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Abstract

Recent advancements in large language mod-001
els have shown their effectiveness in high-level002
robot planning. However, these models have003
limitations when handling longer and more004
complex instructions like “stack a pyramid” or005
“solve the Tower of Hanoi”. In this paper, we006
propose an innovative approach called Robotics007
Toolformer (RT), which aims to enhance the008
mixed-modal reasoning and long-term decision-009
making capabilities of language model-based010
robotics agents. RT introduces a multimodal011
reasoning paradigm for unified tool usage. It012
employs reasoning-acting traces with external013
mixed-modal tools to assist the agent in deduc-014
ing, tracking, and updating action plans for em-015
bodied planning. By incorporating and expand-016
ing these tools, the agent can leverage a wider017
range of capabilities, enabling it to perform018
more complex tasks with only in-context learn-019
ing from a single mixed-modal demonstration.020
When evaluating the Cliport benchmark (Shrid-021
har et al., 2022; Zeng et al., 2020), our proposed022
method surpasses the performance of the imita-023
tion learning-based method, which extensively024
pre-trains on robotics manipulation tasks, as025
well as the code-as-policies (Liang et al., 2022)026
approach. Our approach demonstrates supe-027
rior performance and efficiency by effectively028
handling complex instructions and achieving029
higher task success rates through learning from030
a one-shot mixed-modal demonstration.031

1 Introduction032

LLMs (Brown et al., 2020) have been utilized033
in high-level robot planning(Vemprala et al.,034
2023; Liang et al., 2022; Ahn et al., 2022),035
where they enable robots to understand and in-036
terpret natural language instructions provided037
by humans. By leveraging their language gen-038
eration capabilities, LLMs can translate textual039
instructions into executable actions, enabling040
robots to perform complex tasks. While LLMs041
have proven effective in certain robot planning042
scenarios, their capabilities to handle longer043

and more complex instructions remain limited. 044
Tasks that involve multi-step processes or in- 045
tricate operations pose challenges for LLMs, 046
as they struggle to generate accurate and co- 047
herent action plans from such instructions. For 048
example, instructions like “stack a pyramid” or 049
“solve the Tower of Hanoi” takes robot to per- 050
form multiple actions in a specific sequence, 051
each dependent on the success of the preceding 052
one. The complexity of such instructions of- 053
ten exceeds the capabilities of traditional LLM- 054
based approaches, leading to suboptimal per- 055
formance and limited practical applicability in 056
real-world scenarios. 057

The previous works (Liang et al., 2022; Vem- 058
prala et al., 2023) of code generation chain 059
of thought (Wei et al., 2022) carry out sev- 060
eral pre-defined human-make prompts to derive 061
the plans using their own internal representa- 062
tions to generate thoughts and is not grounded 063
in the physical world, which limits its ability 064
to reason reactively or update its knowledge. 065
This can lead to issues like hallucination and 066
error propagation over the reasoning process. 067
One way to reduce hallucination and increase 068
the alignment between real embodied environ- 069
ments is to introduce multi-modal reasoning. 070
Huang et al. (2022); Zeng et al. (2022); Ahn 071
et al. (2022) adopt a pipeline of firstly ground 072
the object detected in the scene to text, use a lan- 073
guage model to generate domain-specific plans, 074
and then use an imitation learning-based con- 075
troller to execute the plans. However, in these 076
works, the visual-to-text model is solely uti- 077
lized for object detection purposes and does not 078
actively contribute to the disassembly of com- 079
plex instructions into action primitives that can 080
be executed by the LLM agent. The challenge 081
of handling complex long-horizon instructions 082
has not been effectively addressed in previous 083
multi-modal LLM-based methods. 084

To solve the challenge of LLM-based agents 085
struggling at handling complex long-horizon 086
instructions, and inspired by ReAct (Yao et al., 087
2022) and Toolformer (Schick et al., 2023) and 088
code-as-policies (Liang et al., 2022), we pro- 089
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Figure 1: The Robotics Toolformer is an LLM-based agent that can use mixed-modal tools to solve complex
long-horizon embodied tasks. The instruction is sent to the task selection modules for prompt template selection.
The robotics toolformer then produces a mixed-modal reasoning-acting trace comprising thought: a natural language
description of what should be done next, action: tool selection and action proposing, and observation: the feedback
of the proposed action from the embodied environment.

pose Robotics Toolformer(RT), an embodied090
intelligence paradigm to combine mixed-modal091
reasoning and acting traces with toolformer for092
solving diverse robotics tasks. Robotics Tool-093
former prompts LLMs to generate both reason-094
ing traces and actions pertaining to a task in an095
interleaved manner, which allows the model to096
perform dynamic reasoning to create, maintain,097
and adjust high-level plans for acting (reason098
to act), while also interacting with the external099
embodied environments by mixed-modal tool100
augmentation (e.g., python interpreter, multi-101
modalities pre-trained models, etc.) to incorpo-102
rate additional information into reasoning.103

