
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Multilevel Guidance-Exploration Network and Behavior-Scene
Matching Method for Human Behavior Anomaly Detection
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ABSTRACT
Human behavior anomaly detection aims to identify unusual hu-
man actions, playing a crucial role in intelligent surveillance and
other areas. The current mainstreammethods still adopt reconstruc-
tion or future frame prediction techniques. However, reconstructing
or predicting low-level pixel features easily enables the network to
achieve overly strong generalization ability, allowing anomalies to
be reconstructed or predicted as effectively as normal data. Differ-
ent from their methods, inspired by the Student-Teacher Network,
we propose a novel framework called the Multilevel Guidance-
Exploration Network (MGENet), which detects anomalies through
the difference in high-level representation between the Guidance
and Exploration network. Specifically, we first utilize the Normal-
izing Flow that takes skeletal keypoints as input to guide an RGB
encoder, which takes unmasked RGB frames as input, to explore
latent motion features. Then, the RGB encoder guides the mask
encoder, which takes masked RGB frames as input, to explore the
latent appearance feature. Additionally, we design a Behavior-Scene
Matching Module (BSMM) to detect scene-related behavioral anom-
alies. Extensive experiments demonstrate that our proposedmethod
achieves state-of-the-art performance on ShanghaiTech and UB-
normal datasets, with AUC of 86.9 % and 74.3 %, respectively. The
code is available on GitHub.

CCS CONCEPTS
• Computing methodologies→ Scene anomaly detection.

KEYWORDS
human anomaly detection,one-class, multimodal features.

1 INTRODUCTION
Human behavior anomaly detection aims to temporally or spatially
localize the abnormal actions of the person within a video. It plays a
significant role in enhancing public security [32, 41]. Detecting such
anomalies presents a challenge due to the infrequent occurrence
and the various types of abnormal events [47]. As a result, most
typical methods [7, 17, 22, 27, 36, 46], employ one-class methods
using only normal data for training (also referred as unsupervised
learning methods in this area). In these approaches, including our
method, behaviors that the model identifies as outliers are consid-
ered anomalies.
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Figure 1: Comparison of different methods using various
features. (a) Reconstruction-based method, using the autoen-
coder to reconstruct the previous𝑇 frames 𝑓 1:𝑡 . (b) Prediction-
based method, predicting the 𝑡 + 1 frame 𝑓 𝑡+1 from the prior
𝑇 frames. Both of them detect anomalies based on recon-
struction or prediction errors. (c) Our Multilevel Guidance-
Exploration framework, includes two similar levels. For in-
stance, in the 1-st level, Encoder-B learns another type of fea-
ture under the guidance of a pre-trained network (Encoder-
A), detecting anomalies based on the similarity of latent out-
put features.

Among these unsupervised learning approaches, many meth-
ods use reconstruction or frame prediction methods combined
with various features to detect human behavior anomalies. The
reconstruction-based framework[15, 23, 27, 28, 39], illustrated in
Figure 1(a), utilizes autoencoders trained on normal data, detecting
anomalies based on elevated reconstruction errors. For example,
Wang et al. [39] propose a new autoencoder model, named Spatio-
Temporal Auto-Trans-Encoder, to enhance consecutive frame re-
construction. The prediction-based methods[4, 7, 18, 22, 23, 46], as
depicted in Figure 1(b), typically predict pixel-level features for the
next frame using previous frames. Foe example, Cai et al. [7] pro-
pose an Appearance-Motion Memory Consistency Network based
on autoencoders, explicitly considering the endogenous consis-
tency semantics between optical flow features and RGB appearance
features during the prediction process. Additionally, Liu et al. [23]
propose a hybrid strategy by initially reconstructing optical flow
features with a reconstruction autoencoder and then jointly pre-
dicting the next frame with previous frames,

However, reconstructing or predicting pixel-level features at a
low level can result in the network having overly strong gener-
alization [7, 27, 36, 46], where some anomalous samples can be
reconstructed or predicted as effectively as normal samples. This
phenomenon poses a challenge in distinguishing between normal
and anomalous instances. Additionally, these approaches [4, 15–
18, 23, 36] ignore scene context. They focus solely on the behavior

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous submission

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

of individuals without considering their interaction with the sur-
rounding scene. For example, lying on a zebra-crossing road should
be considered anomalous compared to the same posture on a beach.

Different from the aforementionedmethod and inspired by teacher-
student framework, we design a novel framework named Multilevel
Guidance Exploration Network (MGENet), which focuses on explor-
ing high-level feature difference rather than recovering or predict-
ing pixel-level information. As shown in Figure. 1(c), MGENet de-
tects motion and appearance anomalies using a Two-level guidance-
exploration pattern. Each level is trained with different types of
input features and leverages the difference in output features be-
tween the Guidance and Exploration Networks to detect anomalies.
The principle behind this is that the model structures and input
data formats differ between guidance and exploration networks.
As a result, they might show distribution shifts towards unfamiliar
anomaly types compared to normal patterns. The direction of these
shifts is hard to consistently pinpoint, leading to larger difference
compared to normal patterns.

Specifically, we employ Spatio-temporal Normalizing Flow [17]
to map normal human-pose data into a latent representation charac-
terized by a Gaussian distribution. This process strategically situates
anomalous pose data at the distribution’s periphery. Then, guided
by Normalizing Flow, the RGB Encoder captures spatio-temporal
features, detecting motion anomalies by analyzing the difference in
the output features between these two networks. Furthermore, the
RGB Encoder also guides the unmask Encoder to distill high-level
features from specific patches of masked RGB frames, detecting ap-
pearance anomalies based on the similarity between the high-level
features output by both networks. Additionally, we incorporate
a Behavior-Scene matching module, which establishes and stores
the relationship between normal behavior and scenes, enabling the
detection of scene anomalies. Finally, we demonstrate the effective-
ness of the method on two publicly available datasets.

