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Abstract001

Multimodal large language models (MLLMs)002
rely on continual instruction tuning to adapt003
to evolving real-world demands, yet progress004
is hindered by the lack of rigorous bench-005
marks. We present MLLM-CTBench, a com-006
prehensive benchmark with three novel con-007
tributions: 1) Competence-driven task cura-008
tion spanning six challenging domains, includ-009
ing about 70K examples from 16 datasets; 2)010
Multidimensional evaluation combining fi-011
nal answer accuracy with granular Chain-of-012
Thought (CoT) reasoning analysis, enabled by013
a specially trained CoT evaluator; 3) Com-014
prehensive Algorithmic Investigations cover-015
ing eight continual learning algorithms across016
four categories, as well as the reinforcement017
learning and supervised fine-tuning paradigm.018
Key findings include: i) Pre-training quality019
inversely correlates with forgetting susceptibil-020
ity (e.g.,LLaVA-1.5 shows 2× higher forget-021
ting than Qwen2.5-VL); ii) Reasoning chains022
degrade slower than final answers, support-023
ing the hierarchical forgetting hypothesis; iii)024
The performance of continual learning algo-025
rithms vary with model capacity and task or-026
der. MLLM-CTBench establishes rigorous027
standards for continual instruction tuning of028
MLLMs, offering actionable insights for al-029
gorithm design and evaluation. Our code030
can be found at https://anonymous.4open.031
science/r/MLLM-CTBench-5E56.032

1 Introduction033

Multimodal large language models (MLLMs) have034

emerged as pivotal architectures for cross-modal035

understanding and generation, demonstrating un-036

precedented capabilities across a wide range of mul-037

timodal tasks. Instruction tuning has further em-038

powered these models to align with human intent039

and enhance task performance through supervised040

adaptation on task-specific instructions (Yu et al.,041

2024). However, real-world deployment demands042

continuous adaptation to evolving instructions and 043

domain requirements—a paradigm known as con- 044

tinual instruction tuning (He et al., 2023a). 045

While significant progress has been made in 046

continual instruction tuning for unimodal Large 047

Language Models (LLMs) (Zheng et al., 2025a), 048

the multimodal counterpart remains underex- 049

plored. The absence of a rigorous benchmark 050

further impedes progress: existing benchmarks 051

(e.g., EMT (Jia et al., 2025), CITB (He et al., 052

2023b), CoIN (Chen et al., 2024a)) on contin- 053

ual instruction tuning of MLLMs exhibit several 054

critical limitations. 1) Inadequate Task Diffi- 055

culty: The adopted datasets (e.g., ImageNet-1K 056

in EMT (Jia et al., 2025), VQAv2 (Goyal et al., 057

2017)/TextVQA (Singh et al., 2019) in CoIN (Chen 058

et al., 2024a)) fail to challenge modern MLLMs, 059

as evidenced by their near-saturation zero-shot ac- 060

curacies (≥ 80% for LLaVA-1.5 (Liu et al., 2024), 061

nearly 90% for Qwen2.5-VL (Bai et al., 2025) on 062

these benchmarks), rendering them ineffective for 063

probing the boundaries of continual learning capac- 064

ity in modern MLLMs. 2) Superficial Evaluation 065

Paradigms: Prevailing benchmarks prioritize fi- 066

nal answer correctness while neglecting granular 067

reasoning process analysis, hindering in-depth un- 068

derstanding of the causes behind catastrophic for- 069

getting in MLLMs (Luo et al., 2023). Although 070

CoIN (Chen et al., 2024a) implicitly estimates rea- 071

soning knowledge forgetting , the interpretability 072

of the evaluation metric remains limited. 3) Algo- 073

rithmic Evaluation Vacuum: Existing works pre- 074

dominantly focus on quantifying catastrophic for- 075

getting under sequential fine-tuning settings, while 076

overlooking systematic investigations of continual 077

learning algorithms’ efficacy, thus limiting their 078

impact. 079

To catalyze research progress in continual in- 080

struction tuning for MLLMs, we present MLLM- 081

CTBench—a comprehensive benchmark designed 082

to address the key limitations above. Our 083
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Figure 1: Evaluation of continual instruction tuning for MLLMs under SFT and RL paradigms with CoT reasoning
analysis. Red lines indicate the performance after sequential tuning on all tasks; blue lines denote the performance
after just tuning on each task. To enable intuitive visualization, we use the post-task performance (i.e., immediately
after tuning each task) as the reference point and report relative percentages. (a) Final answer accuracy under the
standard sequential fine-tuning (SFT) paradigm. (b) Critic score of the CoT reasoning, which degrades more slowly
compared to final answers. (c) Final answer accuracy under the reinforcement learning paradigm (with GRPO),
which better retains MLLMs’ capabilities than SFT.

benchmark introduces three key innovations:084

1)Competence-Driven Task Curation. Grounded085

in empirical studies that reveal MLLMs’ persistent086

deficiencies in mathematical reasoning (Lu et al.,087

2021a; Chen et al., 2022; Xia et al., 2024; Yue088

et al., 2024a,b; Wang et al., 2023a), OCR compre-089

hension (Wang et al., 2020a), and domain-specific090

knowledge (Kembhavi et al., 2016; Lu et al., 2022a;091

Lau et al., 2018a; Ben Abacha et al., 2021; He092

et al., 2020; Zhang et al., 2023a; Garcia et al., 2020;093

Wang et al., 2023a), we construct seven evalua-094

tion tasks across six challenging domains (Math,095

OCR, Science, Medicine, Arts, Economics). By096

systematically filtering 16 public datasets, we cu-097

rate approximately 70K examples, ensuring bal-098

anced domain representation and mitigating dataset099

bias. 2)Multidimensional Evaluation Protocol.100

We propose a two-tiered assessment framework:101

macro-level metrics (final answer accuracy) and102

micro-level reasoning analysis encompassing vi-103

sual grounding fidelity (for VQA tasks), logical104

coherence, and domain knowledge retention (Tan105

et al., 2024; Zheng et al., 2023). To ensure ob-106

jectivity in CoT reasoning evaluation, we train a107

dedicated CoT evaluator—specifically, a fine-tuned108

Qwen2.5-VL-7B model.n (Chen et al., 2024b)109

3)Comprehensive Algorithmic Evaluation. We110

benchmark eight mainstream continual learning al-111

gorithms across four methodological categories:112

regularization-based (Aich, 2021; Zheng et al.,113

2025a; Li and Hoiem, 2017a; Aljundi et al., 2018),114

replay-based (Rolnick et al., 2019b; Yan et al.,115

2021), architecture-expansion-based (Wang et al.,116

2022), and model-fusion-based (Marczak et al.,117

2024) approaches. Furthermore, given the increas-118

ing adoption of reinforcement learning (RL) for119

enhancing CoT reasoning in MLLMs, we compare 120

RL and supervised fine-tuning (SFT) paradigms 121

under continual instruction tuning settings (Chung 122

et al., 2022). 123

Leveraging MLLM-CTBench, we conduct ex- 124

tensive experiments and uncover several key find- 125

ings: 1) All evaluated MLLMs experience forget- 126

ting, with weaker models (e.g., LLaVA-1.5 (Liu 127

et al., 2024)) exhibiting 2× higher forgetting 128

rates than stronger ones (e.g., Qwen2.5-VL (Bai 129

et al., 2025)), indicating that pre-training quality 130

inversely correlates with forgetting under contin- 131

ual adaptation. 2) Intermediate reasoning traces 132

degrade more slowly than final answer accuracy, 133

supporting the hierarchical forgetting hypothe- 134

sis—factual knowledge decays faster than procedu- 135

ral reasoning—consistent with CoIN (Chen et al., 136

2024a) and spurious forgetting studies (Zheng 137

et al., 2024, 2025b). 3) Reinforcement learning 138

paradigms (e.g., GRPO (Shao et al., 2024)) achieve 139

lower forgetting rates compared to SFT, attributed 140

to KL-divergence regularization with reference 141

models. 4) The performance of continual learn- 142

ing algorithm varies with model capacity and task 143

order: replay methods help weaker models but sat- 144

urate on stronger ones; regularization excels on 145

robust models but falters on weaker ones. Model 146

fusion balances retention and efficiency, making it 147

well-suited for resource-constrained scenarios. 148

In summary, this paper contributes the following 149

• We introduce MLLM-CTBench, a rigorously 150

curated benchmark spanning seven evaluation 151

tasks across six challenging domains. 152

• We propose a two-tiered evaluation frame- 153

work that combines macro-level answer ac- 154
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Figure 2: Overview of MLLM-CTBench. The MLLMs firstly undergo sequential instruction tuning on seven
tasks from six domains, curated following a competence-driven manner. Then the performance is measured under
a two-tiered evaluation framework combining both macro-level final answer metric with the micro-level CoT
reasoning analysis enabled by a dedicated CoT evaluator.