To summarize, our key contributions are the104
following:105

• Multimodal Reasoning for Unifed tool us-106
ing: We introduce the Robotics Toolformer107
framework, which addresses the challenges108
faced by LLM-based agents when handling109
complex long-horizon instructions. This110
framework enables the unified use of tools111
from different modalities in embodied con-112
trol, enhancing the agent’s reasoning and113
acting capabilities.114

• We demonstrate the superior performance of115
our approach on long-horizon tasks compare116
to previous LLM-based approaches. Further-117

more, our results are comparable to Cliport 118
with instruction oracle. 119

2 Related Works 120

Chain of Thought for Embodied Intelligence. 121

LLMs exhibits impressive in-context learning ca- 122

pabilities for helping robotics planning (Ahn et al., 123

2022; Zeng et al., 2022; Vemprala et al., 2023). The 124

prompting method that is mostly taken in robotics 125

controlling is Chain-of-Thought(Cot) (Wei et al., 126

2022; Driess et al., 2023; Liang et al., 2022). How- 127

ever, according to (Yao et al., 2022), Cot reasoning 128

is a static black box, in that the model uses its own 129

internal representations to generate thoughts and is 130

not grounded in the external world, which limits its 131

ability to reason reactively or update its knowledge. 132

Vanilla Cot can lead to issues like fact hallucination 133

and error propagation over the reasoning process. 134

One attempt to mitigate the problem of halluci- 135

nation is multi-modal chain-of-Thought (Zhang 136

et al., 2023), which incorporates language (text) 137

and vision (images) modalities into a two-stage 138

framework that separates rationale generation and 139

answer inference. Another is ReAct (Yao et al., 140

2022), which generates both reasoning traces and 141
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Code-as-Policies Robotics ReAct Robotics Toolformer

Instruction: stacking block pyramid. 
Thought:  
I will start by putting the lightest brown block on the table. 
Action: Python REPL 
Action Input: put_a_on_b("lightest_brown_block", "table") 
Observation: ‘table' 

Thought: 
Now I will put the yellow block on top of the lightest brown 
block. 
Action: Python REPL  
Action Input: put_a_on_b("yellow_block", 
"lightest_brown_block") 
Observation: the current reward is 0.0 
……. 
Thought: 
Finally, I will put the blue block on top of the red block to 
complete the pyramid. 
Action: Python REPL  
Action Input: put_a_on_b("blue_block", "red_block") 
Observation: the current reward is 0.0

Instruction: stacking block pyramid. 

Thought:  
I need to use the put_a_on_b and put_a_on_b_and_c 
actions to stack the blocks in a pyramid shape. I should 
start with the base and work my way up. 
Action: Python REPL 
Action Input: video_captioning() 
Observation: ['1. put the green block on the lightest brown 
block 2. put the cyan block on the middle brown block 3. put 
the blue block on the darkest brown block 4. put the gray 
block on the green and cyan blocks 5. put the brown block 
on the cyan and blue blocks 6. put the blue block on the 
gray and brown blocks'] 
……. 

Thought: 
The fifth block has been successfully placed on the base. I 
need to move on to the final step and place the blue block 
on the gray and brown blocks. 
Action: Python REPL 
Action Input: put_a_on_b_and_c("blue_block", 
"gray_block", “brown_block") 
Observation: the current reward is 0.9999999999999999 
Thought: 
Final answer is The block pyramid has been successfully 
stacked according to the low-level instructions provided by 
the video_captioning API.

Imagine we are working with a manipulator robot. This is a robotic 
arm with 6 degrees of freedom that has a suction pump attached to 
its end effector. I would like you to assist me in sending commands to 
this robot given a scene and a task 
At any point, you have access to the following functions: 
put_a_on_b("block_a", "block_b") 
put_a_on_b_and_c("block_a", "block_b", "block_c") 
You are allowed to create new functions using these, but you are not 
allowed to use any other hypothetical functions. 
Keep the solutions simple and clear. The positions are given in mm 
and the angles in degrees. You can also ask clarification questions 
using the tag "Question - ". Here is an example scenario that 
illustrates how you can ask clarification questions. 
….

