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Learning Encoding – Decoding Direction Pairs
to Unveil Concepts of Influence in Deep Vision Networks
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Abstract
Latent space directions have played a key role in
understanding, debugging, and improving deep
learning models, since concepts are encoded in
directions of the feature space as superpositions.
The encoding direction of a concept maps a latent
factor to a feature component, while the decoding
direction retrieves it. These encoding-decoding
direction pairs unlock significant potential to open
the black-box nature of deep networks. Decoding
directions help attribute meaning to latent codes,
while encoding directions help assess the influ-
ence of the concept on the predictions, and both
directions may assist in unlearning irrelevant con-
cepts. Compared to previous autoencoder and
dictionary learning approaches, we offer a differ-
ent perspective in learning these direction pairs.
We base the decoding direction on unsupervised
interpretable basis learning and introduce signal
vectors to estimate encoding directions. Mean-
while, we empirically prove that the uncertainty
region of the model is informative and can be
used to effectively reveal meaningful and influen-
tial concepts that impact model predictions. Tests
on synthetic data show the approach’s efficacy
in recovering the underlying encoding-decoding
direction pairs in a controlled setting, while exper-
iments on state-of-the art deep image classifiers
show notable improvements, or competitive per-
formance, in interpretability and influence, com-
pared to previous unsupervised and even super-
vised direction learning approaches.

1. Introduction
Empirical studies indicate that concepts are encoded in fea-
ture space directions of deep neural networks (Szegedy et al.,
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2014; Alain & Bengio, 2018; Zhou et al., 2018; Kim et al.,
2018; Elhage et al., 2022; Nanda et al., 2023). The latent
factor of a concept constitutes a scalar, signifying the pres-
ence of the concept within an image patch. When this scalar
is multiplied by the concept’s embedding, also referred to
as the encoding or signal direction, this direction maps this
factor to a component in the patch’s representation. In con-
trast, a filter can be used to extract this latent factor from
the representation using the inner product, designating it as
a decoding direction.

The decoding direction of a concept enables understanding
representations, attributing meaning to latent codes (Zhou
et al., 2018; Kim et al., 2018), while the encoding direc-
tion allows for assessing its influence on the network’s pre-
dictions (Fel et al., 2023b; Pahde et al., 2024), and both
directions may be used in compelling the network to un-
learn concepts irrelevant to the prediction task (Anders et al.,
2022; Pahde et al., 2023; Dreyer et al., 2024). Most previous
approaches (Zhou et al., 2018; Kim et al., 2018; Zhang et al.,
2021; Fel et al., 2023b; Doumanoglou et al., 2023; Pahde
et al., 2024; Doumanoglou et al., 2024) usually focus on
identifying either the decoding or the encoding directions in
isolation, limiting their applicability to specific appropriate
tasks. Moreover, many of them do not explicitly make this
distinction and consider using the concepts’ decoding direc-
tions in use cases where the encoding direction is a better fit.
This has recently been pinpointed in the context of concept
influence assessment and model correction in (Pahde et al.,
2024).

In this work, we learn the concept encoding-decoding direc-
tion pairs, jointly, in an unsupervised manner. Unlike recent
advances in sparse autoencoders and dictionary learning
(Bricken et al., 2023; Lim et al., 2024; Cunningham et al.,
2024), which focus on sparsity within feature space units,
we emphasize sparsity in the semantic space of concepts.
We model the decoding directions using the principles of the
recently introduced, unsupervised interpretable basis learn-
ing (Doumanoglou et al., 2023). This modeling provides an
explicit rule for concept detection by learning the decoding
direction together with an additional threshold to ascertain
the presence of a concept. We term this rule as a concept
detector due to its ability to detect the presence of a concept.
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Furthermore, we introduce signal vectors as estimators of
a concept’s encoding direction, confirming their precision
in synthetic settings and their impact in real world contexts.
Finally, we show that the uncertainty region of a network,
that is, the subspace where the network’s predictions are
uncertain, is informative, and when aligned with the un-
certainty region of the concept detectors, can significantly
guide the search towards more meaningful concepts that
notably impact the network’s predictions. Experiments in
a controlled setting show the efficacy of the proposed ap-
proach in identifying the correct concept encoding-decoding
direction pairs, when prior work fails, while experiments
on deep vision networks demonstrate the superiority of our
method, or competitive performance on par with previous
unsupervised and supervised direction learning approaches,
in interpretability and influence metrics.

2. Related Work
We categorize related work of direction learning into super-
vised and unsupervised approaches. In each category, we
go through previous methods for learning the concept direc-
tions, describing the limitations, differences, and similarities
with the approach proposed here.

Supervised Concept Direction Learning Typical ap-
proaches (Zhou et al., 2018; Kim et al., 2018) to inter-
pretable (concept) direction learning use a linear classi-
fier with annotations of a concept dataset. This classifier
distinguishes representations of samples with the concept
from those without, with interpretable directions as the filter
weights and the learned bias as a classification threshold.
Known as Concept Activation Vectors (CAVs), these direc-
tions resemble the concept decoding directions of Section
1, although they are not exact due to distractor-noise in
feature components (Haufe et al., 2014; Kindermans et al.,
2017; Pahde et al., 2024). While CAVs could be considered
as estimators of concept decoding directions, the recently
introduced Pattern-CAVs (Pahde et al., 2024), estimate a
concept’s encoding direction by the difference in (positive
and negative) cluster means.

Unsupervised Concept Direction Learning Matrix decom-
position methods help identify concept encoding directions
without annotations, yet with some limitations. For instance,
Principal Component Analysis (PCA) (Graziani et al., 2023)
is limited by orthogonality and cannot represent concepts
that do not affect variance (Fel et al., 2023a). Likewise,
Non-negative Matrix Factorization (NMF) (Zhang et al.,
2021; Fel et al., 2023b) assumes positive components and
lacks bias, limiting expressivity. While PCA’s transpose
matrix estimates decoding directions, NMF lacks a simple
equivalent. Besides that, for NMF the concept classification
rule requires an optimization problem to be solved for every
test sample, making the approach computationally more ex-

pensive than a calculation of an inner product. Our method
overcomes these limitations.

In Dictionary Learning (Bricken et al., 2023; Yun et al.,
2023) and Sparse Autoencoders (Sharkey et al., 2022; Cun-
ningham et al., 2024), the goal is to learn decoding-encoding
directions by reconstructing representations after decompos-
ing them into latent factors and enforcing sparsity in units
of latent variables. Moreover, those factors are constrained
to be non-negative. Unlike these methods, our approach al-
lows negative latent factors since it enforces sparsity in the
semantic space (a soft-binary vector space) and additionally
considers the use of the directions by the model. Beyond
that, our method uses a different principle for identifying
direction pairs, independent of feature reconstruction.

In contrast to earlier techniques, the method in
(Doumanoglou et al., 2023; 2024) learns filter directions
of linear classifiers, similar to the supervised methods in
(Zhou et al., 2018; Kim et al., 2018). These classifiers con-
vert representations into a soft-binary concept space, guided
by a sparsity objective. We ground our approach on this
model and additionally enhance it by removing orthogonal-
ity constraints, feature space standardization, and adding
loss terms to a) sustain or improve interpretability of the
identified concepts and b) reduce impact of distractor-noise
on filter weights. Although (Doumanoglou et al., 2024) pro-
posed a technique to exploit the utilization of the directions
by the network in direction search, our subspace alignment
approach shows a notable relative improvement over this
previous approach (up to 22.56% in the interpretability met-
rics), in 3 of 4 cases. Finally, these methods did not consider
estimators for the concepts’ encoding directions as we do.
More details on this comparison can be found in Section H.

3. Background
The latent factor of a concept is a scalar linked to the con-
cept’s presence, embedded in the feature space via multipli-
cation with its encoding direction, also called the concept’s
signal direction. For this reason, we also refer to this la-
tent factor as the signal value. Features are considered as
superpositions of signals and noisy directional components
called distractors. In the proposed approach, a filter is a
decoding direction that, through the inner product with a
feature representation, extracts the signal’s value. Below
we provide a more formal explanation of these terms and
provide details essential to understand our contributions.

