
Published as a conference paper at ICLR 2024

FLOW MATCHING ON GENERAL GEOMETRIES

Ricky T. Q. Chen
FAIR, Meta
rtqichen@meta.com

Yaron Lipman
FAIR, Meta and Weizmann Institute of Science
ylipman@meta.com

ABSTRACT

We propose Riemannian Flow Matching (RFM), a simple yet powerful framework
for training continuous normalizing flows on manifolds. Existing methods for gen-
erative modeling on manifolds either require expensive simulation, are inherently
unable to scale to high dimensions, or use approximations for limiting quantities
that result in biased training objectives. Riemannian Flow Matching bypasses
these limitations and offers several advantages over previous approaches: it is
simulation-free on simple geometries, does not require divergence computation,
and computes its target vector field in closed-form. The key ingredient behind RFM
is the construction of a relatively simple premetric for defining target vector fields,
which encompasses the existing Euclidean case. To extend to general geometries,
we rely on the use of spectral decompositions to efficiently compute premetrics on
the fly. Our method achieves state-of-the-art performance on many real-world non-
Euclidean datasets, and we demonstrate tractable training on general geometries,
including triangular meshes with highly non-trivial curvature and boundaries.

1 INTRODUCTION

Geodesic Biharmonic

Figure 1: Our approach makes
use of user-specified premetrics on
general manifolds to define flows.
On select simple manifolds, the
geodesic can be computed exactly
and leads to a simulation-free algo-
rithm. On general manifolds where
the geodesic is not only computa-
tionally expensive but can lead to
degeneracy (e.g., along boundaries),
we propose the use of spectral dis-
tances (e.g., biharmonic), which
can be computed efficiently contin-
gent on a one-time processing cost.

While generative models have recently made great advances in
fitting data distributions in Euclidean spaces, there are still chal-
lenges in dealing with data residing in non-Euclidean spaces,
specifically on general manifolds. These challenges include
scalability to high dimensions (e.g., (Rozen et al., 2021)), the
requirement for simulation or iterative sampling during training
even for simple geometries like hyperspheres (e.g., (Mathieu
& Nickel, 2020; De Bortoli et al., 2022)), and difficulties in
constructing simple and scalable training objectives.

In this work, we introduce Riemannian Flow Matching (RFM),
a simple yet powerful methodology for learning continuous
normalizing flows (CNFs; (Chen et al., 2018)) on general Rie-
mannian manifolds M. RFM builds upon the Flow Matching
framework (Lipman et al., 2023; Albergo & Vanden-Eijnden,
2023; Liu et al., 2023) and learns a CNF by regressing an
implicitly defined target vector field ut(x) that pushes a base
distribution p towards a target distribution q defined by the train-
ing examples. To address the intractability of ut(x), we employ
a similar approach to Conditional Flow Matching (Lipman et al.,
2023), where we regress onto conditional vector fields ut(x|x1)
that push p towards individual training examples x1.

A key observation underlying our Riemannian generalization is
that the conditional vector field necessary for training the CNF
can be explicitly expressed in terms of a “premetric” d(x, y),
which distinguishes pairs of points x and y on the manifold. A
natural choice for such a premetric is the geodesic distance func-
tion, which coincides with the straight trajectories previously
used in Euclidean space by prior approaches.

1

Published as a conference paper at ICLR 2024

On simple geometries, where geodesics are known in closed form (e.g., Euclidean space, hyper-
sphere, hyperbolic space, torus, or any of their product spaces), Riemannian Flow Matching remains
completely simulation-free. Even on general geometries, it only requires forward simulation of a
relatively simple ordinary differential equation (ODE), without differentiation through the solver,
stochastic iterative sampling, or divergence estimation.

Simulation-free
on simple geo.

Closed-form
target vector field

Does not require
divergence

Ben-Hamu et al. (2022) ✓ - ✗

De Bortoli et al. (2022) (DSM) ✗ ✗ ✓

De Bortoli et al. (2022) (ISM) ✗ - ✗

Huang et al. (2022) ✗ - ✗

Riemannian FM (Ours) ✓ ✓ ✓

Table 1: Comparison of closely related methods for training
continuous-time generative models on Riemannian mani-
folds. Additionally, we are the only among these works to
consider and tackle general geometries.

On all types of geometries, Rieman-
nian Flow Matching offers several ad-
vantages over recently proposed Rie-
mannian diffusion models (De Bor-
toli et al., 2022; Huang et al., 2022).
These advantages include avoiding it-
erative simulation of a noising process
during training for geometries with an-
alytic geodesic formulas; not relying
on approximations of score functions
or divergences of the parameteric vec-
tor field; and not needing to solve stochastic differential equations (SDE) on manifolds, which is
generally more challenging to approximate than ODE solutions (Kloeden et al., 2002; Hairer et al.,
2006; Hairer, 2011). Table 1 summarizes the key differences with relevant prior methods, which we
expand on further in Section 4 (Related Work).

Empirically, we find that Riemannian Flow Matching achieves state-of-the-art performance on
manifold datasets across various settings, being on par or outperforming competitive baselines. We
also demonstrate that our approach scales to higher dimensions without sacrificing performance,
thanks to our scalable closed-form training objective. Moreover, we present the first successful
training of continuous-time deep generative models on non-trivial geometries, including those
imposed by discrete triangular meshes and manifolds with non-trivial boundaries that represent
challenging constraints on maze-shaped manifolds.

2 PRELIMINARIES

Riemannian manifolds. This paper considers complete connected, smooth Riemannian manifolds
M with metric g as basic domain over which the generative model is learned. Tangent space to M at
x ∈ M is denoted TxM, and g defines an inner product over TxM denoted ⟨u, v⟩g, u, v ∈ TxM.
TM = ∪x∈M {x} × TxM is the tangent bundle that collects all the tangent planes of the manifold.
U = {ut} denotes the space of time dependent smooth vector fields (VFs) ut : [0, 1]×M → TM,
where ut(x) ∈ TxM for all x ∈ M; divg(ut) is the Riemannian divergence w.r.t. the spatial (x)
argument. We will denote by dvolx the volume element over M, and integration of a function
f : M → R over M is denoted

∫
f(x)dvolx. For readers who are looking for a more comprehensive

background on Riemannian manifolds, we recommend Gallot et al. (1990).

Probability paths and flows on manifolds. Probability densities over M are continuous non-
negative functions p : M → R+ such that

∫
p(x)dvolx = 1. The space of probability densities over

M is marked P . A probability path pt is a curve in probability space pt : [0, 1] → P; such paths
will be used as supervision signal for training our generative models. A flow is a diffeomorphism
Ψ : M → M defined by integrating instantaneous deformations represented by a time-dependent
vector field ut ∈ U . Specifically, a time-dependent flow, ψt : M → M, is defined by solving the
following ordinary differential equation (ODE) on M over t ∈ [0, 1],

d

dt
ψt(x) = ut(ψt(x)), ψ0(x) = x, (1)

and the final diffeomorphism is defined by setting Ψ(x) = ψ1(x). Given a probability density path
pt, it is said to be generated by ut from p if ψt pushes p0 = p to pt for all t ∈ [0, 1]. More formally,

log pt(x) = log([ψt]♯p)(x) = log p(ψ−1
t (x))−

∫ t

0

divg(ut)(xs)ds (2)

where the ♯ symbol denotes the standard push-forward operation and xs = ψs(ψ
−1
t (x)). This formula

can be derived from the Riemannian version of the instantaneous change of variables Formula (see

2

Published as a conference paper at ICLR 2024

equation 22 in (Ben-Hamu et al., 2022)). Previously, Chen et al. (2018) suggested modeling the flow
ψt implicitly by considering parameterizing the vector field ut. This results in a deep generative model
of the flow ψt, called a Continuous Normalizing Flow (CNF) which models a probability path pt
through a continuous-time deformation of a base distribution p. A number of works have formulated
manifold variants (Mathieu & Nickel, 2020; Lou et al., 2020; Falorsi, 2020) that require simulation
in order to enable training, while some simulation-free variants (Rozen et al., 2021; Ben-Hamu et al.,
2022) scale poorly to high dimensions and do not readily adapt to general geometries.

3 METHOD

We aim to train a generative model that lies on a complete, connected smooth Riemannian manifold
M endowed with a metric g. Concretely, we are given a set of training samples x1 ∈ M from some
unknown data distribution q(x1), q ∈ P . Our goal is to learn a parametric map Φ : M → M that
pushes a simple base distribution p ∈ P to q.

3.1 FLOW MATCHING ON MANIFOLDS

Flow Matching Lipman et al. (2023) is a method to train Continuous Normalizing Flow (CNF) on
Euclidean space that sidesteps likelihood computation during training and scales extremely well,
similar to diffusion models (Ho et al., 2020; Song et al., 2020b), while allowing the design of more
general noise processes which enables this work. We provide a brief summary and make the necessary
adaptation to formulate Flow Matching on Riemannian manifolds. Derivations of the manifold case
with full technical details are in Appendix A.

Riemannian Flow Matching. Flow Matching (FM) trains a CNF by fitting a vector field v ∈ U ,
i.e., vt(x) ∈ TxM, with parameters θ ∈ Rp, to an a priori defined target vector field u ∈ U that is
known to generate a probability density path pt ∈ P over M satisfying p0 = p and p1 = q. On a
manifold endowed with a Riemannian metric g, the Flow Matching objective compares the tangent
vectors vt(x), ut(x) ∈ TxM using the Riemannian metric g at that tangent space:

LRFM(θ) = Et,pt(x) ∥vt(x)− ut(x)∥2g (3)

where t ∼ U [0, 1], the uniform distribution over [0, 1].

