regularization term σ−2
0
∑K
i=1 v

2
i is from the prior of

(vi)i∈[K] in (4). The other term λ‖θ‖2 is from the prior of θ in (3).

Differentiating L(v1, · · · , vK ,θ) with respect to vi and putting it equal to zero, vi is estimated by

ṽi,t = wi,t(r̄i,t − x̄>i,tθ) , (9)

where r̄i,t = n−1
i,t

∑
`∈Ti,t

ri,` is the average reward of arm i up to round t, x̄i,t = n−1
i,t

∑
`∈Ti,t

xi,` is the average context

associated with the pulls of arm i up to round t, and

wi,t = σ2
0

σ2
0 + σ2/ni,t

(10)
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is a weight that interpolates between the context and the arm-specific variable. We discuss its role in Section 4.2.

Let ui,t = ri,t − Xi,tθ and ūi,t = n−1
i,t

∑
`∈Ti,t

ui,`, where ui,` is the `-th element of ui,t. Inserting (9) into (8), it

follows that

L(θ) =
K∑
i=1

[
σ−2‖ui,t − wi,tūi,t‖2 + σ−2

0 w2
i,tū

2
i,t

]
+ λ‖θ‖2

= σ−2
K∑
i=1

[
‖ui,t‖2 − ni,twi,tū2

i,t

]
+ λ‖θ‖2

=
K∑
i=1

[
(ri,t −Xi,tθ)>V−1

i,t (ri,t −Xi,tθ)
]

+ λ‖θ‖2 ,

where the last step is from (7).

To obtain the MAP estimate of θ, we minimize L(θ) with respect to θ and get

θ̂t =
(
λId +

K∑
i=1

X>i,tV−1
i,t Xi,t

)−1 K∑
i=1

X>i,tV−1
i,t ri,t . (11)

To obtain the MAP estimate of vi, we insert θ̂t into (9),

v̂i,t = wi,t(r̄i,t − x̄>i,tθ̂t) . (12)

4.2 Prediction of µi,t and Its Uncertainty

Based on (11) and (12), the estimated mean reward of arm i in context xi,t in round t is

µ̂i,t = xi,tθ̂t + wi,t(r̄i,t − x̄>i,tθ̂t) . (13)

In (2), vi represents the inter-arm heterogeneity. It is the arm-specific effect that cannot be explained by context. This
effect is estimated in (13) using wi,t(r̄i,t− x̄>i,tθ̂t). Now consider wi,t in (10). If the arm has not been pulled, ni,t = 0
and wi,t = 0. Therefore, µ̂i,t = x>i,tθ̂t. Similarly, if the arm has not been pulled often, µ̂i,t is close to xi,tθ̂t. This
means that the prediction µ̂i,t is statistically efficient for small ni,t. This is helpful in the initial rounds when there are
only a few observations of arms.

We further explain (13) by rewriting it as

µ̂i,t = wi,tr̄i,t + (xi,t − wi,tx̄i,t)>θ̂t . (14)

Here µ̂i,t is a weighted estimator of two terms: the sample mean of arm i, r̄i,t, and additional calibration from contexts
(xi,t − wi,tx̄i,t)>θ̂t. The weight is wi,t. When ni,t → ∞, wi,t → 1 and µ̂i,t → r̄i,t + (xi,t − x̄i,t)>θ̂t. This shows
why our prediction µ̂i,t is robust. Informally, it uses r̄i,t as a baseline and corrects it using context as (xi,t− x̄i,t)>θ̂t.
Therefore, we reduce the reliance on the contextual model by automatically balancing the contextual and multi-armed
bandits. This is why we call our framework a robust contextual bandit.

The prediction µ̂i,t can also degenerate to that of a contextual linear bandit (Rusmevichientong & Tsitsiklis, 2010;
Agrawal & Goyal, 2013). More specifically, wi,t → 0 as σ2

0 → 0, and then µ̂i,t approaches

µ̂lin
i,t = xi,t

(
λId +

K∑
i=1

X>i,tXi,t

)−1 K∑
i=1

X>i,tri,t ,

which is the prediction of a simple linear model without inter-arm heterogeneity. This observation is important because
it shows that our framework is as general as the contextual linear bandit.
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Now we characterize the uncertainty of µ̂i,t in (14) for efficient exploration. We measure the uncertainty by the mean

squared error E[(µ̂i,t − µi,t)2]. Let ε̄i,t = n−1
i,t

∑
`∈Ti,t

εi,` and Mt = λId +
K∑
i=1

X>i,tV
−1
i,t Xi,t. A direct calculation

shows that

E[(µ̂i,t − µi,t)2]
=E[((wi,t − 1)vi + wi,tε̄i,t + (xi,t − wi,tx̄i,t)>(θ̂t − θ))2]
=σ2

0(1− wi,t) + (xi,t − wi,tx̄i,t)>M−1
t (xi,t − wi,tx̄i,t)

=:τ2
i,t , (15)

where the last step is from E[(wi,tvi − vi + wi,tε̄i,t)(θ̂t − θ)>(xi,t − wi,tx̄i,t)] = 0 shown in Kachar & Harville
(1984).

4.3 Computational Efficiency

We also investigate if the robust contextual bandit can be implemented as computationally efficiently as a contextual
linear bandit. As discussed in Section 6.2, our model is equivalent to a linear model augmented by K features,
indicating which unobserved vi corresponds to arm i. The computational cost of posterior sampling or computing
upper confidence bounds in this model is O((d + K)3) per round, due to inverting (d + K) × (d + K) precision
matrices. On the other hand, the robust contextual bandit can be implemented as computationally efficiently as a
contextual linear bandit with d features, with O(d2(d+K)) computational cost per round. Specifically, using (7),

X>i,tV−1
i,t Xi,t = σ−2(X>i,tXi,t − wi,tni,tx̄i,tx̄>i,t) ,

X>i,tV−1
i,t ri,t = σ−2(X>i,tri,t − wi,tni,tx̄i,tr̄i,t) .