3.1. Preliminaries

Let X ∈ RH×W×D denote the representation of an image
in an intermediate layer of a convolutional neural network
with spatial dimensions H,W ∈ N+ and feature space
dimensionality D ∈ N+. Let also xp ∈ RD denote an
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element of this representation at the spatial location p =
(w, h), w ∈ {0, 1, ...,W − 1}, h ∈ {0, 1, ...,H − 1}.

3.2. Signals, Distractors, Filters, Concept-Detectors,
Pattern-CAVs

In encoding a single concept i, (Kindermans et al., 2017;
Pahde et al., 2024) propose a binary model for the data gen-
eration process of feature representations: xp = αpsi +
βpd, si,d ∈ RD, αp, βp ∈ R. Here, si is the signal di-
rection indicating if xp is part of concept i. The key in-
formation is in the signal value αp. Larger αp suggests
greater confidence that xp belongs to concept i. d is
the distractor direction, modeling noise, or information
unrelated to the concept. βp follows a Gaussian distri-
bution N (µ, σ2) independent of whether xp belongs to
concept i. As per (Kindermans et al., 2017), the value of
the signal αp can be extracted via a regression filter wi:
zp,i = wT

i xp = αpw
T
i si + βpw

T
i d, if we choose wi :

wi ⊥ d, and wT
i si = 1. Since stronger values of αp indi-

cate more confidence in concept presence, when combined
with a threshold bi ∈ R which may be learned from data,
this regression filter can be turned into a concept detector:
yp,i = σ(zp,i − bi), with σ denoting the sigmoid function.

With access to the signal’s value, (Haufe et al., 2014; Kinder-
mans et al., 2017) offer a formula to estimate the concept’s
signal direction:

ŝi =
cov[xp, zp,i]

σz2
p,i

(1)

where, σ2
zp,i denotes the variance of the signal values in

the dataset. This signal estimator relies on signal values,
but when trying to explain the latent space, these data are
not available. We only have access to xp, while si and
d are latent variables of the underlying process. For this
reason, based on (Haufe et al., 2014; Kindermans et al.,
2017), (Pahde et al., 2024) proposed Pattern-CAVs as con-
cept signal estimators that don’t need signal values but rely
on labeled data, i.e. concept’s positive and negative samples.
Their method is based on (1), approximating the signal value
with binary labels, i.e., zp,i ∈ {0, 1}, and simplifies to the
difference between the means of the concept’s positive and
negative samples.

3.3. Unsupervised Interpretable Direction Learning

Recent research (Doumanoglou et al., 2023) introduced an
unsupervised method to identify concepts from the structure
of the feature space. Motivated by the directional encoding
of concepts, the method partitions the latent space into linear
regions, each represented by a hyperplane and a normal
vector, forming clusters. Features from an unlabeled concept
dataset, possibly the network’s training set, are assigned
to these clusters. It learns W and b of a feature-to-cluster

membership function, a mapping to the semantic space,
with yp = σ(W Txp − b) ∈ [0, 1]I ,W ∈ RD×I , b ∈ RI ,
and I as the cluster count. By softly assigning features
to a small number of clusters, interpretability is improved.
This is grounded in the idea that an image patch generally
holds only a few semantic labels from a larger set, reflecting
sparsity in the semantic space. Sparsity in the assignments
is achieved using two loss terms: the first is Sparsity Loss
(Ls), and the second is Maximum Activation Loss (Lma),
which ensures binary cluster membership.:

Ls = Ep

[
Ls
p

]
, Lma = −Ep

[
qT
p log2(yp)

]
,

Ls
p = H(qp), qp =

yp

||yp||1
(2)

with H denoting entropy. The columns of W and elements
of b (e.g., wi, bi) form a linear classifier or concept detector
yp,i = σ(wT

i xp − bi). This method also optimizes linear
separability by minimizing the inverse of the classification
margin Mi =

1
||wi||2 (Maximum Margin Loss - Lmm) and

penalizes clusters with few assignments using the Inactive
Classifier Loss - Lic (Doumanoglou et al., 2024) (More de-
tails in Section A). Despite the potential misalignment with
human intuition, the sparse nature of transformed represen-
tations facilitates concept definition or identification.

3.4. Direction Labeling

In (Doumanoglou et al., 2023; 2024), classifier filters form
an orthogonal feature space basis, with vectors aligned to
cluster regions. Although annotations are not needed for
basis learning, interpretability evaluation uses Network Dis-
section (Bau et al., 2017), a method assigning semantic
labels to each vector based on classifier performance with
annotated concepts. Despite possible biases against unsu-
pervised learning, we adopt and expand this protocol to
evaluate the interpretability of our concept detectors.

3.5. Concept Influence Testing

Given an image’s intermediate representation for class k and
a concept’s direction i in latent space, RCAV (Pfau et al.,
2020) measures concept sensitivity for the class by perturb-
ing the representation towards the concept’s direction with
strengh α, and subsequently comparing the network’s out-
put probability for class k before and after the perturbation.
A total dataset score in the range [−1, 1] follows, where
zero means inconsistent use of the concept by the model,
while extremes indicate strong positive or negative concept
contributions to predict class k. A statistical test compares
concept sensitivity against sensitivity towards random di-
rections to ensure significance. We refer to directions of
significant influence in cases where the directions meets the
criteria of this statistical significance test.

3
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Figure 1. Left: Intermediate variables: zp,yp, Middle: The learn-
able parameters of the method: Ŝ,W , b. Right: Loss terms L
with dependencies on their left. Coral indicates loss contribu-
tions of this work, while light yellow indicates loss terms from
(Doumanoglou et al., 2023; 2024).

4. Method
For a specific network layer, our method receives as in-
put the feature representations of images sourced from
a concept dataset. The aim of our approach is to learn
encoding-decoding direction pairs that correspond to mean-
ingful concepts with influence on the network’s predictions.
The method is unsupervised, and therefore, the identified
concepts may not align with human intuition. However, they
reflect clear directional clusters in the feature space of the
network. Thus, this approach has the potential to reveal
erroneous strategies exploited by the model to make pre-
dictions (Section I). In an attempt to make these clusters as
meaningful as possible, we optimize for a sparsity property
of interpretability in the feature-to-cluster assignments.

We extend the binary signal-distractor data model (Sec-
tion 3.2) to multiple concepts (Section 4.1) and learn con-
cept detectors {W , b} using the objectives of Section
3.3. In the new data model, we remove the constraints
of (Doumanoglou et al., 2023) on filter orthogonality and
feature space standardization, allowing flexible represen-
tation clustering. These prior constraints though, acted as
regularizers to prevent degenerate solutions; thus, we ad-
dress their removal with additional loss terms discussed in
Section 4.2 that sustain or even improve the interpretability
of the clustering. We additionally estimate concept signal
directions using learnable signal vectors ŝi (Section 4.3).
We also propose Uncertainty Region Alignment (Section
4.4), a loss that significantly improves cluster quality. In
summary, concept detectors and signal vectors are learned
together in an end-to-end process, influenced by the losses
of Sections 3.3, 4.2, 4.3 and 4.4. A summary of the inter-
connections between components of the method is provided
in Fig. 1.

4.1. Multi-Concept Signal-Distractor Data Model

We introduce an extended signal-distractor model for the
latent space, encoding multiple concepts. Each spatial ele-

ment xp is a linear combination of latent concept signals
S ∈ RD×I and distractors D ∈ RD×F , F ≤ D − I

xp = Sαp +Dβp (3)

with αp ∈ RI and βp ∈ RF . S is a matrix of I ∈ N+,
D-dimensional, unit-norm concept signal directions and D
a matrix denoting a basis for distractor components. Each
signal direction encodes the presence of a distinct concept.
We apply the same assumptions for individual signal values
αp,i (the i-th element of αp) and distractor coefficients βp,f

as in Section 3.2. Finally, we further assume that only a
limited number of semantic concepts are assigned to xp,
among many possible semantic labels.

4.2. Interpretability Losses to Recover Implicit
Regularizations

We propose Self-Weighted Reduction (RSW ) as a loss
aggregation method to optimize upper bounds. Consider a
set of un-reduced loss values Lk, k ∈ N. The Self-Weighted
Reduction is:

RSW ({Lk}) =
∑

k L
ν+1
k∑

k Lν
k

(4)

which is equal to the weighted average of elements in {Lk}
with each element being weighted by Lν

k, ν > 1, ν ∈ R+

a sharpening factor. This loss may be seen as a soft-
differentiable version of the max operation, since the largest
value in the set of {Lk}, is weighted with the largest weight.

