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Abstract

Recent advancements in large language mod-
els have shown their effectiveness in high-level
robot planning. However, these models have
limitations when handling longer and more
complex instructions like “stack a pyramid” or
“solve the Tower of Hanoi”. In this paper, we
propose an innovative approach called Robotics
Toolformer (RT), which aims to enhance the
mixed-modal reasoning and long-term decision-
making capabilities of language model-based
robotics agents. RT introduces a multimodal
reasoning paradigm for unified tool usage. It
employs reasoning-acting traces with external
mixed-modal tools to assist the agent in deduc-
ing, tracking, and updating action plans for em-
bodied planning. By incorporating and expand-
ing these tools, the agent can leverage a wider
range of capabilities, enabling it to perform
more complex tasks with only in-context learn-
ing from a single mixed-modal demonstration.
When evaluating the Cliport benchmark (Shrid-
har et al., 2022; Zeng et al., 2020), our proposed
method surpasses the performance of the imita-
tion learning-based method, which extensively
pre-trains on robotics manipulation tasks, as
well as the code-as-policies (Liang et al., 2022)
approach. Our approach demonstrates supe-
rior performance and efficiency by effectively
handling complex instructions and achieving
higher task success rates through learning from
a one-shot mixed-modal demonstration.

1 Introduction

LLMs (Brown et al., 2020) have been utilized
in high-level robot planning(Vemprala et al.,
2023; Liang et al., 2022; Ahn et al., 2022),
where they enable robots to understand and in-
terpret natural language instructions provided
by humans. By leveraging their language gen-
eration capabilities, LLMs can translate textual
instructions into executable actions, enabling
robots to perform complex tasks. While LLMs
have proven effective in certain robot planning
scenarios, their capabilities to handle longer

and more complex instructions remain limited.
Tasks that involve multi-step processes or in-
tricate operations pose challenges for LLMs,
as they struggle to generate accurate and co-
herent action plans from such instructions. For
example, instructions like “stack a pyramid” or
“solve the Tower of Hanoi” takes robot to per-
form multiple actions in a specific sequence,
each dependent on the success of the preceding
one. The complexity of such instructions of-
ten exceeds the capabilities of traditional LLM-
based approaches, leading to suboptimal per-
formance and limited practical applicability in
real-world scenarios.

The previous works (Liang et al., 2022; Vem-
prala et al., 2023) of code generation chain
of thought (Wei et al., 2022) carry out sev-
eral pre-defined human-make prompts to derive
the plans using their own internal representa-
tions to generate thoughts and is not grounded
in the physical world, which limits its ability
to reason reactively or update its knowledge.
This can lead to issues like hallucination and
error propagation over the reasoning process.
One way to reduce hallucination and increase
the alignment between real embodied environ-
ments is to introduce multi-modal reasoning.
Huang et al. (2022); Zeng et al. (2022); Ahn
et al. (2022) adopt a pipeline of firstly ground
the object detected in the scene to text, use a lan-
guage model to generate domain-specific plans,
and then use an imitation learning-based con-
troller to execute the plans. However, in these
works, the visual-to-text model is solely uti-
lized for object detection purposes and does not
actively contribute to the disassembly of com-
plex instructions into action primitives that can
be executed by the LLM agent. The challenge
of handling complex long-horizon instructions
has not been effectively addressed in previous
multi-modal LLM-based methods.

To solve the challenge of LLM-based agents
struggling at handling complex long-horizon
instructions, and inspired by ReAct (Yao et al.,
2022) and Toolformer (Schick et al., 2023) and
code-as-policies (Liang et al., 2022), we pro-



ﬂ Let's Think Step by Step!

§ [Thought] | need to use the put_a_on_b actions to stack the
blocks in a pyramid shape. | should start with the base and work
- my way up. /
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Figure 1: The Robotics Toolformer is an LLM-based agent that can use mixed-modal tools to solve complex
long-horizon embodied tasks. The instruction is sent to the task selection modules for prompt template selection.
The robotics toolformer then produces a mixed-modal reasoning-acting trace comprising thought: a natural language
description of what should be done next, action: tool selection and action proposing, and observation: the feedback
of the proposed action from the embodied environment.

pose Robotics Toolformer(RT), an embodied more, our results are comparable to Cliport
intelligence paradigm to combine mixed-modal with instruction oracle.

reasoning and acting traces with toolformer for

solving diverse robotics tasks. Robotics Tool-

former prompts LLMs to generate both reason- 2  Related Works

ing traces and actions pertaining to a task in an

interleaved manner, which allows the model to Chain of Thought for Embodied Inte]]igence.
perform dynamic reasoning to create, maintain, LLMs exhibits impressive in-context learning ca-

and adjust high-level plans for acting (reason

) . ! ) pabilities for helping robotics planning (Ahn et al.,
to act), while also interacting with the external