Probability path construction. Riemannian Flow Matching therefore requires coming up with a
probability density path pt ∈ P , t ∈ [0, 1] that satisfies the boundary conditions

p0 = p, p1 = q (4)
and a corresponding vector field (VF) ut(x) which generates pt(x) from p in the sense of equation 2.
One way to construct such a pair is to create per-sample conditional probability paths pt(x|x1)
satisfying

p0(x|x1) = p(x), p1(x|x1) ≈ δx1(x), (5)
where δx1

(x) is the Dirac distribution over M centered at x1. One can then define pt(x) as the
marginalization of these conditional probability paths over q(x1).

pt(x) =

∫
M
pt(x|x1)q(x1)dvolx1

, (6)

which satisfies equation 4 by construction. It was then proposed by Lipman et al. (2023)—which we
verify for the manifold setting—to define ut(x) as the “marginalization” of conditional vector fields
ut(x|x1) that generates pt(x|x1) (in the sense detailed in Section 2),

ut(x) =

∫
M
ut(x|x1)

pt(x|x1)q(x1)
pt(x)

dvolx1
, (7)

which provably generates pt(x). However, directly plugging ut(x) into equation 3 is intractable as
computing ut(x) is intractable.

Riemmanian Conditional Flow Matching. A key insight from Lipman et al. (2023) is that when
the targets pt and ut are defined as in equations 6 and 7, the FM objective is equivalent to the
following Conditional Flow Matching objective,

LRCFM(θ) = Et,q(x1),pt(x|x1) ∥vt(x)− ut(x|x1)∥2g (8)

as long as ut(x|x1) is a vector field that generates pt(x|x1) from p.

3

Published as a conference paper at ICLR 2024

Algorithm 1 Riemannian CFM

Require: base p, target q, scheduler κ
Initialize parameters θ of vt
while not converged do

sample time t ∼ U(0, 1)
sample training example x1 ∼ q
sample noise x0 ∼ p
if simple geometry then
xt = expx1

(κ(t)logx1
(x0))

else if general geometry then
xt = solve_ODE([0, t], x0, ut(x|x1))

end if
ℓ(θ) = ∥vt(xt; θ)− ẋt∥2g
θ = optimizer_step(ℓ(θ))

end while

To simplify this loss, consider the conditional flow,
which we denote via the shorthand,

xt = ψt(x0|x1), (9)

defined as the solution to the ODE in equation 1
with the VF ut(x|x1) and the initial condition
ψ0(x0|x1) = x0. Furthermore, since sampling
from pt(x|x1) can be done with ψt(x0|x1), where
x0 ∼ p(x0), we can reparametrize equation 8 as

LRCFM(θ) = Et,q(x1),p(x0) ∥vt(xt)− ẋt∥2g (10)

where ẋt = d/dt xt = ut(xt|x1).
Riemannian Conditional Flow Matching (RCFM)
has three requirements: a parametric vector field
vt that outputs vectors on the tangent planes, the
use of the appropriate Riemannian metric ∥·∥g, and the design of a (computationally tractable)
conditional flow ψt(x|x1) whose probability path satisfies the boundaries conditions in equation 5.
We discuss this last point in the next section. Generally, compared to existing methods for training
generative models on manifolds, RCFM is both simple and highly scalable; the training procedure is
summarized in Algorithm 1 and a detailed comparison can be found in Appendix D.

3.2 CONSTRUCTING CONDITIONAL FLOWS THROUGH PREMETRICS

We discuss the construction of conditional flows ψt(x|x1) on M that concentrate all mass at x1 at
time t = 1; Figure 2 provides an illustration. This ensures that equation 5 will hold (regardless of the
choice of p) since all points are mapped to x1 at time t = 1, namely

ψ1(x|x1) = x1, for all x ∈ M. (11)

Figure 2: The conditional vector
field ut(x|x1) defined in equa-
tion 13 transports all points x ̸= x1
to x1 at exactly t = 1.

On general manifolds, directly constructing ψt that satisfies
equation 11 can be overly cumbersome. Alternatively, we
propose an approach based on designing a premetric instead,
which has simple properties that, when satisfied, characterize
conditional flows which satisfy equation 11. Specifically, we
define a premetric as d : M×M → R satisfying:

1. Non-negative: d(x, y) ≥ 0 for all x, y ∈ M.
2. Positive: d(x, y) = 0 iff x = y.
3. Non-degenerate: ∇d(x, y) ̸= 0 iff x ̸= y.

We use as convention ∇d(x, y) = ∇xd(x, y). Such a premetric
denotes the closeness of a point x to x1, and we aim to design
a conditional flow ψt(x|x1) that monotonically decreases this
premetric. That is, given a monotonically decreasing differentiable function κ(t) satisfying κ(0) = 1
and κ(1) = 0, we want to find a ψt that decreases d(·, x1) according to

d(ψt(x0|x1), x1) = κ(t)d(x0, x1), (12)

Here κ(t) acts as a scheduler that determines the rate at which d(·|x1) decreases. Note that at t = 1,
we necessarily satisfy equation 11 since x1 is the unique solution to d(·|x1) = 0 due to the “positive”
property of the premetric. Our next theorem shows that ψt(x|x1) satisfying equation 12 results in the
following vector field,

ut(x|x1) =
d log κ(t)

dt
d(x, x1)

∇d(x, x1)

∥∇d(x, x1)∥2g
, (13)

The “non-degenerate” property guarantees this conditional vector field is defined everywhere x ̸= x1.

4

Published as a conference paper at ICLR 2024

Theorem 3.1. The flow ψt(x|x1) defined by the vector field ut(x|x1) in equation 13 satisfies
equation 12, and therefore also equation 11. Conversely, out of all conditional vector fields that
satisfy equation 12, this ut(x|x1) is the minimal norm solution.

A more concise statement and full proof of this result can be found in Appendix B. Here we provide
proof for the first part: Consider the scalar function a(t) = d(xt, x1), where xt = ψt(x|x1) is the
flow defined with the VF in equation 13. Differentiation w.r.t. time gives

d

dt
a(t) = ⟨∇d(xt, x1), ẋt⟩g = ⟨∇d(xt, x1), u(xt|x1)⟩g =

d log κ(t)

dt
a(t),

The solution of this ODE is a(t) = κ(t)d(x, x1), which can be verified through substitution, and
hence proves d(xt, x1) = κ(t)d(x, x1). Intuitively, ut(x|x1) is the minimal norm solution since it
does not contain orthogonal directions that do not decrease the premetric.

A simple choice we make in this paper for the scheduler is κ(t) = 1− t, resulting in a conditional
flow that linearly decreases the premetric between xt and x1. Using this, we arrive at a more explicit
form of the RCFM objective,

LRCFM(θ) = Et,q(x1),p(x0)

∥∥∥∥∥vt(xt) + d(x0, x1)
∇d(xt, x1)

∥∇d(xt, x1)∥2g

∥∥∥∥∥
2

g

. (14)

For general manifolds M and premetrics d, training with Riemmanian CFM will require simulation
in order to solve for xt, though it does not need to differentiate through xt. However, on simple
geometries RCFM can become completely simulation-free by choosing the premetric to be the
geodesic distance, as we discuss next.

Geodesic distance. A natural choice for the premetric d(x, y) over a Riemannian manifold M is
the geodesic distance dg(x, y). Firstly, we note that when using geodesic distance as our choice of
premetric, the flow ψt(x0|x1)—since it is the minimal norm solution—is equivalent to the geodesic
path, i.e., shortest path, connecting x0 and x1.
Proposition 3.2. Consider a complete, connected smooth Riemannian manifold (M, g) with geodesic
distance dg(x, y). In case d(x, y) = dg(x, y) then xt = ψt(x0|x1) defined by the conditional VF in
equation 13 with the scheduler κ(t) = 1− t is a constant speed geodesic connecting x0 to x1.

This makes it easy to compute xt on simple manifolds, which we define as manifolds with closed-form
geodesics, e.g., Euclidean space, the hypersphere, the hyperbolic space, the high-dimensional torus,
and some matrix Lie Groups. In particular, the geodesic connecting x0 and x1 can be expressed in
terms of the exponential and logarithm maps,

xt = expx1
(κ(t) logx1

(x0)), t ∈ [0, 1]. (15)

This formula can simply be plugged into equation 10, resulting in a highly scalable training objective.
A list of simple manifolds that we consider can be found in Table 5.

Euclidean geometry. With Euclidean geometry M = Rn, and with standard Euclidean norm
d(x, y) = ∥x− y∥2, the conditional VF (equation 13) with scheduler κ(t) = 1− t reduces to the VF
used by Lipman et al. (2023), ut(x|x1) = x1−x

1−t , and the RCFM objective takes the form

LRCFM(θ) = Et,q(x1),p(x0) ∥vt(xt) + x0 − x1∥22 ,

which coincides with the Euclidean case of Flow Matching presented in prior works (Lipman et al.,
2023; Liu et al., 2023).

3.3 SPECTRAL DISTANCES ON GENERAL GEOMETRIES

Geodesics can be difficult to compute efficiently for general geometries, especially since it needs to be
computed for any possible pair of points. Hence, we propose using premetrics that can be computed
quickly for any pair of points on M contingent on a one-time upfront cost. In particular, for general
Riemannian manifolds, we consider the use of approximate spectral distances as an alternative to the
geodesic distance. Spectral distances actually offer some benefits over the geodesic distance such as

5

Published as a conference paper at ICLR 2024

Geodesic Biharmonic Diffusion τ = 1 Diffusion τ = 1
4

Diffusion τ = 1
10

Figure 3: Contour plots of geodesic and spectral distances (to a source point) on general manifolds.
Geodesics are expensive to compute online and are globally non-smooth. The biharmonic distance
behaves smoothly while the diffusion distance requires careful tuning of the hyperparameter τ .

robustness to topological noise, smoothness, and are globally geometry-aware (Lipman et al., 2010).
Note however, that spectral distances do not define minimizing (geodesic) paths, and will require
simulation of ut(x|x1) in order to compute conditional flows xt.