Excessively Active Classifier Loss (Leac) This loss penal-
izes excessively large clusters to prevent trivial solutions
where all inputs belong to one cluster. It relies on a hyper-
parameter ρ, similar to sparse autoencoders (Ng et al., 2011),
which sets a proportional bound on cluster size. The un-
reduced formula is below, with γ > 1, γ ∈ R+ as a sharp-
ening factor and 1− ρ normalizing the loss in range [0, 1]:

Leac
i =

1

1− ρ
ReLU(Ep[y

γ
p,i]− ρ) (5)

The final reduced loss, is using RSW : Leac =
RSW ({Leac

i })

Sparsity Bound Loss (Lsb) With this loss term we mini-
mize the upper bound of the un-reduced Ls, among pixel
locations, using RSW . In more detail, if Ls

p (2) denotes the
Sparsity Loss for pixel p, the Sparsity Bound Loss (Lsb) is
defined as Lsb = RSW ({Ls

p})

4.3. Signal Vectors as Concept Signal Estimators

Considering the new data model outlined in Section 4.1,
the assumptions of (1) for estimating a concept’s signal
direction may not be valid. Specifically, there may be an

4
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Figure 2. The uncertainty region of the network is defined as the
subspace where all network’s predictions are maximally uncertain.
The uncertainty region of the concept detectors is defined as the
intersection of all their decision hyperplanes. Aligning these two
through feature manipulation improves the interpretability and
influence of the identified concepts.

anti-correlated relationship between the variables αp,i and
αp,j , i ̸= j due to the fact that concept labels are sparsely
assigned to each xp, indicating mutual exclusivity in con-
cept label attributions. Nevertheless, as detailed in the Sec-
tion B, we can effectively apply (1) by only using positive
samples of the concept (p : yp,i > 0.5) when calculating
variance and covariance, rather than both positive and nega-
tive samples as previously recommended. We call the signal
estimator for concept i, obtained under these conditions, the
signal vector ŝi. However, we still require access to signal
values. As explained in Section 3.2, estimating signal values
can be attributed to the concept detectors’ filters. They can
serve as signal value estimators if the weight vector wi is
orthogonal to all sj where j ̸= i, as well as the distractor
subspace D.

Thus, we employ the folllowing Filter-Signal Vector Orthog-
onality Loss to learn the directions:

Lfso =
√
Ei,j

[
(1− δi,j)w̄T

i s̄j)
2
]

(6)

with δi,j the kronecker delta and w̄, s̄ denoting the L2-
normalized filter weights and signal vectors. To achieve
accurate signal value extraction, wi should additionally be
orthogonal to the distractor basis; however, we do not explic-
itly estimate the distractors. Instead, we use the Uncertainty
Region Alignment loss from Section 4.4 to ensure alignment
of the directions with utilization by the network.

4.4. Uncertainty Region Alignment to Improve
Interpretability and Influence

The presence or absence of a concept in a representation
can offer neutral, supportive, or opposing evidence against
the prediction of a class. Since the concept-class pair as-
sociation is unknown when learning concept directions, a
straightforward strategy to perform concept arithmetic on
the features in order to find their utility by the network lacks
ground-truth information on how concepts affect class pre-
dictions. To overcome this difficulty, we can make a simple
but more elegant hypothesis that uncertain network predic-

tions occur when the representation has ambiguous concept
information. We propose improving the direction search
by aligning the uncertainty regions of the network and the
concept detectors. The uncertainty region of the network
is the subspace where its predictions are most uncertain,
and the uncertainty region of the concept detectors is the
subspace where their decision hyperplanes intersect. Figure
2 illustrates the concept of Uncertainty Region Alignment.

We first manipulate spatial features xp towards the direction
−dxp to arrive in x′

p = xp −dxp. Based on our estimates
of wi, bi, and ŝi, we select the direction dxp so that the
shifted x′

p lies at the intersection of the concept detectors’
decision hyperplanes. Then, we ensure the network’s pre-
dictions for these features are highly uncertain, effectively
aligning both uncertainty regions.

Unconstrained and Constrained Uncertainty Region
Losses (Luur, Lcur)

We define two types of Uncertainty Region Loss: i) uncon-
strained Luur and ii) constrained Lcur. Each loss uses a
different feature manipulation strategy dxp but both share
the same final formula

Luur = Lcur = −EX′
[
H(f+(X ′)

]
(7)

(with H denoting entropy and f+ denoting the part of the
network after the layer of study providing output class prob-
abilities). In (7), X ′ denotes a manipulated image represen-
tation, with every xp shifted in the direction −dxp.

i) Unconstrained Uncertainty Region Manipulation Sup-
pose that we know the concept decoding directions wi and
the classification thresholds bi, we can bring all xp to the
concept detectors’ uncertainty region by manipulating each
xp in the direction −dxp with the following formula:

wT
i x

′
p − bi = 0 ⇒ wT

i (xp − dxp)− bi = 0, ∀i,
W T (xp − dxp)− b = 0 ⇒ dxp = (W T )+(W Txp − b)

with A+ denoting the pseudo-inverse of A.

ii) Constrained Uncertainty Region Manipulation The
previous unrestricted approach to the manipulation of fea-
tures might lead to datapoints falling outside the concept
encoding manifold of the network, causing an unfaithful
alignment. To address this, we suggest restricting feature
manipulation to occur within the span of the signal vectors,
i.e. dxp = Ŝv, v ∈ RI , and thus:

W T (xp − dxp)− b = 0 ⇒ W T (xp − Ŝv)− b = 0 ⇒

W T Ŝv = W Txp − b ⇒ v = (W T Ŝ)+(W Txp − b) ⇒

dxp = Ŝv = Ŝ(W T Ŝ)+(W Txp − b)

where Ŝ represents a matrix whose i-th column is equal to
the estimated signal vector ŝi.

5
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Table 1. Evaluating the performance of the concept detectors in
classifying pixel representations in the experiment on synthetic
data. The metric is Intersection over Union (IoU). Rows corre-
spond to concept detectors and columns to ground-truth concept
classes.

Concept

#0 #1 #2

D
et

ec
to

r #0 0 0.96 0
#1 0.92 0 0
#2 0 0 0.96

5. Experiments
5.1. Experiment on Synthetic Data

In this section, we test our method on synthetic data, demon-
strating that it reliably identifies the key elements of the data
generation process detailed in Section 4.1, under challeng-
ing conditions for conventional techniques.

We generate features xp according to (3) by setting the
embedding space dimensionality to D = 16, the number
of distinct concepts to I = 3, the size of the distractor
basis to F = 2 and randomly create unit-norm vectors
to construct the matrices S and D. The latent signal val-
ues and distractor coefficients follow the uniform distribu-
tion: αp,i ∼ U(0.0, 2.5) if p is not part of concept i and
αp,i ∼ U(2.5, 5.0), otherwise, while βp,f ∼ U(0, 5.0) is
independent of the pixel concept label. We introduce a bias
of 10 across all dimensions of the representations to main-
tain them in the positive quartile, similar to the impact of a
ReLU layer.

The image representations are considered with two spatial
elements p1,p2, where W = 2 and H = 1. Each pixel
representation corresponds to a single concept. Let c(p) ∈
{0, 1, 2} represent the concept label of p, and k ∈ {a, b, c}
denote an image class. We construct image representations
as follows: for k = a, c(p1) = 0 and c(p2) = 1; for k = b,
c(p1) = 0 and c(p2) = 2; and for k = c, c(p1) = 1 and
c(p2) = 2. We generate a balanced dataset with each class
being represented by 1000 images.

The network we use is composed of just two layers (corre-
sponding to the top part of a potentially larger convolutional
network). The first is an average-pooling layer, and the
second is a linear layer with K = 3 output classes. After
training, the network attains 99% accuracy on a test set,
randomly generated based on the previous principles. More
details of this experiment are in Section E.