In summary, the contributions of our work are as follows:
• We design a multilevel guidance-exploration pattern, similar
to a teacher-student network, but both of two networks are
not merely knowledge distillation, but rather collaboratively
detect anomalies.
• We propose a behavior-scene matching method to store the
relationship between scenes and behaviors and can detect
scene-related anomalies.
• Different from reconstruction-based or prediction-basedmeth-
ods, we detect motion and appearance anomalies based on
the high-level feature difference between two levels of guid-
ance and exploration networks, and detect scene-related
anomalies based on the disparity in the matching degree
between behaviors and scenes.
• Extensive experiments demonstrate that our proposedmethod
outperforms existing unsupervised methods, achieving a
state-of-the-art AUC of 86.9% on the ShanghaiTech dataset
and 74.3% on the UBnormal dataset.

2 RELATEDWORK
2.1 Video Anomaly Detection
In recent years, numerous studies have achieved remarkable results
based on RGB frames, optical flow, or pose features.

Some researchers employ reconstruction methods[15, 23, 27, 28,
32], for anomaly detection, assessing anomalies based on higher
reconstruction errors compared to normal samples. Park et al. [27]
propose augmenting the autoencoder with a memory module, fa-
voring proximity to normal samples during reconstruction and
amplifying errors for anomalies. Sun and Gong [32] utilize two
autoencoders to reconstruct motion and appearance features. Fur-
thermore, they also design a contrastive learning method to identify
scene-related behavioral anomalies, but they only detect within
limited scenarios, lacking diversity. Ristea et al. [28] integrates re-
construction functionality into a novel self-supervised predictive
building block, trained to predict masked information in a self-
supervised manner. Some researchers use prediction methods[4, 7,
18, 22, 23, 46], to detect anomalies. Liu et al. [22] propose a future
frame prediction approach, which detects anomalies by assessing
the discrepancies between predicted images and actual images.
Chen et al. [9] find limitations in simple prediction constraints
for representing appearance and flow features. They introduce a
novel bidirectional architecture with three consistency constraints
to regulate the prediction task. Yang et al. [46] introduced the task
of key frame restoration, encouraging Deep Neural Networks to
infer missing frames based on video key frames, thereby restoring
the video.

Furthermore, in recent years, there has been an emergence of
utilizing alternative methods for anomaly detection. Hirschorn et
al. [17] employ Normalizing Flow to map normal data into the
latent representation, locating anomalous data at the distribution
periphery. Wang et al. [36] propose a new pretext task, disrupting
both temporal and spatial order and training the model to restore
RGB frames.

2.2 Student Teacher Network
Initially, the student-teacher network was applied to knowledge
distillation[41]. The student model, which has fewer parameters,
learns from the output of the teacher model with a larger parameter
size, enabling the student model to achieve performance that closely
approximates that of the teacher model. Recently, in the field of
industrial anomaly detection[5, 21, 29, 44], Bergmann et al. [5] are
the first to propose an unsupervised anomaly detection framework
based on teacher-student learning. And some researchers [29] em-
ploy knowledge distillation to detect anomalies by utilizing the
regression error of student networks on the feature outputs of a
high-parameter teacher network. The STPM method [44] is based
on student-teacher feature pyramid matching, with the student
and teacher networks being pre-trained as ResNet50 and ResNet18,
respectively.

The methods mentioned earlier and our approach’s appearance
anomaly detection phase share similarities, employing knowledge
distillation. However, there’s a difference in the motion anomaly
detection process, where knowledge distillation is not the primary
emphasis. The Normalizing Flow has a lightweight architecture,
whereas the RGB Encoder has a more complex structure. Addition-
ally, there are substantial differences in the frameworks and input
data types between these two networks.
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Figure 2: The overall framework of our method. The model comprises Normalizing Flow, unMask RGB Encoder, Mask Encoder,
and Scene-Behavior Matching Module. Normalizing Flow serves as guidance network at the 1-st level, while unMask RGB
Encoder serves as both the 1-st level’s exploration network and the 2-nd level’s guidance network, with Mask Encoder acting as
the 2-nd level’s exploration network. F𝐵 and F𝑆 are frozen feature extractors.

2.3 Masked Visual Model
Masked Visual Modeling [31, 40, 48] improves visual representa-
tion learning by masking image portions. Chen et al. [10] propose
a pretraining method with two tasks: predicting representations
for masked patches and reconstructing masked patches. Zhang
et al. [49] demonstrate improved performance with only super-
vised visible patches, omitting the need for masked patches. In
the realm of video representation learning, Tong et al. [35]show
that video-masked autoencoders are also data-efficient learners for
self-supervised video pre-training. Wang et al. [37] present Masked
Video Distillation, a succinct two-stage framework, for video repre-
sentation learning. Inspired by masking tasks, we mask partially
video frames and exclusively use visible frames to learn the latent
high-level features of the uncovered frames. In this way, since the
model has not encountered the appearance of anomalies before,
there will be differences in the latent representation of unmasked
frames containing anomalies.