Figure 2: Comparison of 3 prompting methods, from left to right: Code as Policies, Robotics ReAct, and Robotics
Toolformer on solving the Stack-A-Pyramid task in Cliport benchmark. Only the RT can successfully execute the
complex long-horizon task without being informed with object information in the sense.

task-specific actions in an interleaved manner. Tool-142

former (Schick et al., 2023) fine-tuned the LLMs143

with the dataset containing APIs to make LLMs144

able to decide for themselves when and how to use145

which tool. Inspired by previous works, we propose146

Robotics Toolformer, which is a code generation147

LLM-based agent that generates mixed-modal rea-148

soning and acting traces with mixed-modal tool149

augmentation for long-horizon robotics control.150

Most Similar Works. The work that is mostly151

similar to ours is Mind’s Eye (Liu et al., 2022).152

To facilitate physical reasoning, the agent of (Liu153

et al., 2022) generates a video simulation of certain154

physical evolution, uses sensors to record the sen-155

sory physical quantities, then reasoning via Cot.156

We extend the mind’s eye (Liu et al., 2022) to157

embodied planning by replacing Cot with mixed-158

modal ReAct in Python code and tools augmenta-159

tion. We list the difference between our method160

with the existing methods in Table 1.161

3 Robotics Toolformer162

3.1 Problem Formulation163

Consider a general setup where a robotics agent164

interacts with an embodied environment to solve165

tasks. At the time t, the agent receives an instruc-166

tion I and samples an observation ot ∈ O from167

Method Mixed-Modal Tool Cot Type
Code-as-Policies × Py Code Generation Chain-of-Thought
ReAct × TITO Reason-Act Traces
Toolformer × TITO Cot with Tools
Mind’s Eye ✓ Physical, PI Cot with Simulator
Robotics Toolformer ✓ Py, V2T Mixed-Modal ReAct

Table 1: Comparison with the existing methods.
Py,V2T, TITO, Physical represents Python Interpreter,
Visual-to-Text Model, Text-in-text-out APIs, Physical
Engine respectively.

the embodied environment, as defined in (Zeng 168

et al., 2020). The objective of the LLMs is to de- 169

termine the intermediate sub-instruction or code 170

snippet, denoted as action input it, and the cor- 171

responding action at to execute. Following the 172

execution of the action, the agent can sample a 173

reward signal rt from the environment. In con- 174

trast to the original ReAct framework (Yao et al., 175

2022), which solely considers simple tools from the 176

Wikipedia API, our proposed framework, Robotics 177

Toolformer, extends the tool space A to include 178

mixed-modal tools, such as a visual-to-text model, 179

a Python interpreter and more. By incorporating 180

this expanded tool space, the agent can leverage 181

diverse external tools to enhance its mixed-modal 182

reasoning and acting capabilities. To detect the 183

success state, we incorporate a reward function 184

as a monitoring tool, determining whether an ac- 185

tion is successfully proposed and if the agent is 186
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ready to propose the next action. We define the187