. . . 2022; Zeng et al., 2022; Vemprala et al., 2023). The
embodied environments by mixed-modal tool ) . ) .
augmentation (e.g., python interpreter, multi- prompting method that is mostly taken in robotics
modalities pre-trained models, etc.) to incorpo- controlling is Chain-of-Thought(Cot) (Wei et al.,
rate additional information into reasoning. 2022; Driess et al., 2023; Liang et al., 2022). How-
ever, according to (Yao et al., 2022), Cot reasoning
is a static black box, in that the model uses its own
internal representations to generate thoughts and is
not grounded in the external world, which limits its

To summarize, our key contributions are the
following:

* Multimodal Reasoning for Unifed tool us-

ing: We introduce the Robotics Toolformer ability to reason reactively or update its knowledge.
framework, which addresses the challenges Vanilla Cot can lead to issues like fact hallucination
faced by LLM-based agents when handling and error propagation over the reasoning process.
complex long-horizon instructions. This One attempt to mitigate the problem of halluci-

framework enables the unified use of tools
from different modalities in embodied con-
trol, enhancing the agent’s reasoning and

nation is multi-modal chain-of-Thought (Zhang
et al., 2023), which incorporates language (text)
acting capabilities. and vision (images) modah.tles into a twp—stage
« We demonstrate the superior performance of framework that separates rationale generation and
our approach on long_horizon tasks compare answer inference. Another is ReAct (YaO et al.,
to previous LLM-based approaches. Further- 2022), which generates both reasoning traces and



Imagine we are working with a manipulator robot. This is a robotic arm with 6 degrees of
freedom that has a suction pump attached to its end effector. | would like you to assist me in
sending commands to this robot given a scene and a task.

Atany point, you have access to the following functions:

put_a_on_b("block_a", "block_b")

put_a_on_b_and_c(*block_a", "block_b", "block_c*)

You are allowed to create new functions using these, but you are not allowed to use any
other hypothetical functions.

Keep the solutions simple and clear. The positions are given in mm and the angles in
degrees. You can also ask clarification questions using the tag "Question - *. Here is an
example scenario that illustrates how you can ask clarification questions.

Thought:
Action:

Observation: ‘table’

Instruction: stacking block pyramid.
| will start by putting the lightest brown block on the table.

Action Input: put_a_on_b("lightest_brown_block", "table")

Instruction: stacking block pyramid.

Thought:

I need to use the put_a_on_b and put_a_on_b_and ¢
actions to stack the blocks in a pyramid shape. | should
start with the base and work my way up.

Action:

Action Input: video_captioning()

Observation: ['1. put the green block on the lightest brown
block 2. put the cyan block on the middle brown block 3. put

m Certalnly! To stack a pyramid using the given blocks using the "put_a_on_b" and

*put.a_on_b_and_c primitives, | will assume that the blocks are initially scattered randomly

in the scene. Here's the Python code to accomplish the task:

# Stacking pyramid
def stack_pyramid():

# Step 1: Place the bottom layer
put_a_on_b("blue_block", "lightest_brown_block")
put_a_on_b("yellow_block", "lightest_brown_block")

Thought:

Now | will put the yellow block on top of the lightest brown
block.

Action:

Action Input: put_a_on_b("yellow_block",
"lightest_brown_block")

Observation: the current reward is 0.0

Thought:

Finally, | will put the blue block on top of the red block to

the blue block on the darkest brown block 4. put the gray
block on the green and cyan blocks 5. put the brown block
on the cyan and blue blocks 6. put the blue block on the
gray and brown blocks']

Thought:

The fifth block has been successfully placed on the base. |
need to move on to the final step and place the blue block
on the gray and brown blocks.

complete the pyramid.
Action:

# Step 2: Place the middle layer
put_a_on_b_and_c("green_block", "blue_block",

"lightest_brown_block")
put_a_on_b_and_c("red_block", "blue_block", "lightest_brown_block")

# Step 3: Place the top layer

put_a_on_b_and_c("brown_block", "green_block",
"lightest_brown_block")

put_a_on_b_and_c("cyan_block", "green_block",

“lightest_brown_block")

# Calling the stack_pyramid function to perform the task

stack_pyramid()
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Action Input: put_a_on_b("blue_block", "red_block")
Observation: the current reward is 0.0

Robotics ReAct

Action:

Action Input: put_a_on_b_and_c("blue_block",
"gray_block", “brown_block")

Observation: the current reward is 0.9999999999999999
Thought:

Final answer is The block pyramid has been successfully
stacked according to the low-level instructions provided by
the video_captioning API.