3 METHOD
3.1 Overview
Figure 2 illustrates the overall framework. Given a video clip with𝑇
consecutive frames, we extract human-centric RGB frames 𝑥𝑟𝑔𝑏 ∈
R𝑇×𝐻×𝑊 ×𝐶 and𝑉 -joints skeletal pose data 𝑥𝑠𝑘 ∈ R𝑇×𝑉 ×𝐶 [12, 43].
Meanwhile, according to BEIT [3], we segment the RGB frames
into 𝑃 patches and mask the rate of 𝛾 of the patches to obtain 𝑥𝑚 .
Then, anomalies are detected through the following four processes.

Motion Anomaly Detection: First, we pre-train Normalizing
Flow to project 𝑥𝑠𝑘 into a latent representation 𝑓𝑠𝑘 ∈ R𝑇×𝐶𝑚𝑜 fol-
lowing the Gaussian distribution. Then, it guides the RGB Encoder

and headH𝐵 using RGB frames to learn spatio-temporal features
𝑓𝑟𝑔𝑏 ∈ R𝑇×𝐶𝑚𝑜 .

Appearance Anomaly Detection: We use head H𝑏 to map
behavior Features 𝑒𝑏 into 𝑓𝑢 ∈ R𝑇×𝐶𝑎𝑝𝑝 . Following this, it guides
theMask Encoder usingmasked RGB frames𝑥𝑚 to learn appearance
features 𝑓𝑚 ∈ R𝑇×𝐶𝑎𝑝𝑝 .

Scene-related Anomaly Detection: The scene undergoes fea-
ture extraction F𝑆 to generate scene features 𝑒𝑠 , alongside corre-
sponding behavior features 𝑒𝑏 , pass through the memory banks
to get soft addressing weights𝑊𝑏 ∈ R𝑃×𝑁𝑏 and𝑊𝑠 ∈ R1×𝑁𝑠 , re-
spectively. Here, 𝑁𝑏 and 𝑁𝑠 represent the number of slots in the
Behavior and Scene Memory, respectively. Then, they pass into the
Behavior-Scene Matching Module together to compute the scene-
related anomaly score 𝑆𝑚𝑚 .

Anomaly Score: The score is computed by considering the dif-
ference between the pose feature 𝑓𝑠𝑘 and the behavior feature 𝑓𝑟𝑔𝑏 ,
the similarity of appearance features 𝑓𝑢 and 𝑓𝑚 , and the matching
score 𝑆𝑚𝑚 .

3.2 Motion Anomaly Detection
Skeletal data helps the model capture the essential characteristics
of movements or postures[19, 45]. Recently, Hirschorn et al.[17]
designed the Spatio-temporal Normalizing Flow(NF𝑠 ), including
𝐿 flow modules, which can map the skeletal distribution of nor-
mal skeletal data to a standard distribution through a series of
invertible transformations, with anomalies typically found at the
distribution’s periphery.

To further distinguish between normal and abnormal samples,
we use a Normalizing Flow with skeletal pose information as a
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guidance network to assist the exploration network in learning
features from RGB video frames. Firstly, we train Spatio-temporal
Normalizing Flow according to [17], mapping pose data 𝑥𝑠𝑘 to
latent behavior features 𝑓𝑠𝑘 :

𝑓𝑠𝑘 = NF𝑠 (𝑥𝑠𝑘 ) . (1)

Secondly, we use it as a pre-trained model to guide the exploration
network (RGB Encoder) to generate the latent motion features 𝑓𝑟𝑔𝑏 .
The following are the detailed steps:

First, given RGB frames 𝑥𝑟𝑔𝑏 ∈ R𝑇×𝐻×𝑊 ×𝐶 , similar to cube
embedding [2, 11, 35], we treat each cube of 2 × 8 × 8 as one token
embedding, and obtain 𝑡×ℎ×𝑤 3D tokens,where 𝑡 = 𝑇

2 , ℎ = 𝐻
8 ,𝑤 =

𝑊
8 . Then, map each token to the channel dimension. Next, we pre-
extract RGB features of these tokens and employ the RGB Encoder,
a small ViT backbone with joint space-time attention [11, 35], to
obtain spatio-temporal features 𝑒𝑏 ∈ R𝑃×𝐶𝑏 , where 𝑃 = 𝑡 · ℎ ·𝑤 .

Then, we reshape 𝑒𝑏 into 𝑒𝑏 ∈ R𝑡×𝐶𝑏×ℎ×𝑤 and design the spatial-
temporal head H𝐵 , which replaces the 3 × 3 × 3 convolution in
Spatial-Temporal Excitation [8] with the decomposed Large ker-
nel Attention, named large Spatial-Temporal Attention(LSTA), to
further capture the spatio-temporal relationships of patches with
long-distance temporal dependencies and spatial variations in dif-
ferent frames of human actions.