These identities can be used to rederive all statistics as

Mt = λId + σ−2
K∑
i=1

(X>i,tXi,t − wi,tni,tx̄i,tx̄>i,t) ,

θ̂t = M−1
t

[
σ−2

K∑
i=1

(X>i,tri,t − wi,tni,tx̄i,tr̄i,t)
]
, (16)

µ̂i,t = wi,tr̄i,t + (xi,t − wi,tx̄i,t)>θ̂t , (17)

τ2
i,t = σ2

0(1− wi,t) + (xi,t − wi,tx̄i,t)>M−1
t (xi,t − wi,tx̄i,t) . (18)

The main cost in the above formulas is due to calculating M−1
t , which is O(d3) per round. All remaining operations

are O(d2K). Therefore, the computational cost of prediction in the robust contextual bandit is O(d2(d + K)) and
comparable to the contextual linear bandit.

5 Algorithms

Upper confidence bounds (UCBs) (Auer et al., 2002) and Thompson sampling (TS) (Thompson, 1933) are two popular
bandit algorithm designs. We propose UCB and TS algorithms for robust contextual bandits based on the estimate
of µi,t and its uncertainty (Section 4). The UCB algorithm is called RoLinUCB because it can be viewed as a robust
variant of LinUCB (Abbasi-Yadkori et al., 2011). From Section 4, µ̂i,t and τ2

i,t are the posterior mean and variance,
respectively, of µi,t in round t. This observation motivates a posterior-sampling algorithm that uses the posterior of
µi,t. We call it RoLinTS because it can be viewed as a robust variant of LinTS (Agrawal & Goyal, 2013).

Both algorithms work as follows. Let the history at the beginning of round t be all actions and observations of the
agent up to that round,Ht = (xI`,`, I`, rI`,`)t−1

`=1. In round t, the algorithms observe context xi,t of each arm i and then
compute the MAP estimate µ̂i,t of µi,t and its uncertainty τ2

i,t conditioned on Ht. RoLinUCB pulls the arm with the

highest upper confidence bound, It = arg max i∈[K] Ui,t, where Ui,t = µ̂i,t +
√

2τ2
i,t logn. RoLinTS samples Ui,t ∼
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N (µ̂i,t, τ2
i,t) and then pulls the arm with the highest mean reward under the posterior sample, It = arg max i∈[K] Ui,t.

After pulling arm It and observing the corresponding reward, the algorithms update all statistics in Section 4.3. The
pseudo-code of RoLinTS and RoLinUCB is presented in Algorithm 1.

Algorithm 1 RoLinUCB and RoLinTS for robust contextual bandits.
1: for t = 1, . . . , n do
2: for i = 1, . . . ,K do
3: Observe contexts xi,t
4: Obtain µ̂i,t from (17) and τ2

i,t from (18)
5: Define

RoLinUCB: Ui,t = µ̂i,t +
√

2τ2
i,t logn

RoLinTS: Ui,t ∼ N (µ̂i,t, τ2
i,t)

6: end for
7: It ← arg max i∈[K] Ui,t
8: Pull arm It and observe reward rIt,t

9: nIt,t ← nIt,t + 1
10: Update all statistics in Section 4.3
11: end for

6 Regret Analysis

We prove upper bounds on the n-round regret of RoLinUCB and RoLinTS. Similarly to random-effect bandits (Zhu
& Kveton, 2022), µ̂i,t is the MAP estimate of µi,t given history Ht, under the assumptions that Pθ, Pv , and Pε are
Gaussian distributions. Thus we adopt the Bayes regret (Russo & Van Roy, 2014) to analyze RoLinUCB and RoLinTS.
Let the optimal arm in round t be I∗t = arg max i∈[K] µi,t. The regret is the difference between the rewards that we
would have obtained by pulling the optimal arm I∗t and the rewards that we did obtain by pulling It over n rounds.
The regret is formally defined in (6) and we bound it below.

Theorem 1. Consider the robust contextual bandit where

Pθ = N (0, λ−1Id) , Pv = N (0, σ2
0) , Pε = N (0, σ2) .

Let the hyper-parameters λ, σ2
0 , σ2 be known by the learning agent. Let ‖xi,t‖ ≤ L. Then the n-round Bayes regret

of RoLinUCB and RoLinTS is bounded as

R(n) ≤ σmax
√

2c(d+K)n log(n) +
√

2/πσmaxK ,

where

c = log
(

1 + σ2
maxn

σ2(d+K)

)/
log(1 + σ−2σ2

max)

and σ2
max = σ2

0 + L2λ−1.

6.1 Discussion

Theorem 1 shows that the Bayes regret of both RoLinUCB and RoLinTS is O(
√

(σ2
0 + L2λ−1)(d+K)n) up to log-

arithmic factors. The dependence on horizon n is optimal. The dependence on d + K arises due to learning d + K
parameters in the equivalent linear bandit: d for the linear model and one parameter per arm. This would be optimal
in a general linear bandit. However, the dependence on K does not vanish as the inter-arm heterogeneity diminishes.
This limitation is inherent in our analysis, as we employ the linear bandit framework with d + K parameters. Em-
pirically, we have observed that the dependence on K would vanish as σ2

0 → 0 (Appendix C). The structure of our

7



Under review as submission to TMLR

problem is captured by constant σ2
0 + L2λ−1. The regret increases when the shared parameter θ is more uncertain, λ

is low; when the inter-arm heterogeneity is high, σ0 is high; and when the feature vectors of arms are long, L is high.