Robotics Toolformer
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Figure 2: Comparison of 3 prompting methods, from left to right: Code as Policies, Robotics ReAct, and Robotics
Toolformer on solving the Stack-A-Pyramid task in Cliport benchmark. Only the RT can successfully execute the
complex long-horizon task without being informed with object information in the sense.

task-specific actions in an interleaved manner. Tool-
former (Schick et al., 2023) fine-tuned the LLMs
with the dataset containing APIs to make LL.Ms
able to decide for themselves when and how to use
which tool. Inspired by previous works, we propose
Robotics Toolformer, which is a code generation
LLM-based agent that generates mixed-modal rea-
soning and acting traces with mixed-modal tool
augmentation for long-horizon robotics control.

Most Similar Works. The work that is mostly
similar to ours is Mind’s Eye (Liu et al., 2022).
To facilitate physical reasoning, the agent of (Liu
et al., 2022) generates a video simulation of certain
physical evolution, uses sensors to record the sen-
sory physical quantities, then reasoning via Cot.
We extend the mind’s eye (Liu et al., 2022) to
embodied planning by replacing Cot with mixed-
modal ReAct in Python code and tools augmenta-
tion. We list the difference between our method
with the existing methods in Table 1.

3 Robotics Toolformer

3.1 Problem Formulation

Consider a general setup where a robotics agent
interacts with an embodied environment to solve
tasks. At the time ¢, the agent receives an instruc-
tion Z and samples an observation o; € O from

Method Mixed-Modal Tool Cot Type
Code-as-Policies X Py Code Generation Chain-of-Thought
ReAct X Reason-Act Traces
Toolformer X Cot with Tools

Mind’s Eye v Physical, PI Cot with Simulator
Robotics Toolformer v Py, Mixed-Modal ReAct

Table 1: Comparison with the existing methods.
Py, s , Physical represents Python Interpreter,
Visual-to-Text Model, Text-in-text-out APIs, Physical
Engine respectively.

the embodied environment, as defined in (Zeng
et al., 2020). The objective of the LLMs is to de-
termine the intermediate sub-instruction or code
snippet, denoted as action input ¢, and the cor-
responding action a; to execute. Following the
execution of the action, the agent can sample a
reward signal r; from the environment. In con-
trast to the original ReAct framework (Yao et al.,
2022), which solely considers simple tools from the
Wikipedia API, our proposed framework, Robotics
Toolformer, extends the tool space A to include
mixed-modal tools, such as a visual-to-text model,
a Python interpreter and more. By incorporating
this expanded tool space, the agent can leverage
diverse external tools to enhance its mixed-modal
reasoning and acting capabilities. To detect the
success state, we incorporate a reward function
as a monitoring tool, determining whether an ac-
tion is successfully proposed and if the agent is



ready to propose the next action. We define the
trajectory of the RT as a sequence of observations,
actions, action inputs, and rewards at each time step
t. Specifically, the trajectory at time ¢ is denoted as
et = (01,11,01,71, ..., O, Gt T4, Tt).

Our approach expands the action space of LLMs,
denoted as L, by integrating external tools from
the tool space .A. In our work, the action input i,
and the reasoning trace (thought) are generated by
the LLMs without directly affecting the external
environment, resulting in no observation feedback.
Instead, the purpose of the thought is to compose
useful information by reasoning over the current
trajectory c; and updating the trajectories to support
future reasoning and acting. Furthermore, during
each iteration, the LLM must determine which tool
to utilize from the tool space A based on the tra-
jectories. We refer to the process of determining
thought, action input, and action with mixed-modal
tool augmentation as a mixed-modal Reasoning-
acting trace (mixed-modal ReAct). To ensure the
LLM agent avoids hallucination, we directly exe-
cute the tools in the mixed-modal ReAct to ground
the language plans into real-world interactions. We
report the results of these interactions back to the
chain as observations o;, which guide further rea-
soning and acting. The objective of the agent is to
fulfill the instruction I by achieving a fully marked
reward of 1.0.