Decoding directions: We first assess the ability of the
concept detectors to identify the specified concepts. Ta-
ble 1 shows Intersection over Union scores for each detector
against actual concept classes. Zero values indicate com-
plete purity and no mixing of the concepts, and all scores
are above 0.92, showing success. We also examine how well

Figure 3. Cosine Similarity of ground-truth concept encod-
ing directions and their estimation: Signal Vectors, Pattern-
CAVs, Sparse AutoEncoder with regularization λ =
{0.0, 0.001, 0.01, 0.1}. The proposed Signal Vectors were the
most accurate by a large margin, followed by an Auto Encoder
without sparsity constraints (λ = 0) and Pattern-CAVs.

the learned filters extract signal values from representations.
Our method identifies signal values as a deviation from the
dataset’s average since distractor directions aren’t directly
estimated (See also Section C). The Root Mean Squared Er-
ror (RMSE) between these extracted values and the ground
truth, after subtracting the mean signal value, is noted as
0.26.

Encoding directions: We also examine the cosine similarity
between signal vectors and true concept encoding directions,
comparing them with a Sparse Autoencoder (Bricken et al.,
2023) at varying sparsity levels and Pattern-CAVs learned
using ground-truth labels. Fig. 3 shows that signal vectors
closely estimate the concept’s encoding directions, unlike
Pattern-CAVs, which falter due to the different assumptions
made about the data. The sparse autoencoder fails due to
the fact that the reconstruction goal objective can be met
with any basis of the data manifold.

The ground-truth encoding directions of this example (Table
6) contain both positive and negative components and the
relationship among the encoding directions (and the distrac-
tors) is in general not orthogonal. In theory and without
the need for practical experiments, this example cannot be
addressed by NMF, K-Means, or PCA. NMF would produce
a signal basis of non-negative components akin to the cluster
centers of K-Means, which would point toward the positive
quartile where the centroids reside. Moreover, the non-
orthogonal nature of the ground truth encoding directions
implies that the PCA’s solution space is insufficient.
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Table 2. Ablation study wrt interpretability losses (top part) and
uncertainty region alignment losses (bottom part).

ResNet18 / Places365

I Luur Lsb Leac Lcur Lfso S1 S2 SDC SCDP

500

✓ ✗ ✗ ✗ ✗ 59.06 25.91 377 2487
✓ ✓ ✗ ✗ ✗ 49.02 35.23 354 2480
✓ ✓ ✓ ✗ ✗ 54.55 37.38 359 2118
✗ ✓ ✓ ✓ ✓ 57.34 38.36 376 3271

450
✓ ✓ ✓ ✗ ✗ 50.49 34.76 283 1451
✗ ✓ ✓ ✓ ✗ 50.94 36.01 335 2930
✗ ✓ ✓ ✓ ✓ 52.63 34.86 360 2956

5.2. Experiment on Deep Image Classifiers

We evaluate the method’s components through practical ex-
periments on the final convolutional layer of a ResNet18
(He et al., 2016) trained on Places365 (Zhou et al., 2017).
For comparison with earlier unsupervised approaches, we
also experimented with a ResNet50 trained on Moments
in Time (Monfort et al., 2019). Unless stated otherwise,
our Encoding-Decoding Direction Pairs (EDDP) uses a
weighted combination of all losses from Sections 3.3 and
4.2, along with Lfso and Lcur from Sections 4.3 and 4.4.
The hyperparameter I is set to I = 500, with other method
parameters detailed in the Section F.

Evaluation of the Decoding Directions: Interpretability
Our method’s effectiveness in identifying meaningful con-
cepts is assessed using a quantitative approach measuring
the interpretability of the directional clustering obtained by
the learned concept detectors. We follow the protocol in
(Doumanoglou et al., 2023). We utilize the Broden (Bau
et al., 2017) dataset for ResNet18, and Broden Action (Ra-
makrishnan et al., 2019) for ResNet50 to learn and label
directions (Section 3.4). The datasets feature dense pixel
annotations; Broden includes 1197 concepts across 63K
images in 5 concept categories (object, part, material, tex-
ture, color), while Broden Action incorporates an additional
action category with 210 labels and 23K more images.

We employ two metrics from (Doumanoglou et al., 2023).
Specifically, let ϕi(c,K) the Intersection Over Union for
concept detector i in identifying concept c within the dataset
K. Define c⋆i = argmaxcϕi(c,Kt), indicating the concept
label detected best by concept detector i within the training
subset of the dataset (Kt). With Kv as the validation subset,
our interpretability scores S1 and S2 are:

S1 =

∫ 1

0

I−1∑
i=0

1x≥ξ

(
ϕi(c

∗
i ,Kv)

)
dξ (8)

S2 =

∫ 1

0

|{c⋆i | ∃ i : ϕi(c
⋆
i ,Kv) ≥ ξ}|dξ (9)

The first metric S1 counts concept detectors with an IoU
performance that exceeds a score threshold ξ. The second

metric S2 uses the cardinality of the set |.| to count the
unique concept labels detected by the concept detectors
with IoU above ξ. Both metrics become threshold-agnostic,
by integrating on all ξ ∈ [0, 1]. Qualitative segmentations
using the learned concept detectors appear in Section G.

Evaluation of the Encoding Directions: Influence We
assess the ability of our method to identify influential con-
cepts to model predictions using RCAV (Pfau et al., 2020)
(Section 3.5). For sensitivity scores, we spatially replicate
signal vectors or Pattern-CAVs. Direction significance is
tested with RCAV’s label permutation test to generate ran-
dom directions, with the significance threshold set to 0.05
and Bonferroni correction. Two metrics summarize the re-
sults: Significant Direction Count (SDC) and Significant
Class-Direction Pairs (SCDP). SDC is the count of signal
vectors that significantly influence at least one model class,
while SCDP tallies class-direction pairs where vectors sig-
nificantly affect the class. In ablation studies excluding
Lcur, we report influence metrics for signal vectors esti-
mated post learning the directions with the conditions
discussed in Section 4.3. Network explanations using the
learned encoding directions and RCAV are in Section F.2.

Ablation Study: Interpretability Losses The top part of
Table 2 presents the outcome of an ablation study focus-
ing on the interpretability loss terms introduced in Section
4.2. We start with only Luur and progressively incorporate
Lsb and Leac, observing a steady and notable improvement
in S2, which is more challenging to optimize compared
to S1, while still keeping up with performance in terms
of S1. Eventually, retaining the interpretability terms and
transitioning to the use of the proposed signal vectors and
Lcur we see further improvement in interpretability, and a
significant increase in the SCDP influence metric.

Ablation Study: Uncertainty Region Alignment and Sig-
nal Vectors The lower section of Table 2 presents the metric
scores of an ablation study centered on uncertainty region
alignment and signal vectors. By moving from Luur to
Lcur and subsequently incorporating Lfso, we observe a
steady enhancement across all influence metrics. The table
highlights the substantial effect of employing signal vectors
(used in Lcur) to detect influential directions. Although
the signal vectors derived from the combination of Lcur

and Lfso prove to be more influential than the others, this
comes at a minor reduction in interpretability. This trade-off
between interpretability and influence is aligned with the
observations in (Kim et al., 2018; Pfau et al., 2020), where
non-interpretable random directions can significantly affect
a model’s predictions.

Interpretability Comparison with Unsupervised Ap-
proaches Previous unsupervised approaches (Zhang et al.,
2021; Graziani et al., 2023; Fel et al., 2023b) lack a clear
classification rule for concept detection, impeding quan-
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Table 3. Comparison of concept-detectors (CDs)’ performance in pixel classification and image segmen-
tation tasks. Comparing between: a) individual CDs, b) combined CDs (Linear-OR) c) individual CDs
with their thresholds learned with supervision, and d) IBD: a set of classifiers learned in a supervised
way.

mPrecision mRecall mAP mF1Score S1 S2 mIoU
IBD (Zhou et al., 2018) 0.84 0.6 0.77 0.69 53.32 53.32 0.20
EDDP Individual (ours) 0.81 0.24 0.53 0.33 57.33 38.35 0.11
EDDP Linear-OR (ours) 0.73 0.4 0.59 0.45 30.56 30.56 0.11

EDDP Individual /w sup thresholds (ours) 0.62 0.49 0.52 0.53 N/A N/A N/A

Table 4. Influence Comparison
against Pattern-CAVs.