Let φi : M → R be the eigenfunctions of the Laplace-Beltrami operator ∆g over M with corre-
sponding eigenvalues λi, i.e., they satisfy ∆gφi = λiφi, for i = 1, 2, . . . , then spectral distances are
of the form

dw(x, y)2 =

∞∑
i=1

w(λi) (φi(x)− φi(y))
2
, (16)

where w : R → R+ is some monotonically decreasing weighting function. Popular instances of
spectral distances include:

1. Diffusion Distance Coifman & Lafon (2006): w(λ) = exp(−2τλ), with a parameter τ .

2. Biharmonic Distance Lipman et al. (2010): w(λ) = λ−2.

In practice, we truncate the infinite series in equation 16 to the smallest k eigenvalues. These
k eigenfunctions can be numerically solved as a one-time preprocessing cost prior to training.
Furthermore, we note that using an approximation of the spectral distance with finite k is sufficient
for satisfying the properties of the premetric, leading to no bias in the training procedure. Lastly,
we consider manifolds with boundaries and show that solving eigenfunctions using the natural,
or Neumann, boundary conditions ensures that the resulting ut(x|x1) does not leave the interior of
the manifold. Detailed discussions on these points above can be found in Appendix G. Figure 3
visualizes contour plots of these spectral distances for manifolds with non-trivial curvatures.

4 RELATED WORK

Deep generative models on Riemannian manifolds. Some initial works suggested constructing
normalizing flows that map between manifolds and Euclidean spaces of the same intrinsic dimension
(Gemici et al., 2016; Rezende et al., 2020; Bose et al., 2020), often relying on the tangent space
at some pre-specified origin. However, this approach is problematic when the manifold is not
homeomorphic to Euclidean space, resulting in both theoretical and numerical issues. On the other
hand, continuous-time models such as continuous normalizing flows bypass such topogical constraints
and flow directly on the manifold itself. To this end, a number of works have formulated continuous
normalizing flows on simple manifolds (Mathieu & Nickel, 2020; Lou et al., 2020; Falorsi, 2020), but
these rely on maximum likelihood for training, a costly simulation-based procedure. More recently,
simulation-free training methods for continuous normalizing flows on manifolds have been proposed
(Rozen et al., 2021; Ben-Hamu et al., 2022); however, these scale poorly to high dimensions and do
not adapt to general geometries.

6

Published as a conference paper at ICLR 2024

Table 2: Test NLL on Earth and climate science datasets. Standard deviation estimated over 5 runs.

Volcano Earthquake Flood Fire
Dataset size (train + val + test) 827 6120 4875 12809

CNF-based
Riemannian CNF (Mathieu & Nickel, 2020) -6.05±0.61 0.14±0.23 1.11±0.19 -0.80±0.54

Moser Flow (Rozen et al., 2021) -4.21±0.17 -0.16±0.06 0.57±0.10 -1.28±0.05

CNF Matching (Ben-Hamu et al., 2022) -2.38±0.17 -0.38±0.01 0.25±0.02 -1.40±0.02

Riemannian Score-Based (De Bortoli et al., 2022) -4.92±0.25 -0.19±0.07 0.48±0.17 -1.33±0.06

ELBO-based
Riemannian Diffusion Model (Huang et al., 2022) -6.61±0.96 -0.40±0.05 0.43±0.07 -1.38±0.05

Ours
Riemannian Flow Matching w/ Geodesic -7.93±1.67 -0.28±0.08 0.42±0.05 -1.86±0.11

Riemannian diffusion models. With the influx of diffusion models that allow efficient simulation-
free training on Euclidean space (Ho et al., 2020; Song et al., 2020b), multiple works have attempted
to adopt diffusion models to manifolds (Mathieu & Nickel, 2020; Huang et al., 2022). However, due
to the reliance on stochastic differential equations (SDE) and denoising score matching (Vincent,
2011), these approaches necessitate in-training simulation and approximations when applied to
non-Euclidean manifolds.

First and foremost, they lose the simulation-free sampling of xt ∼ pt(x|x1) that is offered in the
Euclidean regime; this is because the manifold analog of the Ornstein–Uhlenbeck SDE does not have
closed-form solutions. Hence, diffusion-based methods have to resort to simulated random walks as
a noising process even on simple manifolds (De Bortoli et al., 2022; Huang et al., 2022).

Furthermore, even on simple manifolds, the conditional score function is not known analytically, so
De Bortoli et al. (2022) proposed approximating the conditional score function with either an eigen-
function expansion or Varhadan’s heat-kernel approximation. These approximations lead to biased
gradients in the denoising score matching framework. We find that the heat-kernel approximations
can potentially be extremely biased, even with hundreds with eigenfunctions (see Figure 10). In
contrast, we show in Figure 11 that our framework can satisfy all premetric requirements even with a
small number of eigenfunctions for the spectral distance approximation—hence guaranteeing that the
optimal model distribution is the data distribution. See detailed discussions in Appendix G.1.

A way to bypass the conditional score function is to use implicit score matching (Hyvärinen & Dayan,
2005), which Huang et al. (2022) adopts for the manifold case, but this instead requires divergence
computation of the large neural nets during training. Using the Hutchinson estimator (Hutchinson,
1989; Skilling, 1989; Grathwohl et al., 2019; Song et al., 2020a) for divergence estimation results in
a more scalable algorithm, but the variance of the Hutchinson estimator scales poorly with dimension
(Hutchinson, 1989) and is further exacerbated on non-Euclidean manifolds (Mathieu & Nickel, 2020).

Finally, the use of SDEs as a noising process requires carefully constructing suitable reverse-time
processes that approximate either just the probability path (Anderson, 1982) or the actual sample
trajectories (Li et al., 2020), whereas ODE solutions are generally well-defined in both forward and
reverse directions (Murray & Miller, 2013).

In contrast to these methods, Riemannian Flow Matching is simulation-free on simple geometries,
has exact conditional vector fields, and does not require divergence computation during training.
These properties are summarized in Table 1, and a detailed comparison of algorithmic differences to
diffusion-based approaches is presented in Appendix D. Lastly, for general Riemannian manifolds we
show that the design of a relatively simple premetric is sufficient, allowing the use of general distance
functions that don’t satisfy all axioms of a metric—such as approximate spectral distances with finite
truncation—going beyond what is currently possible with existing Riemannian diffusion methods.

Euclidean Flow Matching. Riemannian Flow Matching is built on top of recent simulation-free
methods that work with ODEs instead of SDEs, regressing directly onto generating vector fields
instead of score functions (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023;
Neklyudov et al., 2022), resulting in an arguably simpler approach to continuous-time generative
modeling without the intricacies of dealing with stochastic differential equations. In particular,
Lipman et al. (2023) shows that this approach encompasses and broadens the probability paths used

7

Published as a conference paper at ICLR 2024

Table 3: Test NLL on protein datasets. Standard deviation estimated over 5 runs.

General (2D) Glycine (2D) Proline (2D) Pre-Pro (2D) RNA (7D)
Dataset size (train + val + test) 138208 13283 7634 6910 9478

Mixture of Power Spherical (Huang et al., 2022) 1.15±0.002 2.08±0.009 0.27±0.008 1.34±0.019 4.08±0.368

Riemannian Diffusion Model (Huang et al., 2022) 1.04±0.012 1.97±0.012 0.12±0.011 1.24±0.004 -3.70±0.592

Riemannian Flow Matching w/ Geodesic 1.01±0.025 1.90±0.055 0.15±0.027 1.18±0.055 -5.20±0.067

E
ig

en
fu

nc
tio

n
M

od
el

Bunny (k=10) Bunny (k=50) Bunny (k=100) Spot (k=10) Spot (k=50) Spot (k=100)

Figure 4: Visualization of (top) the eigenfunctions that were used to construct target distributions,
and (bottom) the learned density & samples from trained models with the Biharmonic distance.

by diffusion models while remaining simulation-free; Albergo & Vanden-Eijnden (2023) discusses an
interpretation based on the use of interpolants—equivalent to our conditional flows ψt(x|x1), except
we also make explicit the construction of the marginal probability path pt(x) and vector field ut(x);
Liu et al. (2023) shows that repeatedly fitting to a model’s own samples leads to straighter trajectories;
and Neklyudov et al. (2022) formulates an implicit objective when ut(x) is a gradient field.

5 EXPERIMENTS
We consider data from earth and climate science, protein structures, high-dimensional tori, compli-
cated synthetic distributions on general closed manifolds, and distributions on maze-shaped manifolds
that require navigation across non-trivial boundaries. Details regarding training setup is discussed in
Appendix H. Due to space constraints, additional experiments on hyperbolic manifold and a manifold
over matrices can be found in Appendix J, which are endowed with nontrivial Riemannian metrics.
Table 5 provides all details of the simple manifolds and their geometries. Details regarding the more
complex mesh manifolds can be found in the open source code, which we release for reproducibility1.

Earth and climate science datasets on the sphere. We make use of the publicly sourced datasets
(NOAA, 2020a;b; Brakenridge, 2017; EOSDIS, 2020) compiled by Mathieu & Nickel (2020). These
data points lie on the 2-D sphere, a simple manifold with closed form exponential and logarithm maps.
We therefore stick to the geodesic distance and compute geodesics in closed form as in equation 15.
Table 2 shows the results alongside prior methods. We achieve a sizable improvement over prior
works on the volcano and fire datasets which have highly concentrated regions that require a high
fidelity. Figure 8 shows the density of our trained models.