Theorem 1 is proved under the assumption that the hyper-parameters λ, σ2
0 , σ2 are known to the learning agent. We

evaluated RoLinTS empirically to hyper-parameter misspecificiation (Figure 3 in Appendix C). Notably, our findings
demonstrate that the algorithm maintains its performance.

Our analysis in Section 6.2 improves upon a trivial linear bandit analysis by using the structure of the posterior variance
in (15). A trivial analysis, which would only use the structure in the prior covariance,

‖zi,t‖2Σt
≤ ‖zi,t‖2Σ0

≤ max
{
σ2

0 , λ
−1} (L2 + 1) ,

would replace the factor σ2
0 + L2λ−1 in our regret bound with max

{
σ2

0 , λ
−1} (L2 + 1). Note that

σ2
0 + L2λ−1 ≤ max

{
σ2

0 , λ
−1} (L2 + 1)

for any λ, σ0, and L; and hence our analysis is always an improvement. This improvement can be significant when
the parameter θ is nearly certain and K � d. In this case, our bound approaches that of a K-armed Bayesian bandit
with prior N (0, σ2

0), which is O(
√
σ2

0Kn); and the other bound is O(
√
σ2

0L
2Kn), where L2 could be O(d).

Beyond improvements in regret, the structure of our problem can be used to get major improvements in computational
efficiency (Section 4.3), from O((d+K)3) time per round for a naive implementation to O(d2(d+K)).

6.2 Proof of Theorem 1

First, we note that (2) can be rewritten as a single linear model by augmenting features. Specifically, let u ⊕ v be the
concatenation of vectors u and v; and ei ∈ RK be an indicator vector of the i-th dimension, ei,j = 1{i = j}. Using
this notation, let zi,t = xi,t ⊕ ei be the augmented feature vector of arm i in round t and γ = θ ⊕ (vi)i∈[K] be the
augment parameter vector. Then the model in (2), (3), and (4) can be expressed as a simple Bayesian linear regression
model,

µi,t = z>i,tγ , γ ∼ N (0,Σ0) , (19)

where Σ0 is a block-diagonal matrix. Its upper d× d block is λ−1Id and the lower K ×K block is σ2
0IK .

Let rt = (rI`,`)`∈[t−1] be a column vector of all rewards up to round t and Zt = (zI`,`)`∈[t−1] be a (t− 1)× (d+K)
matrix of augmented features up to round t. From (19), we have that

γ | Ht ∼ N (γt,Σt) ,

where γt = σ−2ΣtZ>t rt and Σ−1
t = Σ−1

0 + σ−2Z>t Zt. It follows that

µi,t | Ht ∼ N (z>i,tγt, z>i,tΣtzi,t) .

We prove in Lemma 1 that µi,t | Ht ∼ N (µ̂i,t, τ2
i,t). Thus we can equivalently analyze the reformulation in (19).

Now we apply the general regret bound in Theorem 2 (Appendix B) to (19) and get

R(n) ≤ σmax
√

2c(d+K)n log(1/δ) +
√

2/πσmaxKnδ ,

where

c = log
(

1 + σ2
maxn

σ2(d+K)

)/
log(1 + σ−2σ2

max)

and σmax = maxi∈[K], t∈[n] ‖zi,t‖Σt
is a problem-specific quantity that we bound next. Specifically, since ‖zi,t‖2Σt

=
τ2
i,t, we have

‖zi,t‖2Σt
≤ σ2

0 + L2λ1(M−1
t ) = σ2

0 + L2λ−1
d (Mt) ≤ σ2

0 + L2λ−1 .

The first inequality is from the definition of τ2
i,t in (15) and that ‖xi,t‖ ≤ L. The second inequality is from the

observation that both components of Mt in (15) are positive semi-definite (PSD). Specifically, all eigenvalues of λId
are λ and each X>i,tV

−1
i,t Xi,t is PSD because Vi,t is. To complete the proof, we set δ = 1/n.

8
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Figure 1: Comparison of RoLinTS to three baselines on synthetic problems in Section 7.1. The results are averaged
over 100 runs.

7 Experiments

We conduct three main experiments. In Section 7.1, we evaluate RoLinTS in synthetic bandit problems. In Section 7.2,
we apply it to the problem of learning a linear model with misspecified features. In Section 7.3, we compare a naive
implementation of RoLinTS to that in Section 4.3.

We conduct four additional experiments in Appendix C. In Figure 3, we study the robustness of RoLinTS to parameter
misspecifications. In Figure 4, we evaluate RoLinUCB. In Figure 5, we study how the regret of RoLinTS increases
with the numbers of arms K. Finally, in Figure 6, we compare to Ghosh et al. (2017) on non-contextual problems.

7.1 Synthetic Experiment

Our first experiment is with three robust contextual bandits where σ0 ∈ {0, 0.25, 0.5}. Note that σ0 = 0 corresponds
to a contextual linear bandit. We set K = 50 and d = 10. The model parameter and features are sampled from
N (0, Id) and uniformly at random from [−1, 1]d, respectively. The reward noise is σ = 1. We compare RoLinTS,
run with σ0 ∈ {0.25, 0.5, 1}, to LinTS, which can be viewed as RoLinTS with σ0 = 0 (Section 4.2). To distinguish
σ0 in RoLinTS from the environment parameter, we denote the former by s0. We consider two additional baselines,
Safe-FALCON of Krishnamurthy et al. (2021) and hLinUCB of Wang et al. (2016), which are introduced in Section 2.
We set the complexity term in Safe-FALCON to ξ(n, ζ) = d log(1/ζ)/n, since we have d-dimensional regression
problems. In hLinUCB, we learn K additional features per arm. This choice is motivated by the fact that RoLinTS can
be implemented inefficiently as LinTS with K additional features per arm (Section 6.2).