RCAV α 0.5 2.0 5.0
S3 0.37 0.37 0.38

Table 5. Interpretability comparison with prior work on unsuper-
vised basis learning. Works considered: UIBE (Doumanoglou
et al., 2023), CBE (Doumanoglou et al., 2024) and CBE with
CNN Classifier Loss replaced with the proposed Luur (CBE /w
Luur).

ResNet18 / Places365
UIBE CBE CBE /w Luur

S1 60.93 (+0.0%) 69.43 (+13.95%) 67.3 (+10.45%)
S2 28.39 (+0.0%) 31.53 (+11.06%) 32.16 (+13.28%)

ResNet50 / MiT
UIBE CBE CBE /w Luur

S1 124.73 (+0.0%) 131.73 (+5.61%) 158.76 (+27.28%)
S2 18.47 (+0.0%) 26.94 (+45.86%) 33.02 (+78.78%)

titative evaluation, and relying primarily on human as-
sessment of interpretability. Our work overcomes these
limitations, enabling a more effective quantitative evalua-
tion. We compare in interpretability terms with the work
of (Doumanoglou et al., 2023; 2024). Since we base our
method on them, the meaningful aspect to compare is the
contribution of our Luur (and not Lcur since those works
did not consider concept encoding directions). We use the
exact setup of (Doumanoglou et al., 2024) (i.e. without lift-
ing the orthogonality of the directions, the feature standard-
ization, or considering signal vectors) and replace their CNN
Classifier Loss with our Luur. The experimental results are
provided in Table 5. Our Uncertainty Region Alignment loss
significantly improves the interpretability metrics in 3 of 4
scenarios (by up to +22.56% relative improvement) while
remaining competent in the remaining case. This justifies
that our alignment of uncertainty regions is more effective
than the technique proposed in (Doumanoglou et al., 2024).

Interpretability Comparison with a Supervised Ap-
proach We compare the concept classifiers learned using
our method against those learned through a supervised ap-
proach, with a focus on interpretability (Table 3). We calcu-
late averaged binary classification metrics across detectors.
We consider three variants of the proposed method: a) in-
dependent learning of directions (the exact outcome of our
method), b) combining directions with a shared label (post
initial leaning) using a linear layer for classification (this
layer classifies representations as positive if any detector
with the same label does), and c) considering the learned

directions but optimizing the classification threshold in a su-
pervised manner to enhance the F1 Score. This last approach
assesses direction quality independent of bias. Results show
that individual classifiers from the proposed method achieve
high precision, comparable to supervised ones, but suffer
from low recall due to their sparsity-driven objectives. Com-
bining classifiers with the same label improves recall, while
supervised optimization of the bias further enhances F1
Scores by reducing sparsity.

Influence Comparison with a Supervised Approach We
compare network sensitivity to Pattern-CAVs and signal
vectors. Let j ∈ {0, 1, ..., Nl − 1} index concept detectors
with the same concept label l, and Sl

j,k represent the RCAV
sensitivity score of class k relative to the signal vector of
the j-th concept detector for label l. Similarly, Sl

P,k is the
sensitivity score of class k relative to the Pattern-CAV for
the same label. Pattern-CAVs use ground-truth pixel-level
labels. Network Dissection can assign identical labels to
multiple detectors, making direct comparisons with Pattern-
CAVs challenging. Inspired by RCAV, we regard signal
vectors as noise vectors and assess Pattern-CAV sensitivity
for a label against them. We define a metric S3 which
when above 0.5 indicates Pattern-CAVs have more network
influence than signal vectors at significance level θ = 0.05
(Bonferroni correction applies):

S3 = El,k

[
1(pl,k <

θ

Nl
)
]

pl,k =
1

Nl

∑
j

1
(
|Sl

j,k| ≥ |Sl
P,k|

)
Metrics for different RCAV values α are in Table 4. The S3

scores are below 0.5, indicating that Pattern-CAVs are less
influential than signal vectors on network predictions.

6. Conclusion
We introduced an innovative unsupervised technique to un-
cover pairs of latent space encoding-decoding directions
that align with interpretable and influential concepts. This
research offers a new perspective on the unsupervised iden-
tification of concept directions, unlike previous methods
based on feature reconstruction or decomposition, paving
the way for additional exploration.
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A. Unsupervised Interpretable Basis Extraction and Concept-Basis Extraction Losses
Sparsity Loss (Ls) (Doumanoglou et al., 2023)

Based on the observation that the number of semantic labels that may be attributed to an image’s patch, are only a fraction
of the set of possible semantic labels, this loss enforces sparsity across the classification results yp,i for each spatial
representation xp. In particular, the sparsity loss for pixel p is defined as:

Ls
p = −

∑
i

qp,ilog2qp,i, qp,i =
yp,i∑
i yp,i

(10)

and the aggregated sparsity loss Ls:

Ls = Ep

[
Ls
p

]
(11)

Maximum Activation Loss (Lma) (Doumanoglou et al., 2023)

With the complement of this loss the pixel classifications are enforced to become binary:

Lma = Ep

[
−

∑
i

qp,ilog2yp,i
]

(12)

Inactive Classifier Loss (Lic) (Doumanoglou et al., 2024)

This loss ensures that each classifier in the set, classifies positively at least ν ∈ [0, 1] percent of pixels in the concept dataset.

Lic = Ei

[1
ν

ReLU
(
ν − Ep[y

γ
p,i]

)]
(13)

with ν = τ
I , γ > 1, γ ∈ R+ denoting a sharpening factor and τ ∈ [0, 1] denoting a percent of pixels in the dataset to be

evenly distributed among the I classifiers in the set.

Maximum Margin Loss (Lmm) In the original formulation of (Doumanoglou et al., 2023), the Maximum Margin Loss
was defined as Lmm = 1

M with M being a single parameter for the whole set of classifiers since the optimization was
performed in the standardized space with shared parameters for the margins M and biases b. In this work, we removed the
standardized space constraints and instead, we have a margin parameter Mi for each classifier in the set. Thus, we modify
the Maximum Margin loss to become:

Lmm =
1

I

∑
i

1

Mi
(14)

B. Signal Direction Estimation
In the formulation of signal-distractor data-model defined in (Kindermans et al., 2017) and detailed in Section 3.2, (1) is
an accurate estimator of a concept’s encoding direction whenever the non-signal (here distractor) components in the data
contain information independent of whether the representation xp belongs to concept i. The formula exploits the fact that
cov[zp,d] should be 0. An important role in this discussion has the threshold bi that delimits the positive samples of a
concept. When considering the encoding of multiple concepts, like the data model that we proposed in Section 4.1, it is
reasonable to make the assumption of (Doumanoglou et al., 2023) that concept label attributions are mutually-exclusive
(e.g. when an image patch corresponds to concept tree it is not car or sky or ...). Thus, the signal values ap,i, ap,j in xp

may not be independent but anti-correlated since for a pixel p of concept i ap,i > bi and ap,j < bj , possibly violating the
assumptions of (1) regarding independence. Whether the violation is significant or not may depend on the relationship
between bi and the mean of ap,i as well as whether we consider a balanced dataset. This assumption is not violated though,
if we consider only the reference samples that belong to the concept. In that case, among that subset of the data, the signal
values ap,i and ap,j are now independent by assumption, as we now removed the biases bi, bj due to sub-sampling. This
allows us to still consider (1) as a signal estimator, even under the extended data model of multiple concepts, provided that
we subsample the data based on their concept label.

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Learning Encoding-Decoding Direction Pairs to Unveil Concepts of Influence in Deep Vision Networks

C. Extracting Signal Values with the Filters of Concept Detectors
Starting from the data model of Section 4.1 for the encoding of multiple concepts in the representation, we have:

xp = Sαp +Dβp

As discussed in Section 4.3, signal values, which are required to estimate the encoding direction of a concept, are extracted
using the filter weights of the concept detectors. Yet, as we discussed in that Section, in order for this to happen, the filter
weights wi need to be orthogonal to sj and D. Since we do not explicitly estimate distractors in this work, there maybe
an innevitable error when extracting the value of the signal (we say maybe, because this might also be mitigated by the
Uncertainty Region Alignment losses). Here we study on the order of this error.

zp = wT
i xp = wT

i Sαp +wT
i Dβp

zp
wT

i si
= ap,i +

wT
i Dβp

wT
i si

(15)

Thus, we can estimate the signal value, by the inner product between wi and xp and divide by wT
i ŝi.