curacy with fine-grained reasoning diagnostic155

enbled by a dedicated CoT evaluator.156

• We perform the comprehensive evaluation157

of eight continual learning methods across158

four algorithmic paradigms, providing action-159

able guidance for MLLM continual learn-160

ing method design. We further demonstrate161

that RL-based methods outperform SFT in162

retaining MLLM’s capabilities (Recht, 2019;163

Khetarpal et al., 2022).164

2 Related Work165

Continual Learning Continual learning (CL)166

enables models to learn sequentially without for-167

getting (Wu et al., 2024). Existing methods in-168

clude: (1) Regularization-based (e.g., EWC (Kirk-169

patrick et al., 2017), OGD (Farajtabar et al.,170

2020), LwF (Li and Hoiem, 2017b)) constrain171

updates to preserve past knowledge; (2) Replay-172

based (Rolnick et al., 2019a) reuse prior data to173

maintain performance, with memory overhead; (3)174

Architecture-based (Razdaibiedina et al.) expand175

models with task-specific modules (e.g., prompts);176

and (4) Model fusion (e.g., Max-merge) aligns177

task-specific checkpoints post-training with mini-178

mal overhead.179

MLLM as a Judge LLMs have shown promise180

as automatic evaluators in NLP (Zhu et al., 2023;181

Li et al., 2023; Bai et al., 2023). Techniques such182

as pairwise scoring (Kim et al., 2023), Chain-of-183

Thought prompting (Wei et al., 2022), and pref-184

erence alignment (Ouyang et al., 2022) enhance 185

alignment with human judgments. Recent work ex- 186

tends this to MLLMs: Chen et al. (2024b) evaluate 187

MLLMs as judges across scoring, comparison, and 188

ranking tasks in vision-language settings. 189

3 MLLM-CTBench 190

We advocate three core principles in benchmark 191

construction: Difficulty, Diversity, and Compre- 192

hensiveness. 1) Difficulty: Our benchmark is de- 193

signed to include more challenging tasks than pre- 194

vious ones, aiming to more effectively evaluate the 195

mordern MLLMs. 2) Diversity: It spans a wide 196

range of knowledge domains and includes both uni- 197

modal and multimodal tasks, enabling broad evalu- 198

ation of continual learning in realistic settings. 3) 199

Comprehensiveness: In addition to final-answer 200

accuracy, we aim to evaluate CoT (Lu et al., 2022b) 201

reasoning to support fine-grained analysis of forget- 202

ting and capability drift. Since reasoning is central 203

to LLM performance, its assessment is critical for 204

understanding model behavior over time. 205

3.1 Competence-driven Task Curation 206

To ensure both diversity and difficulty in evalu- 207

ation, we focus on six performance-limited do- 208

mains—Arts, Medicine, Economics, Science, 209

Math, and OCR—where state-of-the-art MLLMs 210

continue to face significant challenges. Notably, 211

state-of-the-art models (e.g., Claude-3.5, GPT-4o, 212

InternVL2.5, Qwen2-VL) achieve only 51.9% ac- 213

curacy on MMMU-Pro (Yue et al., 2024c) (cov- 214
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ering the first five domains) and up to 61.5% on215

OCRBench v2 (Fu et al., 2024) .216

To reduce task-level data imbalance,we construct217

a balanced benchmark where each task contributes218

a similar number of challenging examples.219

3.1.1 Data Integration220

We construct our benchmark from high-quality221

public datasets, covering six reasoning-intensive222

domains: (1) Arts, from AQUA (Garcia et al.,223

2020), involves historical identification and art in-224

terpretation; (2) Science, from ScienceQA (Lu225

et al., 2022a) and AI2D (Kembhavi et al., 2016),226

requires integrating visual and scientific knowl-227

edge; (3) Medicine, from VQA-RAD (Lau228

et al., 2018b), VQA-Med (Ben Abacha et al.,229

2021), PMC-VQA (Zhang et al., 2023a), and230

PathVQA (He et al., 2020), spans multi-modal231

medical imaging and diagnosis; (4) Economics,232

from TRACE (Wang et al., 2023b), focuses on233

policy sentiment classification; (5) Math, from234

IconQA (Lu et al., 2021b), GeoQA (Chen et al.,235

2022), CHARTX (Xia et al., 2024), MMMU (Yue236

et al., 2024a), and TRACE, covers symbolic, geo-237

metric, and visual reasoning; (6) OCR, from Char-238

tOCR (Luo et al., 2021), CROHME (Guan et al.,239

2024), and ESTVQA (Wang et al., 2020b), includes240

chart interpretation, handwritten math, and scene241

text. Dataset statistics are summarized in Table 1.242

Table 1: Statistics of the MLLM-CTBench datasets.

Task Data Source Train
(Text / Image)

Test
(Text / Image)

Math QA TRACE 10K/0 0.5K/0
Economics QA TRACE 5K/0 0.5K/0
Science VQA AI2D, ScienceQA 9K/4K 1K/0.5K

Math VQA IconQA, GeoQA, CHARTX,
MMMU

8.3K/8.3K 0.9K/0.9K

Medicine VQA VQA-RAD, VQA-Med-2021,
PMC-VQA, PathVQA

9K/6.9K 1K/1K

OCR VQA ChartOCR, CROHME,
ESTVQA

12K/12.1K 1.4K/1.4K

Arts VQA AQUA 9K/7K 1K/0.9K

3.1.2 CoT Generation243

To enhance model reasoning, we generate high-244

quality Chain-of-Thought (CoT) annotations tai-245

lored to each benchmark task (Zhang et al., 2023b).246

Tasks are categorized by domain and span diverse247

answer formats (e.g., multiple choice, open-ended,248

yes/no). To accommodate this variability, we de-249

sign task- and format-specific instruction templates250

(see Appendix). Each input consists of a prob-251

lem statement, answer format, and task-specific in-252

structions, which are provided to GPT-4 (OpenAI,253

2023) alongside carefully crafted prompts (Liu254

and Huang, 2023) to elicit step-by-step reasoning. 255

This structured prompting improves performance 256

on complex tasks and enhances the interpretability 257

of model outputs. 258

3.2 Continual Instruction Tuning 259

Setup. To reduce order-specific bias, we con- 260

duct sequential tuning under two task permutations: 261

Order-A (Math QA→ Arts VQA→ Math VQA→ 262

Economics QA → Medicine VQA → OCR VQA → 263

Science VQA) and its reverse, Order-B, ensuring 264

robustness to task order effects. 265

Sequential Finetuning (SFT). Given tasks 266

{T1, . . . , TS} with datasets {D1, . . . , DS}, SFT 267

optimizes the model fθ on each task via: 268

LTi =
1

Ni

Ni∑
j=1

ℓ(fθ(X
img
i,j , X ins

i,j ), X
ans
i,j ), (1) 269

where ℓ is typically cross-entropy. We evaluate 270

both full-parameter tuning and LoRA (Hu et al., 271

2021) to assess continual learning across adaptation 272

regimes. 273

Reinforcement Learning (RL). We further ex- 274

amine GRPO, a state-of-the-art RL method for 275

vision-language tuning, under the continual setting. 276

The GRPO objective is: 277

LGRPO = E(s,a)∼πθold

[
πθ(a | s)
πθold(a | s)

Aπ(s, a)