3.2 Mixed-Modal Action Space

we adopt tools to enhance the agent’s reasoning
and acting capabilities in different aspects. Firstly,
we utilize the Python REPL API, which serves as
a Python shell enabling the execution of Python
code snippets. This tool allows the agent to in-
teract with the Python programming language, en-
abling it to leverage the rich ecosystem of libraries
and perform the actions primitives defined in Cli-
port benchmarks (Shridhar et al., 2022; Zeng et al.,
2020). Moreover, we leverage a video-to-text pre-
trained model as the module to propose multi-
modal reasoning. This multimodal tool differs
from previous approaches used in tabletop robotics
grasping methods (Zeng et al., 2022; Huang et al.,
2022), which relied solely on image-to-text models
for simple object detection. Utilizing a video-to-
text model, our goal is to streamline the process of
interpreting complex instructions and converting
them into actionable steps in natural language. This
approach combines visual information with textual

instructions, giving the agent a better understand-
ing of the task and facilitating more comprehensive
reasoning. Consequently, given high-level instruc-
tion e.g. “Solve the Tower of Hanoi” and visual
demonstrations, our agent can deduce specific in-
termediate actions such as “1. Move the red ring to
the lighter brown side. 2. Move the green ring to
the darker brown side. ...”.

Additionally, we incorporate a cumulative re-
ward function from Cliport (Zeng et al., 2020). The
reward function serves as a measure of the agent’s
performance and provides feedback directly from
the embodied environment. Specifically, the reward
function assesses the agent’s actions based on how
well they align with the desired objectives of the
task. It provides positive rewards for actions that
contribute to task completion and zero rewards for
actions that deviate from the desired outcomes or
violate safety constraints. The working mechanism
of the cumulative reward function is dependent on
a human-designed task-specific oracle. Before the
agent proposes actions, the oracle pack all the sub-
goals in a list, as well as the success metrics. If the
metric is ‘pose’, it calculates the reward based on
object poses and matches with target poses. For
each object, it checks if its pose matches any of the
targets’ poses and assigns a portion of the maxi-
mum reward to the step reward variable. If the met-
ric is ‘zone’, it calculates the reward based on the
intersection of objects with zones. It iterates over
each zone and counts the number of valid points
(object points within the zone). The step reward
is determined by the ratio of valid points to total
points, multiplied by the maximum reward. If the
current goal step is complete (i.e., the step reward
is close to the maximum reward), the progress is
updated, and the current goal step is removed from
the goals list. Finally, the reward will be returned in
the observation section of ReAct (Yao et al., 2022)
chains.

3.3 Translate Highly Complex Visual
Manipulation to Feasible Actions

Network Architecture. In our work, we employ
a network architecture specifically designed for
video captioning tasks. Our chosen network struc-
ture is the Generative Image-to-text Transformer,
as introduced in the work by (Wang et al., 2022).
This architecture serves as a tool for translating
highly complex visual robotics manipulations into
feasible pre-defined action primitives with textual



Algorithm 1: Robotics Toolformer Pseu-

docode with Mixed-Modalities Reasoning
Input: Textual Instruction Z and visual

Demonstration D
Output: trajectories of embodied
interactions

Initialize trajectory c = [];
while task not completed do

1. Select the suitest prompt template via
Bert

2. Observe current environment state o;;

3. Append oy to trajectory c;

4. Generate action input 7; using LLMs
and reasoning over c;

5. Select tool a; from A based on i; and
(6X

6. Execute a; in the environment;

7. Obtain reward r; from the
environment;

8. Append %, a;, and r; to trajectory c;

if success state detected then
| return the final trajectory c;

end

end

descriptions. The visual encoder component of the
network is built upon the contrastive pre-trained
model Florence (Yuan et al., 2021). It takes raw
video frames as input and produces a compact 2D
feature map. This feature map is then flattened
into a list of individual features. To further pro-
cess these features, an additional linear layer and
a layer normalization layer are applied. This pro-
jection step transforms the image features into a
D-dimensional space, which serves as the input
for the text decoder. we sample multiple frames
from each rendering sequence of Cliport (Zeng
et al., 2020) dataset and encode each frame via
the image encoder independently. Afterward, we
add a learnable temporal embedding (initialized
as zeros), and concatenate the features from sam-
pled frames. The text decoder, implemented as a
GPT-3 architecture (Brown et al., 2020), predicts a
sequence of feasible robotics actions in language.
The transformer module comprises multiple trans-
former blocks, each consisting of a self-attention
layer and a feed-forward layer. To prepare the
text input, it is tokenized and embedded into D di-
mensions. Positional encoding is added to account
for the sequential order of the tokens, followed by

a layer normalization step. In the robotics video
captioning process, the video frames’ features are
concatenated with the text embeddings to form the
input for the transformer module. The decoding
of the text begins with the special [BOS] (begin-
ning of the sentence) token, and subsequently, the
transformer generates the output text in an auto-
regressive manner until it encounters the [EOS]
(end of the sentence) token or reaches the maxi-
mum number of decoding steps.