In the experiment on Synthetic Data (Section 5.1) we introduced an additional constant bias of 10 to bring all the feature
representation in the positive quartile. This changed the above data model to:

xp = Sαp +Dβp + µ

with µ ∈ RD denoting the constant bias, equal to an element-wise repetition of 10. In this case, when extracting the signal
value, the estimation becomes:

zp = wT
i xp = wT

i Sαp +wT
i Dβp +wT

i µ

zp
wT

i si
= ap,i +

wT
i Dβp

wT
i si

+
wT

i µ

wisi

(16)

We see that this extra bias that we used, introduces an additional constant error term when estimating the signal values. In
a real-world scenario when this µ is unknown, we can use the following estimator âp,i which depends on the average of
features xp:

âp,i =
wT

i xp

wT
i si

− wT
i Ep[xp]

wT
i si

=

âp,i =
wT

i xp

wT
i si

− wT
i siEp[ap,i]

wT
i si

− wT
i DEp[βp]

wT
i si

âp,i = ap,i − Ep[ap,i] +
wT

i D

wT
i si

(βp − Ep[βp])

(17)

The latter is an estimator of ap,i with respect to the mean Ep[ap,i] and with an error term depending on distractors,
irrespective of constant bias.

D. Direction Learning Process
We learn the directions of the proposed method in a a four-step process: a) we first learn the parameters wi, bi following
(Doumanoglou et al., 2024), replacing the CNN Classifier Loss with proposed Luur; b) we then continue optimizing wi, bi,
removing the orthogonality and standardization constraints while incorporating the additional losses from Section 4.2; c)
next, we learn the signal vectors using the filters of the learned classifiers as regressors in (1) to initialize {Ŝ}; and d) finally,
we jointly optimize ŝi, wi, bi, using all previous losses, replacing Luur with Lcur and adding Lfso from Sections 4.3 and
4.4.
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Table 6. Left: Data matrices S and D for the experiment on synthetic data. Right: Cosine similarities for every pair of vectors in S, D,
i.e.: CTC,C = [S|D].

S
0.5396 0.5914 0.8122
0.4415 0.5833 0.2983
-0.1283 -0.1745 0.4681
-0.0093 -0.4899 0.17

0.59 -0.193 -0.0005
-0.3718 -0.0051 0.0229
0.1051 0.0467 -0.0524
0.0003 -0.0103 0.0056
0.0063 0.0037 -0.0021
-0.0009 0.0004 0.001
-0.0004 -0.0002 0.0002
0.0024 -0.0001 -0.0006
0.0036 0.0001 -0.0013
-0.0007 0.0 0.0002
0.0002 -0.0 -0.0
-0.0001 -0.0 -0.0

D
0.7693 0.7527
-0.0396 -0.6147
-0.6216 0.1661
0.1416 -0.1293
-0.0123 0.1065
-0.007 -0.0042
0.0022 0.0003
0.0014 0.0007
-0.0004 -0.0001
0.0001 0.0001

-0.0 0.0
0.0 0.0
0.0 0.0
-0.0 0.0
0.0 -0.0
0.0 0.0

Cosine-Similarities
1.0 0.4965 0.4939 0.4716 0.179

0.4965 1.0 0.4868 0.4735 0.1004
0.4939 0.4868 1.0 0.3458 0.4836
0.4716 0.4735 0.3458 1.0 0.4805
0.179 0.1004 0.4836 0.4805 1.0

E. Details for the Experiment on Synthetic Data
We train the network using cross-entropy loss and the Adam (Kingma, 2014) optimizer, with learning rate 0.005 and batch
size 1024 for 2000 epochs. In principle, we follow the process defined in Section D, but due to the simplicity of the example,
we omit step (b) and proceed directly from (a) to (c). We formulate the optimization of steps (a) and (d) using the Augmented
Lagrangian Loss, essentially converting the problem to a constraint optimization one. This greatly stabilizes learning and
avoids local optima. For step (a) we solve the constrained optimization problem of minimizing λsLs + λuurLuur with
Lma < 0.8, Lmm < 8 and Lic < 0.1. For step (d) we minimize λsLs + λsbLsb + λcurLcur with Lma < 0.8, Lmm < 8,
Lic < 0.1, Leac < 0.1, Lfso < 0.1. The learning rate we use for both steps is 0.00005 and the number of epochs are set to
20000. The loss weights λ are the same as in Table 7. The sharpening factor γ of Lic is set to γ = 1.1, τ = 1. and the ρ of
Leac is set to ρ = 1.5/3.

The specific values of matrices S and D used in this experiment, and the cosine similarities between every pair of vectors
are provided in Table 6.

F. Details for the Experiment on Deep Image Classifier

Table 7. Loss weights used for the experiment on Resnet18/Places365.
λs λsb λma λmm λic λuur λcur λeac λfso

step (a) 2.6 - 2.8 0.6 5.0 0.25 - - -
step (b) 0.85 2.6 2.8 0.6 15.0 0.25 - 15.0 -
step (d) 0.85 2.6 2.8 0.6 15.0 - 0.25 15.0 1.0

For step (a) direction learning lasts 800 epochs using an initial learning rate of 0.001 for a reference batch size of 4096
(which, in all steps, we scale based on the available GPU memory). We reduce the learning rate on plateau, by a factor of
0.5 with patience and cooldown set to 10 epochs. Step (b) lasts for 2000 epochs with initial learning rate of 0.0001 for the
same reference batch size. We also reduce the learning rate on plateau by a factor of 0.5 but with patience and cooldown set
to 50 epochs. For both steps (a) and (b) we use τ = 0.9 for Lic. For Leac we use ρ = 12τ/I , chosen to roughly match
the maximum number of pixels in any of the Broden classes. Step (d) lasts for another 2000 epochs with initial learning
rate of 0.0005 with the τ hyper-parameter of Lic set to 0.2 and ρ = 70τ/I . The rest of the parameters remain intact with
respect to step (b). For RSW we use ν = 4.0. When using Luur and Lcur, we observed better results when manipulating
features with a stochastic magnitude in the direction dxp, i.e. shifting representations as x′

p = xp − κdxp with κ a random
number in [0.5, 0.9]. Table 7, summarizes the loss weights that we used for steps (a), (b) and (d). In practice, we separate
filter directions from their magnitude 1/Mi and learn them independently as suggested in (Doumanoglou et al., 2024). For
enforcing ||wi||2 = 1 (i.e. unit norm filter vectors) we use parametrization on the unit hyper-sphere.

When learning the supervised classifiers to compared against, for each concept, we construct a dataset comprised of negative
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Figure 4. Interpretability Comparison. Histogram of differences in binary metrics: Precision, Recall, F1Score between the Linear-OR set
of concept detectors learned with the proposed method (Lcur + Lfso, I = 500) and classifiers learned in a supervised way (IBD (Zhou
et al., 2018)).

samples that are up-to 20 times more than the number of positive samples, as a means to mitigate the great imbalance. The
supervised concept classifiers are learned for the labels assigned to our concept detectors at the Direction Labeling phase
(Section 3.4).

For RCAV’s perturbation hyper-parameter, we use α = 5. For direction significance testing, we use RCAV’s label
permutation test. To construct random noise signal vectors, we (a) construct a dataset of feature-label pairs based on the
decision rule of each one of the concept detectors. To deal with great class imbalance, we construct a pool of negative
samples that is at most 20 times more than the positive ones (b) we construct N noisy versions of that dataset by label
permutation (c) we learn a noise-classifier to distinguish features based on the permuted labels, and (d) we concurrently,
estimate a noise-signal vector using (1) and the conditions described in Section 4.3. To learn each one of the noise signal
vectors and before permuting the labels, we construct a balanced dataset of at most 5000 samples, picked randomly from the
pool. We train the noise classifiers using Adam for 100 epochs and a learning rate 0.01. By using noise signal vectors as
RCAV’s noisy directions, and with the number of those vectors per classifier set to N = 100, we subsequently calculate
RCAV’s p-values. We apply Bonferroni correction to all p-values, by diving the significance threshold 0.05 with the number
of concept detectors I and the number of model classes (K = 365).