Our results are reported in Figure 1. In the left plot, the environment is a contextual linear bandit and LinTS has a
sublinear regret. In this case, RoLinTS is not expected to outperform it, because it learns an additional random-effect
parameter per arm. Nevertheless, all variants of RoLinTS have a sublinear regret in n. A higher regret corresponds to
higher values of s0, which is expected since RoLinTS with a higher value of s0 is more uncertain about the underlying
model being linear. In the middle plot, the environment is a robust contextual bandit with σ0 = 0.25. Although
this model is only slightly misspecified, LinTS fails and has a linear regret. In comparison, all variants of RoLinTS
have a sublinear regret, even with the misspecified random effect s0 ∈ {0.5, 1}. This highlights the robustness
of our approach to misspecification. Finally, in the right plot, the environment is a robust contextual bandit with
σ0 = 0.5. We observe that the gap in the regret of LinTS and RoLinTS increases with σ0. In this case, RoLinTS has
at least twice lower regret than LinTS for all values of s0. When the model is correctly specified (σ0 = 0), hLinUCB
outperforms both LinTS and RoLinTS. When the model is misspecified (σ0 > 0), hLinUCB performs similarly to
LinTS and RoLinTS outperforms it. Safe-FALCON is too conservative to be competitive. In all experiments, its regret
at n = 10 000 rounds is an order of magnitude higher than that of RoLinTS.
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Figure 2: Comparison of RoLinTS to three baselines on a movie recommendation problem with misspecified item
features. The results are averaged over 500 runs.

7.2 MovieLens Experiment

This experiment shows the utility of RoLinTS in a linear bandit with misspecified features. Specifically, we have a
linear function u>v that models the mean rating of user u for movie v, where u is an unknown preference vector of the
user and v is a feature vector of a movie. The challenge is that the agent only knows v̂, an estimate of v from logged
data. All parameters in this experiment are estimated by matrix completion: u and v are learned from the test set, and
v̂ is learned from the training set. When the training set is small, v̂ is a poor estimate of v, and thus the mean rating of
a movie is not linear in v̂. This can be addressed by learning a separate bias term per movie, which is what RoLinTS
does.

The experiment is specifically set up as follows. We take the MovieLens 1M dataset (Lam & Herlocker, 2016) with
nu = 6 000 users, ni = 4 000 items, and 1 million ratings. We divide the dataset equally into the training and test
sets. In the training set, we apply alternating least-squares to complete the rating matrix. The result are latent user
Û ∈ Rnu×d and item V̂ ∈ Rni×d factors, where d is the factorization rank and ÛV̂> estimates the mean ratings for
all user-item pairs. We apply the same approach to the test set, and obtain latent user U ∈ Rnu×d and item V ∈ Rni×d

factors.

The interaction with a recommender system is simulated as follows. We choose a random user and K = 50 random
movies, and the goal is to learn to recommend the best of these movies to the chosen user. This is repeated 500 times.
The feature vector of movie i is V̂i,:, which is the i-th row of matrix V̂. The challenge is that the mean rating of
movie i for user j is Uj,:V>i,:. Therefore, it is linear in the unobserved Vi,: but not in the observed V̂i,:. RoLinTS can
adapt to this misspecification by essentially learning Uj,:(Vi,:−V̂i,:)>. The rating noise isN (0, σ2) with σ = 0.759,
which is estimated from data.

Our results are reported in Figure 2. In the left plot, we only use 1% of the training set to estimate movie features
V̂. In this case, the estimated features are highly uncertain and the regret of LinTS is clearly linear n. The regret of
RoLinTS is significantly lower for all s0 ∈ {0.25, 0.5, 1}, up to twice for s0 = 1 at n = 5 000. This clearly shows that
RoLinTS can partially address the problem of misspecified features. In the next two plots, we use 2% and 5% of the
training set to estimate movie features V̂. As the features become more precise, all methods improve. Nevertheless,
the benefit of adapting to model misspecification persists. We also observe that hLinUCB performs better than LinTS
but is worse than RoLinTS. Safe-FALCON is too conservative to be competitive. Its regret at n = 5 000 rounds is an
order of magnitude higher than that of RoLinTS.

7.3 Run Time

The challenge with implementing RoLinTS naively (Section 6.2) is O((d+K)3) computational cost, due to inverting
(d+K)×(d+K) precision matrices. Our efficient implementation (Section 4.3) inverts only d×d precision matrices
and its cost is O(d2(d + K)) per round. To show this empirically, we compare the run time of RoLinTS to its naive

10
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K RoLinTS LinTS
16 0.7 1.1
32 0.8 2.0
64 0.9 4.6
128 1.1 14.7
256 1.5 75.6
512 2.9 498.7
1 024 5.2 4 275.4

Table 1: Run times of RoLinTS and LinTS as functions of the number of arms K. The time is measured in seconds.

implementation, called LinTS for simplicity. We take the setup from Figure 1, vary K from 16 to 1024, and measure
the run time of 100 random runs over a horizon of n = 500 rounds.

Our results are reported in Table 1. These results confirm our expectation. For large K, the run time of RoLinTS
doubles when K doubles. Therefore, it is linear in K. On the hand, for large K, the run time of LinTS is nearly cubic
in K. For a moderately large number of arms, K = 128, RoLinTS is 10 times faster than LinTS. For a large number
of arms, K = 1 024, RoLinTS is a thousand times faster than LinTS.

8 Conclusions

Model misspecification in bandits, when the optimal arm under the assumed model is not optimal, can lead to catas-
trophic failures of contextual bandit algorithms and linear regret. We mitigate this by proposing robust contextual
linear bandits. The key idea in our model is that the mean reward of an arm is a dot product of its context and a shared
model parameter, which is offset by an arm-specific variable. This approach is statistically efficient because the model
parameter is shared by all arms; yet quite robust to model misspecification due to learning the arm-specific variables.
We propose UCB and posterior-sampling algorithms for our setting, show how to implement them efficiency, prove
regret bounds that reflect the structure of our problem, and also validate the algorithms empirically.

