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Abstract

Chronic Kidney Disease (CKD) is a prevalent and devastating
progressive disease affecting up to 14% (>35.5 million indi-
viduals) of the United States population and costing Medicare
well over $64 billion annually. As many as 90% of individu-
als with CKD are undiagnosed, indicating the need for better
tools to diagnose CKD and prevent unnoticed disease pro-
gression. However, current methods of assessing CKD have
limitations regarding accessibility, practicality, and accuracy.
This study seeks to address these limitations by developing
a data-driven method to assess CKD risk from a large open-
source database of electronic health records that has not pre-
viously been applied for CKD prediction. Machine Learning
(ML) methods were used to develop a software tool to predict
patient CKD status with patient-specific demographic data,
vital signs, and past medical history. Of the ML models used
in this study, a Random Forest Classifier had the best perfor-
mance in predicting CKD diagnosis correctly with an accu-
racy of 0.875, an Area Under the Receiver Operating Char-
acteristic Curve of 0.927, and an F1 score of 0.765. Our re-
sults indicate that ML-based approaches can help facilitate
early screening and intervention for patients at risk of CKD.
For progressive diseases like CKD that become more devas-
tating and expensive to treat as they progress, high rates of
missed diagnoses can be reduced by ML models leveraging
electronic health record data.

Introduction
Disease State Fundamentals
Chronic Kidney Disease (CKD) is a disease that involves
the loss of renal function over time. In CKD, there is a pro-
gressive decline in the glomerular filtration rate (GFR), lead-
ing to the accumulation of toxic waste products in the body.
Pathophysiologically, CKD can result from direct damage
by diseases such as diabetes, hypertension, or systemic au-
toimmune diseases (Vaidya and Aeddula 2024).

Currently, in the United States, the prevalence of CKD
is approximately 35.5 million (14% of the US population
or 1 in 7 individuals in the US) (System 2023). Assuming
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a stable CKD prevalence (14%) and a US population in-
crease of 0.5% in 2023 (around 340 million), the estimated
incidence of CKD is 1.57 million. Additionally, CKD preva-
lence increases with age, affecting 34% of individuals aged
65 and older, compared to 14% of those aged 45-64, and
6% of individuals aged 18-44 (Centers for Disease Control
and Prevention 2023). Moreover, CKD occurs with a higher
prevalence in women (14%) compared to men (12%) (Cen-
ters for Disease Control and Prevention 2023; System 2023).
CKD is often a silent disease, with as high as 90% of in-
dividuals going undiagnosed (Centers for Disease Control
and Prevention 2023). With the ever-aging US population
and increasing prevalence of hypertension and diabetes, the
leading causes and associated conditions with CKD, an in-
creasing prevalence of CKD is to be expected (Rossing et al.
2022). Concerning CKD mortality, the adjusted rates are ap-
proximately 98.5 per thousand person-years for individuals
aged 66 years and older, making and finding advancements
in the diagnosis, monitoring, and treatment of CKD a critical
concern (System 2023).

Previous Work and Study Scope
Traditional solutions monitoring CKD disease progression
traditionally require physiological or lab-based monitoring
of GFR.

A technique known as estimated GFR (eGFR) uses age,
serum creatinine levels, and gender to predict GFR based
on average population measurements. As such, it can be
rapidly assessed in the clinic or emergency room, making
kidney screening and monitoring relatively practical over
time. However, as the eGFR relies on the serum creatinine
concentration, it is subject to several confounding variables,
namely, muscle mass and diet. Alternatively, measured GFR
(mGFR) is a more accurate technique that requires time-
consuming and expensive serial measurements; it is only
available in specialized clinics and research facilities. Fi-
nally, at-home urine test strips can detect the presence of
abnormal concentrations of proteins in the urine. However,
such results are qualitative, and established quantitative met-
rics such as urine albumin-to-creatinine ratio (UACR) can-
not be calculated using such test strips (Folkerts et al. 2021).