trajectory of the RT as a sequence of observations,188

actions, action inputs, and rewards at each time step189

t. Specifically, the trajectory at time t is denoted as190

ct = (o1, i1, a1, r1, ..., ot, at, it, rt).191

Our approach expands the action space of LLMs,192

denoted as L, by integrating external tools from193

the tool space A. In our work, the action input it194

and the reasoning trace (thought) are generated by195

the LLMs without directly affecting the external196

environment, resulting in no observation feedback.197

Instead, the purpose of the thought is to compose198

useful information by reasoning over the current199

trajectory ct and updating the trajectories to support200

future reasoning and acting. Furthermore, during201

each iteration, the LLM must determine which tool202

to utilize from the tool space A based on the tra-203

jectories. We refer to the process of determining204

thought, action input, and action with mixed-modal205

tool augmentation as a mixed-modal Reasoning-206

acting trace (mixed-modal ReAct). To ensure the207

LLM agent avoids hallucination, we directly exe-208

cute the tools in the mixed-modal ReAct to ground209

the language plans into real-world interactions. We210

report the results of these interactions back to the211

chain as observations ot, which guide further rea-212

soning and acting. The objective of the agent is to213

fulfill the instruction I by achieving a fully marked214

reward of 1.0.215

3.2 Mixed-Modal Action Space216

we adopt tools to enhance the agent’s reasoning217

and acting capabilities in different aspects. Firstly,218

we utilize the Python REPL API, which serves as219

a Python shell enabling the execution of Python220

code snippets. This tool allows the agent to in-221

teract with the Python programming language, en-222

abling it to leverage the rich ecosystem of libraries223

and perform the actions primitives defined in Cli-224

port benchmarks (Shridhar et al., 2022; Zeng et al.,225

2020). Moreover, we leverage a video-to-text pre-226

trained model as the module to propose multi-227

modal reasoning. This multimodal tool differs228

from previous approaches used in tabletop robotics229

grasping methods (Zeng et al., 2022; Huang et al.,230

2022), which relied solely on image-to-text models231

for simple object detection. Utilizing a video-to-232

text model, our goal is to streamline the process of233

interpreting complex instructions and converting234

them into actionable steps in natural language. This235

approach combines visual information with textual236

instructions, giving the agent a better understand- 237

ing of the task and facilitating more comprehensive 238

reasoning. Consequently, given high-level instruc- 239

tion e.g. “Solve the Tower of Hanoi” and visual 240

demonstrations, our agent can deduce specific in- 241

termediate actions such as “1. Move the red ring to 242

the lighter brown side. 2. Move the green ring to 243

the darker brown side. ...”. 244

Additionally, we incorporate a cumulative re- 245

ward function from Cliport (Zeng et al., 2020). The 246

reward function serves as a measure of the agent’s 247

performance and provides feedback directly from 248

the embodied environment. Specifically, the reward 249

function assesses the agent’s actions based on how 250

well they align with the desired objectives of the 251

task. It provides positive rewards for actions that 252

contribute to task completion and zero rewards for 253

actions that deviate from the desired outcomes or 254

violate safety constraints. The working mechanism 255

of the cumulative reward function is dependent on 256

a human-designed task-specific oracle. Before the 257

agent proposes actions, the oracle pack all the sub- 258

goals in a list, as well as the success metrics. If the 259

metric is ‘pose’, it calculates the reward based on 260

object poses and matches with target poses. For 261

each object, it checks if its pose matches any of the 262

targets’ poses and assigns a portion of the maxi- 263

mum reward to the step reward variable. If the met- 264

ric is ‘zone’, it calculates the reward based on the 265

intersection of objects with zones. It iterates over 266

each zone and counts the number of valid points 267

(object points within the zone). The step reward 268

is determined by the ratio of valid points to total 269

points, multiplied by the maximum reward. If the 270

current goal step is complete (i.e., the step reward 271

is close to the maximum reward), the progress is 272

updated, and the current goal step is removed from 273

the goals list. Finally, the reward will be returned in 274

the observation section of ReAct (Yao et al., 2022) 275

chains. 276

3.3 Translate Highly Complex Visual 277

Manipulation to Feasible Actions 278

Network Architecture. In our work, we employ 279

a network architecture specifically designed for 280

video captioning tasks. Our chosen network struc- 281

ture is the Generative Image-to-text Transformer, 282

as introduced in the work by (Wang et al., 2022). 283

This architecture serves as a tool for translating 284

highly complex visual robotics manipulations into 285

feasible pre-defined action primitives with textual 286
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Algorithm 1: Robotics Toolformer Pseu-
docode with Mixed-Modalities Reasoning
Input: Textual Instruction I and visual

Demonstration D
Output: trajectories of embodied

interactions
Initialize trajectory c = [];
while task not completed do

1. Select the suitest prompt template via
Bert

2. Observe current environment state ot;
3. Append ot to trajectory c;
4. Generate action input it using LLMs

and reasoning over c;
5. Select tool at from A based on it and
c;

6. Execute at in the environment;
7. Obtain reward rt from the

environment;
8. Append it, at, and rt to trajectory c;
if success state detected then

return the final trajectory c;
end

end

descriptions. The visual encoder component of the287

network is built upon the contrastive pre-trained288

model Florence (Yuan et al., 2021). It takes raw289

video frames as input and produces a compact 2D290

feature map. This feature map is then flattened291

into a list of individual features. To further pro-292

cess these features, an additional linear layer and293

a layer normalization layer are applied. This pro-294

jection step transforms the image features into a295

D-dimensional space, which serves as the input296

for the text decoder. we sample multiple frames297

from each rendering sequence of Cliport (Zeng298

et al., 2020) dataset and encode each frame via299

the image encoder independently. Afterward, we300

add a learnable temporal embedding (initialized301

as zeros), and concatenate the features from sam-302

pled frames. The text decoder, implemented as a303

GPT-3 architecture (Brown et al., 2020), predicts a304

sequence of feasible robotics actions in language.305

The transformer module comprises multiple trans-306

former blocks, each consisting of a self-attention307

layer and a feed-forward layer. To prepare the308

text input, it is tokenized and embedded into D di-309

mensions. Positional encoding is added to account310

for the sequential order of the tokens, followed by311

a layer normalization step. In the robotics video 312

captioning process, the video frames’ features are 313

concatenated with the text embeddings to form the 314

input for the transformer module. The decoding 315

of the text begins with the special [BOS] (begin- 316

ning of the sentence) token, and subsequently, the 317

transformer generates the output text in an auto- 318

regressive manner until it encounters the [EOS] 319

(end of the sentence) token or reaches the maxi- 320

mum number of decoding steps. 321

Fine-tuning for Robotic Video Captioning 322

Model. To fine-tune the GIT model for robotic 323

video captioning, we apply the language modeling 324

(LM) loss. For each video-text pair, denoted as 325

vi ∈ V for the video frames and yi for the text to- 326

kens, we use cross-entropy loss with label smooth- 327

ing of 0.1. The loss is computed as the average 328

cross-entropy over all tokens in the sequence, in- 329

cluding the [BOS] and [EOS] tokens. 330

l =
1

N + 1

N+1∑
i=1

CE (yi, p (yi | V, {yj , j = 0, · · · , i− 1)})