Our work has several limitations that can be addressed by future works. For instance, although Theorem 1 reflects some
structure of our problem (Section 6.1), it is not completely satisfactory. In particular, as the inter-arm heterogeneity
diminishes, σ0 → 0, one would expected a regret bound of O(

√
dn) while we get O(

√
(d+K)n). Proving of

the improved bound seems highly non-trivial due to complex correlations of all estimated model parameters in the
posterior. Another limitation of our work is that we focus on linear models. We plan to extend robust contextual
bandits to generalized linear models. Finally, although we have not discussed hyper-parameter tuning and learning,
we do so in Appendix D.
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Appendix

The appendix is organized as follows. Appendix A presents the posterior of µi,t. Appendix B provides a general
Bayes regret analysis, which is further demonstrated in the subsequent four sections: Appendix B.1 and Appendix B.2
delve into the Bayes regret of LinTS, addressing scenarios involving both an infinite and finite number of contexts.
Appendix B.3 extends the Bayes regret of LinTS to LinUCB. Appendix B.4 provides the upper bound on the sum of
posterior variance. Appendix C presents two supplementary experiments. Finally, Appendix D explores the empirical
Bayes method for hyper-parameter selection.

A Posterior of µi,t

Lemma 1. Let zi,j ∼ N (0, σ2) and µi ∼ N (0, σ2
0). Assuming that σ2 and σ2

0 are known, and θ ∼ N (0, λI), we
have that µi,t | Ht ∼ N (µ̂i,t, τ2

i,t).

Proof. Recall the following well-known identity. Let Y |X = x ∼ N (ax+ b, σ2) and X ∼ N (µ, σ2
x). Then

Y ∼ N (aµ+ b, a2σ2
x + σ2).

Obviously, if we set X to θ | Ht and Y to µi,t | Ht, we can apply this result to obtain the distribution of µi,t | Ht

from the distributions of µi,t | θ, Ht and θ | Ht. Simple calculation shows that µi,t | θ, Ht is a Gaussian with mean
in µ̃i,t = xi,tθ + wi,t(r̄i,t − x̄>i,tθ) and variance in σ2

0(1− wi,t).

Now we derive the distribution of θ | Ht. Assuming θ ∼ N (0, λI), r̄i,t can be considered to be generated from the
following Bayesian model:

r̄i,t | θ ∼ N (x>i,tθ, σ2
0 + σ2/nk), θ ∼ N (0, λI).
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Thus, the distribution of θ | Ht is easily obtained as

θ | Ht ∼ N (θ̂t,Qt),

where

θ̂t =
(
λI +

K∑
i=1

X>i,tV−1
i,t Xi,t

)−1 K∑
i=1

X>i,tV−1
i,t ri,t, and

Qt =
(
λI +

K∑
i=1

X>i,tV−1
i,t Xi,t

)−1

.

Using the above results, we obtain the distribution of µi,t | Ht from the distributions of µi,t | θ, Ht and θ | Ht. That
distribution is a Gaussian with mean in (14) and variance in (15). This completes the proof.
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B General Bayes Regret Analysis

We study a linear bandit in d dimensions with action set A ⊆ Rd. The model parameter is θ∗ ∈ Rd and we assume
that it is drawn from a prior as θ∗ ∼ N (θ0,Σ0). The mean reward of action a ∈ A is a>θ∗. In round t, the learning
agent takes action At ∈ At, where At ⊆ A is the set of feasible actions in round t. The round-dependent action set
At can be used to model context. After the agent takes action At, it observes its noisy reward Yt = A>t θ∗ + εt, where
εt ∼ N (0, σ2) is an independent Gaussian noise.

The history in round t is Ht and the posterior distribution is N (θ̂t, Σ̂t), where

θ̂t = Σ̂t

(
Σ−1

0 θ0 + σ−2
t−1∑
`=1

A`Y`

)
, Σ̂−1

t = Σ−1
0 +Gt , Gt = σ−2

t−1∑
`=1

A`A
>
` .

The optimal action in round t is At,∗ = arg max a∈At
a>θ∗ and our performance metric is the n-round Bayes regret

R(n) = E

[
n∑
t=1

A>t,∗θ∗ −A>t θ∗

]
,

where the expectation in R(n) is over random observations Yt, random actions At, and random model parameter θ∗.

We analyze two algorithms: linear Thompson sampling (LinTS) and Bayesian LinUCB. LinTS is implemented as
follows. In round t, it samples the model parameter as θt ∼ N (θ̂t, Σ̂t) and then takes actionAt = arg max a∈At

a>θt.
Bayesian LinUCB is implemented as follows. In round t, it computes a UCB for each action a ∈ At as Ut(a) =
a>θ̂t + α‖a‖Σ̂t

and then takes action At = arg max a∈At
Ut(a), where ‖a‖M =

√
a>Ma and α > 0 is a tunable

parameter.

The final regret bound is stated below.

Theorem 2. For any δ > 0, the n-round Bayes regret of both LinTS and Bayesian LinUCB with α =
√

2d log(1/δ)
is bounded as

R(n) ≤ σmaxd

√
2n

log(1 + σ−2σ2
max) log

(
1 + σ2

maxn

σ2d

)
log(1/δ) +

√
2/πσmaxd

3
2nδ ,

where σmax = maxa∈A, t∈[n] ‖a‖Σ̂t
. Moreover, when |At| ≤ K holds in all rounds t, the n-round Bayes regret of

both LinTS and Bayesian LinUCB with α =
√

2 log(1/δ) is bounded as

R(n) ≤ σmax

√
2dn

log(1 + σ−2σ2
max) log

(
1 + σ2

maxn

σ2d

)
log(1/δ) +

√
2/πσmaxKnδ .