Fine-tuning for Robotic Video Captioning
Model. To fine-tune the GIT model for robotic
video captioning, we apply the language modeling
(LM) loss. For each video-text pair, denoted as
v; € V for the video frames and y; for the text to-
kens, we use cross-entropy loss with label smooth-
ing of 0.1. The loss is computed as the average
cross-entropy over all tokens in the sequence, in-
cluding the [BOS] and [EOS] tokens.

N+1
1

I=N11 ;CE(yi,p(yi | Vo{yj,j =0, ,i—1)})
(1

This loss function encourages the model to accu-
rately predict the next token in the sequence based
on the video frames and previously generated to-
kens. It is important to note that our fine-tuning
process allows each iteration to predict all tokens,
making it more efficient for training large-scale
robotic video captioning models. It is worth men-
tioning that our approach differs from the original
GIT model, which is primarily designed for high-
level one-sentence summarization of videos. How-
ever, in our work, we leverage the GIT architecture
and adapt it specifically for robotic video caption-
ing, enabling more detailed and action-oriented
descriptions of the visual robotics manipulations in
the videos.

3.4 Mixed Modalities ReAct Chains

According to the Code-as-policies (Liang et al.,
2022), LLM-based agents face challenges when in-
terpreting longer and more complex commands,
such as “build a house with the blocks.” This
difficulty arises due to the limitations of LLMs
in understanding the scope of defined perception
APIs. Furthermore, existing visual-language mod-
els lack the capability to describe qualitative as-
pects, like whether a trajectory is “bumpy” or
“more C-shaped.” Another issue when dealing with
complex and long-horizon tasks is the increased
risk of hallucination. As the planning horizon ex-



tends, it becomes challenging to monitor the robot’s
actions and accurately detect the success state. To
address these challenges and enable LLM-based
agents to manipulate complex, long-horizon tasks,
we draw inspiration from the work of multi-modal
chain-of-thought (Zhang et al., 2023). By incor-
porating multi-modal reasoning into the ReAct
chain of thought, we can overcome these limita-
tions. We introduce visual demonstrations into the
mixed-modal ReAct by converting paired video
frames into action sequences. This process helps
the agent understand how to parse highly complex
high-level instructions into feasible action prim-
itives. By leveraging both visual and linguistic
information, the agent gains a better understanding
of the task requirements and can generate more
effective action plans. To further mitigate the chal-
lenges, we also propose using reward functions
that provide feedback on the proximity of the cur-
rent state to the final state. This allows the agent
to track its progress and make informed decisions
during the execution of long-term actions. By in-
corporating mixed modalities and leveraging visual
demonstrations, multi-modal reasoning, and infor-
mative reward functions, we enhance the capabil-
ities of LLM-based agents in handling complex,
long-horizon tasks. This approach facilitates better
interpretation of complex commands, mitigates the
risk of hallucination, and enables effective moni-
toring and progress tracking throughout the task
execution.

4 Experiments

We conduct empirical evaluations of RT against
state-of-the-art baselines, including Cliport (Shrid-
har et al., 2022; Zeng et al., 2020) and LLM-based
methods (Liang et al., 2022) on the benchmark pro-
posed in Cliport (Zeng et al., 2020; Shridhar et al.,
2022). Our primary focus is to evaluate the agents’
ability to solve long-horizon tasks with abstract
instructions. Notably, we employ the same action
primitives as defined in Cliport (Shridhar et al.,
2022) and Code-as-Policies (Liang et al., 2022).
We discover that incorporating mixed-modal tools
significantly alleviates the problem of hallucination.
By grounding the one-shot visual demonstration
prompts and high-level instructions for complex
robotics manipulations (e.g., “Stacking a pyramid”)
to combinations of intermediate instructions con-
taining action primitives in natural language, we
effectively address the issue. Our evaluation en-

compasses five long-horizon tasks from the Cliport
benchmark, and the results demonstrate that our
method outperforms previous code-as-policies ap-
proaches. Our method achieves comparable per-
formance to Cliport (Shridhar et al., 2022), which
is prompted by ground-truth intermediate actions
in the language (instruction oracle), instead of ab-
stract high-level instruction.

4.1 Setup

Dataset. We adopt the language-conditioned ma-
nipulation tasks in Cliport (Shridhar et al., 2022)
as evaluation datasets. Each task instance is con-
structed by sampling a set of objects and attributes:
poses, colors, sizes, and object categories.