(1) 331

This loss function encourages the model to accu- 332

rately predict the next token in the sequence based 333

on the video frames and previously generated to- 334

kens. It is important to note that our fine-tuning 335

process allows each iteration to predict all tokens, 336

making it more efficient for training large-scale 337

robotic video captioning models. It is worth men- 338

tioning that our approach differs from the original 339

GIT model, which is primarily designed for high- 340

level one-sentence summarization of videos. How- 341

ever, in our work, we leverage the GIT architecture 342

and adapt it specifically for robotic video caption- 343

ing, enabling more detailed and action-oriented 344

descriptions of the visual robotics manipulations in 345

the videos. 346

3.4 Mixed Modalities ReAct Chains 347

According to the Code-as-policies (Liang et al., 348

2022), LLM-based agents face challenges when in- 349

terpreting longer and more complex commands, 350

such as “build a house with the blocks.” This 351

difficulty arises due to the limitations of LLMs 352

in understanding the scope of defined perception 353

APIs. Furthermore, existing visual-language mod- 354

els lack the capability to describe qualitative as- 355

pects, like whether a trajectory is “bumpy” or 356

“more C-shaped.” Another issue when dealing with 357

complex and long-horizon tasks is the increased 358

risk of hallucination. As the planning horizon ex- 359
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tends, it becomes challenging to monitor the robot’s360