Protein datasets on the torus. We make use of the preprocessed protein (Lovell et al., 2003) and
RNA (Murray et al., 2003) datasets compiled by Huang et al. (2022). These datasets represent torsion
angles and can be represented on the 2D and 7D torus. We represent the data on a flat torus, which is
isometric to the product of 1-D spheres used by prior works (Huang et al., 2022; De Bortoli et al.,
2022) and result in densities that are directly comparable due to this isometry. Results are displayed
in Table 3, and we show learned densities of the protein datasets in Figure 9. Compared to Huang
et al. (2022), we see a significant gain in performance particularly on the higher dimensional 7D
torus, due to the higher complexity of the dataset.

Scaling to high dimensions. We next consider the scalability of our method in the case
of high-dimensional tori, following the exact setup in De Bortoli et al. (2022). We com-

1https://github.com/facebookresearch/riemannian-fm

8

https://github.com/facebookresearch/riemannian-fm

Published as a conference paper at ICLR 2024

pare to Moser Flow (Rozen et al., 2021), which does not scale well into high dimensions,
and Riemannian Score-based (De Bortoli et al., 2022) using implicit score matching (ISM).

100 101 102

N (Dimension)

0.3

0.2

0.1

0.0

0.1

0.2

Lo
g-

lik
el

ih
oo

d
/ N

Riemannian Flow Matching
Riemannian Score-based
Moser Flow

Figure 5: Riemannian Flow Matching scales
incredibly well to higher dimensions as it is
simulation-free and all quantities required for
training are computed exactly on simple geome-
tries such as tori. Log-likelihoods are in bits.

As shown in Table 1, this objective gets around the
need to approximate conditional score functions,
but it requires stochastic divergence estimation,
introducing larger amounts of variance at higher
dimensions. In Figure 5 we plot log-likelihood
values, across these two baselines and our method
with the geodesic construction. We see that our
method performs steadily, with no significant drop
in performance at higher dimensions since we do
not have any reliance on approximations.

Manifolds with non-trivial curvature. We next
experiment with general closed manifolds using
spectral distances as described in Section 3.3.
Specifically, we experiment on manifolds described
by triangular meshes. For meshes, computing
geodesic distances on-the-fly is too expensive for our use case, which requires hundreds of evalu-
ations per training iteration. Fast approximations to the geodesic distance between two points are
O(n log n) (Kimmel & Sethian, 1998), while exact geodesic distances require O(n2 log n) (Surazh-
sky et al., 2005), where n is the number of edges. On the other hand, computing spectral distances is
O(k), where k ≪ n, i.e., it does not scale with the complexity of the manifold after the one-time
preprocessing step. As our manifolds, we use the Standard Bunny (Turk & Levoy, 1994) and Spot
the Cow (Crane et al., 2013). Similar to Rozen et al. (2021), we construct distributions by computing
the k-th eigenfunction, thresholding, and then sampling proportionally to the eigenfunction. This
is done on a high-resolution mesh so that the distribution is non-trivial on each triangle. Figure 4
contains visualizations of the eigenfunctions, the learned density, and samples from a trained model
that transports from a uniform base distribution. We used k=200 eigenfunctions, which is sufficient
for our method to produce high fidelity samples.

Stanford Bunny Spot the Cow

k=10 k=50 k=100 k=10 k=50 k=100

Riemannian CFM
w/ Diffusion (τ=1/4) 1.16±0.02 1.48±0.01 1.53±0.01 0.87±0.07 0.95±0.16 1.08±0.05
w/ Biharmonic 1.06±0.05 1.55±0.01 1.49±0.01 1.02±0.06 1.08±0.05 1.29±0.05

Table 4: Test NLL on mesh datasets.

In Table 4, we report the test NLL of models
trained using either the diffusion distance or the
biharmonic distance. We had to carefully tune
the diffusion distance hyperparameter τ while
the biharmonic distance was straightforward to
use out-of-the-box and it has better smoothness
properties (see Figure 3).

(a) (b) (c) (d)

Figure 6: (a, c) Source (cyan) and target (yel-
low) distributions on a manifold with non-
trivial boundaries. (b, d) Sample trajectories
from a CNF model trained through RCFM
with the Biharmonic distance.

Manifolds with boundaries. Lastly, we ex-
periment with manifolds that have boundaries.
Specifically, we consider randomly generated mazes
visualized in Figure 6. We set the base distribution
to be a Gaussian in the middle of the maze, and set
the target distribution to be a mixture of densities at
corners of the maze. These mazes are represented
using triangular meshes, and we use the biharmonic
distance using k=30 eigenfunctions. Once trained,
the model represents a single vector field that
transports all mass from the source distribution to the
target distribution with no crossing paths. We plot
sample trajectories in Figure 6 (b) and (d), where it can be seen that the learned vector field avoids
boundaries of the manifold and successfully navigates to different modes in the target distribution.

6 CONCLUSION

We propose Riemannian Flow Matching as a highly-scalable approach for training continuous
normalizing flows on manifolds. Our method is completely simulation-free and introduces zero
approximation errors on simple geometries that have closed-form geodesics. We also introduce
benchmark problems for general manifolds and showcase for the first time, tractable training on
general geometries including both closed manifolds and manifolds with boundaries.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

Ricky T. Q. Chen would like to thank Chin-Wei Huang for helpful discussions. Additionally, we
acknowledge the Python community (Van Rossum & Drake Jr, 1995; Oliphant, 2007) for developing
the core set of tools that enabled this work, including PyTorch (Paszke et al., 2019), PyTorch
Lightning (Falcon & team, 2019), Hydra (Yadan, 2019), Jupyter (Kluyver et al., 2016), Matplotlib
(Hunter, 2007), seaborn (Waskom et al., 2018), numpy (Oliphant, 2006; Van Der Walt et al., 2011),
SciPy (Jones et al., 2014) pandas (McKinney, 2012), geopandas (Jordahl et al., 2020), torchdiffeq
(Chen, 2018), libigl (Panozzo & Jacobson, 2014), and PyEVTK (Herrera, 2019).

REFERENCES

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
International Conference on Learning Representations, 2023.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

Alexandre Barachant, Stéphane Bonnet, Marco Congedo, and Christian Jutten. Classification of
covariance matrices using a riemannian-based kernel for bci applications. Neurocomputing, 112:
172–178, 2013.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Aditya Grover, Maximilian Nickel,
Ricky T. Q. Chen, and Yaron Lipman. Matching normalizing flows and probability paths on
manifolds. International Conference on Machine Learning, 2022.

Benjamin Blankertz, Guido Dornhege, Matthias Krauledat, Klaus-Robert Müller, and Gabriel Curio.
The non-invasive berlin brain–computer interface: fast acquisition of effective performance in
untrained subjects. NeuroImage, 37(2):539–550, 2007.

Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, and Will Hamilton. Latent variable
modelling with hyperbolic normalizing flows. In Hal Daumé III and Aarti Singh (eds.), Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 1045–1055. PMLR, 13–18 Jul 2020.

G.R. Brakenridge. Global active archive of large flood events. http://floodobservatory.
colorado.edu/Archives/index.html, 2017. Dartmouth Flood Observatory, University
of Colorado,.

Clemens Brunner, Robert Leeb, Gernot Müller-Putz, Alois Schlögl, and Gert Pfurtscheller. Bci
competition 2008–graz data set a. Institute for Knowledge Discovery (Laboratory of Brain-
Computer Interfaces), Graz University of Technology, 16:1–6, 2008.

Ricky T. Q. Chen. torchdiffeq, 2018. URL https://github.com/rtqichen/
torchdiffeq.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic
analysis, 21(1):5–30, 2006.

Keenan Crane, Ulrich Pinkall, and Peter Schröder. Robust fairing via conformal curvature flow. ACM
Transactions on Graphics (TOG), 32(4):1–10, 2013.

Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and
Arnaud Doucet. Riemannian score-based generative modeling. Advances in Neural Information
Processing Systems, 2022.

10

http://floodobservatory.colorado.edu/Archives/index.html
http://floodobservatory.colorado.edu/Archives/index.html
https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq

Published as a conference paper at ICLR 2024

Zhijie Deng, Jiaxin Shi, Hao Zhang, Peng Cui, Cewu Lu, and Jun Zhu. Neural eigenfunctions are
structured representation learners. arXiv preprint arXiv:2210.12637, 2022.

EOSDIS. Active fire data. https://earthdata.nasa.gov/
earth-observation-data/near-real-time/firms/active-fire-data,
2020. Land, Atmosphere Near real-time Capability for EOS (LANCE) system operated by
NASA’s Earth Science Data and Information System (ESDIS).

William Falcon and The PyTorch Lightning team. Pytorch lightning, 2019. URL https://
github.com/Lightning-AI/lightning.

Luca Falorsi. Continuous normalizing flows on manifolds. PhD thesis, University of Amsterdam,
2020.

Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. Riemannian geometry, volume 2.
Springer, 1990.

Mevlana C Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing flows on riemannian
manifolds. arXiv preprint arXiv:1611.02304, 2016.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. FFJORD:
Free-form continuous dynamics for scalable reversible generative models. International Conference
on Learning Representations, 2019.

Ernst Hairer. Solving differential equations on manifolds. Lecture Notes, Université de Geneve, 2011.

Ernst Hairer, Marlis Hochbruck, Arieh Iserles, and Christian Lubich. Geometric numerical integration.
Oberwolfach Reports, 3(1):805–882, 2006.

Paulo Herrera. Pyevtk, 2019. URL https://github.com/paulo-herrera/PyEVTK.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Chin-Wei Huang, Milad Aghajohari, Avishek Joey Bose, Prakash Panangaden, and Aaron Courville.
Riemannian diffusion models. Advances in Neural Information Processing Systems, 2022.

John D Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering, 9(3):
90, 2007.

M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing
splines. 18:1059–1076, 01 1989.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Eric Jones, Travis Oliphant, and Pearu Peterson. {SciPy}: Open source scientific tools for {Python}.
2014.

Peter W Jones, Mauro Maggioni, and Raanan Schul. Manifold parametrizations by eigenfunctions
of the laplacian and heat kernels. Proceedings of the National Academy of Sciences, 105(6):
1803–1808, 2008.