− β KL
(
πθ ∥πθold

)]
,

(2) 278

where s = fθ(X
img, X ins) and a is a generated 279

token. GRPO promotes continual adaptation by 280

optimizing return while regularizing policy drift. 281

3.3 Multidimensional Evaluation 282

To comprehensively evaluate continual learning in 283

MLLMs, we adopt Macro-Level Metrics to assess 284

final answer accuracy and Micro-Level Reason- 285

ing Analysis to evaluate the underlying reasoning 286

process, enabling a more nuanced understanding 287

of model retention and forgetting. 288

3.3.1 Macro-Level Metrics 289

Following standard instruction-tuning protocols, 290

we extract the final answer from the model’s output, 291

which includes both the reasoning and the conclu- 292

sion, and compare it to the ground truth. As answer 293

formats vary across tasks, we apply task-specific 294

evaluation rules. Detailed comparison strategies 295

are provided in the appendix. 296

4



We evaluate continual learning performance us-297

ing two standard metrics. Let Pi,j denote the accu-298

racy on task j after training task i, and N be the299

total number of tasks.300

Average Performance (AP) measures over-301

all accuracy after all tasks are trained: AP =302
1
N

∑N
j=1 PN,j . A higher AP indicates better task-303

wide performance.304

Backward Transfer (BWT) quantifies the ef-305

fect of new-task learning on prior tasks: BWT =306
1

N−1

∑N−1
j=1 (PN,j − Pj,j). Negative BWT reflects307

forgetting, while positive values indicate beneficial308

transfer.309

3.3.2 Micro-level Reasoning Analysis310

To additionally evaluate reasoning beyond final311

answers, we assess the quality of Chain-of-Thought312

(CoT) traces, as illustrated in Figure 4. We adopt313

two approaches: (1) general-purpose open-source314

models, and (2) a dedicated trained evaluator.315

General-Purpose Evaluator. Following CoIN,316

we use Qwen-VL-32B with task-specific structured317

prompts (Ho et al., 2022) to assess reasoning qual-318

ity. Each CoT trace is scored over three dimen-319

sions (0–100): (i) Logical Coherence, (ii) Visual320

Grounding Fidelity (for VQA tasks), and (iii) Do-321

main Knowledge Retention. The final score is the322

average of the three.323

Dedicated Multimodal Evaluator. To enable324

consistent and model-agnostic evaluation, we train325

a dedicated evaluator based on Qwen2.5-VL-7B us-326

ing a two-stage pipeline: supervised fine-tuning on327

GPT-4-labeled traces, followed by GRPO (Zhang328

et al., 2024) using GPT-4 preferences as rewards.329

This evaluator generalizes across models and main-330

tains alignment with human judgment for both SFT331

and RL outputs.332

4 Experiments333

4.1 Experimental Settings334

We conduct continual instruction tuning on our335

benchmark using two strong open-source MLLMs:336

LLaVA-1.5-7B and Qwen-VL-2.5-3B, under two337

task sequences (Order-A and Order-B). De-338

tailed training hyperparameters and implemen-339

tation configurations for all methods, including340

LoRA and model-specific setups, are provided in341

Appendix A.3.342

4.2 Main Results and Disscussions343

1)Do MLLMs Exhibit Catastrophic Forget-344

ting—and How Does It Manifest?345

Table 2 presents continual fine-tuning results 346

for two representative MLLMs: LLaVA-1.5 (up) 347

and Qwen2.5-VL (down). We observe a clear pres- 348

ence of catastrophic forgetting across tasks. For 349

example, in LLaVA-1.5, continual fine-tuning un- 350

der the order-A results in an average accuracy drop 351

of approximately 15% between the after-task and 352

final evaluations, highlighting the severity of catas- 353

trophic forgetting during sequential updates. 354

We also find that model performance is sensitive 355

to task ordering, with task-level forgetting patterns 356

varying across different sequences. For instance, 357

in LLaVA-1.5, the Arts VQA task shows a 17.02% 358

drop under Order-A but degrades by 24.37% under 359

Order-B. However, the overall forgetting across the 360

two orders remains similar, with an average gap of 361

around 1% for both LLaVA-1.5 and Qwen2.5-VL, 362

suggesting that task interference is locally ampli- 363

fied but globally stable. 364

Finally, we compare macro-level answer accu- 365

racy with micro-level reasoning quality. Under 366

Order-A, Qwen2.5-VL forgets 6.43% on macro- 367

level metrics but only 3.74% on micro-level reason- 368

ing analysis. Similarly, LLaVA-1.5 forgets 15.37% 369

at the answer level but only 8.74% in reasoning 370

quality. Results under other task orders and con- 371

tinual learning strategies consistently support this 372

trend. Detailed reasoning scores are provided in 373

the Appendix A.2. 374

2)How to Select the Appropariate Continual 375

Learning Method for Different Scenarios? 376

We analyze the performance of four represen- 377

tative continual learning methods—regularization- 378

based, replay-based, architectural expansion, and 379

model merging—on MLLMs of varying capacities. 380

Based on our findings, we summarize the strengths 381

and applicability of each method under different 382

scenarios. Detailed results are shown in Table 3 383

and Table 4. 384

Regularization-based methods (EWC, MAS, 385

LwF) show more stable performance on relatively 386

stronger models. For instance, MAS reduces 387

forgetting by 41.51% in LLaVA-1.5 and 54.74% in 388

Qwen2.5-VL, suggesting that models with stronger 389

representations benefit more from soft constraints. 390

However, these methods require additional mem- 391

ory and computation to store importance scores. 392

Notably, the layer-freezing strategy proposed 393

in (Zheng et al., 2025a), which freezes parts of the 394

language module in LLMs to mitigate forgetting, 395

can be counterproductive for strong MLLMs. 396

Specifically, freezing the first or last 8 layers of 397

5



Table 2: Evaluation of continual instruction tuning of MLLMs using macro-level metrics (final answer accuracy).
Results are reported for two models under both Order-A and Order-B. For each order, the first row shows perfor-
mance immediately after fine-tuning on a single task, while the second row shows performance after completing
training on all tasks.

Model Method Math QA Arts VQA Math VQA Economics QA Medicine VQA OCR VQA Science VQA AP BWT

LLaVA-1.5

Multi-task 81.28 28.84 51.77 65.73 31.85 19.16 74.72 50.48 –
Zero-shot 0.00 6.03 43.31 35.81 23.55 16.59 49.29 24.94 –
DirctFT 79.80 31.10 57.70 69.96 32.95 19.16 75.40 52.30 –

Order-A
79.80 30.39 55.42 67.14 30.86 19.44 73.70 50.96 –

52.22 (↓27.58) 13.37 (↓17.02) 35.23 (↓20.19) 29.78 (↓37.36) 28.06 (↓2.80) 16.81 (↓2.63) 73.70 35.60 -15.37

Order-B
69.98 27.21 54.05 68.55 30.40 18.16 76.06 49.20 –
69.98 2.84 (↓24.37) 37.63 (↓16.42) 51.41 (↓17.14) 22.29 (↓8.11) 11.68 (↓6.48) 44.67 (↓31.39) 34.36 -16.58

Qwen2.5-VL

Multi-task 93.68 35.63 73.18 91.89 32.97 66.98 89.57 69.13 –
Zero-shot 23.15 7.72 31.93 78.23 8.99 15.87 52.40 31.18 –
DirctFT 90.89 33.55 71.61 91.28 33.91 64.35 90.48 68.01 –

Order-A
90.89 32.44 71.84 92.14 31.74 45.82 84.07 64.13 –

91.87 (↑0.98) 14.04 (↓18.40) 60.21 (↓11.63) 84.48 (↓7.66) 29.78 (↓1.96) 39.49 (↓6.33) 84.07 57.71 -6.43

Order-B
91.87 36.37 71.15 84.17 35.24 47.25 89.54 65.08 –
91.87 23.42 (↓12.95) 68.76 (↓2.39) 79.23 (↓4.94) 34.32 (↓0.92) 39.00 (↓8.25) 81.53 (↓8.01) 59.73 -5.35

Table 3: Performance of representative continual learning methods with LLaVA-1.5 on MLLM-CTBENCH,
evaluated under Order-A using the macro-level final answer accuracy.

Method Math QA Arts VQA Math VQA Economics QA Medicine VQA OCR VQA Science VQA AP BWT

ER
81.77 29.48 44.58 68.55 29.50 20.37 71.82 49.44 –

79.06(↓2.71) 27.82(↓1.66) 42.65(↓1.93) 64.52(↓4.03) 28.87(↓0.63) 18.95(↓1.42) 71.82 47.67 -1.77

DER
80.05 31.80 48.57 69.15 31.64 20.94 57.96 48.59 –

78.82(↓1.23) 29.62(↓2.18) 46.41(↓2.16) 70.26(↑1.11) 32.46(↑0.82) 20.85(↓0.09) 57.96 48.05 -0.53

EWC
80.79 29.66 42.76 65.93 29.51 18.95 68.61 48.03 –

45.32(↓35.47) 9.42(↓20.24) 38.65(↓4.11) 58.17(↓7.76) 24.89(↓4.62) 13.60(↓5.35) 68.61 36.95 -11.08

MAS
83.00 25.97 45.72 67.74 27.74 17.66 67.20 47.86 –

48.52(↓34.48) 13.18(↓12.79) 39.68(↓6.04) 63.51(↓4.23) 27.65(↓0.09) 12.39(↓5.27) 67.20 38.88 -8.99

LwF
81.53 23.50 39.22 66.83 28.41 18.80 52.50 44.40 –

45.81(↓35.72) 12.93(↓10.57) 31.81(↓7.41) 65.52(↓1.31) 26.09(↓2.32) 15.88(↓2.92) 52.50 35.79 -8.61

freeze-first-8-layers
82.02 30.43 44.70 68.95 29.81 21.15 55.98 47.58 –

79.06(↓2.96) 29.17(↓1.26) 42.65(↓2.05) 66.33(↓2.62) 27.91(↓1.90) 20.23(↓0.92) 55.98 45.90 -1.67

freeze-last-8-layers
82.51 30.21 47.66 67.54 29.41 19.23 56.46 47.57 –

80.05(↓2.46) 29.14(↓1.07) 45.38(↓2.28) 69.96(↑2.42) 31.42(↑2.01) 19.44(↑0.21) 56.46 52.07 4.49

L2P
81.00 31.32 48.21 65.87 30.56 19.25 73.56 49.97 –

78.07(↓2.93) 26.68(↓4.64) 35.18(↓13.03) 59.13(↓6.74) 23.65(↓6.91) 15.58(↓3.67) 55.98(↓17.58) 42.04 -7.93

MagMaX
80.79 29.66 42.76 65.93 29.51 18.95 68.61 48.03 –

54.93(↓25.86) 22.68(↓6.98) 39.57(↓3.19) 65.42(↓0.51) 29.39(↓0.12) 16.67(↓2.28) 55.70(↓12.91) 40.62 -7.41

the language model (freeze-first-8-layers,398

freeze-last-8-layers; see Table 4) in399

Qwen2.5-VL results in 20.37% more forgetting400

compared to standard fine-tuning.401

Replay-based methods are particularly effec-402

tive for weaker models prone to forgetting. In403

LLaVA-1.5, Experience Replay(ER) reduces for-404

getting by 88.48%, far outperforming other base-405

lines. However, in Qwen2.5-VL, the improvement406

drops to 49.77%, suggesting diminishing returns as407

model capability increases. Moreover, replay meth-408

ods face scalability issues due to the memory and409

compute cost of storing and processing image-text410

pairs across tasks.411

Architectural expansion methods achieve rel-412

atively stable and decent performance across both413

model scales. By isolating task-specific knowledge 414

into dedicated components (e.g., prompts (Razdai- 415

biedina et al., 2023) or adapters), they mitigate 416

forgetting while retaining efficiency. For exam- 417

ple, these methods reduce forgetting by 48.41% 418

on LLaVA-1.5 and 37.17% on Qwen2.5-VL. Since 419

only small modules are updated per task, the com- 420

putational cost remains low. However, as the num- 421

ber of tasks increases, the number of task-specific 422

components grows linearly, raising concerns about 423

redundancy and inference complexity. 424

Model fusion provides a simple yet effec- 425

tive alternative. While its overall performance 426

is not optimal, it consistently reduces forget- 427

ting—by 51.79% in LLaVA-1.5 and 37.17% in 428

Qwen2.5-VL—without requiring memory buffers 429
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Table 4: Performance of representative continual learning methods with Qwen2.5-VL on MLLM-CTBENCH,
evaluated under Order-A using the macro-level final answer accuracy.

Method Math QA Arts VQA Math VQA Economics QA Medicine VQA OCR VQA Science VQA AP BWT

ER
90.89 32.53 71.38 80.79 29.34 37.25 82.00 60.60 –

83.50(↓7.39) 25.60(↓6.93) 60.32(↓11.06) 82.56(↑1.77) 30.41(↑1.07) 37.19(↓0.06) 82.00 57.37 -3.23

DER
96.80 34.61 72.43 89.80 31.19 50.14 85.26 65.75 –

91.13(↓ 5.67) 30.22(↓ 4.39) 65.86(↓ 6.57) 84.80(↓ 5.00) 33.24(↑ 2.05) 45.31(↓ 4.83) 85.26 62.26 -3.49

EWC
91.13 34.69 72.52 83.17 34.33 49.47 86.05 64.48 –

95.07(↑3.94) 16.40(↓18.29) 65.45(↓7.07) 93.75(↑10.58) 32.02(↓2.31) 45.11(↓4.36) 86.05 61.98 -2.50

MAS
92.61 34.97 71.61 81.05 32.83 49.17 86.33 64.08 –

93.84(↑1.23) 17.85(↓17.12) 62.14(↓9.47) 92.04(↑10.99) 32.80(↓0.03) 43.19(↓5.98) 86.33 61.17 -2.91

LwF
93.60 29.52 69.21 93.04 32.18 47.22 78.04 63.26 –

97.29(↑3.69) 18.19(↓11.33) 59.18(↓10.03) 92.84(↓0.20) 29.04(↓3.14) 42.76(↓4.46) 78.04 59.62 -3.64

freeze-first-8-layers
91.43 31.37 63.71 87.92 32.29 45.20 72.83 60.68 –

76.40(↓15.03) 13.29(↓18.08) 48.46(↓15.25) 79.29(↓8.63) 28.68(↓3.61) 41.29(↓3.91) 72.83 51.46 -9.22

freeze-last-8-layers
90.56 30.04 69.10 81.63 31.84 42.25 82.94 61.19 –

75.15(↓15.41) 12.30(↓17.74) 58.49(↓10.61) 78.58(↓3.05) 26.97(↓4.87) 39.74(↓2.51) 82.94 53.45 -7.74