Previous work has applied Machine Learning to the as-
sessment and diagnosis of CKD (Krisanapan et al. 2023;
Qezelbash-Chamak et al. 2022). Both supervised and un-
supervised machine learning methods have been applied to
predict CKD with classifier algorithms such as XgBoost,
Support Vector Machines, and Decision Trees (Islam, Ma-
jumder, and Hussein 2023; Debal and Sitote 2022; Bai et al.
2022; Qin et al. 2020; Khalid et al. 2023; Dashtban et al.
2023; Ilyas et al. 2021).

This study aims to further advance the development of au-
tomated and efficient diagnosis of CKD patients through uti-
lization of the MIMIC-IV database (Goldberger et al. 2000;
Johnson et al. 2023b,a). Due to the aforementioned limita-
tions in traditional methods of diagnosing and monitoring
CKD, this study seeks a data-driven method of early CKD
prediction and diagnosis to improve the quality of patient
care.

Clinical and Economic Significance
Concerning Medicare spending, CKD accounts for a signif-
icant portion of healthcare costs, totaling over $64 billion,
greater than 20% of Medicare’s budget, in 2015; such num-
bers have increased significantly over the years as the inci-
dence of CKD has increased (Liu and Zhao 2018). Addition-
ally, almost 90% of CKD patients who advance to End-Stage
Renal Disease (ESRD) undergo hemodialysis, a treatment
that costs Medicare an average of more than $80,000 annu-
ally per patient (Liu and Zhao 2018). Analyses have shown
that early CKD screening could achieve an incremental cost-
effectiveness ratio (ICER) as low as $6,342 per Quality-
Adjusted Life Year (QALY) (Yarnoff et al. 2017). ICER
is a measure of the cost to provide a patient with one ad-
ditional year of life, standardized for certain quality-of-life
measures. This would represent substantial potential savings
compared to the exorbitant costs of treating advanced-stage
CKD, which often exceed $80,000 per patient annually for
treatments like hemodialysis (Liu and Zhao 2018; Yarnoff
et al. 2017).

Methods
Data Acquisition and Preparation
This study utilized the MIMIC-IV dataset, a large-scale dei-
dentified collection of hospital EHR data grouped by a pa-
tient stay from a single large tertiary academic medical cen-
ter (Johnson et al. 2023b,a; Goldberger et al. 2000). To
our knowledge, this database has not been previously uti-
lized for CKD prediction. A patient stay in this database
was defined as each distinct encounter for a given patient
within the health system. The data was originally in CSV
form, which was converted into a PostgreSQL database, en-
abling the extraction and querying of relevant tables in a re-
lational format. Key tables extracted included demographic
information, vitals, and diagnostic records containing ICD
codes. For our model, each observation consisted of the de-
mographic data (age, gender), vitals (max body mass in-
dex, maximum systolic blood pressure, minimum diastolic
blood pressure), and ICD codes for a given patient during
a given stay. All of our code was made publicly available

to facilitate reproducibility and future work (https://github.
com/lawrenceh1850/Huang-et-al-AAAI-CKD).

Determination of CKD Status
CKD status was determined by identifying specific ICD
codes associated with CKD. All observations with a CKD
code in this set were deemed CKD observations. All other
observations were designated non-CKD patients.

Feature Selection
To identify the most relevant features that could be used for
predicting CKD amongst non-CKD patients, this study fo-
cused on the prevalence of non-CKD ICD codes in patients
diagnosed with CKD. This prevalence-based feature selec-
tion approach aimed to determine a robust set of features
significantly associated with CKD.

After initially selecting all non-CKD ICD codes that were
observed in more than 5% of the CKD observations, a cor-
relation of each feature with CKD status was performed.
This resulted in the identification of a few highly correlated
ICD codes, such as the presence of dialysis, that were then
filtered out so the model had to learn to predict potential
CKD status from only non-CKD associated ICD codes. Our
cleaned dataset also resulted in 99,922 unique CKD observa-
tions and 265,771 unique non-CKD observations. The final
number of observations was 365,693.

Data Preprocessing
The selected data underwent preprocessing, which included
converting ICD codes into a one-hot encoded format. This
step transformed categorical data into a binary matrix, facil-
itating its use in machine learning models. Missingness anal-
ysis showed that no features were missing in more than 75%
of patients, and no observations were missing more than
40% of features. Missing data was filled in with a k-nearest
neighbors imputation method using the 3 closest neighbors.