Kelsey Jordahl, Joris Van den Bossche, Martin Fleischmann, Jacob Wasserman, James McBride,
Jeffrey Gerard, Jeff Tratner, Matthew Perry, Adrian Garcia Badaracco, Carson Farmer, Geir Arne
Hjelle, Alan D. Snow, Micah Cochran, Sean Gillies, Lucas Culbertson, Matt Bartos, Nick Eu-
bank, maxalbert, Aleksey Bilogur, Sergio Rey, Christopher Ren, Dani Arribas-Bel, Leah Wasser,
Levi John Wolf, Martin Journois, Joshua Wilson, Adam Greenhall, Chris Holdgraf, Filipe, and
François Leblanc. geopandas/geopandas: v0.8.1, 2020.

Ron Kimmel and James A Sethian. Computing geodesic paths on manifolds. Proceedings of the
national academy of Sciences, 95(15):8431–8435, 1998.

Peter Eris Kloeden, Eckhard Platen, and Henri Schurz. Springer Science & Business Media, 2002.

11

https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://github.com/paulo-herrera/PyEVTK

Published as a conference paper at ICLR 2024

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay, et al. Jupyter
notebooks-a publishing format for reproducible computational workflows. In ELPUB, pp. 87–90,
2016.

R Leeb, C Brunner, G Müller-Putz, A Schlögl, and GJGUOT Pfurtscheller. Bci competition 2008–graz
data set b. Graz University of Technology, Austria, pp. 1–6, 2008.

Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable gradients
for stochastic differential equations. In International Conference on Artificial Intelligence and
Statistics, pp. 3870–3882. PMLR, 2020.

Yaron Lipman, Raif M Rustamov, and Thomas A Funkhouser. Biharmonic distance. ACM Transac-
tions on Graphics (TOG), 29(3):1–11, 2010.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. International Conference on Learning Representations, 2023.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. International Conference on Learning Representations, 2023.

Aaron Lou, Derek Lim, Isay Katsman, Leo Huang, Qingxuan Jiang, Ser Nam Lim, and Christopher M
De Sa. Neural manifold ordinary differential equations. Advances in Neural Information Processing
Systems, 33:17548–17558, 2020.

Simon C Lovell, Ian W Davis, W Bryan Arendall III, Paul IW De Bakker, J Michael Word, Michael G
Prisant, Jane S Richardson, and David C Richardson. Structure validation by cα geometry: ϕ, ψ
and cβ deviation. Proteins: Structure, Function, and Bioinformatics, 50(3):437–450, 2003.

Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. Advances in
Neural Information Processing Systems, 33:2503–2515, 2020.

Robert J McCann. Polar factorization of maps on riemannian manifolds. Geometric & Functional
Analysis GAFA, 11(3):589–608, 2001.

Wes McKinney. Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. "
O’Reilly Media, Inc.", 2012.

Maher Moakher and Philipp G Batchelor. Symmetric positive-definite matrices: From geometry to
applications and visualization. Visualization and processing of tensor fields, pp. 285–298, 2006.

Francis J Murray and Kenneth S Miller. Existence theorems for ordinary differential equations.
Courier Corporation, 2013.

Laura JW Murray, W Bryan Arendall III, David C Richardson, and Jane S Richardson. Rna backbone
is rotameric. Proceedings of the National Academy of Sciences, 100(24):13904–13909, 2003.

Kirill Neklyudov, Daniel Severo, and Alireza Makhzani. Action matching: A variational method for
learning stochastic dynamics from samples. arXiv preprint arXiv:2210.06662, 2022.

NOAA. Global significant earthquake database. https://data.nodc.noaa.gov/cgi-bin/
iso?id=gov.noaa.ngdc.mgg.hazards:G012153, 2020a. National Geophysical Data
Center / World Data Service (NGDC/WDS): NCEI/WDS Global Significant Earthquake Database.
NOAA National Centers for Environmental Information.

NOAA. Global significant volcanic eruptions database. https://data.nodc.noaa.gov/
cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G10147, 2020b. National Geo-
physical Data Center / World Data Service (NGDC/WDS): NCEI/WDS Global Significant Volcanic
Eruptions Database. NOAA National Centers for Environmental Information.

Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

Travis E Oliphant. Python for scientific computing. Computing in Science & Engineering, 9(3):
10–20, 2007.

12

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G012153
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G012153
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G10147
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G10147

Published as a conference paper at ICLR 2024

Daniele Panozzo and Alec Jacobson. Libigl: A c++ library for geometry processing without a mesh
data structure. 2014.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in neural information processing systems, pp.
8026–8037, 2019.

David Pfau, Stig Petersen, Ashish Agarwal, David GT Barrett, and Kimberly L Stachenfeld. Spectral
inference networks: Unifying deep and spectral learning. arXiv preprint arXiv:1806.02215, 2018.

Boris T. Polyak and Anatoli Juditsky. Acceleration of stochastic approximation by averaging. 1992.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

Danilo Jimenez Rezende, George Papamakarios, Sébastien Racaniere, Michael Albergo, Gurtej Kan-
war, Phiala Shanahan, and Kyle Cranmer. Normalizing flows on tori and spheres. In International
Conference on Machine Learning, pp. 8083–8092. PMLR, 2020.

Noam Rozen, Aditya Grover, Maximilian Nickel, and Yaron Lipman. Moser flow: Divergence-based
generative modeling on manifolds. Advances in Neural Information Processing Systems, 34:
17669–17680, 2021.

John Skilling. The eigenvalues of mega-dimensional matrices. In Maximum Entropy and Bayesian
Methods, pp. 455–466. Springer, 1989.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in Artificial Intelligence, pp. 574–584. PMLR,
2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J Gortler, and Hugues Hoppe. Fast exact
and approximate geodesics on meshes. ACM transactions on graphics (TOG), 24(3):553–560,
2005.

Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In Proceedings of the 21st
annual conference on Computer graphics and interactive techniques, pp. 311–318, 1994.

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for efficient
numerical computation. Computing in Science & Engineering, 13(2):22, 2011.

Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

Michael Waskom, Olga Botvinnik, Drew O’Kane, Paul Hobson, Joel Ostblom, Saulius Lukauskas,
David C Gemperline, Tom Augspurger, Yaroslav Halchenko, John B. Cole, Jordi Warmenhoven,
Julian de Ruiter, Cameron Pye, Stephan Hoyer, Jake Vanderplas, Santi Villalba, Gero Kunter,
Eric Quintero, Pete Bachant, Marcel Martin, Kyle Meyer, Alistair Miles, Yoav Ram, Thomas
Brunner, Tal Yarkoni, Mike Lee Williams, Constantine Evans, Clark Fitzgerald, Brian, and Adel
Qalieh. mwaskom/seaborn: v0.9.0 (july 2018), July 2018. URL https://doi.org/10.
5281/zenodo.1313201.

Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019.
URL https://github.com/facebookresearch/hydra.

13

https://doi.org/10.5281/zenodo.1313201
https://doi.org/10.5281/zenodo.1313201
https://github.com/facebookresearch/hydra

Published as a conference paper at ICLR 2024

A CONDITIONAL FLOW MATCHING ON MANIFOLDS

We provide the necessary derivations and proofs for the Conditional Flow Matching over a Riemannian
manifolds; the proofs and derivations from Lipman et al. (2023) are followed "as-is", with the
necessary adaptation to the Riemannian setting.

Assumptions. We will use notations and setup from Section 2. Let p(·|x1) : [0, 1] → P be
a (conditional) probability path sufficiently smooth with integrable derivatives, strictly positive
pt(x|x1) > 0, and p0(x|x1) = p, where p ∈ P is our source density. Let u(·|x1) ∈ U be a
(conditional) time-dependent vector field, sufficiently smooth with integrable derivatives and such
that ∫ 1

0

∫
M

∥ut(x|x1)∥g pt(x|x1)dvolxdt <∞.

Further assume ut(x|x1) generates pt(x|x1) from p in the sense of equation 2, i.e., if we denote by
ψt(x|x1) the solution to the ODE (equation 1):

d

dt
ψt(x|x1) = ut(ψt(x|x1)|x1) (17)

ψ0(x|x1) = x (18)

then
pt(·|x1) = [ψt(·|x1)]# p. (19)

Proof of the marginal VF formula, equation 7. First, the Mass Conservation Formula Theorem
(see, e.g., Villani (2009)) implies that pt(x|x1) and ut(x|x1) satisfy

d

dt
pt(x|x1) + divg(pt(x|x1)ut(x|x1)) = 0 (20)

where divg is the Riemannian divergence with metric g.

Next, we differentiate the marginal pt(x) w.r.t. t:

d

dt
pt(x) =

∫
M

d

dt
pt(x|x1)q(x1)dvolx1

= −divg

[∫
M
ut(x|x1)pt(x|x1)q(x1)dvolx1

]
= −divg

[
pt(x)

∫
M
ut(x|x1)

pt(x|x1)q(x1)
pt(x)

dvolx1

]
= −divg [pt(x)ut(x)]

where in the first and second equalities we changed the order of differentiation and integration, and
in the second equality we used the mass conservation formula for ut(x|x1). In the previous to last
equality we multiplied and divided by pt(x). In the last equality we defined the marginal vector field
ut as in equation 7.