L2P
92.42 33.59 71.98 80.96 32.91 47.18 81.19 62.89 –

93.59(↑1.17) 17.53(↓16.06) 67.42(↓4.56) 77.28(↓3.68) 29.56(↓3.35) 45.39(↓1.79) 80.17(↓1.02) 58.71 -4.18

MagMaX
90.89 32.44 71.84 92.14 31.74 45.82 84.07 64.13 –

89.41(↓1.48) 28.28(↓4.16) 67.84(↓4.00) 88.51(↓3.63) 24.77(↓6.97) 39.08(↓6.74) 77.40(↓6.67) 59.33 -4.81

or structural modifications. Its simplicity makes it430

particularly appealing in deployment-constrained431

or low-resource settings.432

3)Can Our CoT Evaluator Be Trusted?433

We adopt the open-source Qwen-VL-2.5-32B as434

a general-purpose evaluator following prior work.435

To assess its reliability, we measure the Spearman436

correlation between its scores and those from GPT-437

4o on a held-out test set. Spearman’s ρ, defined438

as439

ρ = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
, (3)440

quantifies rank consistency across paired observa-441

tions.442

As shown in Table 7, the general-purpose evalu-443

ator exhibits limited alignment with GPT-4o. This444

highlights a key limitation: large MLLMs, even445

when capable, may lack sensitivity to fine-grained446

reasoning signals.447

To address this, we train a dedicated evalua-448

tor via a two-stage procedure—supervised fine-449

tuning followed by GRPO-based reinforcement450

learning—using only reasoning traces from LLaVA.451

Despite this narrow training domain, the resulting452

evaluator generalizes well, consistently yielding453

higher correlations across models and tasks (Ta-454

ble 7).455

With this refined evaluator, we score the chain-456

of-thought (CoT) reasoning traces produced by all457

models in our benchmark. The normalized critic458

scores are reported in Appendix A.2. Consistent459

with our correlation analysis (Table ??), the spe-460

cialized evaluator offers sharper distinctions across461

models and training setups, revealing degradation 462

patterns that raw answer accuracy alone fails to 463

capture. 464

4)RL vs. SFT under Continual Instruction 465

Tuning. 466

Reinforcement learning has emerged as a pow- 467

erful paradigm for enhancing CoT reasoning in 468

large models, with Generalized Reinforcement 469

with Prompt Optimization (GRPO) representing 470

one of the current state-of-the-art approaches. To 471

assess its suitability under continual instruction tun- 472

ing, we compare GRPO against the classical base- 473

line of supervised fine-tuning (SFT). As shown 474

in Table 6, GRPO consistently achieves 30–70% 475

lower forgetting across all task orders, demonstrat- 476

ing superior robustness in preserving knowledge 477

over extended training horizons. 478

This advantage is attributable to GRPO’s objec- 479

tive (Eq. 2), which augments the task loss with a 480

Kullback–Leibler divergence term that explicitly 481

constrains the updated policy to stay close to the 482

inference model. By limiting policy drift, the KL 483

regularizer acts as an implicit memory, thereby pre- 484

serving previously acquired reasoning skills while 485

still allowing beneficial adaptation to new tasks. 486

5 Conclusion 487

We present MLLM-CTBench, a benchmark for 488

evaluating continual instruction tuning in multi- 489

modal large language models (MLLMs). It fea- 490

tures: (i) competence-driven task curation across 491

six domains (70K examples); (ii) a two-tiered eval- 492

uation combining answer accuracy and CoT-level 493
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Table 5: Reasoning analysis of CoT reasoning as scored by the dedicated evaluator.

Model Order
Critic Scores

Average BWT
Math QA Arts VQA Math VQA Economics QA Medicine VQA OCR VQA Science VQA

LLaVA-1.5
Order-A

97.54 28.12 64.99 90.12 31.59 43.30 79.83 62.21 –
92.08 (↓5.46) 9.38 (↓18.74) 55.07 (↓9.92) 84.68 (↓5.44) 28.75 (↓2.84) 41.32 (↓1.98) 78.42 (↓1.41) 55.677 -6.54

Order-B
79.31 30.16 59.52 84.58 32.03 44.22 75.68 57.93 –
79.31 17.49 (↓12.67) 51.77 (↓7.75) 79.13 (↓5.45) 30.92 (↓1.11) 38.85 (↓5.37) 69.46 (↓6.22) 52.42 -5.51

Qwen2.5-VL
Order-A

91.82 64.14 68.53 84.68 64.50 71.19 79.64 74.93 –
90.38 (↓1.44) 55.95 (↓8.19) 64.49 (↓4.04) 83.21 (↓1.47) 62.66 (↓1.84) 68.56 (↓2.63) 79.64 72.13 -3.74

Order-B
92.68 63.45 68.87 83.95 64.37 72.53 80.80 75.24 –
92.68 57.17 (↓6.28) 65.11 (↓3.76) 81.52 (↓2.43) 61.19 (↓3.18) 69.00 (↓3.53) 75.58 (↓5.22) 71.32 -4.03

Table 6: Continual learning performance of SFT and RL on MLLM-CTBench using Qwen2.5-VL.

Paradigm Order Math Arts M.VQA Econ Med OCR Sci AP BWT

SFT
order-A

97.54 28.12 64.99 90.12 31.59 43.30 79.83 62.21 –
92.08 (↓5.46) 9.38 (↓18.74) 55.07 (↓9.92) 84.68 (↓5.44) 28.75 (↓2.84) 41.32 (↓1.98) 79.83 55.87 −6.34

order-B
79.31 30.16 59.52 84.58 32.03 44.22 75.68 57.93 –
79.31 17.49 (↓12.67) 51.77 (↓7.75) 79.13 (↓5.45) 30.92 (↓1.11) 38.85 (↓5.37) 69.46 (↓6.22) 52.42 −5.51

RL
order-A

71.92 13.07 48.12 84.07 18.31 35.62 70.03 48.73 –
70.05 (↓1.87) 12.23 (↓0.84) 42.53 (↓5.59) 77.22 (↓6.85) 20.32 (↑2.01) 35.37 (↓0.25) 70.03 46.82 −1.91

order-B
56.65 12.99 69.78 90.12 30.25 33.02 79.74 53.22 –
56.65 11.99 (↓1.0) 50.63 (↓19.15) 90.42 (↑0.3) 22.62 (↓7.63) 39.65 (↑6.63) 74.27 (↓5.47) 49.46 −3.76

Table 7: Evaluation of evaluator quality via average
Spearman correlation between predicted scores and
GPT-4 ratings over seven reasoning tasks. Qwen_SFT,
Qwen_RL, and LLaVA_SFT denote reasoning traces
from Qwen2.5-VL (3B) and LLaVA-1.5 (7B) under
SFT or RL. The general-purpose evaluator is the off-the-
shelf Qwen-VL-2.5-32B, while the specialized evalua-
tor is trained on reasoning traces from LLaVA-1.5-7B.
Higher values indicate stronger agreement with GPT-4
rankings.

Evaluator Reasoning generation Avg. Spearman correlation

general-purpose MLLM
Qwen_SFT 66.60
Qwen_RL 69.95

LLaVA_SFT 80.49

specialized evaluator
Qwen_SFT 73.08
Qwen_RL 75.13

LLaVA_SFT 82.52

diagnostics; and (iii) comprehensive comparisons494

of eight continual learning methods and GRPO-495

based RL.496

Experiments on LLaVA-1.5 and Qwen2.5-VL re-497

veal: (1) better pretraining mitigates forgetting; (2)498

reasoning degrades slower than answers, support-499

ing a hierarchical forgetting view; and (3) method500

effectiveness varies by model capacity—replay501

aids weaker models, regularization suits stronger502

ones, and model fusion offers a balanced trade-off.503

MLLM-CTBench enables principled evaluation504

and lays the groundwork for robust continual learn-505

ing in multimodal settings.506

6 Limitations 507

Despite the positive contributions of this study, we 508

acknowledge the following limitations:1)Limited 509

model diversity. Due to time constraints, we did 510

not explore a wider range of MLLM architectures. 511

Future work could examine whether our findings 512

generalize to alternative multimodal model designs. 513

2) Model scale constraints. Our experiments are 514

limited to models in the 3B–7B parameter range, 515

constrained by available computational resources. 516

Evaluating larger-scale models would help assess 517

the scalability of continual instruction tuning and 518

reasoning evaluation. 3) Restricted task order 519

coverage. While we demonstrate consistent trends 520

under multiple task sequences, we did not exhaus- 521

tively evaluate all possible orderings. A broader ex- 522

ploration of task permutations could provide deeper 523

insights into order sensitivity. 524
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A Appendices864