In detail,spatio-temporal headH𝐵 consists of 𝐿 LSTA modules
and the MLP layers. As shown in Figure 3, given an input tensor
𝑒𝑖𝑛
𝑏
∈ R𝑡×𝑐×ℎ×𝑤 , we begin by performing channel-wise averaging,

yielding a global spatio-temporal tensor 𝑓 ∈ R𝑡×1×ℎ×𝑤 . Then, we
reshape 𝑓 into 𝑓 ∗ ∈ R1×𝑡×ℎ×𝑤 and pass it through the 3DLKAmod-
ule to get transformed tensor 𝑓 ∗𝑜 ∈ R1×𝑡×ℎ×𝑤 ,which is represented
as follows :

𝑓 ∗𝑜 = 3DLKA(𝑓 ∗) = CONV(DWDC(DWC(𝑓 ∗))), (2)

where DWC denotes a 𝑘
𝑑
× 𝑘
𝑑
× 𝑘
𝑑
deep dilated convolution with

dilated 𝑑 ,DWDC denotes a (2𝑑 − 1) × (2𝑑 − 1) × (2𝑑 − 1) deep con-
volution, and CONV denotes a 1 × 1 × 1 convolution. Subsequently,
𝑓 ∗𝑜 is reshaped to 𝑓𝑜 ∈ R𝑡×1×ℎ×𝑤 and passed through a sigmoid
activation function to obtain the attention map. Finally, we use this
map to guide 𝑒𝑜

𝑏
for obtaining behavior feature 𝑒𝑜

𝑏
:

𝑒𝑜
𝑏
= 𝑒𝑖𝑛

𝑏
+ 𝑒𝑖𝑛

𝑏
⊙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑓𝑜 ), (3)

where ⊙ denotes the element-wise product. After passing through
the MLP layers, we obtain the motion feature 𝑓𝑟𝑔𝑏 . Finally, we
minimize the difference between 𝑓𝑠𝑘 and 𝑓𝑟𝑔𝑏 feature to facilitate
the model in learning spatio-temporal pose features of normal
patterns.

L𝑚𝑜 = | |𝑓𝑠𝑘 − 𝑓𝑟𝑔𝑏 | |22 . (4)

In this way, for anomalous samples, achieving similar high-level
semantic representation is more challenging due to differences in
feature modalities and network architectures. Therefore, we can
detect action anomalies based on the difference between the two
types of features.

3.3 Appearance Anomaly Detection
Beyond motion anomalies, our method considers appearance anom-
alies, including carrying unidentified objects or using inappropriate

Figure 3: The framework of LSTA.

vehicles. Given this context, we extend Masked Image Modeling
(MIM) [42] to video anomaly detection, enabling the Mask Encoder
to learn normal appearance features guided by the unmasked RGB
Encoder. This adaptation tackles challenges faced by the Mask En-
coder in capturing high-level features of patches that were not
encountered before but now are masked, resulting in noticeable
differences from unmasked RGB features.

Specifically, following the approach of BEITMASK [3], we mask
patches with a ratio 𝛾 , which is set to 50% and obtain masked RGB
frames 𝑥𝑚 . Noted that we used the same mask for the frames within
the same video frame, preventing the model from extracting patch
features from adjacent frames.

{𝑥1𝑚, 𝑥2𝑚, ..., 𝑥
𝑁 /2
𝑚 } = MASK{𝑥1

𝑟𝑔𝑏
, 𝑥2
𝑟𝑔𝑏

, ..., 𝑥𝑁
𝑟𝑔𝑏
}, (5)

where 𝑁 denotes the number of patches. Next, we also use the
cube embedding method described in Section 3.2 to obtain tokens.
These tokens pass through the Mask Encoder, which has a structure
similar to the RGB Encoder, to learn appearance features. Then, the
projection head is employed to obtain latent appearance features,
denoted as 𝑓𝑚 . Simultaneously, the appearance features 𝑓𝑏 also
undergo the projection head to obtain latent appearance features
𝑓𝑢 with the same size as 𝑓𝑏 .

During the training process, the Mask Encoder distills the high-
level feature representation of the RGB Encoder under the condition
of having only partially visible patches. The final loss function can
be expressed as:

L𝑎𝑝𝑝 = 1 − 𝑓𝑚 · 𝑓𝑢
∥ 𝑓𝑚 ∥ · ∥ 𝑓𝑢 ∥

. (6)

3.4 Scene-Releted Anomaly Detection
Formally, we postulate that unobserved behaviors within a
scene should be categorized as anomalies. To detect these anom-
alies, we design the Scene-BehaviorMatchingModule to capture the
relationships between normal patterns of scenes and behaviors. As
a result, scene-related behavior anomalies exhibit weaker matching
with the learned features, leading to higher anomaly scores.

As illustrated in Figure. 4(a), the Behavior-Scene Matching Mem-
ory(BSMM), similar to the Behavior Memory and Scene Memory,
is a read-write memory with a similar structure [27]. However,
the key difference is that the Behavior-Scene Matching Memory
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Figure 4: Calculation process of (a) scene-related anomaly score and (b) appearance anomaly score. Here, S represents similarity
calculation,MASK and MASK represent mutually opposite masks. Note that in figure(b), the two sets of masked images are
sequentially processed through the Mask Encoder

stores the representation of the addressing weights in the Behav-
ior Memory and Scene Memory for the behavioral features and
their corresponding scene features of all normal data. Below is an
introduction to its update and read processes.

First, we choose a frame with the fewest individuals in a video
as the scene image. Then, the scene image passes through the fea-
ture extractor, generating scene features e𝑠 ∈ R𝐶𝑠 . Then, behavior
features e𝑏 ∈ R𝑃×𝐶𝑏 and the corresponding e𝑠 query the Behavior
Memory and Scene Memory, respectively, and then similar to Eq.7,
we contribute to calculating the similarity weights𝑊𝑏 ∈ R𝑃×𝑁𝑏

and𝑊𝑠 ∈ R1×𝑁𝑠 , where 𝑁𝑏 and 𝑁𝑠 denote as the number of the
slots in behavior memory and scene memory, respectively. In de-
tail,For the 𝑖-th slot in behavior memory, denoted as m𝑏

𝑖
∈ M𝑏 , we

can calculate the addressing weights between it and the 𝑝-th query
e𝑏𝑝 item as follows:

𝑤𝑏𝑖,𝑝 =

exp
(
𝑑

(
e𝑏𝑝 ,m

𝑏
𝑖

))
∑𝑁𝑏

𝑗=1 exp
(
𝑑

(
e𝑏𝑝 ,m

𝑏
𝑗

)) , (7)

where𝑑 (𝒆∗,𝒎∗) denotes cosine similarity. The computationmethod
for𝑤𝑠

𝑖
∈𝑊 𝑠 is the same as that for𝑤𝑏

𝑖,𝑝
.