The dataset was then divided into training (n=292,554)
and test (n=73,139) sets. Comparison of features across both
train and test sets showed high degrees of matching prior to
model evaluation, as shown in Table 1.

Train Set Test Set
Number of Patients 292,554 73,139
Features
Age in Years 60.07 ± 17.86 59.98 ± 17.88
Sex (M / F) 48.79% / 51.21% 48.85% / 51.15%
Max Systolic BP 134.16 ± 33.07 134.12 ± 33.07
Min Diastolic BP 74.51 ± 16.23 74.58 ± 16.23
CKD Stages
Stage 0 212,616 (89.76%) 53,155 (89.61%)
Stage 3 11,284 (4.76%) 2,864 (4.83%)
Stage 4 4,110 (1.74%) 1,035 (1.74%)
Stage 5 8,871 (3.74%) 2,261 (3.81%)

Table 1: Comparison of Characteristics between Train and
Test Sets. All continuous variables show mean ± standard
deviation. BP = blood pressure



Figure 1: Random Forest Classifier Performance at a range
of classification thresholds

Model Training and Validation
Three different machine learning models were trained on
the training dataset to predict CKD status. These mod-
els included Logistic Regression (LR), k-Nearest Neigh-
bors (kNN), and Random Forest (RF). Hyperparameter tun-
ing was done in this step using cross-validation. The best-
performing hyperparameters for each model type were se-
lected, and the final three models proceeded to model evalu-
ation.

Model Evaluation
The relative performance of each model architecture was
evaluated using the Area Under the Receiver Operating
Characteristic (AUROC) curve. The model threshold that
best balanced sensitivity and specificity for each model ar-
chitecture was selected using the Matthews Correlation Co-
efficient (MCC). The MCC is an alternative model statistical
measure to more well-known scores, such as F1, that opti-
mizes performance across all four categories of the confu-
sion matrix. This measure is particularly reliable because it
considers the balance between the size of the dataset’s pos-
itive and negative elements, ensuring the proportionate rep-
resentation of all categories in the evaluation (Chicco and
Jurman 2020).

Results and Analysis
A comparison of the performance of the three machine
learning models is seen in Table 2. LR corresponds to the
performance of the logistic regression classifier, RF is ran-
dom forest, and kNN is k Nearest Neighbors.

Model AUROC Accuracy Precision Recall F1
LR 0.8342 0.8126 0.6726 0.6124 0.6411
RF 0.9266 0.8753 0.7877 0.7440 0.7653
kNN 0.8697 0.8289 0.7814 0.5190 0.6237

Table 2: Comparative Performance Metrics of Logistic Re-
gression (LR), Random Forest (RF), and k Nearest Neigh-
bors (kNN) Models

The Random Forest classifier was selected as our final
model architecture, as it had the highest AUROC across
all models. MCC was then used to select the best decision
threshold for our trained RF model for the best combination
of accuracy, precision, and recall.

Figure 1 shows model performance MCC at various
thresholds (corresponding to each of the vertical black
lines). The tallest green line shows the maximized MCC,
denoting the prediction threshold that our model selection
process picked. In other words, given a model-determined
probability greater than 41.9%, the Random Forest Classi-
fier would predict a given patient as CKD-positive. Note that
the sensitivity and specificity corresponding to maximized
MCC in Figure 1 are slightly different from our test sensi-
tivity and specificity in Table 3. This is because the MCC
was calculated for the model on the training set, a threshold
was set, and then this threshold was evaluated on the testing
set.

Predicted
Negative

Predicted
Positive

Total

CKD
Negative

243,553
(66.60%)

22,218
(6.08%)

265,771

CKD
Positive

25,580
(6.99%)

74,342
(20.33%)

99,922

Total 269,133 96,560 365,693

Table 3: Confusion Matrix for the Random Forest Model

The confusion matrix (Table 3) shows the percentages as
proportions of the total number of observations. Positive pre-
dictive value (PPV) was 77% and negative predictive value
(NPV) was 91%. The PPV calculates the conditional prob-
ability of the patient having CKD given that the model pre-
dicted they had CKD, whereas the NPV shows the condi-
tional probability of the patient not having CKD given that
the model predicted they did not have CKD.