As Code-as-Policies (Liang et al., 2022) has already
proven its effectiveness in short-horizon tasks, In
our evaluation, we evaluate five tasks proposed in
Cliport: Stack Pyramid, Towers of Hanoi, Assem-
bling Kits, Put Block in Bowl, Packing shapes. The
first three tasks are long horizon tasks with abstract
instructions, which means that we only prompt the
agent with very brief instructions involving com-
plex concepts, i.e. “Stack a Pyramid”, “Solve the
Tower of Hanoi”, and “Assembling all kits to the
corresponding position”, respectively. Put Block
in Bowl is a long-horizon combinatorial task that
contains combinations of sub-instructions i.e. “1.
put the blue block in the blue bowl. 2. put the red
block in the red bowl ...” Packing shape is a short
horizon task that directly prompts the agent to pick
what object and place it where.

Simulation Environment. All simulated experi-
ments are based on a Universal Robot UR5e with
a suction gripper. The setup provides a system-
atic and reproducible environment for evaluation,
especially for benchmarking the ability to ground
semantic concepts like colors and object categories.
The input observation is a top-down RGB-D re-
construction from 3 cameras positioned around a
rectangular table: one in the front, one on the left
shoulder, and one on the right shoulder, all pointing
towards the center. Each camera has a resolution
of 640 x 480 and is noiseless.

Evaluation Metric. Same as Cliport (Shridhar
et al., 2022), we adopt the O (fail) to 100 (success)
scores proposed in the Ravens (Zeng et al., 2020)
benchmark. The score assigns partial credit based
on the task, e.g., 5/6 for fulfilling 5 sub-instruction
in stacking pyramid tasks. See Appendix A.1 for
detailed metrics information. During an evaluation



Method Packing Pl,lt Blocks  Stack BI?Ck Tower of Hanoi Assembling Kits
Shape in Bowl Pyramid
Code-as-Policies 100.0 97.0 0.0 0.0 0.0
Cliport(1-shot) 29.0 43.0 28.4 61.6 9.6
Cliport(10-shot) 42.0 69.5 51.1 86.6 28.2
Cliport(100-shot) 47.0 77.4 64.3 89.1 37.6
Cliport(1000-shot) 41.0 72.6 594 83.5 38.9
Robotics ReAct 93.0 99.0 0.0 0.0 0.0
Robotics Toolfromer 75.0 95.0 80.0 99.0 99.0

Table 2: Comparison of Robotics Toolformer with Code-as-Policies, Cliport, and Robotics. When it comes to
long-horizon tasks involving complex concepts in the instruction for the last three tasks, both Code-as-polices and
Robotics ReAct show extremely poor performance. RT gets superior performance on these than the baselines.

episode, the agent keeps interacting with the scene
until an oracle indicates task completion.

Baselines. To study the effectiveness of the RT
We mainly evaluate our proposed method against
the following existing approaches on the Cli-
port (Shridhar et al., 2022) benchmark:

* Imitation-learning based method with in-
struction oracle. For each task in 4.1, we re-
port the result of Cliport (Shridhar et al., 2022)
model that is pre-trained with 1, 10, 100, and
1,000 demonstrations. An oracle is employed to
prompt the agent with ground truth intermediate
actions in language.

* Code as Policies based on GPT-3.5 (Liang
et al., 2022; Vemprala et al., 2023), a code gen-
eration method that adopt chain-of-thought for
solving embodied tasks.

¢ Robotics ReAct (Yao et al., 2022), we also
compare with the only-language code genera-
tion Reasoning-Acting traces for the purpose of
ablation analysis. In this ablation experiment,
we investigate how the mixed-modal reasoning
module enhances robotics planning.

For all LLM-based methods, we adopt the
latest OpenAl language model GPT-3.5-turbo-
0613 (Ouyang et al., 2022) as the planner.

4.2 Main Result.

Table 2 presents results from our experiments in
long-horizon robotics manipulation tasks. These
results support our main claims that ReAct with
mixed-modal tool augmentation can significantly
enhance the performance of solving long-horizon
embodied tasks. We observe that both Code-as-
Policies (Liang et al., 2022) and ReAct (Yao et al.,
2022) perform worse than the imitation learning-