F.1. Detailed Interpretability Comparison Against the Supervised Approach for the Experiment on Deep Image
Classifier

Figure 4 plots a histogram of classification metric differences between the Linear-OR set of classifiers and the classifiers
learned in a supervised way. The differences are based on the labels, effectively taking the difference of metrics that regard
two classifiers (the first from the Linear-OR set and the second from (Zhou et al., 2018)) with the same concept name.

Figures 5, 6, 7 depict concrete binary classification metrics for some of the concept detectors in the Linear-OR set of
classifiers, comparing them with concept classifiers learned with supervision.
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Figure 5. Interpretability Comparison. Exact Precision/Recall/F1Scores for specific concepts in Broden: comparison between the linear-or
set of classifiers learned with the proposed method (EDDP, I = 500) and classifiers learned in a supervised way (IBD (Zhou et al.,
2018)).
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Figure 6. Interpretability Comparison. Exact Precision/Recall/F1Scores for specific concepts in Broden: comparison between the linear-or
set of classifiers learned with the proposed method (EDDP, I = 500) and classifiers learned in a supervised way (IBD: (Zhou et al.,
2018)).
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Figure 7. Interpretability Comparison. Exact Precision/Recall/F1Scores for specific concepts in Broden: comparison between the linear-or
set of classifiers learned with the proposed method (EDDP, I = 500) and classifiers learned in a supervised way (IBD (Zhou et al.,
2018)).
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F.2. Detailed Influence Metrics and Diagrams for the Experiment on the Deep Image Classifier

Table 8 provides more summarizing influence statistics regarding the signal vectors learned with the proposed method.
In that table, SCi,j denotes RCAV’s sensitivity score in the direction of the i-th signal vector, for the network’s class j.
Figures 8,9,10,11 depict concrete examples of how each concept’s signal direction impacts the Resnet18’s class predictions.
Concepts appearing more than once. correspond to different directions that have been attributed the same label by Network
Dissection. Seemingly irrelevant concepts with positive influence may have three possible explanations: a) the network has
some sensitivity to those concepts (as it’s top1 accuracy is 56.51%) b) their impact might be low, since RCAV only considers
the sign of the class prediction difference before and after the manipulation, regardless of its magnitude, (thus those concepts
may influence the prediction class positively, but by only a small amount) and c) their label may be misleading as the
respective concept detectors do not reliably predict the concept (i.e. they exhibit a low IoU score).

Table 8. This table summarizes statistics of the RCAV’s sensitivity score matrix SC for the set of directions learned with Luur or
Lcur + Lfso, I = 500, RCAV α = 5.0. All entries in the sensitivity score matrix SC are masked for significance before computing the
statistics. Sensitivity scores were obtained using signal vectors calculated using (1).

Metric Formula Luur Lcur + Lfso

Significant Direction Count 359 376.0
Significant Class-Direction Pairs 2118 3271.0
Directions /w Positive Influence

∑
i maxj 1x>0(SCi,j) 174 185.0

Directions /w Negative Influence
∑

i maxj 1x<0(SCi,j) 350 366.0
Positively Impactful Directions Per Class 1

K

∑
i,j 1x>0(SCi,j) 1.41 1.24

Negatively Impactful Directions Per Class 1
K

∑
i,j 1x<0(SCi,j) 4.39 7.71

Minimum # of Positively Influencing Classes Across Directions mini
∑

j 1x>0(SCi,j) 0 0
Maximum # of Positively Influencing Classes Across Directions maxi

∑
j 1x>0(SCi,j) 16 13

Minimum # of Negatively Influencing Classes Across Directions mini
∑

j 1x<0(SCi,j) 0 0
Maximum # of Negatively Influencing Classes Across Directions maxi

∑
j 1x<0(SCi,j) 27 46

# of Classes /w at Least One Positively Impactful Direction
∑

j 1x>1

(∑
i 1x>0(SCi,j)

)
147 161

# of Classes /w at Least One Negatively Impactful Direction
∑

j 1x>1

(∑
i 1x>0(SCi,j)

)
213 345
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Figure 8. Concept Influence Diagram for Resnet18 trained on Places365. The depicted concepts have sensitivity scores above 0.99 in
absolute terms. (We use RCAV to quantify the sensitivity, and re-scale the score to [−1, 1]) Positive influencing and negative influencing
concepts are provided. The number of concepts have been limited to 10. When concepts appear more than once, they correspond to
different signal directions (as labeling the classifiers with NetDissect may assign the same concept name to more than one directions.)
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Figure 9. Concept Influence Diagram for Resnet18 trained on Places365. The depicted concepts have sensitivity scores above 0.99 in
absolute terms. (We use RCAV to quantify the sensitivity, and re-scale the score to [−1, 1]) Positive influencing and negative influencing
concepts are provided. The number of concepts have been limited to 10. When concepts appear more than once, they correspond to
different signal directions (as labeling the classifiers with NetDissect may assign the same concept name to more than one directions.)
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Figure 10. Concept Influence Diagram for Resnet18 trained on Places365. The depicted concepts have sensitivity scores above 0.99 in
absolute terms. (We use RCAV to quantify the sensitivity, and re-scale the score to [−1, 1]) Positive influencing and negative influencing
concepts are provided. The number of concepts have been limited to 10. When concepts appear more than once, they correspond to
different signal directions (as labeling the classifiers with NetDissect may assign the same concept name to more than one directions.)
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Figure 11. Concept Influence Diagram for Resnet18 trained on Places365. The depicted concepts have sensitivity scores above 0.99 in
absolute terms. (We use RCAV to quantify the sensitivity, and re-scale the score to [−1, 1]) Positive influencing and negative influencing
concepts are provided. The number of concepts have been limited to 10. When concepts appear more than once, they correspond to
different signal directions (as labeling the classifiers with NetDissect may assign the same concept name to more than one directions.)
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G. Qualitative Segmentation Results for the Experiment on Deep Image Classifier
Figures 12 and 13 depict qualitative segmentation results for the concept detectors learned with the proposed method in
the experiment with the deep image classifier. Visualizations are obtained using (Bau et al., 2017) which reported that our
concept detectors can identify 257 different concepts (at the IoU threshold level of 0.04) in the following categories: 65
objects, 158 scenes, 12 parts, 3 materials, 18 textures and 1 color. The total number of interpretable concept detectors is 429
(out of the 500 in the set). In the figures, the IoU scores refer to the whole validation split of the concept dataset and not
individual image segmentations. The labels assigned to the concept detectors are based on the annotations available in the
concept dataset and in some cases may not be very accurate. For instance consider classifiers with index 343 and 430. They
have been assigned the label hair while a more suitable label might be face, but such a concept class is not available in the
annotations of the dataset. Other notable cases include the classifiers with indices 76 and 444. The first is specialized in
detecting cars that dominate the image space, while the second appears better suited for identifying smaller instances of the
same class. The IoU for the latter is only 0.05 because it is calculated across the entire set of cars, regardless of their size.
Lastly, the classifier with index 45 seems adept at detecting the upper body of a person, whereas the classifier with index
256 is more effective at identifying the lower body.
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Figure 12. Qualitative segmentations using the concept detectors learned with our method. Here I = 500.
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Figure 13. Qualitative segmentations using the concept detectors learned with our method. Here I = 500.
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H. Theoretical Comparison with Concept-Basis Extraction (Doumanoglou et al., 2024)
In an attempt to discover more interpretable directions, (Doumanoglou et al., 2024), made a first attempt to exploit the
knowledge encoded in the network, through feature manipulation. In particular, it was suggested that representations xp

should be manipulated towards the concept detectors’ hyperplanes, only for the concepts that are present in xp (i.e.
manipulating towards the negative direction of the filter weights, when those filters classify xp positively). Features were
not manipulated in the direction of the weights (to bring them towards the separating hyperplane, when they lie in the
subspace of negative concept classification). While they tried to exploit the uncertainty region of the model, they essentially
suggested that the network’s predictions should be highly uncertain when for all xp, none of the classifiers makes positive
predictions (without minding about confident negative predictions). This is fundamentally different with the proposition in
the present work, which manipulates all features towards the hyperplanes, regardless of whether features were positively
or negatively classified, suggesting that the network’s predictions should be maximally uncertain when for all xp none of
the classifiers makes confident predictions, either positive or negative. Additionally, in (Doumanoglou et al., 2024), signal
directions were completely overlooked.
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Table 9. Network accuracy and confusion matrix for the network trained on the Chess Pieces dataset. Rows correspond to ground-truth
labels and colums to network predictions. Three classes are considered: bishop/knight/rook. The rows of the confusion matrix are
normalized against ground-truth element count. Three datasets are also considered: Clean (without watermarks), Poisoned (with
watermarks) and Clean & Poisoned which is the union of the previous two.