actions and accurately detect the success state. To361

address these challenges and enable LLM-based362

agents to manipulate complex, long-horizon tasks,363

we draw inspiration from the work of multi-modal364

chain-of-thought (Zhang et al., 2023). By incor-365

porating multi-modal reasoning into the ReAct366

chain of thought, we can overcome these limita-367

tions. We introduce visual demonstrations into the368

mixed-modal ReAct by converting paired video369

frames into action sequences. This process helps370

the agent understand how to parse highly complex371

high-level instructions into feasible action prim-372

itives. By leveraging both visual and linguistic373

information, the agent gains a better understanding374

of the task requirements and can generate more375

effective action plans. To further mitigate the chal-376

lenges, we also propose using reward functions377

that provide feedback on the proximity of the cur-378

rent state to the final state. This allows the agent379

to track its progress and make informed decisions380

during the execution of long-term actions. By in-381

corporating mixed modalities and leveraging visual382

demonstrations, multi-modal reasoning, and infor-383

mative reward functions, we enhance the capabil-384

ities of LLM-based agents in handling complex,385

long-horizon tasks. This approach facilitates better386

interpretation of complex commands, mitigates the387

risk of hallucination, and enables effective moni-388

toring and progress tracking throughout the task389

execution.390

4 Experiments391

We conduct empirical evaluations of RT against392

state-of-the-art baselines, including Cliport (Shrid-393

har et al., 2022; Zeng et al., 2020) and LLM-based394

methods (Liang et al., 2022) on the benchmark pro-395

posed in Cliport (Zeng et al., 2020; Shridhar et al.,396

2022). Our primary focus is to evaluate the agents’397

ability to solve long-horizon tasks with abstract398

instructions. Notably, we employ the same action399

primitives as defined in Cliport (Shridhar et al.,400

2022) and Code-as-Policies (Liang et al., 2022).401

We discover that incorporating mixed-modal tools402

significantly alleviates the problem of hallucination.403

By grounding the one-shot visual demonstration404

prompts and high-level instructions for complex405

robotics manipulations (e.g., “Stacking a pyramid”)406

to combinations of intermediate instructions con-407

taining action primitives in natural language, we408

effectively address the issue. Our evaluation en-409

compasses five long-horizon tasks from the Cliport 410

benchmark, and the results demonstrate that our 411

method outperforms previous code-as-policies ap- 412

proaches. Our method achieves comparable per- 413

formance to Cliport (Shridhar et al., 2022), which 414

is prompted by ground-truth intermediate actions 415

in the language (instruction oracle), instead of ab- 416

stract high-level instruction. 417

4.1 Setup 418

Dataset. We adopt the language-conditioned ma- 419

nipulation tasks in Cliport (Shridhar et al., 2022) 420

as evaluation datasets. Each task instance is con- 421

structed by sampling a set of objects and attributes: 422

poses, colors, sizes, and object categories. 423

As Code-as-Policies (Liang et al., 2022) has already 424

proven its effectiveness in short-horizon tasks, In 425

our evaluation, we evaluate five tasks proposed in 426

Cliport: Stack Pyramid, Towers of Hanoi, Assem- 427

bling Kits, Put Block in Bowl, Packing shapes. The 428

first three tasks are long horizon tasks with abstract 429

instructions, which means that we only prompt the 430

agent with very brief instructions involving com- 431

plex concepts, i.e. “Stack a Pyramid”, “Solve the 432

Tower of Hanoi”, and “Assembling all kits to the 433

corresponding position”, respectively. Put Block 434

in Bowl is a long-horizon combinatorial task that 435

contains combinations of sub-instructions i.e. “1. 436

put the blue block in the blue bowl. 2. put the red 437

block in the red bowl ...” Packing shape is a short 438

horizon task that directly prompts the agent to pick 439

what object and place it where. 440

Simulation Environment. All simulated experi- 441

ments are based on a Universal Robot UR5e with 442

a suction gripper. The setup provides a system- 443

atic and reproducible environment for evaluation, 444

especially for benchmarking the ability to ground 445

semantic concepts like colors and object categories. 446

The input observation is a top-down RGB-D re- 447

construction from 3 cameras positioned around a 448

rectangular table: one in the front, one on the left 449

shoulder, and one on the right shoulder, all pointing 450

towards the center. Each camera has a resolution 451

of 640 × 480 and is noiseless. 452

Evaluation Metric. Same as Cliport (Shridhar 453

et al., 2022), we adopt the 0 (fail) to 100 (success) 454

scores proposed in the Ravens (Zeng et al., 2020) 455

benchmark. The score assigns partial credit based 456

on the task, e.g., 5/6 for fulfilling 5 sub-instruction 457

in stacking pyramid tasks. See Appendix A.1 for 458

detailed metrics information. During an evaluation 459
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Method Packing
Shape

Put Blocks
in Bowl

Stack Block
Pyramid Tower of Hanoi Assembling Kits

Code-as-Policies 100.0 97.0 0.0 0.0 0.0
Cliport(1-shot) 29.0 43.0 28.4 61.6 9.6
Cliport(10-shot) 42.0 69.5 51.1 86.6 28.2
Cliport(100-shot) 47.0 77.4 64.3 89.1 37.6
Cliport(1000-shot) 41.0 72.6 59.4 83.5 38.9
Robotics ReAct 93.0 99.0 0.0 0.0 0.0
Robotics Toolfromer 75.0 95.0 80.0 99.0 99.0

Table 2: Comparison of Robotics Toolformer with Code-as-Policies, Cliport, and Robotics. When it comes to
long-horizon tasks involving complex concepts in the instruction for the last three tasks, both Code-as-polices and
Robotics ReAct show extremely poor performance. RT gets superior performance on these than the baselines.