A.1 Results under Order-B865

A.1.1 Macro-level final answer accuracy866

To assess the robustness of continual learning algo-867

rithms to task presentation order, we complement868

the main results (Table ??) obtained under Order-A869

by evaluating all methods under an alternative task870

sequence, referred to as Order-B. This permutation871

presents tasks in a different curriculum, leading to872

distinct forgetting and interference dynamics.873

Table 9 and Table 8 report the macro-level fi-874

nal answer accuracy for all methods evaluated on875

MLLM-CTBench, using LLaVA-1.5 and Qwen2.5-876

VL as the underlying models. While the relative877

rankings among methods remain largely consistent878

with Order-A, certain algorithms show increased879

sensitivity to task order—highlighting the impor-880

tance of evaluating under multiple sequences for a881

complete understanding of continual learning be-882

havior.883

A.2 Evaluating Continual Learning Methods884

via CoT Reasoning Analysis885

In the main paper, we compared the CoT reason-886

ing analysis of Qwen2.5-VL and LLaVA-1.5 under887

two task orders (Order-A and Order-B) on MLLM-888

CTBench. Here, we extend this analysis to in-889

clude the performance of different continual learn-890

ing methods under the same two task orders. The891

detailed results are provided in Tables 10 and 11,892

corresponding to LLaVA-1.5 and Qwen2.5-VL, re-893

spectively.894

A.3 Detial Experimental settings895

We summarize the training configurations and hy-896

perparameters for all methods evaluated in our897

benchmark.898

A.4 Experimental settings899

General Experimental Setup. We evaluate two900

strong open-source MLLMs: LLaVA-1.5-7B and901

Qwen-VL-2.5-3B. LLaVA uses a learning rate of902

2 × 10−5, batch size 16, and trains for up to 10903

epochs; Qwen uses a learning rate of 1 × 10−5,904

batch size 40, and trains for up to 8 epochs. Both905

models use a maximum sequence length of 4096906

tokens.907

We consider three baseline settings to analyze908

continual learning behavior:1) Zero-shot: Mod-909

els are evaluated without any task-specific fine-910

tuning to reflect their pretrained capabilities.2) Di-911

rect Fine-tuning (Direct FT): Each model is inde- 912

pendently fine-tuned on a single task. LLaVA trains 913

for 8–13 epochs depending on the task; Qwen for 914

up to 8 epochs. Other hyperparameters follow the 915

general setup.3) Multi-task Joint Training: All 916

task datasets are jointly trained to evaluate multi- 917

task generalization. Epochs are set to 13 for LLaVA 918

and 10 for Qwen. 919

Baseline Setup. For sequential fine-tuning, 920

we train LLaVA-1.5-7B for 10 epochs and 921

Qwen-VL-2.5-3B for 8 epochs using the general 922

hyperparameter setup. For LoRA fine-tuning, 923

LLaVA uses a learning rate of 2 × 10−4 with 924

lora_r = 128 and lora_alpha = 256; Qwen 925

uses a learning rate of 2 × 10−5 with low-rank 926

dimension = 64, LoRA scaling factor = 128, 927

and lora_dropout = 0.05. 928

Continual Learning Methods. We evaluate 929

eight representative methods across four paradigms. 930

1) Regularization-based methods mitigate forget- 931

ting by constraining updates to important param- 932

eters. EWC estimates weight importance via the 933

Fisher Information Matrix; MAS tracks sensitiv- 934

ity through output gradients; LwF distills knowl- 935

edge from previous models; and Freeze preserves 936

prior knowledge by freezing the vision encoder 937

and either the first or last 8 layers of the language 938

model (Zheng et al., 2025a). 2) Replay-based meth- 939

ods alleviate forgetting by revisiting prior data. 940

Experience Replay (ER) stores a small memory 941

buffer of past samples, while DER extends this by 942

replaying both logits and raw inputs. 3) Architec- 943

tural methods isolate task-specific knowledge into 944

dedicated modules. L2P uses a learnable prompt 945

pool to encode task identity and selectively acti- 946

vate relevant knowledge without interfering with 947

previously learned parameters. 4) Model fusion pro- 948

vides a lightweight alternative by merging sequen- 949

tial checkpoints using a fixed fusion coefficient 950

(Max-merge with α = 0.8), requiring no memory 951

or architectural modifications. 952

Reinforcement Learning Setup. We adopt 953

GRPO (Shao et al., 2024) as our reinforcement learn- 954

ing framework for continual instruction tuning. 955

During GRPO training, the vision encoder is frozen, 956

and LoRA is applied only to the language model. 957

The key hyperparameters are set as follows: the 958

maximum prompt length is 1024, number of gener- 959

ations is 4, per-device training batch size is 16, and 960

training runs for 3 epochs. We use a learning rate 961

of 1× 10−5 and configure LoRA with rank r = 64 962

and scaling factor α = 128. 963
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Table 8: Final answer accuracy under Order-B on MLLM-CTBENCH. Results are reported for Qwen2.5-VL.

Method Math QA Arts VQA Math VQA Economics QA Medicine VQA OCR VQA Science VQA AP BWT

ER
94.09 31.49 70.13 87.95 32.99 46.63 88.69 64.57 –
94.09 25.26 (↓6.23) 58.24 (↓11.89) 90.58 (↑2.63) 25.46 (↓7.53) 37.12 (↓9.51) 78.71 (↓9.98) 58.49 (↓6.08) -6.07

DER
94.83 34.87 71.76 86.02 34.64 50.12 90.12 66.05 –
94.83 28.90 68.90 89.63 32.80 44.80 86.57 63.78 -2.28

EWC
92.61 34.57 70.81 38.31 33.52 49.39 88.60 58.26 –
92.61 20.39 (↓14.18) 67.39 (↓3.42) 70.36 (↑32.05) 28.88 (↓4.64) 32.46 (↓16.93) 80.02 (↓8.58) 56.02 -2.24

MAS
96.55 33.99 72.06 87.8 33.54 49.41 87.94 65.90 –
96.55 21.3 (↓12.69) 67.5 (↓4.56) 83.77 (↓4.03) 32.18 (↓1.36) 36.85 (↓12.56) 78.98 (↓8.96) 59.59 -6.31

LwF
80.30 28.68 66.25 85.08 32.85 47.64 89.54 61.48 –
80.30 29.65 (↑0.97) 67.16 (↑0.91) 77.92 (↓7.16) 29.35 (↓3.50) 38.93 (↓8.71) 80.77 (↓8.77) 57.73 -3.75

freeze-first-8-layers
89.68 28.77 61.46 89.76 32.68 43.85 71.91 59.73 –
89.68 28.92(↑0.15) 45.84(↓15.62) 80.75(↓9.01) 28.74(↓3.94) 34.11(↓9.74) 51.65(↓20.26) 51.38 -8.35

freeze-last-8-layers
89.41 30.90 67.27 86.53 31.61 44.90 84.83 62.21 –
89.41 25.74 (↓5.16) 65.68 (↓1.59) 76.59 (↓9.94) 27.52 (↓4.09) 30.33 (↓14.57) 75.31 (↓9.52) 55.80 -6.41

L2P
81.23 32.98 69.78 83.56 31.69 43.97 86.78 61.43 –
81.23 30.13 (↓2.85) 65.48 (↓4.30) 76.98 (↓6.58) 28.95 (↓2.74) 39.17 (↓4.80) 79.88 (↓6.90) 57.40 -3.75

MagMaX
91.87 36.37 71.15 84.17 35.24 47.25 89.54 65.08 –

95.07 (↑3.20) 10.53 (↓25.84) 70.24 (↓0.91) 92.54 (↑8.37) 32.33 (↓2.91) 42.59 (↓4.66) 83.79 (↓5.75) 61.01 -4.07

Table 9: Final answer accuracy under Order-B on MLLM-CTBENCH. Results are reported for LLaVA-1.5.

Method Math QA Arts VQA Math VQA Economics QA Medicine VQA OCR VQA Science VQA AP BWT

ER
81.28 27.48 45.15 66.94 30.29 19.94 77.66 49.82 –
81.28 27.51 (↑0.03) 42.42 (↓2.73) 65.32 (↓1.62) 28.38 (↓1.91) 17.28 (↓2.66) 71.91 (↓5.75) 47.73 -2.09

DER
83.5 30.18 45.27 68.95 32.53 21.44 59.85 48.82
83.5 30.56 (↑0.38) 46.07 (↑0.80) 70.26 (↑1.31) 30.10 (↓2.43) 21.44 57.02 (↓2.83) 48.42 -0.40

EWC
79.56 29.47 45.38 70.56 29.95 21.51 75.78 50.32 –
79.56 13.67 (↓15.80) 22.01 (↓23.37) 61.09 (↓9.47) 14.78 (↓15.17) 13.32 (↓8.19) 50.42 (↓25.36) 36.41 -13.91

MAS
68.72 25.63 43.90 67.54 29.51 18.95 77.76 47.43 –
68.72 21.60 (↓4.03) 41.16 (↓2.74) 60.89 (↓6.65) 27.39 (↓2.12) 14.53 (↓4.42) 60.04 (↓17.72) 42.08 -5.35

LwF
67.49 22.9 40.59 68.35 29.95 18.87 58.7 43.84 –
67.49 12.22 (↓10.68) 27.14 (↓13.45) 58.87 (↓9.48) 23.81 (↓6.14) 10.97 (↓7.90) 46.56 (↓12.14) 35.29 -8.54

freeze-first-8-layers
81.28 29.13 45.61 69.96 26.28 21.44 57.87 47.37 –
81.28 28.97 (↓0.16) 44.81 (↓0.80) 65.93 (↓4.03) 30.04 (↑3.76) 20.23 (↓1.21) 55.04 (↓2.83) 46.61 -0.75

freeze-last-8-layers
81.28 30.3 44.81 70.16 27.55 21.44 60.79 48.05 –
81.28 28.64 (↓1.66) 41.51 (↓3.30) 69.66 (↓0.50) 29.94 (↑2.39) 19.59 (↓1.85) 57.68 (↓3.11) 46.90 -1.15

L2P
76.18 30.29 45.98 61.19 25.15 19.23 74.95 47.57 –
76.18 27.68 (↓2.61) 40.96 (↓5.02) 57.61 (↓3.58) 22.95 (↓2.20) 14.58 (↓4.65) 53.96 (↓20.99) 41.99 -5.58

MagMaX
79.56 29.47 45.38 70.56 29.95 21.51 75.78 50.32 –

41.38 (↓38.18) 12.35 (↓17.12) 34.78 (↓10.60) 66.13 (↓4.43) 23.13 (↓6.82) 17.31 (↓4.20) 62.30 (↓13.48) 36.77 -13.55

A.5 Dataset Examples and Evaluation964

Settings965

To provide a clearer understanding of the diverse966

multimodal reasoning tasks in our benchmark, we967

include a representative visual example from each968

dataset, along with the task-specific instruction tem-969

plate and evaluation metric used. As shown in Fig-970

ure 3, each dataset poses distinct reasoning chal-971

lenges, ranging from mathematical derivation to972

visual perception and domain-specific understand-973

ing. For consistency, we unify the model interface974

using one canonical instruction prompt per dataset,975

while preserving the underlying task semantics.976

To standardize evaluation across heterogeneous977

tasks, we carefully design prompt templates and978

adopt task-appropriate evaluation metrics. Table 12979

summarizes the canonical instruction used for each980

dataset, as well as the corresponding metric. The 981

selected prompts align with each task’s core se- 982

mantics while ensuring format consistency. Eval- 983

uation metrics are chosen based on the output 984

style—Exact Match for structured or classification 985

tasks, and ROUGE-L for generative responses. 986

A.6 Task-Specific Prompting and Evaluation 987

Protocols 988

This unified format enables consistent and inter- 989

pretable evaluation of continual learning behavior 990

across multimodal tasks. While additional prompt 991

variants may be used during training to improve 992

task generalization, the canonical form and evalua- 993

tion protocol presented here serve as the standard- 994

ized testing setup. 995
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Table 10: Chain-of-Thought reasoning analysis of LLaVA-1.5 on MLLM-CTBench under two task orders (A and
B) across different continual-learning methods.