Dataset: Clean Poisoned Clean & Poisoned
Accuracy: 0.93 0.34 0.64

b k r b k r b k r
b 0.95 0.05 0.0 0.0 0.0 1.0 0.48 0.02 0.5
k 0 0.95 0.05 0.0 0.0 1.0 0.0 0.48 0.52
r 0.04 0.04 0.92 0.0 0.0 1.0 0.02 0.02 0.96

I. Toy Experiment on Model Correction with the Learned Directions
In this experiment we demonstrate how the proposed approach may be utilized to correct a model that relies on controlled
confounding factors to make its predictions. For the purposes of this toy experiment we use a small convolutional neural
network with 5 Conv2d layers each one followed by a ReLU activation. The top of the network is comprised of a Global
Average Pooling layer (GAP) and a linear head. After each convolutional layer, except the last, there is a Dropout layer
with p = 0.3. All Conv2d layers have kernel size 3x3 and stride 2 except the last one which has stride 1. Furthermore, the
latent space dimensionality is set to 16 for all convolutional units. We consider the task of predicting the chess piece name
from an image depicting the piece. We use the Chess Pieces dataset from Kaggle 1 which contains a collection of images
depicting chess pieces from various online platforms (i.e., piece images appearing in online play). The spatial resolution of
those images is 85x85. For simplicity, we consider 3 chess pieces to be classified by the network, namely: bishop, knight,
rook, thus the network predicts K = 3 output classes. The total number of images in the dataset are 210, 67 for bishop, 71
for knight and 72 for rook. We make a stratified train-test split with the training set ratio set to 0.7. To encourage the model
to learn a bias to make its predictions, we poison half of the rook images of the training set with the watermark text “rook”
on the top left of each rook image. With the introduction of this bias on half of the images, we expect that the network learns
that the watermark concept has positive influence on the rook class, while not being the only feature of positive evidence for
the same class, since we include rook images in the training set without the watermark.

I.1. Network Training and Evaluation

We train the network with cross-entropy loss and the Adam optimizer with learning rate 0.005 for 1000 epochs. In the
(poisoned) training set the model achieves 100% accuracy. For evaluation we construct three datasets based on the test
split that we created earlier. First, we consider a clean test set, a dataset comprised of test images without any watermarks
(Clean). Second, we consider the previous clean set but with all the images being poisoned with the watermark (Poisoned)
and c), we consider the union of the previous two datasets (Clean & Poisoned). Table 9 summarizes the performance of
the network in each one of the three datasets. As evidenced by the Poisoned section of the detailed confusion matrix, the
watermark is a strong feature that whenever is present in the image it directs the prediction towards the rook class.

I.2. Direction Learning for Watermark Identification

We now consider the application of the proposed method in identifying the watermark direction, from the bottom up, without
relying on annotations. As we’ve shown in the main paper the proposed approach is unsupervised and is able to identify
directions influential to the model. Since in the previous section we identified that the watermark actually influences the
predictions of the network in a consistent manner, we seek to answer the following two research questions: a) can the
proposed EDDP method identify the watermark as a concept? That is, is any of the learned classifiers responsible to detect
the watermark? b) Supposing the answer to (a) is positive, given the watermark’s concept detector and the respective learned
signal vector, can we fix the network in order to not rely on the watermark for its predictions ?

Direction Learning We consider the last convolutional layer as our layer of study. This layer has spatial dimensionality
2x2. To learn the latent directions, we apply our method by following the learning process described in section D and we
use the network’s training set as our concept dataset. Furthermore, for stable learning, we have found that the directions
are more robustly learned with the Augmented Lagrangian loss scheme, which implies that the optimization problem
is formulated as a constrained optimization problem. We optimize λsLs + λsbLsb + λcurLcur with the constraints

1Chess Pieces Dataset (85x85): https://www.kaggle.com/datasets/s4lman/chess-pieces-dataset-85x85
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Figure 14. Example image segmentations based on the concept detectors learned for the model correction experiment. Top rows illustrate
pictures with the concept and bottom rows illustrate pictures without. Classifier 5 clearly detects the watermark.

Lma < 0.8,Lic < 0.01,Leacl < 0.01,Lmm < 8.0,Lfso < 0.1, and weights λ similar to Table 7. The most important
hyper-parameter to tune is the dimensionality of the concept space I .

Watermark Direction Identification We found that, when learning with I = 6, the proposed approach clearly identifies
the watermark direction. By using the learned classifiers as concept detectors, we are able to group each one of the spatial
features of the 2x2 representation, into clusters of the same concept. When applied on an image representation, each learned
classifier produces a form of a binary label-map, with each element of the label-map indicating whether the part of the image
behind the spatial representation belongs to the concept. In Fig. 14 we provide example image segmentations based on
those label-maps. From the qualitative visualizations we see that classifier 5 identifies the watermark. Although annotations
were not required to learn the direction, since this is a controlled experiment and we know in which images we injected the
watermark, we are able to quantify how well this classifier can detect the concept by evaluating its IoU performance on the
concept dataset. We found that this classifier detects the watermark concept with IoU 0.93.

I.3. Influence Testing with RCAV

We use RCAV to measure the sensitivity of the model with respect to the watermark signal vector. The sensitivity scores
reported by RCAV are −1 for the classes bishop and knight while it is 1 for the class rook. This implies that when the
image has the watermark it becomes more rook and less bishop or knight. This quantitative score aligns with our intuition
regarding the watermark.
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I.4. Model Correction by Using the Watermark’s Encoding and Decoding Directions

Let w and b denote the learned parameters of the watermark concept detector and ŝ denote the respective learned signal
vector. Without re-training or fine-tuning the network, we are going to suppress the watermark artifact component from the
representation whenever it is detected by the concept detector. We propose the following feature manipulation strategy that
we apply at the features of the last convolutional layer.

x′
p = ReLU(xp −mkŝ),m = σ(wTxp − b) (18)

with k a perturbation hype-parameter that we empirically set to k = 450. The ReLU ensures that the manipulation does not
move the features out of the domain of the linear head.

I.5. Evaluation of the Corrected Model

We evaluate the corrected model according to the same protocol that we did in Section I.1. The results are depicted in
Table 10. Compared to the performance of the original network (Table 9), we see that the corrected model: a) has the same
accuracy as the original model on the clean test set b) is significantly more accurate on images of the poisoned dataset with
an absolute improvement of +34% and c) performs substantially better on the union of clean and poisoned datasets with an
absolute improvement of +17%. We also compare our correction strategy to using a random manipulation direction with
the same k as before. (i.e. using a random vector in the place of the learned signal vector in (18)). In a series of 10 trial
evaluations on the Poisoned Test set, we verified that no improvement was achieved: the classification accuracy was the
same as the original model and the confusion matrix was still the same as in Table 9-Middle. Finally, we also compare
against manipulating towards the concept detector’s filter direction and we found that the classification accuracy for the
poisoned test set was 0.53 (which is inferior to 0.69 when using the signal vector).

Table 10. Network accuracy and confusion matrix for the corrected network trained on the Chess Pieces dataset. Rows correspond to
ground-truth labels and colums to network predictions. Three classes are considered: bishop/knight/rook. The rows of the confusion
matrix are normalized against ground-truth element count. Three datasets are also considered: Clean (without watermarks), Poisoned
(with watermarks) and Clean & Poisoned which is the union of the previous two.

Dataset: Clean Poisoned Clean & Poisoned
Accuracy: 0.93 0.69 0.81

b k r b k r b k r
b 0.95 0.05 0.0 0.4 0.3 0.3 0.67 0.17 0.15
k 0.0 0.95 0.05 0.0 0.85 0.14 0.0 0.90 0.10
r 0.04 0.04 0.91 0.0 0.18 0.81 0.02 0.11 0.87
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