B.1 Infinite Number of Contexts

We start the analysis with a useful lemma for LinTS.

Lemma 2. For any δ > 0, the n-round Bayes regret of LinTS is bounded as

R(n) ≤
√

2dnV(n) log(1/δ) +
√

2/πσmaxd
3
2nδ ,

where σmax = maxa∈A, t∈[n] ‖a‖Σ̂t
and V(n) = E

[∑n
t=1 ‖At‖2Σ̂t

]
.

Proof. Fix round t. Since θ̂t is a deterministic function of Ht, and At,∗ and At are i.i.d. given Ht, we have

E
[
A>t,∗θ∗ −A>t θ∗

]
= E

[
E
[
A>t,∗(θ∗ − θ̂t)

∣∣∣Ht

]]
+ E

[
E
[
A>t (θ̂t − θ∗)

∣∣∣Ht

]]
. (20)
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Now note that θ̂t − θ∗ is a zero-mean random vector independent of At, and thus E
[
A>t (θ̂t − θ∗)

∣∣∣Ht

]
= 0. So we

only need to bound the first term in (20). Let

Et =
{
‖θ∗ − θ̂t‖Σ̂−1

t
≤
√

2d log(1/δ)
}

be the event that a high-probability confidence interval for the model parameter θ∗ in round t holds. Fix history Ht.
Then by the Cauchy-Schwarz inequality,

E
[
A>t,∗(θ∗ − θ̂t)

∣∣∣Ht

]
≤ E

[
‖At,∗‖Σ̂t

‖θ∗ − θ̂t‖Σ̂−1
t

∣∣∣Ht

]
(21)

= E
[
‖At,∗‖Σ̂t

‖θ∗ − θ̂t‖Σ̂−1
t
1{Et}

∣∣∣Ht

]
+ E

[
‖At,∗‖Σ̂t

‖θ∗ − θ̂t‖Σ̂−1
t
1
{
Ēt
} ∣∣∣Ht

]
≤
√

2d log(1/δ)E
[
‖At,∗‖Σ̂t

∣∣∣Ht

]
+ max

a∈A
‖a‖Σ̂t︸ ︷︷ ︸

≤σmax

E
[
‖θ∗ − θ̂t‖Σ̂−1

t
1
{
Ēt
} ∣∣∣Ht

]

=
√

2d log(1/δ)E
[
‖At‖Σ̂t

∣∣∣Ht

]
+ σmax E

[
‖θ∗ − θ̂t‖Σ̂−1

t
1
{
Ēt
} ∣∣∣Ht

]
.

The second equality follows from the observation that Σ̂t is a deterministic function of Ht, and that At,∗ and At are
i.i.d. given Ht. Now we focus on the second term above. First, note that

‖θ∗ − θ̂t‖Σ̂−1
t

= ‖Σ̂−
1
2

t (θ∗ − θ̂t)‖2 ≤
√
d‖Σ̂−

1
2

t (θ∗ − θ̂t)‖∞ .

By definition, θ∗ − θ̂t | Ht ∼ N (0, Σ̂t), and thus Σ̂−
1
2

t (θ∗ − θ̂t) | Ht is a d-dimensional standard normal variable. In

addition, note that Ēt implies ‖Σ̂−
1
2

t (θ∗− θ̂t)‖∞ ≥
√

2 log(1/δ). Finally, we combine these facts with a union bound

over all entries of Σ̂−
1
2

t (θ∗ − θ̂t) | Ht, which are standard normal variables, and get

E
[
‖Σ̂−

1
2

t (θ∗ − θ̂t)‖∞1
{
Ēt
} ∣∣∣Ht

]
≤ 2

d∑
i=1

1√
2π

∫ ∞
u=
√

2 log(1/δ)
u exp

[
−u

2

2

]
du =

√
2
π
dδ .

Now we combine all inequalities and have

E
[
A>t,∗(θ∗ − θ̂t)

∣∣∣Ht

]
≤
√

2d log(1/δ)E
[
‖At‖Σ̂t

∣∣∣Ht

]
+
√

2
π
σmaxd

3
2 δ .

Since the above bound holds for any history Ht, we combine everything and get

E

[
n∑
t=1

A>t,∗θ∗ −A>t θ∗

]
≤
√

2d log(1/δ)E
[

n∑
t=1
‖At‖Σ̂t

]
+
√

2
π
σmaxd

3
2nδ

≤
√

2dn log(1/δ)

√√√√E

[
n∑
t=1
‖At‖2Σ̂t

]
+
√

2
π
σmaxd

3
2nδ .

The last step uses the Cauchy-Schwarz inequality and the concavity of the square root. This completes the proof.

B.2 Finite Number of Contexts

The proof of Lemma 2 relies on confidence intervals that hold for any context. Further improvements, from O(
√
d)

to O(
√

logK), are possible when the number of contexts is |At| ≤ K. This is due to improving the first term in (21).
Specifically, fix round t and let

Et,a =
{
|a>(θ∗ − θ̂t)| ≤

√
2 log(1/δ)‖a‖Σ̂t

}

16



Under review as submission to TMLR

be the event that a high-probability confidence interval for action a ∈ At in round t holds. Then we have

E
[
A>t,∗(θ∗ − θ̂t)

∣∣∣Ht

]
≤
√

2 log(1/δ)E
[
‖At,∗‖Σ̂t

∣∣∣Ht

]
+ E

[
A>t,∗(θ∗ − θ̂t)1

{
Ēt,At,∗

} ∣∣∣Ht

]
.