Discussion
The results presented indicate that the Random Forest Clas-
sifier is a robust model for identifying CKD in patients, with
implications for Value-Based Care (VBC) for CKD manage-
ment.

Predicting Undiagnosed CKD Patients
Identifying individuals with undiagnosed CKD or at in-
creased risk is essential to prevent progression to end-stage
kidney failure. Our early prediction model aimed to iden-
tify high-risk individuals before they reach end-stage renal
failure (ESRD). At the maximum MCC, the model’s high
specificity (91.64%) and reasonable sensitivity (74.4%) un-
derscore its potential for early detection of CKD. The model
was selected for its high specificity, as high specificity indi-
cates relatively fewer false negatives and prioritizes avoiding
missing diagnoses. This targeted approach ensures sick pa-
tients are treated appropriately and with early interventions.

The lower sensitivity is an optimal tradeoff in this case,
as more false positives are identified. Examining these cases



Figure 2: Envisioned integration of CKD model into clinical
workflow

more closely could reveal a subset of patients at an increased
risk of developing CKD, as non-CKD ICD codes found
amongst CKD patients could be potential covariates for pre-
dicting CKD in non-CKD patients. With further work and
prospective studies, those false-positive patients could be
prospectively studied and determined to indeed be at greater
risk of developing CKD.

Value-Based Care in Chronic Kidney Disease
Value-based care (VBC) in CKD management prioritizes
high-quality care while managing costs. VBC measures
value by the quality of care relative to cost. Models like
the ESRD Treatment Choices and the Kidney Care Choices,
part of the Advancing American Kidney Health initiative,
embody this by incentivizing improved care for kidney dis-
ease at lower costs. Key aspects of VBC in CKD include ad-
justable visit frequencies for patient stability, diligent mon-
itoring to maintain kidney function, and proactive vascular
access planning (Brady et al. 2019).

Our predictive model aligns with these VBC goals by
potentially reducing costs while improving quality through
early CKD detection, targeted patient screening, and appro-
priate follow-up. For example, a digital diagnostic tool like

the one developed in this study would intersect well with
existing payer population health programs. The algorithm
could be deployed via a payer’s mobile app and then auto-
matically provide options to provide referral to lab testing,
provider visits, or emerging home testing kits.

It would be ideal to deploy this algorithm interoperably
with EHR systems as a SMART on FHIR app to enable clin-
icians across different systems access to the tool, facilitate
point-of-care usage of the app for clinical decision support,
and provide the EHR data required for continuous model re-
finement.

Limitations
Any ML model must be tested and validated in diverse real-
world settings before deployment in clinical use cases. The
performance of the model might differ based on the pop-
ulation demographics, comorbidities, and healthcare access,
which can influence CKD prevalence and presentation. Reg-
ular calibration of the model with up-to-date patient data will
ensure it remains relevant and accurate over time, further
aligning with VBC goals by continuously improving patient
care standards. Our relatively lower sensitivity and positive
predictive value show the difficulty of the model in identify-
ing CKD from non-CKD ICD codes. This accords well with
clinical difficulty in diagnosing CKD.

Further work could identify which ICD codes specifically
were identified by the models as being predictive of undi-
agnosed CKD, and clinical testing for those patients could
further validate this status, as seen in Figure 2. With further
study, this would be possible as the ML models chosen in
this study are interpretable. Additionally, techniques to cal-
ibrate the model output probabilities to more closely match
the actual clinical probability of CKD for a given patient
could be explored further. Without calibration, probabilities
outputted by the model as degrees of belief as to whether
a patient has CKD cannot be directly interpreted. Perform-
ing calibration would make the model even more useful as
patients could be more definitively screened with borderline
classification probabilities for CKD.

Especially important in the area of CKD, it is well known
that the use of race in eGFR calculations in the past led to
inequitable treatments (Uppal et al. 2022). As such, analy-
ses should be performed by comparing model predictions
between socioeconomic, racial, and ethnic groups to en-
sure that our algorithm is not propagating any biases in the
data. Any identified biases would have to be corrected using
bias mitigation methods developed specifically for machine
learning models.
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