based method(Cliport) on the Stack Pyramid, Tow-
ers of Hanoi, and Assembling Kit tasks, failing
to solve any instances. This poor performance
can be attributed to the difficulty in understand-
ing the concepts of “Hanoi tower” and “pyramid”
using language-only internal representations. In-
stead, these concepts need visual knowledge to
understand. Figure 2 compares the different LLM-
based methods in solving the Stack-Block-Pyramid
task. Notably, the augmentation of mixed-modal
tools enables RT to achieve success rates of 80.0%,
99.0%, and 99.0% on the Stack-Block-Pyramid,
Tower-of-Hanoi, and Assembling-Kits tasks, re-
spectively. However, LLM-based agents show su-
perior performance in detecting objects with ob-
jective attributes such as color and position com-
pared to IL-based agents and RT. It is important
to note that code-as-polices (Liang et al., 2022)
simplifies the gathering of object information by
utilizing ground-truth primitives, but ours does not
have access to the ground-truth information. The
“Packing-Shape” task provides specific details on
which objects to place in the box, eliminating the
necessity to decipher high-level concepts into low-
level instructions. This direct guidance for pick-
ing and placing enables code-as-policies to effec-
tively handle any given instruction. However, our
method uses multi-modal reasoning to infer which
object to pick and where to place it. Furthermore,
multi-task training of GIT may bring bias to long-
horizon tasks. The above reasons might lead to
RT’s lower performance on “Packing-Shape”, com-
pared to code-as-policies. Overall, The results from
table 2 highlight one key challenge that LLM-based
embodied agents face: understanding visual con-
cepts through language grounding and acquiring
the ability to accomplish goals that involve complex



GIT

Training Steps 500 1,000 3,000
BeLU 0.41 0.74 0.96
ROUGE 0.68 0.82 0.98
METEOR 0.70 0.82 0.98

Table 3: The evaluation of GIT’s performance, when
training the model for different steps: 500, 1000, and
3,000. The metrics are computed by taking the average
across all tasks.

visual concepts using practical action primitives.

4.3 Ablation Study

In our study on ablation research, we primarily
examine the impact of mixed-modal video-to-text
models on the planning accuracy of RT.

Setup. We explore the performance of the follow-
ing LLM-based agent on the selected long-horizon
tasks (Stack-Block-Pyramid and Assembling Kits):
1. RT utilizing GIT (Wang et al., 2022) for various
training durations: 500, 1,000, and 3,000 train-
ing steps. 2. Robotics ReAct agent performing
without any prior object information (zero-shot).
3. Robotics ReAct agent guided by an Instruction
Oracle.

Mixed-modal Reasoning Model Finetuning.
We implement our video-to-text model for robotics
task captioning by building upon the GIT
large (Wang et al., 2022), it leverages the pre-
trained CLIP/ViT-L/14 architecture (Radford et al.,
2021) as the visual encoder. For detailed infor-
mation regarding the network architectures, hyper-
parameters, and training specifics, please refer to
section A.2 in the paper. Our implementation of
GIT (Wang et al., 2022) are trained from 400T
demonstration of the dataset in Section 4.1 and
evaluate on 100T corresponding validation dataset,
note that T denotes the number of tasks in Section
4.1. The metrics we use to evaluate the video cap-
tioning model are BLEU (Papineni et al., 2002),
Rouge (Lin, 2004), and METEOR (Banerjee and
Lavie, 2005). In Table 3, we report the multi-task
performance by taking the average score of all tasks
on certain metric.

Ablation Results. The ablation study presented
in Table 4 examines the different variations of GIT.
The results indicate that even though the GIT (1000
steps) achieves decent performance with BELU
0.74, ROUGE 0.82, and METEOR 0.82, it is still
inadequate for handling long-horizon tasks effec-

Agent Type Stack-Block-Pyramid ~ Assembling-Kits

. zero-shot 0.0 0.0
Robotics ReAct Oracle 96.0 100.0
500 0.0 0.0
Robotics 1,000 11.0 0.0
Toolformer 3,000 80.0 99.0

Table 4: The assessment of two different types of
Robotics ReAct and RT models with various GIT, con-
sidering varying numbers of training steps.

tively. However, when GIT (3000 steps) is em-
ployed with improved metrics such as BELU 0.96,
ROUGE 0.98, and METEOR 0.98, the RT can
achieve 80.0 on Stack-Block-Pyramid and 99.0 on
Assembing-Kits. This result indicates the RT re-
quires the video-to-text model to be very accurate
and precise in order to effectively execute embod-
ied planning.

5 Conclusion

The Robotics toolformer is a multimodal reasoning
paradigm for unified tool using. Inserting mixed-
modal tools into the reasoning-acting can reduce
hallucination and enhance the alignment between
the inner representation of LLM with the embodied
environment. Our experiments have demonstrated
that our method outperforms current approaches in
tackling intricate long-term robotics planning tasks
using just one demonstration with mixed modali-
ties. This framework has promising potential for
even broader applications where other pre-existing
powerful tools could be integrated to solve more
embodied tasks.