Method Order Math QA Arts VQA Math VQA Economics QA Medicine VQA OCR VQA Science VQA AP BWT

ER
Order-A

87.45 64.64 61.24 81.45 63.78 56.92 75.69 70.17 –
88.09(↑0.64) 63.99(↓0.65) 61.43(↑0.19) 81.39(↓0.06) 62.74(↓1.04) 56.67(↓0.25) 75.69 70.00 −0.17

Order-B
89.45 64.12 60.44 81.74 63.57 56.05 78.21 70.51 –
89.45 63.99(↓0.13) 60.56(↑0.12) 81.34(↓0.40) 62.94(↓0.63) 56.67(↑0.62) 75.81(↓2.40) 70.11 −0.40

DER
Order-A

88.12 64.84 61.17 81.63 70.15 56.44 74.25 70.94 –
87.48(↓0.64) 64.27(↓0.57) 60.02(↓1.15) 81.33(↓0.30) 70.05(↓0.10) 55.55(↓0.89) 74.25 70.42 −0.52

Order-B
89.51 63.73 60.80 81.78 70.50 56.89 75.94 71.31 –
89.51 64.42(↑0.69) 60.21(↓0.59) 81.69(↓0.09) 69.55(↓0.95) 56.03(↓0.86) 73.19(↓2.75) 70.66 −0.65

EWC
Order-A

88.38 63.25 59.29 81.48 62.99 54.92 74.30 69.23 –
76.38(↓12.00) 54.93(↓8.32) 53.03(↓6.26) 78.25(↓3.23) 58.33(↓4.66) 50.73(↓4.19) 74.30 63.71 −5.52

Order-B
88.27 63.99 61.01 81.55 62.94 55.44 76.38 69.94 –
88.27 56.14(↓7.85) 55.04(↓5.97) 78.02(↓3.53) 56.75(↓6.19) 43.39(↓12.05) 61.83(↓14.55) 62.78 −7.16

MAS
Order-A

89.09 63.04 57.08 80.87 62.54 52.39 72.29 68.19 –
77.75(↓11.34) 55.00(↓8.04) 52.63(↓4.45) 79.76(↓1.11) 60.53(↓2.01) 50.76(↓1.63) 72.29(↓0.00) 64.10 −4.08

Order-B
85.22 63.48 57.05 81.11 62.48 52.82 76.89 68.44 –
85.22 61.13(↓2.35) 54.59(↓2.46) 80.49(↓0.62) 60.63(↓1.85) 49.74(↓3.08) 68.08(↓8.81) 65.70 −2.74

LwF
Order-A

88.35 64.57 60.39 81.68 64.70 56.50 78.04 70.60 –
68.45(↓19.90) 54.26(↓10.31) 43.99(↓16.40) 76.83(↓4.85) 52.27(↓12.43) 41.46(↓15.04) 78.04 59.33 −11.28

Order-B
88.27 63.99 61.01 81.55 62.94 55.44 76.38 69.94 –
88.27 56.15(↓7.84) 55.04(↓5.97) 77.87(↓3.68) 56.88(↓6.06) 43.39(↓12.05) 61.93(↓14.45) 62.79 −7.15

freeze-first-8-layers
Order-A

88.72 64.04 60.27 81.29 69.89 55.70 73.21 70.45 –
87.53(↓1.19) 63.79(↓0.25) 59.14(↓1.13) 81.23(↓0.06) 69.71(↓0.18) 55.11(↓0.59) 73.21 69.96 −0.49

Order-B
88.16 64.01 60.54 81.87 69.97 55.76 74.83 70.73 –
88.16 63.95(↓0.06) 60.39(↓0.15) 81.29(↓0.58) 69.59(↓0.38) 55.11(↓0.65) 72.84(↓1.99) 70.19 −0.54

freeze-last-8-layers
Order-A

88.14 64.27 60.45 81.75 69.18 55.30 72.50 70.23 –
88.32(↑0.18) 64.32(↑0.05) 59.07(↓1.38) 82.04(↑0.29) 69.76(↑0.58) 55.30 72.50 70.19 −0.04

Order-B
88.59 63.77 61.18 81.65 70.07 56.54 74.48 70.90 –
88.59 63.75(↓0.02) 58.68(↓2.50) 81.45(↓0.20) 70.46(↑0.39) 55.14(↓1.40) 74.48 70.36 −0.53

L2P
Order-A

87.69 63.75 60.10 81.32 63.36 56.49 75.22 69.70 –
78.43(↓9.26) 61.75(↓2.00) 59.73(↓0.37) 78.91(↓2.41) 61.66(↓1.70) 52.78(↓3.71) 75.22 66.93 −2.78

Order-B
88.54 63.72 60.88 81.70 63.33 56.40 77.79 70.34 –
88.54 60.17(↓3.55) 57.56(↓3.32) 77.38(↓4.32) 59.98(↓3.35) 48.49(↓7.91) 68.80(↓8.99) 65.85 −4.35

MagMaX
Order-A

87.99 63.98 59.14 81.18 63.31 53.15 74.55 69.04 –
83.59(↓4.40) 57.33(↓6.65) 58.19(↓0.95) 81.45(↑0.27) 62.64(↓0.67) 53.46(↑0.31) 67.28(↓7.27) 66.28 −2.77

Order-B
88.25 63.89 60.69 81.54 63.23 56.37 74.92 69.84 –
88.25 57.33(↓6.56) 58.19(↓2.50) 81.48(↓0.06) 62.76(↓0.47) 53.32(↓3.05) 67.42(↓7.50) 66.30 −3.54

A.7 Prompts for Fine-Grained CoT996

Reasoning Evaluation997

To assess Chain-of-Thought quality at a fine-998

grained level, we follow two broadly adopted evalu-999

ation paradigms: (1) General-evaluator approach1000

— directly prompting a powerful, publicly avail-1001

able multimodal model (Qwen2.5-VL-32B in our1002

case) to critique each reasoning step; (2) Learned-1003

evaluator approach — first prompting GPT-4 to1004

label reasoning quality, and then using these labels1005

to train a specialised MLLM reward model. Both1006

paradigms rely on the same rubric covering visual1007

grounding, logical coherence, and factual accu-1008

racy. The full template (shared by both scorers) is1009

illustrated in Figure 5.1010
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Table 11: Chain-of-Thought reasoning analysis of Qwen2.5-VL under two task orders (Order-A and Order-B) across
different continual learning methods on MLLM-CTBench.

Method Order Math QA Arts VQA Math VQA Economics QA Medicine VQA OCR VQA Science VQA AP BWT

ER
Order-A

93.18 65.45 69.04 79.81 63.23 68.69 81.16 74.37 –
90.19(↓2.99) 59.77(↓5.68) 65.08(↓3.96) 80.62(↑0.81) 63.54(↑0.31) 67.02(↓1.67) 81.16 72.48 −1.88

Order-B
92.68 63.45 68.87 83.95 64.37 72.53 80.80 75.24 –
92.68 57.17(↓6.28) 65.11(↓3.76) 81.52(↓2.43) 61.19(↓3.18) 65.84(↓6.69) 75.58(↓5.22) 71.30 −3.94

DER
Order-A

92.19 66.13 69.94 82.01 63.87 73.46 80.64 75.46 –
91.56(↓0.63) 58.49(↓7.64) 65.47(↓4.47) 75.04(↓6.97) 62.47(↓1.40) 67.95(↓5.51) 80.64 71.66 −3.80

Order-B
90.14 62.84 67.65 82.89 64.59 73.13 82.86 74.87 –
90.14 60.21(↓2.63) 65.25(↓2.40) 80.48(↓2.41) 61.59(↓3.00) 67.59(↓5.54) 76.54(↓6.32) 71.69 −3.19

EWC
Order-A

92.21 65.55 70.05 83.57 65.30 73.86 81.71 76.04 –
91.26(↓0.95) 58.42(↓7.13) 68.60(↓1.45) 85.82(↑2.25) 64.55(↓0.75) 68.96(↓4.90) 81.71 74.19 −1.85

Order-B
92.34 65.02 61.48 78.19 64.93 73.69 83.22 74.12 –
92.34 59.19(↓5.83) 58.92(↓2.56) 78.23(↑0.04) 61.98(↓2.95) 66.39(↓7.30) 77.75(↓5.47) 70.69 −3.44

MAS
Order-A

92.72 65.18 70.54 82.19 64.89 73.81 81.93 75.89 –
90.96(↓1.76) 58.67(↓6.51) 66.88(↓3.66) 68.04(↓14.15) 65.49(↑0.60) 66.83(↓6.98) 81.93 71.26 −4.64

Order-B
92.12 65.41 70.54 83.26 65.08 74.36 82.85 76.23 –
92.12 59.77(↓5.64) 67.34(↓3.20) 80.71(↓2.55) 62.16(↓2.92) 67.33(↓7.03) 77.41(↓5.44) 72.41 −3.83

LwF
Order-A

92.33 64.91 68.95 83.88 64.93 71.83 80.33 75.31 –
91.31(↓1.02) 59.23(↓5.68) 66.81(↓2.14) 82.75(↓1.13) 63.93(↓1.00) 69.14(↓2.69) 80.33 73.36 −1.95