Update: We reshape𝑊 𝑏 and𝑊 𝑠 into one-dimensional vectors
�̃� 𝑏 ∈ R𝐿𝑏 and�̃� 𝑠 ∈ R𝐿𝑠 ,where 𝐿𝑏 = 𝑃 ×𝐶𝑏 and 𝐿𝑠 = 1×𝐶𝑠 . Then,
concatenate �̃� 𝑏 and �̃� 𝑠 along the channel:

W𝑟 = [�̃� 𝑏 ,�̃� 𝑠 ] . (8)

Next, similar to [27, 32], for each items m𝑟
𝑖
∈ M𝑟 in the Behavior-

Scene Memory, we update as following:

m𝑟𝑖 ← 𝑓

(
m𝑟𝑖 +

∑︁
𝑣∈𝑈 𝑖

𝑣𝑝,𝑖W𝑟
𝑣

)
, (9)

where 𝑓 (·) is the 𝐿2 norm.𝑈 𝑖 represents the set of indices for the
corresponding queries for the 𝑖-th item in the memory. 𝑣𝑝,𝑖 rep-
resents matching probability between memory items and queries,
similar to equation (7). It is worth noting that the aforementioned
update operation occurs only in the final round and keeps the pa-
rameters of the Behavior Memory and Scene Memory unchanged.

Read: We calculate matching weights 𝐶∗ between similarity
weights of behavior feature𝑊 𝑏 or scene feature𝑊 𝑠 and the Behavior-
Scene Memory M𝑟 . Specifically, for the 𝑖-th slot in the Behavior-
Scene Memory, the behavior matching weights 𝑐𝑏

𝑖
∈ 𝐶𝑏 are calcu-

lated between𝑊𝑏 and the first 𝐿𝑏 channels of theMatchingMemory
M𝑟 , as follows:

𝑐𝑏𝑖 =

exp
(
𝑑

(
𝑊 𝑏 ,m𝑟

𝑖,:𝐿𝑏

))
∑𝑁
𝑗=1 exp

(
𝑑

(
𝑊 𝑏 ,m𝑟

𝑗,:𝐿𝑏

)) . (10)

Next, due to the sparsity of Memory, to avoid interference from
irrelevant information dissimilar to behavior, we only select the
Top-K items that most similar to behavioral features to calculate
matching weights𝐶𝑏 ∈ R𝐾 . Similarly, we can use the above method
with the last 𝐿𝑠 channels of M𝑟 and the selected Top-K items to
calculate 𝐶𝑠 (Attach document have a more detailed procedure).

In this way,𝑊 𝑏 and𝑊 𝑠 serve as vector representations of his-
torical behaviors and scenes. Their combination stored inM𝑟 forms
a pattern of the behavior-scene pattern. During the test phase,𝑊 𝑏

and𝑊 𝑠 act as query terms, individually computed with the behav-
ioral and scene representations of each item m𝑟

𝑖
in M𝑟 to derive 𝑐𝑏

𝑖
and 𝑐𝑠

𝑖
. If the difference between them is significant, it indicates

a mismatch between the behavior and the current scene. Finally,
anomalies are measured by considering all patterns stored in the
Matching Memory.

3.5 Loss Function and Anomaly Score
Loss Function: The training loss includes the regression loss L𝑚𝑜 ,
and the distillation loss L𝑎𝑝𝑝 . Additionally, to allocate similar
queries to the same item, the objective is to reduce the number
of items and the overall memory size according to [27], there is the
feature separateness Loss defined with a margin of 𝜖 as follows:

Lsep=
𝑃∑︁
𝑝

[


W𝑟
𝑝−m𝑠𝑡





2
−



W𝑟

𝑝−m𝑛𝑑




2
+𝜖

]
+
, (11)

where 𝑃 represents the number of queries, and m𝑠𝑡 and m𝑛𝑑 rep-
resent the first and second nearest items for the queryW𝑟

𝑝 . Thus,
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for the three memories, the separateness loss is denoted as L𝑏𝑠𝑒𝑝 ,
L𝑠𝑠𝑒𝑝 , and L𝑟𝑠𝑒𝑝 respectively. In summary, the overall loss function
is expressed as:

L = L𝑚𝑜 + 𝛼L𝑎𝑝𝑝 + 𝛽 (L𝑏𝑠𝑒𝑝 + L𝑠𝑠𝑒𝑝 + L𝑟𝑠𝑒𝑝 ), (12)

where 𝛼 and 𝛽 are balancing hyper-parameters.
Anomaly Score: Measuring the anomaly scores involves three

components: motion anomaly score, appearance anomaly score,
and scene-related anomaly score. In the first level of our framework,
we obtain high-level skeleton feature 𝑓𝑠𝑘 and behavior feature 𝑓𝑟𝑔𝑏 .
Due to the distinct structures and input data of the two modules,
When encountering previously unseen anomalous behaviors, there
is a substantial difference between them, We can utilize Euclidean
distance as the Motion Anomaly Score:

S𝑚𝑜 = | |𝑓𝑠𝑘 − 𝑓𝑟𝑔𝑏 | |. (13)

Furthermore, as shown in Figure. 4(b), given the adoption of a
50% masking approach, there are two sets of mutually exclusive
masksMASK andMASK to ensure complete coverage for all patches.
Therefore, the calculation method for appearance anomaly scores
S𝑎𝑝𝑝 is:

S𝑎𝑝𝑝 =
1
2
𝑠𝑖𝑚(𝑓𝑢 , 𝑓 1𝑚) +

1
2
𝑠𝑖𝑚(𝑓𝑢 , 𝑓 2𝑚), (14)

where 𝑠𝑖𝑚(𝑓𝑢 , 𝑓∗) = 1 − 𝑓𝑢 · 𝑓∗/(| |𝑓𝑢 | | · | |𝑓∗ | |). Next, we can deter-
mine scene-related anomalies based on the difference in matching
weights 𝐶𝑏 and 𝐶𝑠 between behavior and scene:

𝑆𝑚𝑚 = | |𝐶𝑏 −𝐶𝑠 | |. (15)

Taking all the above into consideration, the anomaly score for
behavior can be expressed as:

𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑚𝑜 + 𝜆𝑎𝑝𝑝𝑆𝑎𝑝𝑝 + 𝜆𝑚𝑚𝑆𝑚𝑚, (16)

where 𝜆𝑎𝑝𝑝 and 𝜆𝑚𝑚 are balancing hyperparameters. Finally, the
scores are normalized to the range of 0-1 using min-max scaling.
We employ the overlap sampling method, where the score of each
video clip in a segment is used as the frame-level score for the
intermediate frames.

4 EXPERIMENTS
4.1 Datasets
In this study, we evaluate the performance of our proposed method
on two public datasets.

ShanghaiTech Dataset [24] is one of the largest datasets for
video anomaly detection. The total number of frames used for train-
ing and testing reached 274K and 42K, respectively. It contains 13
scenes, a total of 330 test sets containing only normal event training
videos and 107 normal and abnormal events, and is annotated at the
frame and pixel levels. Some abnormal types of the dataset include:
fighting, running in inappropriate scenes, cycling, etc.

UBnormal Dataset [1] is a newly proposed supervised multi-
scene large-scale video anomaly detection dataset. The data set is
generated using virtual animated characters and objects in Cinema
4D. It contains 268 training videos and 211 test videos. The data
set has diverse scenes, diverse clothing and complex environments,
such as insufficient light at night, foggy days, fires and so on. Ab-
normal behavior, including fighting, falling, lying down, running,

Table 1: Comparison of AUC(%) Performance on Shang-
haiTech(SHT) and UBnormal(UBN) datasets. We additionally
list the input features of the approach, where 𝑓𝑟𝑔𝑏 denotes
appearance, 𝑓𝑜 denotes optical flow and 𝑓𝑠𝑘 denotes pose data.
R, P,O represent reconstruction, prediction, and other meth-
ods, respectively. (∗) indicates reproduction results. The best
result (bold), and the second-best result (underlined).

WE

Algorithm Type Feature SHT UBN
MIL [30] - 𝑓𝑟𝑔𝑏 85.3 62.1
MIST [13] - 𝑓𝑟𝑔𝑏 94.8 68.2
RTFM [34] - 𝑓𝑟𝑔𝑏 97.2 69.4
MSL [20] - 𝑓𝑟𝑔𝑏 95.5 -
LSTC [33] - 𝑓𝑟𝑔𝑏 97.8 77.5

UN

MPEDRNN [26] R 𝑓𝑟𝑔𝑏 77.1 60.6
GPEC [25] R 𝑓𝑟𝑔𝑏 76.1 53.4
TimeSformer [6] R 𝑓𝑟𝑔𝑏 - 69.8∗
DPU [39] R 𝑓𝑜 77.8 -
AED [16] R 𝑓𝑟𝑔𝑏 82.7 59.3
SSPCAB [28] R 𝑓𝑟𝑔𝑏 83.6 -
COSKAD [14] R 𝑓𝑠𝑘 75.6 65.5
HSC [32] R 𝑓𝑟𝑔𝑏 + 𝑓𝑠𝑘 83.4 -
USTNDSC [46] P 𝑓𝑟𝑔𝑏 73.8 -
AMFT [7] P 𝑓𝑟𝑔𝑏 + 𝑓𝑜 73.7 -
AMSRC [18] P 𝑓𝑟𝑔𝑏 + 𝑓𝑜 76.6 -
SSMTL++ [4] P+R 𝑓𝑟𝑔𝑏 + 𝑓𝑜 83.8 62.1
HF2-VAD [23] P+R 𝑓𝑟𝑔𝑏 + 𝑓𝑜 76.2 65.2
STG-NF [17] O 𝑓𝑠𝑘 85.9 69.7∗
JIGSAW [36] O 𝑓𝑟𝑔𝑏 84.3 56.4∗
Ours O 𝑓𝑟𝑔𝑏 + 𝑓𝑠𝑘 86.9 74.3

crossing the road and so on, is a very challenging data set. Follow-
ing the approach of [17, 33], we remove anomalous video segments
from the training set, retaining only normal video segments for
model training.