RCFM loss equivalent to RFM loss. We will now show the equivalence of the RCFM loss
(equation 8) and the RFM loss (equation 3). First note the losses expand as follows:

LRFM(θ) = Et,pt(x) ∥vt(x)− ut(x)∥2g = Et,pt(x) ∥vt(x)∥
2
g − 2 ⟨vt(x), ut(x)⟩g + ∥ut(x)∥2g

LRCFM(θ) = E t,q(x1)
pt(x|x1)

∥vt(x)− ut(x|x1)∥2g = E t,q(x1)
pt(x|x1)

∥vt(x)∥2g − 2 ⟨vt(x), ut(x|x1)⟩g + ∥ut(x|x1)∥2g

Second, note that

Et,q(x1),pt(x|x1) ∥vt∥
2
g =

∫ 1

0

∫
M

∥vt(x)∥2g pt(x|x1)q(x1)dvolxdvolx1
dt

=

∫ 1

0

∫
M

∥vt(x)∥2g pt(x)dvolxdt

= Et,pt(x) ∥vt∥
2
g

14

Published as a conference paper at ICLR 2024

Lastly,

Et,q(x1),pt(x|x1) ⟨vt(x), ut(x|x1)⟩g =

∫ 1

0

∫
M

∫
M

⟨vt(x), ut(x|x1)⟩g pt(x|x1)q(x1)dvolxdvolx1
dt

=

∫ 1

0

∫
M

〈
vt(x),

∫
M
ut(x|x1)pt(x|x1)q(x1)dvolx1

〉
g

dvolx dt

=

∫ 1

0

∫
M

〈
vt(x),

∫
M
ut(x|x1)

pt(x|x1)q(x1)
pt(x)

dvolx1

〉
g

pt(x)dvolx dt

=

∫ 1

0

∫
M

⟨vt(x), ut(x)⟩g pt(x)dvolx dt

= Et,pt(x) ⟨vt(x), ut(x)⟩g
We got that LRCFM(θ) and LRFM(θ) differ by a constant,

const =
∫ 1

0

∫
M

∥ut(x)∥2g pt(x)dvolx dt−
∫ 1

0

∫
M

∥ut(x|x1)∥2g pt(x|x1)q(x1)dvolxdvolx1 dt

that does not depend on θ.

B PROOF OF THEOREM 3.1

Theorem 3.1. The flow ψt(x|x1) defined by the vector field ut(x|x1) in equation 13 satisfies
equation 12, and therefore also equation 11. Conversely, out of all conditional flows ψ̃t(x|x1) defined
by a vector fields ũ(x|x1) that satisfy equation 12, this ut(x|x1) is of minimal norm.

Proof. Let xt = ψt(x|x1) be the flow defined by equation 13 in the sense of equation 1. Differentiat-
ing the time-dependent function d(xt, x1) w.r.t. time gives

d

dt
d(xt, x1) = ⟨∇d(xt, x1), ẋt⟩g = ⟨∇d(xt, x1), ut(xt|x1)⟩g =

d log κ(t)

dt
d(xt, x1) (21)

This shows that the function a(t) = d(xt, x1) satisfies the ODE

d

dt
a(t) =

d log κ(t)

dt
a(t),

with the initial condition a(0) = d(x, x1). General solutions to this ODE are of the form a(t) = cκ(t),
where c > 0 is a constant set by the initial conditions. This can be verified by substitution. The
constant c is set by the initial condition,

d(x, x1) = a(0) = cκ(0) = c.

This gives a(t) = d(x, x1)κ(t) as the solution. Due to uniqueness of ODE solutions we get that
equation 12 holds.

Conversely, consider xt = ψt(x|x1) satisfying equation 12. Differentiating both sides of this equation
w.r.t. t and then using equation 12 again we get

⟨∇d(xt, x1), ẋt⟩g =
dκ(t)

dt
d(x, x1) =

dκ(t)

dt

1

κ(t)
d(xt, x1) =

d log κ(t)

dt
d(xt, x1).

If we let ut(x|x1) denote the VF defining the diffeomorphism ψt(x|x1) in the sense of equation 1
then the last equation takes the form

⟨∇d(xt, x1), ut(xt|x1)⟩g =
d log κ(t)

dt
d(xt, x1). (22)

This equation provides an under-determined linear system for ut(y|x1) ∈ TyM at every point y = xt
with non-zero probability, which in our case is all y ∈ M as we assume pt(y|x1) > 0 for all y ∈ M.
As can be seen in equation 21, ut(x|x1) defined in equation 13 is also satisfying this equation. Further
note, that since ut(x|x1) defined in equation 13 satisfies ut(x|x1) ∥ ∇d(x, x1) (proportional) it is
the minimal norm solution to the linear system in equation 22.

15

Published as a conference paper at ICLR 2024

C PROOF OF PROPOSITION 3.2

Proposition 3.2. Consider a complete, connected smooth Riemannian manifold (M, g) with geodesic
distance dg(x, y). In case d(x, y) = dg(x, y) then xt = ψt(x0|x1) defined by the conditional VF in
equation 13 with the scheduler κ(t) = 1− t is a geodesic connecting x0 to x1.

Proof. First, note that by definition ψ0(x0|x1) = x0, and ψ1(x0|x1) = x1. Second, from Proposition
6 in McCann (2001) we have that

∇x
1

2
dg(x, y)

2 = − logx(y)

where log is the Riemannian logarithm map. From the chain rule we have

∇x
1

2
dg(x, y)2 = dg(x, y)∇xdg(x, y)

Since the logarithm map satisfies ∥logx(y)∥g = dg(x, y) we have that

∥∇dg(x, y)∥g = 1. (23)

Now, computing the length of the curve xt we get∫ 1

0

∥ẋt∥g dt =
∫ 1

0

∥ut(xt|x1)∥g dt

=

∫ 1

0

∥∥∥∥∥−dg(xt, x1)

1− t

∇dg(xt, x1)

∥∇dg(xt, x1)∥2g

∥∥∥∥∥
g

dt

= dg(x0, x1)
∫ 1

0

∥∥∥∥∥ ∇dg(xt, x1)

∥∇dg(xt, x1)∥2g

∥∥∥∥∥
g

dt

= dg(x0, x1)
∫ 1

0

dt

= dg(x0, x1)

where in the second equality we used the definition of the conditional VF (equation 13) with
κ(t) = 1− t, in the third equality we used Theorem 3.1 and equation 12, and in the fourth equality
we used equation 23. Since xt realizes a minimum of the length function, it is a geodesic.

16

Published as a conference paper at ICLR 2024

D ALGORITHMIC COMPARISON TO RIEMANNIAN DIFFUSION MODELS

Algorithm 2 Riemannian Diffusion Models

Require: base distribution p(xT), target q(x0)
Initialize parameters θ of st
while not converged do

sample time t ∼ U(0, T)
sample training example x0 ∼ q(x0)

% simulate Geometric Random Walk
xt = solve_SDE([0, t], x0)

if denoising score matching then
% approximate conditional score

∇ log pt(x|x0) ≈
{

eig-expansion
Varhadan

ℓ(θ) = ∥st(xt; θ)−∇ log pt(x|x0)∥2g
else if implicit score matching then

% estimate Riemmanian divergence
sample ε ∼ N (0, I)

divgst ≈ εT ∂st
∂xt

ε+ 1
2s

T
t
∂ log det g(xt)

∂xt

ℓ(θ) = 1
2 ∥st(xt; θ)∥

2
g + divgst

end if

θ = optimizer_step(ℓ(θ))
end while

Algorithm 3 Riemannian Flow Matching

Require: base distribution p(x0), target q(x1)
Initialize parameters θ of vt
while not converged do

sample time t ∼ U(0, 1)
sample training example x1 ∼ q(x1)
sample noise x0 ∼ p(x0)

if simple geometry then
xt = expx0

(κ(t)logx0
(x1))

else if general geometry then
xt = solve_ODE([0, t], x0, ut(x|x1))

end if

% closed-form regression target ut(xt|x1)

ℓ(θ) = ∥vt(xt; θ)− ut(xt|x1)∥2g

θ = optimizer_step(ℓ(θ))
end while

Figure 7: Algorithmic comparison between Riemannian Diffusion Models (De Bortoli et al., 2022;
Huang et al., 2022) and our Riemannian Flow Matching. Note time is reversed between these
formulations. In red, we denote expensive computational aspects (sequential simulation during
training), biased approximations (for the score function), and stochastic estimation (for divergence)
that may not scale well. Also note that Geometric Random Walk does not converge to the stationary
prior distribution unless simulated for an infinite amount of time, in practice requiring tuning T as
a hyperparameter depending on the manifold. On simple manifolds, Riemannian Flow Matching
bypasses all computational inconveniences and in particular is completely simulation-free.

17

Published as a conference paper at ICLR 2024

E LIMITATIONS

As can be seen from Figure 7, our method still requires simulation of xt on general manifolds.
This sequential process can be time consuming, and a more parallel or simulation-free approach to
constructing xt would be more favorable. Furthermore, the spectral distances require eigenfunction
solvers which may be computationally expensive on complex manifolds. Using approximate methods
such as neural eigenfunctions (Pfau et al., 2018; Deng et al., 2022) may be a possibility. One major
advantage of our premetric formulation is that these eigenfunctions need not be perfectly solved in
order to satisfy the relatively simple properties of our premetric.

F ADDITIONAL FIGURES

Volcano Earthquake

Flood Fire

Figure 8: Data samples and Ramachandran plots depicting log likelihood for protein datasets.

General Glycine Proline Pre-Pro

Figure 9: Data samples and Ramachandran plots depicting log likelihood for protein datasets.

G ADDITIONAL DISCUSSION

G.1 ON THE USE OF APPROXIMATE SPECTRAL DISTANCES AS THE PREMETRIC

Computation cost. The smallest k eigenvalues and their eigenfunctions need only be computed once
as a pre-processing step. On manifolds represented as discrete triangular meshes, this step can be
done in a matter of seconds. Afterwards, spectral distances can be computed very efficiently for all
pairs of points. Note however, that training with RCFM does still require simulating for xt, but as
the vector fields (equation 13) do not contain neural networks, the flows can be solved efficiently in
practice. This results in a similar cost to diffusion-based methods (Huang et al., 2022; De Bortoli
et al., 2022) that require simulation even for simple manifolds.