Now note that for any action a, a>(θ∗ − θ̂t)/‖a‖Σ̂t
is a standard normal variable. It follows that

E
[
A>t,∗(θ∗ − θ̂t)1

{
Ēt,At,∗

} ∣∣∣Ht

]
≤ 2

∑
a∈At

‖a‖Σ̂t

1√
2π

∫ ∞
u=
√

2 log(1/δ)
u exp

[
−u

2

2

]
du ≤

√
2
π
σmaxKδ ,

where σmax is defined as in (21). The rest of the proof is as in Lemma 2 and leads to the regret bound below.

Lemma 3. For any δ > 0, the n-round Bayes regret of LinTS is bounded as

R(n) ≤
√

2nV(n) log(1/δ) +
√

2/πσmaxKnδ ,

where σmax and V(n) are defined as in Lemma 2.

B.3 Bayesian LinUCB

This section generalizes Lemmas 2 and 3 to Bayesian LinUCB. The key observation is that the decomposition in (20)
can be replaced with

E
[
A>t,∗θ∗ −A>t θ∗

]
≤ E

[
E
[
A>t,∗θ∗ − Ut(At,∗)

∣∣Ht

]]
+ E

[
E
[
Ut(At)−A>t θ∗

∣∣Ht

]]
, (22)

where Ut(At) ≥ Ut(At,∗) holds by the design of Bayesian LinUCB. The second term in (22) can be rewritten as

E
[
Ut(At)−A>t θ∗

∣∣Ht

]
= E

[
A>t (θ̂t − θ∗) + α‖At‖Σ̂t

∣∣∣Ht

]
= αE

[
‖At‖Σ̂t

∣∣∣Ht

]
,

where the last inequality follows from E
[
A>t (θ̂t − θ∗)

∣∣∣Ht

]
= 0, by the same argument as in Appendix B.1. To

bound the first term in (22), we rewrite it as

E
[
A>t,∗θ∗ − Ut(At,∗)

∣∣Ht

]
= E

[
A>t,∗(θ∗ − θ̂t)− α‖At,∗‖Σ̂t

∣∣∣Ht

]
.

Now we have two options for deriving the upper bound. The first is

A>t,∗(θ∗ − θ̂t)− α‖At,∗‖Σ̂t
≤ ‖At,∗‖Σ̂t

‖θ∗ − θ̂t‖Σ̂−1
t
− α‖At,∗‖Σ̂t

≤ ‖At,∗‖Σ̂t
‖θ∗ − θ̂t‖Σ̂−1

t
1
{
‖θ∗ − θ̂t‖Σ̂−1

t
> α

}
≤ σmax‖θ∗ − θ̂t‖Σ̂−1

t
1
{
Ēt
}
,

where Et is defined in Appendix B.1 and thus α =
√

2d log(1/δ). Following Appendix B.1, we get

E
[
A>t,∗θ∗ − Ut(At,∗)

∣∣Ht

]
≤
√

2/πσmaxd
3
2 δ .

The second option is

A>t,∗(θ∗ − θ̂t)− α‖At,∗‖Σ̂t
≤ A>t,∗(θ∗ − θ̂t)1

{
A>t,∗(θ∗ − θ̂t) > α‖At,∗‖Σ̂t

}
≤ A>t,∗(θ∗ − θ̂t)1

{
Ēt,At,∗

}
,

where Et,a is defined in Appendix B.2 and thus α =
√

2 log(1/δ). Following Appendix B.2, we get

E
[
A>t,∗θ∗ − Ut(At,∗)

∣∣Ht

]
≤
√

2/πσmaxKδ .

It follows that the regret of Bayesian LinUCB is identical to that of LinTS.
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B.4 Upper Bound on the Sum of Posterior Variances

Now we bound the sum of posterior variances V(n) in Lemmas 2 and 3. Fix round t and note that

‖At‖2Σ̂t
= σ2A

>
t Σ̂tAt
σ2 ≤ c1 log(1 + σ−2A>t Σ̂tAt) = c1 log det(Id + σ−2Σ̂

1
2
t AtA

>
t Σ̂

1
2
t ) (23)

for

c1 = σ2
max

log(1 + σ−2σ2
max) .

This upper bound is derived as follows. For any x ∈ [0, u],

x = x

log(1 + x) log(1 + x) ≤
(

max
x∈[0,u]

x

log(1 + x)

)
log(1 + x) = u

log(1 + u) log(1 + x) .

Then we set x = σ−2A>t Σ̂tAt and use the definition of σmax.

The next step is bounding the logarithmic term in (23), which can be rewritten as

log det(Id + σ−2Σ̂
1
2
t AtA

>
t Σ̂

1
2
t ) = log det(Σ̂−1

t + σ−2AtA
>
t )− log det(Σ̂−1

t ) .

Because of that, when we sum over all rounds, we get telescoping and the total contribution of all terms is at most

n∑
t=1

log det(Id + σ−2Σ̂
1
2
t AtA

>
t Σ̂

1
2
t ) = log det(Σ̂−1

n+1)− log det(Σ̂−1
1 ) = log det(Σ

1
2
0 Σ̂−1

n+1Σ
1
2
0 )

≤ d log
(

1
d

tr(Σ
1
2
0 Σ̂−1

n+1Σ
1
2
0 )
)

= d log
(

1 + 1
σ2d

n∑
t=1

tr(Σ
1
2
0 AtA

>
t Σ

1
2
0 )
)

= d log
(

1 + 1
σ2d

n∑
t=1

A>t Σ0At

)
≤ d log

(
1 + σ2

maxn

σ2d

)
.

This completes the proof.
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Figure 3: Comparison of misspecified RoLinTS to three baselines on synthetic problems in Section 7.1. The results
are averaged over 100 runs.
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Figure 4: Comparison of RoLinUCB to three baselines on synthetic problems in Section 7.1. The results are averaged
over 100 runs.

C Additional Experiments

We conduct four additional experiments on synthetic problems in Section 7.1.