4.2 Implementation Details
All experiments are conducted using PyTorch on an NVIDIA RTX
3090. The Normalizing Flow is pre-trained using a flow number of
𝐿 = 8. For the training of RGB Encoder and Mask Encoder, the SGD
optimizer with a learning rate of 0.0001 and a momentum of 0.5 is
utilized. Behavior, Scene, and Behavior-Scene Matching Memory
each have 128, 32, and 64 memory items, respectively. The pre-
trained model F𝐵 utilized the representation layers from the only
layers in first two stages of the tiny video Swin Transformer model
trained on the Kinetics-400 dataset. In the final loss function L, the
parameter 𝛼 is set to 0.1 and 𝛽 to 0.001. In anomaly score 𝑆𝑐𝑜𝑟𝑒 ,
both 𝜆𝑎𝑝𝑝 and 𝜆𝑚𝑚 are set to 0.1. The parametric experiments can
be found in the Appendix.

4.3 Evaluation Metric
Following [17, 23, 36], we use the AUC(area under the ROC curve)
at the frame level as the evaluation metric, which measures the
relationship between true positive rate and false positive rate, used
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Table 2: The AUPRC andMax-F1(%) performance of different
types of measurement methods..

Method SHT UBN
AUPRC Max-F1 AUPRC Max-F1

ROADMAP[38] 72.4 74.5 - -
HF2-VAD[23] 71.8 79.8 - -
JIGSAW[36] 73.7 82.3 60.3 67.7
STG-NF[17] 85.9 82.2 63.1 70.1

Our 88.0 83.5 65.3 70.5

to assess the model’s performance at different thresholds. The AUC
score is calculated by connecting all frames and computing the
micro-averaged AUC score [17]. Futhermore, in real-world sce-
narios, abnormal events are generally less frequent than normal
events. We also use AUPRC(Area Under the Precision-Recall Curve)
and Max-F1 to evaluate the model’s performance. The higher the
scores of these three metrics, the better the performance of anomaly
detection.

4.4 Comparison with Other Methods
As depicted in Tab. 1We present an AUC comparison of our method
with cutting-edge video anomaly detection methods that have
been published in recent years, including both some weakly super-
vised(WE) and unsupervised(UN) learning-based approaches. By
analyzing the table, it can be observed that our method achieves
impressive AUC scores of 86.9% on the ShanghaiTech dataset(SHT)
and 74.3% on the UBnormal dataset(UBN). These scores surpass the
previous state-of-the-art unsupervised learning method by 1.16%
and 6.45%, respectively. Notably, our method also outperforms
most of the weakly supervised learning methods on the UBnormal
dataset. These results confirm the effectiveness of our proposed
Multilevel Guidance-Exploration framework for human behavior
anomaly detection tasks.

As depicted in Tab.2, we further augment our evaluation by
comparing AUPRC and max-F1 metrics across four algorithms: the
existing algorithm ROADMAP[38], currently recognized for hav-
ing the highest publicly known AUPRC performance, and three
open-source methods, including HF2-VAD[23], JIGSAW[36], and
STG-NF[17]. Our algorithm outperforms others on both datasets,
particularly excelling in the AUPRC metric, surpassing the second-
best algorithms by 2.4% and 3.2% respectively. This indicates that
our model maintains high precision at different recall rates and
minimizes false positives when capturing anomalies, further under-
scoring the effectiveness of the method.

4.5 Visualization Evaluation
The anomaly scores in two distinct scenes from the ShanghaiTech
and UBnormal datasets are visualized in Figure 5. The figure dis-
plays the results of our final method. The red area represents the
time interval in which the ground-truth anomaly occurs.

Appearance Anomaly: Figure 5 (1) depicts an anomaly where a
person is riding an electric scooter on a pedestrian path. Although
"sitting" appears to be a relatively normal posture, a high anomaly

Figure 5: Visualizing Anomaly Scores for Video Frames 01−
0053, 04−0004 from the ShanghaiTech Dataset, and 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙−
𝑠𝑐𝑒𝑛𝑒−5−2−𝑠𝑚𝑜𝑘𝑒, 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙−𝑠𝑐𝑒𝑛𝑒−11−2−𝑓 𝑜𝑔 from the UBnormal
Dataset.

score is obtained due to unexpected appearance detection. Our
method effectively detects this appearance anomaly.

Motion Anomaly and Environment Disruption: Figures 5 (2), (3)
and (4) illustrate motion anomalies, specifically fighting, lying, and
jaywalking. Particularly, the behavior of lying down is challenging
for many algorithms to detect, but our algorithm can capture these
motion anomalies. Additionally, our algorithm performs well in
smoky or foggy conditions, which emphasizes the robustness of
our approach in handling variations in environmental disruption.

4.6 Ablation Studies
We first conducted ablation experiments on modules and loss func-
tions, followed by ablation experiments on measurement methods.

Ablation Study on Components and Loss Functions: We
analyze the contribution of each component and loss function and
report the results in Table 3. From the first group of ablation ex-
periments, we find that the LSTA module significantly improves
model performance, while the BSMM module, is less impactful.
This is attributed to the dataset’s design, which is behavior and
scene-independent in UBnormal datasets. Further experiments in
Section 4.6 validate the effectiveness of the BSMMmodule. From the
second group of experiments, we observe that both proposed loss
functions are effective, with 𝐿𝑚𝑜 notably enhancing performance.
This is primarily due to the fact that anomalies in human behavior
are frequently associated with motion. The improvement in per-
formance validates the effectiveness of our guidance-exploration
pattern.