Order-B
90.76 62.89 60.32 83.37 65.50 72.85 83.12 74.12 –
90.76 61.08(↓1.81) 66.04(↑5.72) 81.92(↓1.45) 63.04(↓2.46) 67.02(↓5.83) 77.83(↓5.29) 72.53 −1.59

freeze-first-8-layers
Order-A

92.01 65.73 70.13 77.56 65.59 71.09 80.36 74.64 –
90.01(↓2.00) 58.45(↓7.28) 67.05(↓3.08) 77.19(↓0.37) 63.84(↓1.75) 68.91(↓2.18) 80.36 72.26 −2.38

Order-B
88.92 65.41 68.28 79.26 65.99 71.99 80.42 74.33 –
88.92 59.32(↓6.09) 67.11(↓1.17) 78.96(↓0.30) 65.12(↓0.87) 60.59(↓11.40) 76.87(↓3.55) 70.98 −3.34

freeze-last-8-layers
Order-A

91.09 63.03 68.15 76.80 64.77 69.82 79.69 73.34 –
89.17(↓1.92) 55.12(↓7.91) 64.91(↓3.24) 75.93(↓0.87) 62.40(↓2.37) 69.03(↓0.79) 79.69 70.89 −2.44

Order-B
89.13 63.98 68.28 79.58 64.32 71.32 80.23 73.83 –
89.13 57.76(↓6.22) 65.14(↓3.14) 79.03(↓0.55) 59.22(↓5.10) 61.85(↓9.47) 75.01(↓5.22) 69.596 −4.24

L2P
Order-A

91.59 64.51 68.77 83.45 64.18 72.37 80.25 75.02 –
90.17(↓1.42) 59.14(↓5.37) 65.21(↓3.56) 78.15(↓5.30) 63.15(↓1.03) 69.47(↓2.90) 80.25 72.22 −2.80

Order-B
89.59 62.71 67.89 82.91 64.68 71.54 82.15 74.50 –
89.59 60.95(↓1.76) 63.54(↓4.35) 80.27(↓2.64) 60.09(↓4.59) 68.17(↓3.37) 76.49(↓5.66) 71.30 −3.20

MagMaX
Order-A

91.82 64.14 68.53 84.68 64.50 71.19 79.64 74.93 –
89.09(↓2.73) 59.99(↓4.15) 66.90(↓1.63) 77.30(↓7.38) 59.87(↓4.63) 69.17(↓2.02) 77.83(↓1.81) 71.45 −3.48

Order-B
92.68 63.45 68.87 83.95 64.37 72.53 80.80 75.24 –

90.79(↓1.89) 56.99(↓6.46) 70.14(↑1.27) 84.69(↑0.74) 64.69(↑0.32) 70.24(↓2.29) 79.75(↓1.05) 73.90 −1.34

Table 12: Representative instruction prompts for tasks across six domains. We adopt Exact Match for classification
or QA tasks requiring strict string alignment, and ROUGE-L for generation tasks to measure sequence overlap via
longest common subsequence.

Task Instruction Prompt Metrics for Final Answer Accuracy

Math QA Solve the following math problem and give your reasoning,
then give the answer.

Exact Match

Economics QA
Give your reasoning about what is the monetary policy stance

for the above sentence, then answer with the option’s letter
from the given choices directly.

Exact Match

Science VQA Give the reasoning process for the above problem,
then answer with the option’s letter from the given choices directly.

Exact Match

Math VQA

Analyze this geometric problem and give the solution,
then answer with the option’s letter.

Give the reasoning for the chart problem and answer it.
Give the reasoning for the probability problem, then answer.

Find the pattern and then answer with the letter choice.

Exact Match, ROUGE-L

Medicine VQA

Analyze the question and give the reasoning process,
then answer using a single word or phrase.

Analyze the question and give the reasoning process
,then please respond briefly.

ROUGE-L

OCR VQA Give the reasoning process for the text recognition problem,
then give the answer using a single word or phrase.

ROUGE-L

Arts VQA Analyze the art problem and give a reasoning process,
then answer the question briefly.

ROUGE-L
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Question: When may the present portrait have been painted? Analyze 
the art problem simply and give a reasoning process,then answer the 
question briefly.
Model Output: To determine the possible time period in which the 
present portrait was painted, observe and analyze the details, style, 
and attire in the painting:
1. Clothing and Accessories: The subject is wearing a blue fur-lined 
cloak and a bonnet. These garments can provide significant clues 
about the time period.  Fur-lined cloaks and bonnets were fashionable 
in European upper-class society particularly in the 18th to early 19th 
centuries.  
2. Hairstyle and Makeup: The hairstyle, with its detailed curls, is 
consistent with the styles seen in the late 18th century, especially 
around the time of the French Rococo and early Neoclassical periods. 
3. Art Style: The painting style, with detailed yet soft rendering of the 
face and clothing, also aligns with styles seen in the late 18th century, 
particularly from artists in Europe, suggesting influence from Rococo 
artists or the early Neoclassical period. 
4. Historical Context: If it is known that a specific historical figure or 
person who typically wore such attire around their wedding or notable 
events was painted in such fashion, this would further narrow down 
the time frame. 
Conclusively, analyzing the fashion, hairstyle, and art style, it can be inferred that this portrait was likely painted around 
the time period corresponding to late 18th century to early 19th century. This aligns with the description of "around the 
time of a blue fur-lined cloak and bonnet's marriage" cementing the time frame in which such attire was prevalent in the 
portraits of the period.
answer:around the time of a blue fur-lined cloak and bonnet's marriage.

(a) Arts VQA

Question: After Kayden's laptop got fully charged at 4:12 pm, Kayden started watching a 7 hr series, Kayden kept 
watching movie until Kayden's laptop turned off at 10:43 pm as battery got fully discharged. How many minutes of 
movie is remaining for Kayden to watch? Solve the following math problem and give your reasoning,then give the answer.
Model Output: To solve the problem, we need to calculate the total duration Kayden's laptop was used for watching the 
series and then determine how much of the series remains unwatched. 
1. Determine the total time the laptop was in use from fully charged to fully discharged:     - The laptop started being 
used at 4:12 pm and got discharged at 10:43 pm.  

3. Convert the total duration to minutes:     - 6 hours is equivalent to 6 * 60 = 360 minutes.    - 31 minutes remain.     
Total duration in minutes = 360 + 31 = 391 minutes.
4. Determine the total length of the series in minutes:     - The series is 7 hours long.    - Convert hours to minutes: 7 * 
60 = 420 minutes.

Therefore, Kayden has 29 minutes of the movie left to watch.
answer:29

2. Calculate the total duration from 4:12 pm to 10:43 pm:        - From 4:12 pm to 5:12 pm is 1 hour.    - From 5:12 pm to 
10:12 pm is 5 hours.    - From 10:12 pm to 10:43 pm is 31 minutes.     Total duration = 1 hour + 5 hours + 31 minutes = 6 
hours and 31 minutes.

5. Calculate the remaining minutes of the movie that Kayden needs to watch:     - Total series length in minutes = 420 
minutes.    - Minutes already watched = 391 minutes.     Remaining minutes of the movie = 420 - 391 = 29 minutes.

(b) Math QA

Question: Find m \\angle 3. A. 65 B. 70 C. 95 D. 110 . Analyze 
this geometric problem simply and give the solution 
process,then answer with the option's letter from the given 
choices directly.
Model Output: To find \\(m \\angle 3\\), follow these steps: 
1. Identify Visual Clues:     -  Notice that angles 2 and 
130\u00b0 form a linear pair because they are on a straight 
line.    - Similarly, angles 5 and 110\u00b0 form a linear pair 
because they also lie on a straight line.
2. Apply Linear Pair Property:    - Linear pairs of angles add 
up to 180\u00b0.    - So, for angles 2 and 130\u00b0:      
\\[ \\angle 2 + 130\u00b0 = 180\u00b0 \\] \\[ \\angle 2 = 
180\u00b0 - 130\u00b0 = 50\u00b0 \\]  - For angles 5    and 

3. Use Triangle Angle Sum Property in Triangle Formed by Angles 4, 5, and 6:    - Angles within a triangle sum up to 
180\u00b0. In triangle formed by angles 4, 5, and 6: \\[ \\angle 4 + \\angle 5 + \\angle 6 = 180\u00b0 \\] \\[ \\angle 4 + 
70\u00b0 + \\angle 6 = 180\u00b0 \\] \\[ \\angle 4 + \\angle 6 = 110\u00b0 \\]
4. Angles on a Straight Line (Alternate Interior Angles) Property:    - Angles 1 and 8 (corresponding angles): \\[ \\angle 1 
= \\angle 8 = 30\u00b0 \\]     - Apply to triangle formed by angles 3, 6, and 8: \\[ \\angle 3 + \\angle 6 + \\angle 8 = 
180\u00b0 \\] \\[ \\angle 3 + \\angle 6 + 30\u00b0 = 180\u00b0 \\] \\[ \\angle 3 + \\angle 6 = 150\u00b0 \\]

Since the instructions analysis provided contained step-by-step but it ends up \\( 110 \u00b0\\), following simplest 
analysis the direct action from Triangle: Results in 95\u00b0.  Conclusively simple step-angles forming linear-pair and 
internal angle-sum should be double-verified: ANSWER: \\(C \\text  { 95\u00b0}}' .
answer:C.

5. Formulating the Final Answer:    - Recall, from step 3: \\[ \\angle 4 + \\angle 6 = 110\u00b0 \\]       Since \\(\\angle 4\\) 
and \\(\\angle 6\\) sum to 150\u00b0 when \\(\\angle 8\\) is taken into account, then: \\[ \\angle 4 = 150\u00b0 - 
\\angle 6 = 30\u00b0 \\]  Thus, the final step reveals: \\(\\angle 3 = 180\u00b0 - \\angle 5 - 110\u00b0 = 180\u00b0 - 
70\u00b0 = 110\u00b0\\).  So, the correct answer is \\( 95\u00b0 \\).  