18

Published as a conference paper at ICLR 2024

t
=

0.
1

t
=

0.
0
5

t
=

0.
0
1

k = 3 k = 8 k = 15 k = 35 k = 120 k = 440

Figure 10: A visualization of the approximated heat kernel in equation 24 on a 2D sphere for different
k values. Above each visualization we show the relative error of the conditional score function:
Ept(xt|x0) [∥∇xt

log p̃t(xt|x0)−∇xt
log pt(xt|x0)∥ / ∥∇xt

log pt(xt|x0)∥] where x0 is located at
the top of the sphere. We see that especially at small t values (near data distribution), there is a
significant error in the score function approximation even when using hundreds of eigenfunctions.

k = 3 k = 8 k = 15 k = 35 k = 120 k = 440

Figure 11: Spectral distances (biharmonic), i.e., d(x, ·) where x is at the top of the sphere, are
visualized using isolines. We see that it is very easy to satisfy the properties of a premetric with very
few eigenfunctions, importantly the Positive property: d(x, y) = 0 iff x = y, which allows us to
concentrate probability perfectly at every point of the manifold, and the Non-degenerate property
∇d(x, y) ̸= 0 iff x ̸= y (satisfied here everywhere except at the antipodal point) that allows to
properly define the flow in equation 13 almost everywhere.

Sufficiency with finite k. One may wonder if we pay any approximation costs when using finite k; the
answer is no. In fact, we only need as many eigenfunctions as it takes to be able to distinguish (almost)
every pair of points on the manifold. Put differently, we don’t need to compute the spectral distances
perfectly, only sufficiently enough that the conditions of our premetric are satisfied. Regarding the
question of what k is enough? This is only understood partially: for local neighborhoods the number
of required eigenfunctions is the manifold dimension (but not necessarily the first ones), a property
proven in (Jones et al., 2008, Theorem 2). Nevertheless, the use of spectral distances computed with
k smallest eigenvalues is equivalent to computing Euclidean distances in a k-dimensional Euclidean
embedding using the same eigenfunctions; this embedding is known to preserve neighborhoods
optimally (Belkin & Niyogi, 2003).

19

Published as a conference paper at ICLR 2024

As comparison, Riemannian score-based generative models (De Bortoli et al., 2022) suggests a heat
kernel approximation

p̃t(xt|x0) =
k∑

i=0

e−λitφi(x0)φi(xt), (24)

resulting in the approximated conditional score function

∇xt log p̃t(xt|x0) = ∇xt log

k∑
i=0

e−λitφi(x0)φi(xt). (25)

However, equation 24 is only correct as k → ∞. This is manifested in practice as large amounts
of error even when using hundreds of eigenfunctions. In Figure 10, we visualize the heat kernel
approximation in equation 24 as well as relative error in the score function, taken in expectation w.r.t.
pt(x|x0), i.e., the relative error is weighted higher in regions where we will evaluate the conditional
score function during training. We see that at small time values close to the data distribution, the
conditional score function may not even have the first significant digit correct (in expectation).

In contrast, we visualize the spectral distances using the biharmonic formulation in Figure 11,
where we see that we already have an extremely accurate premetric with very few eigenfunctions.
In particular, the required properties of a premetric are satisfied even for just k = 3, roughly
corresponding to the manifold dimension. Higher values of k simply refine the spectral distance but
are not necessary.

G.2 MANIFOLDS WITH BOUNDARY

In considering general geometries, we also consider the case where M has a boundary, denoted ∂M.
In this case, we need to add another condition to our premetric to make sure ut(x|x1) will not flow
particles outside the manifold. Let n(x) ∈ TxM denote the interior-pointing normal direction at a
boundary point x ∈ ∂M. We add the following condition to our premetric:

4. Boundary: ⟨∇d(x, y), n(x)⟩g ≤ 0, ∀y ∈ M, x ∈ ∂M.

If the premetric satisfies this condition, then the conditional VF in equation 13 satisfies

⟨ut(x|x1), n(x)⟩g ≥ 0

implying that the conditional vector field does not point outwards on the boundary of the manifold.

Spectral distances at boundary points. In case M has boundary we want to make sure the
spectral distances in equation 16 satisfy the boundary condition. To ensure this, we can simply solve
eigenfunctions φi using the natural, or Neumann, boundary conditions, i.e., their normal derivative at
boundary points vanish, and we have ⟨∇gφi(x), n(x)⟩g = 0 for all x ∈ ∂M. This property implies
that

〈
∇xdw(x, y)2, n(x)

〉
g
= 0, satisfying the boundary condition of the premetric.

H EXPERIMENT DETAILS

Training setup. All experiments are run on a single NVIDIA V100 GPU with 32GB memory. We
tried our best to keep to the same training setup as prior works (Mathieu & Nickel, 2020; De Bortoli
et al., 2022; Huang et al., 2022); however, as their exact data splits were not available, we used our
own random splits. We followed their procedure and split the data according to 80% train, 10% val,
and 10% test. We used seeds values of 0-4 for our five runs. We used the validation set for early
stopping based on the validation NLL, and then only computed the test NLL using the checkpoint
that achieved the best validation NLL. We used standard multilayer perceptron for parameterizing
vector fields where time is concatenated as an input to the neural network. We generally used 512
hidden units and tuned the number of layers for each type of experiment, ranging from 6 to 12 layers.
We used the Swish activation function (Ramachandran et al., 2017) with a learnable parameter. We
used Adam with a learning rate of 1e-4 and an exponential moving averaging on the weights (Polyak
& Juditsky, 1992) with a decay of 0.999 for all of our experiments.

High-dimensional tori. We use the same setup as De Bortoli et al. (2022). The data distribution is a
wrapped Gaussian on the high-dimensional tori with a uniformly sampled mean and a scale of 0.2.

20

Published as a conference paper at ICLR 2024

Table 5: Riemannian manifolds with known geodesics that we use in our experiments. The operator
⊕ denotes Möbius addition. Exponential maps, logarithm maps, and inner products are used
during training with Riemannian Conditional Flow Matching. Note x, y ∈ M, u, v ∈ TxM,
and ∥·∥2g = ⟨·, ·⟩g. The last column log |g(x)| denotes the logarithm of the absolute value of the
determinant of the metric tensor at x ∈ M; this is used during log-likelihood computation (see
equations 37 and 33).

Manifold M expx(u) logx(y) ⟨u, v⟩g log |g(x)|

N -D sphere {x ∈ RN+1 : ∥x∥2 = 1} x cos (∥u∥2) +
u

∥u∥2
sin (∥u∥2) arccos (⟨x, y⟩) Px(y−x)

∥Px(y−x)∥2
⟨u, v⟩ 0

N -D flat tori [0, 2π]N (x+ u) % (2π) arctan2 (sin(y − x), cos(y − x)) ⟨u, v⟩ 0

N -D Hyperbolic {x ∈ RN : ∥x∥2 < 1} x⊕
(
tanh

(
∥u∥2

1−∥x∥2
2

)
u

∥u∥2

) (
1− ∥x∥22

)
tanh−1 (∥−x⊕ y∥2)

−x⊕y
∥−x⊕y∥2

4
(1−∥x∥2

2)
2 ⟨u, v⟩ N log 2

1−∥x∥2
2

N ×N SPD matrices X
1
2 exp{X− 1

2UX− 1
2 }X 1

2 X
1
2 log{X− 1

2Y X− 1
2 }X 1

2 tr
(
X−1UX−1V

) N(N−1)
2 log(2) + (N + 1) log detX

We use a MLP with 3 hidden layers of size 512 to parameterize vt, train for 50000 iterations with a
batch size of 512. We then report the log-likelihood per dimension (in bits) on 20000 newly sampled
data points.

Triangular meshes. We use the exact open source mesh for Spot the Cow. For the Stanford Bunny,
we downsample the mesh to 5000 triangles and work with this downsampled mesh. For constructing
target distributions, we compute the eigenfunctions on a 3-times upsampled version of the mesh,
threshold the k-th eigenfunction at zero, then normalized to construct the target distribution. This
target distribution is uniform on each upsampled triangle, and further weighted by the area of each
triangle. On the actual mesh we work with, this creates complex non-uniform distributions on each
triangle. We also normalize the mesh so that points always lie in the range of (-1, 1).

Maze manifolds. We represent each maze manifold using triangular meshes in 2D. Each cell is
represented using a mesh of 8x8 squares, with each square represented as two triangles. If two
neighboring cells are connected, then we connect them using either 2x8 or 8x2 squares; if two
neighboring cells are not connected (i.e., there is a wall), then we simply do not connect their meshes,
resulting in boundaries on the manifold. This produces manifolds represented by triangular meshes
where all the triangles are the same size. We randomly create maze structures based on a breadth-
first-search algorithm, represent these using meshes, and we then normalize the mesh so that points
lie in the range of (0, 1).

Vector field parameterization. We parameterize vector fields as neural networks in the ambient
space and project onto the tangent space at every x. That is, similarly to (Rozen et al., 2021) we
model

vt(x) = g(x)−
1
2Pπ(x)vθ(t, π(x)) (26)

where π is the projection operator onto the manifold, i.e.,
π(x) = arg min

y∈M
∥x− y∥g , (27)

and Py is the orthogonal projection onto the tangent space at y.

We also normalize the vector field using g(x)−
1
2 , which cancels out the effect of g on the Riemannian

norm and makes standard neural network parameterization more robust to changes in the metric, i.e.,∥∥∥g− 1
2 v

∥∥∥2
g
= (g−

1
2 v)Tg(g−

1
2 v) = vTv = ∥v∥22 . (28)

We found this bypasses the need to construct manifold-specific initialization schemes for our neural
networks and leads to more stable training.