In the first experiment, we randomly perturb parameters λ and σ of RoLinTS to test its robustness. For each parameter,
we choose a number u ∈ [1, 3] uniformly at random. Then we multiply it by u with probability 0.5 and divide it by u
otherwise. That is, the parameter is increased up to three fold or decreased up to three fold. Our results are reported
in Figure 3. We observe that the regret of RoLinTS increases slightly. Nevertheless, all trends are similar to Figure 1.
We conclude that RoLinTS is robust to parameter misspecification.

In the second experiment, we evaluate our UCB algorithm RoLinUCB. The results are reported in Figure 4. The setting
is the same as in Figure 1 and we also observe similar trends. This is expected, since Bayesian UCB algorithms are
known to be competitive with Thompson sampling (Kaufmann et al., 2012).

In the third experiment, we evaluate the dependence on K in Theorem 1. As discussed in Section 6.1, the dependence
on
√
K does not vanish for any σ0 > 0 due to the suboptimality of our proof technique. To show this, we demonstrate

that RoLinTS with σ0 → 0 has a comparable regret to LinUCB in a linear bandit. Note that the state-of-the-art regret
bounds of LinUCB are at most O(logK) (Lattimore & Szepesvari, 2019). The linear bandit is the synthetic problem
in Section 7.1 with σ0 = 0 and K ∈ {20, 50, 100}. RoLinTS is run with σ0 ∈ {0.1, 0.05, 0.01}. To distinguish σ0 in
RoLinTS from that in the environment, we denote the former by s0. Our results are reported in Figure 5. We observe
that the regret of RoLinTS approaches that of LinTS as σ0 → 0 for all K. When σ0 = 0.01, the regret of RoLinTS is
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Figure 5: Regret of RoLinTS as a function of the numbers of arms K.
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Figure 6: Comparison of RoLinUCB to two baselines on synthetic problems in Section 7.1. The features are sampled
only once in round 1 and then kept fixed. The results are averaged over 100 runs.

almost indistinguishable from that of LinTS. This validates our hypothesis that the regret of RoLinTS does not seem
to increase significantly with K as σ0 → 0.

In the last experiment, we try to compare to Ghosh et al. (2017). Their algorithm performs an initial exploration, and
then runs either LinUCB (Abbasi-Yadkori et al., 2011) or UCB1 (Auer et al., 2002). A comparison to this algorithm is
challenging for two reasons. First, the algorithm is non-contextual and thus would have linear regret in Figure 1. To
have a more fair comparison, we experiment with non-contextual problems here. Specifically, the features of the arms
in Section 7.1 are sampled only once in round t = 1 and then kept fixed. Second, the algorithm of Ghosh et al. (2017)
has tunable parameters. Rather than fixing them, which could put the algorithm at a disadvantage, we compare to its
two components: LinUCB and UCB1. If RoLinTS can outperform both, the algorithm of Ghosh et al. (2017) could not
be competitive with RoLinTS. Our results are reported in Figure 6. In all problems, UCB1 has a high regret because
the number of arms is large, K = 50. Moreover, when the model misspecification is high, σ0 ≥ 0.5, LinUCB has a
linear regret. Therefore, when σ0 ≥ 0.5, RoLinTS would outperform the algorithm of Ghosh et al. (2017).
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D Choosing Hyper-Parameters

In this paper, we assume that the hyper-parameters are known by the agent. When the hyper-parameters are unknown,
they have to be estimated. We end this paper by discussing this challenge.

For a fully-Bayesian treatment of hyper-parameters, it is desirable to marginalize over them. However, this is compu-
tationally intensive, often involving an integration. Let ψ = (σ2, σ2

0 , λ)> and µ̂i,t(ψ) be the prediction as a function
of ψ. By assuming some distribution on ψ, the fully-Bayesian method tries to take the following integration:

µ̂FB
i,t =

∫
µ̂i,t(ψ)p(ψ|Ht)dψ.

Although the integral can be done using many powerful tools in Bayesian statistics, the fully-Bayesian method is
sensible to the prior setting of ψ, more seriously, is computationally intensive in bandit algorithms that requires
sequential updating.

Compared to a fully-Bayesian treatment, a simpler method is the empirical Bayes method (Carlin & Louis, 2000),
which plugs in the estimates of the hyper-parameters from data. Various methods of obtaining consistent estimators
are available, including the method of moments, maximum likelihood, and restricted maximum likelihood (Harville,
1988). Here we adopt the method of moments, since it has explicit formulas to update each round.

Unbiased quadratic estimate of σ2 is given by

σ̂2 =
(

K∑
i=1

(ni,t − d)
)−1 K∑

i=1

∑
`∈Ti,t

ê2
i,`,

where nt =
∑K
i=1 ni,t, and êi,` are the residuals for the regression of the r deviation, ri,` − r̄i,t, on the context x

deviations, xi,` − x̄i,t, for those rewards with ni,t > 1. Unbiased quadratic estimate of σ2
0 is given by

σ̃2
0 =(nt − d0)−1

 K∑
i=1

∑
`∈Ti,t

ŝ2
i,` − (nt − d)σ̂2

 ,
where d0 = (

∑K
i=1 X>i,tXi,t)−1∑K

i=1 n
2
i,tx̄i,tx̄>i,t and ŝi,` are the residuals for the regression of ri,` on the context

xi,`. It is possible that σ̃2
0 is negative. Thus, we define σ̂2

0 = max{σ̃2
0 , 0}. For simplifying the choice of λ, it is not

bad to let λ equal a tiny constant, such as λ = 0.01.

Although the empirical Bayes method with plugged-in variance estimates is convenient and useful, it is challenging
to analyze. The reason is that the randomness in the estimated hyper-parameters needs to be considered in the regret
analysis. We leave the theoretical investigation of this challenge as an open question of interest.
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