episode, the agent keeps interacting with the scene460

until an oracle indicates task completion.461

Baselines. To study the effectiveness of the RT462

We mainly evaluate our proposed method against463

the following existing approaches on the Cli-464

port (Shridhar et al., 2022) benchmark:465

• Imitation-learning based method with in-466

struction oracle. For each task in 4.1, we re-467

port the result of Cliport (Shridhar et al., 2022)468

model that is pre-trained with 1, 10, 100, and469

1,000 demonstrations. An oracle is employed to470

prompt the agent with ground truth intermediate471

actions in language.472

• Code as Policies based on GPT-3.5 (Liang473

et al., 2022; Vemprala et al., 2023), a code gen-474

eration method that adopt chain-of-thought for475

solving embodied tasks.476

• Robotics ReAct (Yao et al., 2022), we also477

compare with the only-language code genera-478

tion Reasoning-Acting traces for the purpose of479

ablation analysis. In this ablation experiment,480

we investigate how the mixed-modal reasoning481

module enhances robotics planning.482

For all LLM-based methods, we adopt the483

latest OpenAI language model GPT-3.5-turbo-484

0613 (Ouyang et al., 2022) as the planner.485

4.2 Main Result.486

Table 2 presents results from our experiments in487

long-horizon robotics manipulation tasks. These488

results support our main claims that ReAct with489

mixed-modal tool augmentation can significantly490

enhance the performance of solving long-horizon491

embodied tasks. We observe that both Code-as-492

Policies (Liang et al., 2022) and ReAct (Yao et al.,493

2022) perform worse than the imitation learning-494

based method(Cliport) on the Stack Pyramid, Tow- 495

ers of Hanoi, and Assembling Kit tasks, failing 496

to solve any instances. This poor performance 497

can be attributed to the difficulty in understand- 498

ing the concepts of “Hanoi tower” and “pyramid” 499

using language-only internal representations. In- 500

stead, these concepts need visual knowledge to 501

understand. Figure 2 compares the different LLM- 502

based methods in solving the Stack-Block-Pyramid 503

task. Notably, the augmentation of mixed-modal 504

tools enables RT to achieve success rates of 80.0%, 505

99.0%, and 99.0% on the Stack-Block-Pyramid, 506

Tower-of-Hanoi, and Assembling-Kits tasks, re- 507

spectively. However, LLM-based agents show su- 508

perior performance in detecting objects with ob- 509

jective attributes such as color and position com- 510

pared to IL-based agents and RT. It is important 511

to note that code-as-polices (Liang et al., 2022) 512

simplifies the gathering of object information by 513

utilizing ground-truth primitives, but ours does not 514

have access to the ground-truth information. The 515

“Packing-Shape” task provides specific details on 516

which objects to place in the box, eliminating the 517

necessity to decipher high-level concepts into low- 518

level instructions. This direct guidance for pick- 519

ing and placing enables code-as-policies to effec- 520

tively handle any given instruction. However, our 521

method uses multi-modal reasoning to infer which 522

object to pick and where to place it. Furthermore, 523

multi-task training of GIT may bring bias to long- 524

horizon tasks. The above reasons might lead to 525

RT’s lower performance on “Packing-Shape”, com- 526

pared to code-as-policies. Overall, The results from 527

table 2 highlight one key challenge that LLM-based 528

embodied agents face: understanding visual con- 529

cepts through language grounding and acquiring 530

the ability to accomplish goals that involve complex 531
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GIT

Training Steps 500 1,000 3,000

BeLU 0.41 0.74 0.96

ROUGE 0.68 0.82 0.98

METEOR 0.70 0.82 0.98

Table 3: The evaluation of GIT’s performance, when
training the model for different steps: 500, 1000, and
3,000. The metrics are computed by taking the average
across all tasks.

visual concepts using practical action primitives.532

4.3 Ablation Study533

In our study on ablation research, we primarily534

examine the impact of mixed-modal video-to-text535

models on the planning accuracy of RT.536

Setup. We explore the performance of the follow-537

ing LLM-based agent on the selected long-horizon538

tasks (Stack-Block-Pyramid and Assembling Kits):539

1. RT utilizing GIT (Wang et al., 2022) for various540

training durations: 500, 1,000, and 3,000 train-541

ing steps. 2. Robotics ReAct agent performing542

without any prior object information (zero-shot).543

3. Robotics ReAct agent guided by an Instruction544

Oracle.545

Mixed-modal Reasoning Model Finetuning.546

We implement our video-to-text model for robotics547

task captioning by building upon the GIT548

large (Wang et al., 2022), it leverages the pre-549

trained CLIP/ViT-L/14 architecture (Radford et al.,550

2021) as the visual encoder. For detailed infor-551

mation regarding the network architectures, hyper-552

parameters, and training specifics, please refer to553

section A.2 in the paper. Our implementation of554

GIT (Wang et al., 2022) are trained from 400T555

demonstration of the dataset in Section 4.1 and556

evaluate on 100T corresponding validation dataset,557

note that T denotes the number of tasks in Section558

4.1. The metrics we use to evaluate the video cap-559

tioning model are BLEU (Papineni et al., 2002),560

Rouge (Lin, 2004), and METEOR (Banerjee and561

Lavie, 2005). In Table 3, we report the multi-task562

performance by taking the average score of all tasks563

on certain metric.564

Ablation Results. The ablation study presented565

in Table 4 examines the different variations of GIT.566

The results indicate that even though the GIT (1000567

steps) achieves decent performance with BELU568

0.74, ROUGE 0.82, and METEOR 0.82, it is still569

inadequate for handling long-horizon tasks effec-570

Agent Type Stack-Block-Pyramid Assembling-Kits

Robotics ReAct
zero-shot 0.0 0.0

Oracle 96.0 100.0

Robotics
Toolformer

500 0.0 0.0
1,000 11.0 0.0
3,000 80.0 99.0

Table 4: The assessment of two different types of
Robotics ReAct and RT models with various GIT, con-
sidering varying numbers of training steps.

tively. However, when GIT (3000 steps) is em- 571

ployed with improved metrics such as BELU 0.96, 572

ROUGE 0.98, and METEOR 0.98, the RT can 573

achieve 80.0 on Stack-Block-Pyramid and 99.0 on 574

Assembing-Kits. This result indicates the RT re- 575

quires the video-to-text model to be very accurate 576

and precise in order to effectively execute embod- 577

ied planning. 578

5 Conclusion 579

The Robotics toolformer is a multimodal reasoning 580

paradigm for unified tool using. Inserting mixed- 581

modal tools into the reasoning-acting can reduce 582

hallucination and enhance the alignment between 583

the inner representation of LLM with the embodied 584

environment. Our experiments have demonstrated 585

that our method outperforms current approaches in 586

tackling intricate long-term robotics planning tasks 587

using just one demonstration with mixed modali- 588

ties. This framework has promising potential for 589

even broader applications where other pre-existing 590

powerful tools could be integrated to solve more 591

embodied tasks. 592

6 Limitations 593

Although RT provides a viable approach for en- 594

abling LLM-based agents to solve complex tasks 595

with long-term goals, there are several limitations 596

that need to be addressed. One limitation is the lack 597

of consideration for mixed-modal tools in learn- 598

ing policies to connect complex instructions with 599

feasible primitives at scale. This is due to the lim- 600

ited availability of long-horizon visual-to-language 601

datasets in embodied intelligence. Additionally, 602

our work still relies on one-shot demonstrations for 603

in-context learning and transforming abstract con- 604

cepts into primitives. Future research could explore 605

the approach to achieve zero-shot mixed-modal rea- 606

soning via tool augmentation. 607
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A Appendix717