6 Limitations

Although RT provides a viable approach for en-
abling LLM-based agents to solve complex tasks
with long-term goals, there are several limitations
that need to be addressed. One limitation is the lack
of consideration for mixed-modal tools in learn-
ing policies to connect complex instructions with
feasible primitives at scale. This is due to the lim-
ited availability of long-horizon visual-to-language
datasets in embodied intelligence. Additionally,
our work still relies on one-shot demonstrations for
in-context learning and transforming abstract con-
cepts into primitives. Future research could explore
the approach to achieve zero-shot mixed-modal rea-
soning via tool augmentation.
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A Appendix

A.1 Cliport Dataset and Evaluation Metrics

As for the benchmark for evaluating our proposed
method with the baselines, we use the following
datasets from Cliport (Shridhar et al., 2022). Note
that when we use LLM-agent to execute the instruc-
tions, we do not give step-by-step ground-truth in-
termediate instructions to the agent like Cliport,
instead, we ask the agents themselves to infer the
intermediate instructions.

1. Assembling Kits Task: Precisely place each
specified shape in the specified hole following the
order prescribed in the language instruction gener-
ated by the LLM-based agent at each timestep. This
is one of the hardest tasks in the benchmark requir-
ing precise placements of shapes of randomized
colors and grounding spatial relationships. Each
task instance contains 5 shapes and a kit with ran-
domized poses. Goal: assembling all the Kits to the
corresponding holes. Success Metric: The pose of
each shape matches the specified hole at the correct
timestep. The final score is the total number of
shapes that were placed in the correct pose at the
correct timestep, divided by the total number of
shapes in the scene (always 5).

2. Stack Block Pyramid. Task: Build a pyra-
mid of colored blocks in a color sequence specified
through the step-by-step language instructions gen-
erated by the LLM-based agent. Each task contains
6 blocks with randomized colors and 1 rectangular
base, all initially placed at random poses. Goal:
stack a pyramid by 6 blocks and 1 rectangular base.
Success Metric: The pose of each block at the cor-
responding timestep matches the specified location.
The final score is the total number of blocks in the
correct pose at the correct timestep, divided by the
total number of blocks (always 6).

3. Towers of Hanoi. Task: Move the ring to the
specified peg in the LLM-based agent-generated
language instruction at each timestep. The se-
quence of ring placements is always the same, i.e.
the perfect solution to three-ring Towers of Hanoi.
This task can be solved without using colors by
just observing the ring sizes. However, it tests the
agent’s ability to ignore irrelevant concepts to the
task (color in this case). The task involves precise
pick and place actions for moving the rings from
peg to peg. Goal: Solve the tower of Hanoi via
moving 3 rings (small, medium, and big) across 1
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peg base. Success Metric: The pose of each ring at
the corresponding timestep matches the specified
peg location. The final score is the total number of
correct ring placements, divided by the total steps
in the perfect solution (7 for three-ring Towers of
Hanoi).

4. Put Blocks in Bowl. Task: Place all blocks
of a specified color in a bowl of the specified color.
Each bowl fits just one block and all scenes contain
enough bowls to achieve the goal. Each task in-
stance contains several distractor blocks and bowls
with randomized colors. The solutions to this task
are multi-modal in that there could be several ways
to place the blocks specified in the language goal.
This task does not require precise placements and
mostly tests an agent’s ability to ground color at-
tributes. Goal: to place blocks with certain colors
on the bowls with certain colors Success Metric:
All blocks of the specified color are within the
bounds of a bowl of the specified color. The fi-
nal score is the total number of correct blocks in
the correct bowls, divided by the total number of
relevant color blocks in the scene.

Packing Shapes Task: Place a specified shape in
the brown box. Each task instance contains 1 shape
to be picked along with 4 distractor shapes. The
shape colors are randomized but have no relevance
to the task. This task does not require precise place-
ments and is mostly a test of the agent’s semantic
understanding of arbitrary shapes. Goal: To pack
the required shapes to the brown box Success Met-
ric: The correct shape is inside the bounds of the
brown box.

A.2 Details of Fine-tuning GIT

Data Processing. We generate the video dataset
of Cliport (Shridhar et al., 2022) by extracting the
RGB information with the corresponding interme-
diate instructions of each frame. The processed
image size is 224 x 224.

Hyperparameters. The hyperparameter of our
reproduction of GIT (Wang et al., 2022) are list at
the Table 5



Hyper-param GIT
parameters num 347M
learning rate 3e-5
training batch size 1
gradient accumulation step 32
max train steps 5000
mixed precision fpl6
num GPUs 1
GPU type A100

Table 5: The hyperparameter of our reproduction of
GIT, other hyperparameters not mentioned on the table
are kept the same as original GIT
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