Log-likelihood computation. We solve for the log-density log p1(x), for an arbitrary test sample
x ∈ M, by using the instantaneous change of variables (Chen et al., 2018), namely solve the ODE

d

dt

(
xt
ft(x)

)
=

(
vt(xt)

−divg (vt) (xt)

)
, (29)

where divg is the Riemannian divergence. We solve backwards in time from t = 1 to time t = 0 with
the initial conditions (

x1
f1(x)

)
=

(
x
0

)
(30)

21

Published as a conference paper at ICLR 2024

and compute the desired log-density at x via

log p1(x) = log p0(x0)− f0(x). (31)

For manifolds that are embedded in an ambient Euclidean space (e.g., hypersphere, flat tori, triangular
meshes), the parameterization in equation 26 allows us to compute the Riemannian divergence directly
in the ambient space (Rozen et al., 2021, Lemma 2). That is,

divg (vt) = divE (vt) =
∑
i

∂vt(x)i
∂xi

. (32)

For general manifolds with metric tensor g (e.g., Poincaré ball model of hyperbolic manifold, the
manifold of symmetric positive definite matrices), we compute the Riemannian divergence as

divg (vt) = divE (vt) +
1

2
vTt ∇E log det g (33)

where divE is the standard Euclidean divergence and ∇E = (∂
∂x1

, . . . , ∂
∂xd

)T is the Euclidean
gradient.

Wrapped distributions. An effective way to define a simple distribution p ∈ P over a manifold
M of dimension d is pushing some simple prior p̃ defined on some euclidean space Rd via a chart
ϕ : Rd → M; for example ϕ = expx : TxM → M the Riemannian exponential map. Generating
a sample x ∼ p(x) is done by drawing a sample z ∼ p̃(z), z ∈ Rd, and computing x = ϕ(z). To
compute the probability density p(x) at some point x ∈ M, we integrate over some arbitrary domain
Ω ⊂ M, ∫

Ω

p(x)dvolx =

∫
ϕ−1(Ω)

p(ϕ(z))
√

det g(z)dz, (34)

where gij(z) = ⟨∂iϕ(z), ∂jϕ(z)⟩g, i, j ∈ [d], is the Riemannian metric tensor in local coordinates,

and ∂iϕ(z) =
∂ϕ(z)
∂zi

. From this integral we get that

p̃(z) = p(ϕ(z))
√

det g(z) (35)

and therefore

p(x) =
p̃(ϕ−1(x))√
det g(ϕ−1(x))

. (36)

and in log space

log p(x) = log p̃(ϕ−1(x))− 1

2
log det g(ϕ−1(x)). (37)

Numerical accuracy. On the hypersphere, NLL values were computed using an adaptive step
size ODE solver (dopri5) with tolerances of 1e-7. On the high dimensional flat torus and SPD
manifolds, we use the same solver but with tolerances of 1e-5. We always check that the solution
does not leave the manifold by ensuring the difference between the solution and its projection onto
the manifold is numerically negligible.

On general geometries represented using discrete triangular meshes, we used 1000 Euler steps with a
projection after every step for evaluation (NLL computation and sampling after training). During
training on general geometries, we solve for the path xt using 300 Euler steps with projection after
every step. In order to avoid division by zero during the computation of the conditional vector field
in equation 13, we solve xt from t = 0 to t = 1 − ε, where ε is taken to be 1e-5; this effectively
flows the base distribution to a non-degenerate distribution around x1 that approximates the Dirac
distribution, similar to the role of σmin of Lipman et al. (2023).

See Hairer et al. (2006) and Hairer (2011) for overviews on ODE solving on manifolds.

22

Published as a conference paper at ICLR 2024

(a) Geodesic paths (b) Learned flow (c) Model samples

Figure 12: (a) Geodesic paths on a hyperbolic manifold (represented using the Poincaré disk model)
originating from a single point (blue star). (b) Learned CNF where blue samples are from p(x0) and
orange samples are from q(x1). The CNF respects the geometry of the hyperbolic manifold, and
learns to transport along geodesic paths.

I EMPIRICAL RUNTIME ESTIMATES

During Riemannian Flow Matching training, there are two main computational considerations:
(i) solving for xt, and (ii) computing the training objective. In comparison to diffusion models,
Conditional Flow Matching has the clear advantage in (ii), since we don’t need to estimate a
conditional score function through an infinite series (as in DSM), nor do we require divergence
estimation (as in ISM). In the following, we focus on runtime for different ways of (i) solving for xt:

Simulation of ODE/SDE (200 steps) on a flat torus: 6.36 iterations / second
Simulation-free on a flat torus: 104.04 iterations / second
Simulation of ODE/SDE (200 steps) on the bunny mesh: 0.422 iterations / second

These numbers were benchmarked on a Tesla V100 GPU, with batch size 64. The runtime is for the
full training loop, but the main difference between the three lines is how xt is solved while all others
(i.e. architecture) are fixed.

Generally, the bunny and other mesh manifolds are more expensive due to the projection operator
applied after every step, which we implemented rather naively for meshes. However, comparing to
iteratively solving an ODE/SDE even on simple manifolds, we see a significant speedup of roughly
17x even when taking into account the full training loop (including gradient descent etc). This shows
the efficiency gains from using simulation-free training over simulation-based.

J ADDITIONAL EXPERIMENTS

Here we consider manifolds with constrained domains and non-trivial metric tensors, specifically, a
hyperbolic space and a manifold of symmetric positive definite matrices, equipped with their standard
Riemannian metrics. See Table 5 for a summary of the geometries of these manifolds.

J.1 HYPERBOLIC MANIFOLD

We use the Poincaré disk model for representing a hyperbolic space in 2-D. Figure 12 visualizes
geodesic paths originating from a single point on the manifold, a learned CNF using Riemannian
Conditional Flow Matching, and samples from the learned CNF. Our learned CNF respects the
geometry of the manifold and transports samples along geodesic paths, recovering a near-optimal
transport map in line with the Riemannian metric. Similarly, due to the use of this metric, the CNF
never transports outside of the manifold.

23

Published as a conference paper at ICLR 2024

Table 6: Test set evaluation on EEG datasets. Stdev. estimated over 3 runs.

BCI-IV-2b 6×6 (21D) BCI-IV-2a 25×25 (325D) BCI-IV-1 59×59 (1770D)

Geodesic Norm NLL Valid NLL Valid NLL Valid

Euclidean Euclidean -61.58±0.26 100±0.00 -276.07±0.66 81.23±5.12 N/A 0±0.00

Riemannian Euclidean -61.64±0.22 100±0.00 -277.06±0.87 91.47±5.91 N/A 0±0.00

Euclidean Riemannian -52.22±9.67 100±0.00 -267.42±5.87 100±0.00 -1167.63±40.53 100±0.00

Riemannian Riemannian -61.76±0.24 100±0.00 -271.54±1.17 100±0.00 -1209.88±53.55 100±0.00

J.2 MANIFOLD OF SYMMETRIC POSITIVE MATRICES

We use the space of symmetric positive definite (SPD) matrices with the Riemannian metric
(Moakher & Batchelor, 2006). We construct datasets using electroencephalography (EEG) data
collected by Blankertz et al. (2007); Brunner et al. (2008); Leeb et al. (2008) for a Brain-Computer
Interface (BCI) competition. We then computed the covariance matrices of these signals, following
standard preprocessing procedure for analyzing EEG signals (Barachant et al., 2013).

In Table 6, we report estimates of negative log-likelihood (NLL) and the percentage of simulated
samples that are valid SPD matrices (i.e., samples which lie on the manifold). We ablate and note the
importance of the Riemannian geodesic and the Riemannian norm during training.

Figure 13: Comparison of extrapolated
geodesic paths on SPD manifold, visu-
alized as a convex cone.
(black) Riemannian geodesic.
(violet) Euclidean geodesic.

Riemannian geodesic. We compare using Riemannian
geodesics (i.e., setting the premetric to be the geodesic
distance) and Euclidean geodesics (i.e., setting the premetric
to be the L2 distance). In comparing between different
paths, we find that the Riemannian one generally performs
better as it respects the geometry of the underlying manifold.
Figure 13 visualizes the space of 2 × 2 SPD matrices as
a convex cone. It displays how the Riemannian geodesic
behaves—its flow always becomes perpendicular to the
boundary when it gets close to boundary and therefore does
not leave the manifold—whereas the Euclidean geodesic
ignores this geometry.

Riemannian norm. We also compare between using the
Riemannian norm (i.e., ∥·∥2g for training and using the Eu-
clidean norm (i.e., ∥·∥22). Theoretically, the choice of norm
does not affect the optimal vt(x), which will equal to ut(x);
however, when vt is modeled with a limited capacity neural network, the choice of norm can be very
important as it affects which regions the optimization focuses on (in particular, regions with a large
metric tensor). In particular, on the SPD manifold, similar to hyperbolic, the metric tensor increases
to infinity in regions where the matrix is close to being singular (i.e., ill-conditioned). We find that
especially for larger SPD matrices, using the Riemannian norm is important to ensure vt does not
leave the manifold during simulation (that is, the simulated result is still a SPD matrix).

24

	1 Introduction
	2 Preliminaries
	3 Method
	3.1 Flow Matching on Manifolds
	3.2 Constructing Conditional Flows through Premetrics
	3.3 Spectral Distances on General Geometries

	4 Related Work
	5 Experiments
	6 Conclusion
	A Conditional Flow Matching on manifolds
	B Proof of Theorem 3.1
	C Proof of Proposition 3.2
	D Algorithmic comparison to Riemannian diffusion models
	E Limitations
	F Additional figures
	G Additional Discussion
	G.1 On the use of approximate spectral distances as the premetric
	G.2 Manifolds with Boundary

	H Experiment Details
	I Empirical Runtime Estimates
	J Additional Experiments
	J.1 Hyperbolic Manifold
	J.2 Manifold of Symmetric Positive Matrices