A.1 Cliport Dataset and Evaluation Metrics718

As for the benchmark for evaluating our proposed719

method with the baselines, we use the following720

datasets from Cliport (Shridhar et al., 2022). Note721

that when we use LLM-agent to execute the instruc-722

tions, we do not give step-by-step ground-truth in-723

termediate instructions to the agent like Cliport,724

instead, we ask the agents themselves to infer the725

intermediate instructions.726

1. Assembling Kits Task: Precisely place each727

specified shape in the specified hole following the728

order prescribed in the language instruction gener-729

ated by the LLM-based agent at each timestep. This730

is one of the hardest tasks in the benchmark requir-731

ing precise placements of shapes of randomized732

colors and grounding spatial relationships. Each733

task instance contains 5 shapes and a kit with ran-734

domized poses. Goal: assembling all the kits to the735

corresponding holes. Success Metric: The pose of736

each shape matches the specified hole at the correct737

timestep. The final score is the total number of738

shapes that were placed in the correct pose at the739

correct timestep, divided by the total number of740

shapes in the scene (always 5).741

2. Stack Block Pyramid. Task: Build a pyra-742

mid of colored blocks in a color sequence specified743

through the step-by-step language instructions gen-744

erated by the LLM-based agent. Each task contains745

6 blocks with randomized colors and 1 rectangular746

base, all initially placed at random poses. Goal:747

stack a pyramid by 6 blocks and 1 rectangular base.748

Success Metric: The pose of each block at the cor-749

responding timestep matches the specified location.750

The final score is the total number of blocks in the751

correct pose at the correct timestep, divided by the752

total number of blocks (always 6).753

3. Towers of Hanoi. Task: Move the ring to the754

specified peg in the LLM-based agent-generated755

language instruction at each timestep. The se-756

quence of ring placements is always the same, i.e.757

the perfect solution to three-ring Towers of Hanoi.758

This task can be solved without using colors by759

just observing the ring sizes. However, it tests the760

agent’s ability to ignore irrelevant concepts to the761

task (color in this case). The task involves precise762

pick and place actions for moving the rings from763

peg to peg. Goal: Solve the tower of Hanoi via764

moving 3 rings (small, medium, and big) across 1765

peg base. Success Metric: The pose of each ring at 766

the corresponding timestep matches the specified 767

peg location. The final score is the total number of 768

correct ring placements, divided by the total steps 769

in the perfect solution (7 for three-ring Towers of 770

Hanoi). 771

4. Put Blocks in Bowl. Task: Place all blocks 772

of a specified color in a bowl of the specified color. 773

Each bowl fits just one block and all scenes contain 774

enough bowls to achieve the goal. Each task in- 775

stance contains several distractor blocks and bowls 776

with randomized colors. The solutions to this task 777

are multi-modal in that there could be several ways 778

to place the blocks specified in the language goal. 779

This task does not require precise placements and 780

mostly tests an agent’s ability to ground color at- 781

tributes. Goal: to place blocks with certain colors 782

on the bowls with certain colors Success Metric: 783

All blocks of the specified color are within the 784

bounds of a bowl of the specified color. The fi- 785

nal score is the total number of correct blocks in 786

the correct bowls, divided by the total number of 787

relevant color blocks in the scene. 788

Packing Shapes Task: Place a specified shape in 789

the brown box. Each task instance contains 1 shape 790

to be picked along with 4 distractor shapes. The 791

shape colors are randomized but have no relevance 792

to the task. This task does not require precise place- 793

ments and is mostly a test of the agent’s semantic 794

understanding of arbitrary shapes. Goal: To pack 795

the required shapes to the brown box Success Met- 796

ric: The correct shape is inside the bounds of the 797

brown box. 798

A.2 Details of Fine-tuning GIT 799

Data Processing. We generate the video dataset 800

of Cliport (Shridhar et al., 2022) by extracting the 801

RGB information with the corresponding interme- 802

diate instructions of each frame. The processed 803

image size is 224 × 224. 804

Hyperparameters. The hyperparameter of our 805

reproduction of GIT (Wang et al., 2022) are list at 806

the Table 5 807
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Hyper-param GIT

parameters num 347M

learning rate 3e-5

training batch size 1

gradient accumulation step 32

max train steps 5000

mixed precision fp16

num GPUs 1

GPU type A100

Table 5: The hyperparameter of our reproduction of
GIT, other hyperparameters not mentioned on the table
are kept the same as original GIT
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