Feature Combination for Computing Anomaly Score: We
expound on our measurement methodology in Sections 1 and 3.
However, does leveraging a single network output yield superior
outcomes compared to employing measurement techniques involv-
ing two networks? To ascertain the superiority of our methods, we
experimentally compare performance disparities among various
methodologies.
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Table 3: Ablation experiments on modules and loss function.

Group LSTA BSMM 𝐿𝑚𝑜 𝐿𝑎𝑝𝑝 SHT UBN

1
✓ ✓ 84.9 69.6

✓ ✓ ✓ 86.5 73.9
✓ ✓ ✓ 85.1 69.4

2
✓ ✓ ✓ 86.1 73.9
✓ ✓ ✓ 78.3 67.2
✓ ✓ ✓ ✓ 86.9 74.3

Table 4: The AUC(%) performance of different types of mea-
surement methods. Thenotation 𝑂𝐶𝑆𝑉𝑀 (𝑓∗) refers to the
method of feeding feature 𝑓 into a one-class SVM for training
and obtaining anomaly scores. 𝑓𝐺 represents 𝑓𝑠𝑘 in 1-st and
𝑓𝑢𝑛 in 2-nd level. 𝑓𝐸 represents 𝑓𝑟𝑔𝑏 in 1-st and 𝑓𝑚 in 2-nd level
framework(As shown in Fig.2). Noted that this experiment
disregarded the impact of BMSS on the experiment.

Method 1-st level 2-nd level
SHT UBN SHT UBN

𝑂𝐶𝑆𝑉𝑀 (𝑓𝐺 ) 83.8 64.5 85.3 72.7
𝑂𝐶𝑆𝑉𝑀 (𝑓𝐸 ) 81.2 66.5 86.2 72.9
| |𝑓𝐺 + 𝑓𝐸 | | 67.7 50.7 85.9 72.6
| |𝑓𝐺 − 𝑓𝐸 | | 86.5 73.9 86.3 73.6
𝑠𝑖𝑚(𝑓𝐺 , 𝑓𝐸 ) 85.7 72.3 86.5 73.9

As illustrated in Table 4, we conduct experiments to validate
the effectiveness of our 1-st and 2-nd level guidance-exploration
pattern and anomaly measurement methods. The results indicate
that both cosine similarity and Euclidean distance, which can re-
flect distance difference, have achieved excellent outcomes, far
surpassing other measurement methods. Furthermore, to depict the
distribution of anomalies and normal samples, we take the 1st-level
Guidance Exploration as an example, and we plot histograms in
Figure 6 for both our method(| |𝑓𝑠𝑘 − 𝑓𝑟𝑔𝑏 | |) and well-performing
measurement method that only use 𝑓𝑠𝑘 generated by Normalizing
Flow(𝑂𝐶𝑆𝑉𝑀 (𝑓𝑠𝑘 )). Our approach assigns higher scores to anom-
alies, highlighting the effectiveness of our guidance-exploration
pattern.

4.7 Explore the Capability of the
Behavior-Scene Matching Memory

In existing datasets, anomalies related to scenes are relatively rare.
Similar to [32], we adapt the dataset and perform the following ex-
periments to assess the effectiveness of the Behavior-Scene Match-
ing Method.

Initially, within the UBNormal dataset, the actions of "running"
and "jumping"were deemed abnormal across all scenes.We consider
these two actions as normal in the appropriate scenes. Firstly, we
extract a subset from the UBNormal dataset, encompassing Scenes
1, 3, 4, 5, 11, 20 and 21. Subsequently, we categorize these scenes
into four types: Outdoor street scenes A, Indoor station scenes B,
Outdoor zebra crossing scenes C, and Indoor office scenes D. Fol-
lowing that, we posit that "running" and "jumping" are considered

Figure 6:Histograms of anomaly scores for abnormal andnor-
mal data. (a) Normalizing Flow, (b) OurGuidance-Exploration
Network in 1-st level.

Table 5: The AUC(%) performance of different methods. Here,
A, B, C, and D are datasets derived from different scenes.

Method [A,C,D] [B,C,D] [A,B,C,D] Origin

Jigsaw [36] 58.2 59.7 61.0 57.1
STG-NF [17] 62.1 67.3 65.8 65.9
HF2-VAD [23] 59.2 58.0 59.9 62.4

Our w/o BSMM 63.5 66.8 65.1 67.4
Our 64.1 68.2 67.1 67.2

normal within scenes A and B. Subsequently, videos containing
these behaviors and no other anomalies are moved from the test
set to the training set. Finally, as shown in Table 5, we divide the
mentioned data into three settings for both training and testing.
Concurrently, we use the data from the original nine scenes as a
control group.

As depicted in Table 5, our approach demonstrates superior
performance improvement across the three experimental sets com-
pared to the scenario where the Behavior-Scene Matching Memory
is not employed. Furthermore, our method surpasses advanced
methods with publicly accessible code, validating the effectiveness
of our Behavior-Scene Matching Memory in identifying anomalies
related to scenes.

5 CONCLUSION
We introduce a pioneering framework named theMultilevel Guidance-
Exploration Network, along with a behavior-scene matching ap-
proach, which not only improves the accuracy of detecting motion
and appearance anomalies but also identifies scene-related behav-
ioral anomalies across various scenarios, significantly expanding
its applicability. Experimental results confirm the method’s effec-
tiveness. Furthermore, to ensure swift inference speed, we keep
the parameter count of these models low. However, the model does
have certain drawbacks. It is non-end-to-end, making it relatively
complex, and the training process is somewhat cumbersome. Nev-
ertheless, the actual trainable parameter count remains modest.
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