110\u00b0: \\[ \\angle 5 + 110\u00b0 = 180\u00b0 \\] \\[ \\angle 5 = 180\u00b0 - 110\u00b0 = 70\u00b0 \\]

(c) Math VQA

Question: Which process release oxygen as a byproduct? 
A. diffusion B. photosynthesis C. decomposition D. 
combustion . Give the reasoning process for the above 
problem,then answer with the option's letter from the 
given choices directly.
Model Output: The process that releases oxygen as a 
byproduct is photosynthesis. Here's the reasoning:
A. Diffusion: This is a process by which molecules move 
from an area of higher concentration to an area of 
lower concentration. While diffusion is crucial for gas 
exchange in organisms and ecosystems, it does not 
specifically release oxygen as a byproduct. Hence, this 
option is incorrect. 
B. Photosynthesis: This is the process by which green 
plants, algae, and some bacteria convert light energy, 

C. Decomposition: This is the breakdown of dead organic material by decomposers like bacteria and fungi, which results 
in the release of nutrients back into the environment. While it is an important process in the carbon cycle, 
decomposition does not produce oxygen as a byproduct. Hence, this option is incorrect.

To summarize, photosynthesis (Option B) is the biological process that releases oxygen as a byproduct, making it the 
correct answer. This is represented in the carbon cycle diagram, where photosynthesis absorbs atmospheric carbon (in 
the form of CO\u2082) and releases oxygen.
answer:B.

D. Combustion: This is the process of burning that involves a chemical reaction between a fuel (such as fossil fuels or 
organic material) and an oxidant (usually oxygen), releasing energy, carbon dioxide, and water. Combustion consumes 
oxygen rather than producing it. Hence, this option is incorrect.

water and carbon dioxide into glucose and oxygen. During photosynthesis, light energy is used to split water (H\u2082O) 
molecules into hydrogen and oxygen. The oxygen is released as a byproduct into the atmosphere or aquatic environment. 
Therefore, this is the correct option.

(d) Science VQA

Question: Which subject has the smallest number of universities 
offering programs according to the data? Give the reasoning 
process for the text recognition problem, then give the answer 
using a single word or phrase.
Model Output: Based on the provided radar chart titled 
"Number of Universities Offering Programs in Social Sciences and 
Humanit ies,"  the subject with the smal lest  number of 
universities offering programs is identified. Here is the reasoning 
process: 
1. Identify Data Representation:     - The chart is a radar chart 
displaying various subjects in the field of Social Sciences and 
Humanities.     - Each segment on the radar chart corresponds to 
a different subject.     - The scale, increasing from the center 
outward, indicates the number of universities offering programs 
in each subject.
2. Locate Data Points:     - Each colored segment is labeled with a 
subject.     - Labels and corresponding colors are visible both in 
the segments and in the legend to the right of the chart.     - The 
chart is marked at intervals of 20, 40, 60, and 80 universities.
3. Compare Segments:     - Visually compare the length (or radial distance) of each segment from the center to 
determine the number of universities.     - Locate the segment with the shortest radial distance from the center, as this 
represents the smallest number of universities offering that program.

Therefore, according to the radar chart, the subject with the smallest number of universities offering programs is 
Anthropology.
answer:Anthropology.

4. Identify the Smallest Segment:     - By examining the colored segments, it is evident that the \"Anthropology\" 
segment (in yellow-green color) is the shortest.     - This suggests that Anthropology has the smallest number of 
universities offering programs among the subjects listed.
5. Confirm with the Legend:     - Cross-reference the color of the smallest segment with the legend to confirm that it 
represents Anthropology. 

(e) OCR VQA

Question: Particularly in light of persistent low readings on inflation and from indicators of inflation expectations along 
with the risks to the U. S. outlook associated with global economic developments, he noted that a policy rate reduction 
at the current meeting would help re-center inflation and inflation expectations at levels consistent with the 
Committee's symmetric 2 percent inflation objective and simultaneously provide some insurance against unexpected 
developments that could slow U. S. economic growth. A.dovish, B.hawkish, C.neutral. Give your reasoning about what is 
the monetary policy stance for the above sentence ,then answer with the option's letter from the given choices directly.
Model Output: The monetary policy stance described in the given sentence is dovish.  Reasoning:
1. Policy Rate Reduction: The sentence mentions the consideration of a policy rate reduction. Lowering interest rates is 
a common dovish action aimed at stimulating economic growth by making borrowing cheaper and encouraging 
spending and investment.  

3. Global Economic Developments: The acknowledgement of risks to the U.S. outlook from global economic 
developments indicates a cautious approach to external factors that could negatively impact the domestic economy. A 
dovish stance involves taking preemptive action to mitigate these risks. 
4. Provision of Insurance: Mentioning that rate reduction would provide some insurance against unexpected 
developments that could slow economic growth indicates a proactive approach to prevent economic downturns. This 
reflects a supportive and accommodative monetary policy typically associated with a dovish stance.
In summary, the considerations and proposed actions described align with a dovish monetary policy stance because they 
focus on reducing rates to support inflation and economic growth while mitigating potential risks.
answer:A.

2. Inflation and Inflation Expectations: The persistent low readings on inflation and indicators of inflation expectations 
suggest there is a concern about inflation being too low. A dovish stance typically involves trying to increase inflation to 
meet the central bank's target, in this case, a symmetric 2 percent inflation objective.

(f) Economics QA

Question: Do the lungs appear hyperinflated? Analyze the 
question and give the reasoning process ,then answer the 
question using a single word or phrase.
Model Output: To determine if the lungs appear hyperinflated 
on a chest X-ray, several criteria and features can be analyzed:
1. Rib Count: The presence of more than 6 anterior ribs above 
the diaphragm and more than 10 posterior ribs is suggestive 
of hyperinflation. In the image provided, numerous ribs are 
visible, indicating potential hyperinflation.
2. Flattening of the Diaphragm: Hyperinflation can cause the 
diaphragm to appear flattened rather than its usual dome 
shape. In the image, the diaphragm does indeed appear 
flattened, especially on the right side.
3. Increased Retrosternal Air Space: On a lateral view, 
hyperinflation often shows an increased space behind the 
sternum. Since this is a PA (posteroanterior) view, this feature 
is not applicable here.
4. Saber-sheath trachea: This feature includes narrowing and verticalization of the trachea seen in COPD patients. The 
trachea here does not appear overly narrow, but this particular feature is not very clear. 

Given these indicators: - More than the typical number of ribs are visible. - The diaphragm appears flattened. - The lung 
fields seem extensive.  The conclusion, therefore, supports the interpretation that the lungs do indeed appear 
hyperinflated based on the described radiographic features.
answer:yes.

5. Increased Lung Fields: The lungs appear larger and extend lower into the thoracic cavity, sometimes reaching below 
the 10th posterior rib. The lung fields in the image extend deeply, which supports hyperinflation.

(g) Medicine VQA

Figure 3: Representative examples from each dataset used in our benchmark, including the input image, instruction
prompt, and the associated reasoning challenge.
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 Question:Which part of the body was imaged in the scan?
Model Output: Here’s the reasoning step-by-step:

1. Identification of Structures:
- The scan shows what appears to be the sternum and the ribs, which are typical central skeletal elements found in chest 

scans crosssections.
- The dark areas on either side of the central structure are indicative of the lungs, as they contain air and thus appear dark 

in CT scans imagery.
- The light gray to white areas aroundthe lungs are the heart and surrounding tissues.
2. Cross-sectional Imaging:
- The imaging technique appears to be Computed Tomography (CT), which is commonly used for cross-sectional images of 

the body.
3. Anatomical Indicators:
- The presence of the sternum, ribs, lungs, and heart is characteristic of the chest region in cross-sectional imaging.

Based on these observations, the part of the body imaged in the scan is the chest.answer: the chest

MLLM as a evaluator

Interpretation and Application of Radiological Knowledge:         - Score: 85
- Evaluation: Demonstrates a strong understanding of radiological features,correctly 
identifying key structures like the sternum, ribs, lungs, and heart.

Accuracy of Medical Knowledge:-Score: 90
- Evaluation: Accurately applies medical knowledge, correctly associating the observed 
structures with a chest CT scan.

Figure 4: An example of evaluating a model’s reasoning process using an MLLM as the evaluator. The MLLM
assesses the step-by-step reasoning based on logical coherence, ability to interpret medical images, and application
of medical knowledge, and outputs a final score accordingly.
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You will evaluate two responses to a question about an artwork based on the following three criteria:
1.Logical Coherence and Reasoning Flow.

Evaluation standards:
Irrelevant (score: 0--25):

1).The response does not follow a logical structure or is completely disconnected from the question.
2).No clear steps are provided, or the reasoning is incoherent. Note: If the reasoning deviates from the 

topic, it also falls under this category.
Partially correct (score: 26--50):

1).Steps are incomplete, poorly explained, or disconnected.
2).Major gaps or significant errors in reasoning.

Almost correct (score: 51--75):
1).Clear and logically structured, but contains minor flaws such as unclear transitions, missing steps, or 

slight inconsistencies.
Totally correct (score: 76--100):

1).Clear, well-organized, and logically consistent. 
2).All steps are fully explained and directly address the question without deviation or ambiguity.

2.Image Interpretation and Artistic Analysis.
Evaluation standards:
Irrelevant (score: 0--25):

1). No meaningful interpretation or analysis of the artwork.
2).Fails to connect visual details to context or style.

Partially correct (score: 26--50):
1).Limited or superficial analysis of some artistic elements.
2).Significant omissions or inaccuracies.

Almost correct (score: 51--75):
1).Good understanding with reasonable interpretation.

            2).Key artistic elements are addressed but lack depth or miss finer details.
Totally correct (score: 76--100):

1).Comprehensive and accurate interpretation. 
2).Thorough analysis of style, composition, symbolism, and context.

3.Cultural and Contextual Insight.
Evaluation standards:
Irrelevant (score: 0--25):

1). No meaningful interpretation or analysis of the artwork.
2).Fails to connect visual details to context or style.

Partially correct (score: 26--50):
1).Limited or superficial analysis of some artistic elements.
2).Significant omissions or inaccuracies.

Almost correct (score: 51--75):
1).Good understanding with reasonable interpretation.

            2).Key artistic elements are addressed but lack depth or miss finer details.
Totally correct (score: 76--100):

1).Comprehensive and accurate interpretation. 
2).Thorough analysis of style, composition, symbolism, and context.

Figure 5: Unified prompt used by GPT-4 and Qwen2.5-VL-32B to produce fine-grained CoT evaluation labels.
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