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Abstract001

Multi-condition information retrieval (IR)002
presents a significant, yet underexplored chal-003
lenge for existing systems. This paper in-004
troduces MULTICONIR, the first benchmark005
specifically designed to evaluate retrieval006
and reranking models under nuanced multi-007
condition query scenarios across five diverse008
domains. We systematically assess model capa-009
bilities through three critical tasks: complexity010
robustness, relevance monotonicity, and query011
format sensitivity. Our extensive experiments012
on 15 models reveal a critical vulnerability:013
most retrievers and rerankers exhibit severe per-014
formance degradation as query complexity in-015
creases. Key deficiencies include widespread016
failure to maintain relevance monotonicity, and017
high sensitivity to query style and condition018
placement. The superior performance GPT-4o019
reveals the performance gap between IR sys-020
tems and advanced LLM for handling sophis-021
ticated natural language queries. Furthermore,022
this work delves into the factors contributing to023
reranker performance deterioration and exam-024
ines how condition positioning within queries025
affects similarity assessment, providing crucial026
insights for advancing IR systems towards com-027
plex search scenarios.028

1 Introduction029

Information retrieval (IR) is critical for helping030

users find relevant information across various do-031

mains. Traditionally, IR systems retrieve docu-032

ments by matching queries based on lexical similar-033

ity, such as BM25 (Carpineto and Romano, 2012;034

Ponte and Croft, 2017), or semantic similarity us-035

ing dense vector representations (Karpukhin et al.,036

2020; Zhan et al., 2021). Though highly effective037

for queries with straightforward query-document038

relationships (Su et al., 2024), they often fail to039

fully capture nuanced intent as user needs become040

more complex (Zhu et al., 2023; Su et al., 2024).041

A significant challenge arises when users spec-042

ify multiple requirements simultaneously, as illus-043

Figure 1: From single-condition to multi-condition re-
trieval. Standard and instruction-aware retrieval address single-
condition queries. SQL-based filtering is restricted to pre-
defined attributes within structured data. Real-world multi-
condition retrieval enables the formulation of multiple, often
semantic, conditions using natural language query.

trated in Fig. 1. Whether searching for a movie 044

with specific attributes or selecting a product that 045

meets various criteria, multi-condition search has 046

become an integral part of modern information- 047

seeking behavior. Traditional IR systems handle 048

such scenarios using structured filtering, such as 049

SQL-based queries that retrieve information from 050

backend databases based on predefined conditions. 051

However, this approach is inherently rigid and lim- 052

ited, as it relies on explicitly defined attributes and 053

lacks the flexibility to accommodate evolving or 054

diverse user preferences. As a result, it struggles to 055

support nuanced or semantic-level queries that go 056

beyond structured data filtering. 057

The advent of Large Language Models (LLMs) 058

has enhanced IR by introducing instruction- 059

following capabilities (Asai et al., 2023; Weller 060

et al., 2024a; Oh et al., 2024). This approach 061

augments standard queries with explicit instruc- 062

tions, which serve as additional constraints to re- 063

fine search results, as shown in Fig.1. Despite 064
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these advancements, existing evaluation bench-065

marks remain predominantly focused on single-066

condition queries and binary relevance assess-067

ments—classifying documents as either relevant068

or irrelevant (Nguyen et al., 2016; Kwiatkowski069

et al., 2019; Muennighoff et al., 2022)—thus over-070

looking the nuanced challenges of multi-condition071

queries, where relevance depends on the degree to072

which multiple conditions are satisfied.073

An ideal multi-condition retrieval system should074

exhibit the following properties: (1) Complexity075

Robustness: The system should maintain high per-076

formance regardless of query complexity (i.e., the077

number of conditions specified); (2) Relevance078

Monotonicity: The relevance scores should scale079

monotonically with the number of matched con-080

ditions; for example, a document matching all n081

conditions should be ranked higher than one match-082

ing n − 1; (3) Format Invariance: The system083

should yield consistent results regardless of the084

query format, whether presented as a structured list085

or as free-form natural language.086

Existing benchmarks do not offer a structured087

framework for evaluating multi-condition retrieval088

along these dimensions. To address this gap,089

we introduce MULTICONIR—the first bench-090

mark designed to comprehensively evaluate multi-091

condition retrieval systems. Through systematic ex-092

periments on 15 state-of-the-art models (including093

dense retrievers, cross-encoders, and LLM-based094

agents), we uncover several critical insights:095

• Multi-Condition Struggle: Retrievers and096

Rerankers struggle with multi-condition re-097

trieval, showing performance decline as query098

conditions increase, difficulty with relevance099

monotonicity, and sensitivity to query style100

variations.101

• Retrievers and Rerankers Differ: Rerankers102

excel with single-condition queries but fail un-103

der multiple conditions. Retrievers demon-104

strate greater robustness. GritLM demon-105

strates the best robustness among retrievers.106

• Position Impacts Model Focus: Dense re-107

triever pooling strategies emphasize different108

condition positions, mean pooling focuses on109

initial positions, while <EOS> pooling empha-110

sizes final positions. Rerankers exhibit non-111

uniform attention across positions and greater112

sensitivity to document length variations.113

By quantifying these gaps, our work reveals key 114

deficiencies in the ability of current IR systems 115

to understand multi-condition intent, laying the 116

groundwork for advancing IR toward human-like 117

reasoning in complex search scenarios. 118

2 Related Works 119

Retriever: From Sparse To Dense Traditional 120

sparse retrieval methods are based on BM25 121

(Robertson and Zaragoza, 2009), TF-IDF (Ramos 122

et al., 2003), etc., rely on keyword matching and 123

statistical weighting to evaluate relevance, which 124

suffers from the well-known issue of lexical gap 125

(Berger et al., 2000), restricting their ability to 126

effectively capture semantic relationships (Luan 127

et al., 2021; Nian et al., 2024). Dense retrieval 128

addresses this limitation by encoding both queries 129

and documents as embeddings within a joint latent 130

space, where the semantic relationship is captured 131

through the similarity scores between their embed- 132

dings (Li et al., 2023a). Pre-trained language mod- 133

els like BERT (Devlin et al., 2019) and T5 (Raffel 134

et al., 2020), are widely used as backbone encoders 135

for dense retrieval (Li et al., 2023b; Sturua et al., 136

2024; Xiao et al., 2023). Recent advancements 137

have shown that LLMs offer significant potential 138

as backbone encoders for dense retrieval (Wang 139

et al., 2024a; Weller et al., 2024c; BehnamGhader 140

et al., 2024). For instance, Repllama (Ma et al., 141

2023) fine-tuned Llama-2 to serve as dense re- 142

trievers. GritLM (Muennighoff et al., 2024) uni- 143

fied text embedding and generation within a single 144

LLM. LLM2Vec (BehnamGhader et al., 2024) in- 145

troduced an unsupervised approach for transform- 146

ing decoder-only LLMs into dense retrievers. 147

Benchmarks In Complex Retrieval Tasks Ex- 148

isting datasets for information retrieval, such as MS 149

MARCO (Nguyen et al., 2016), Natural Questions 150

(Kwiatkowski et al., 2019), and MTEB (Muen- 151

nighoff et al., 2022), primarily focus on queries 152

sourced from search engines. The relationships be- 153

tween queries and documents are typically simple 154

and direct (Su et al., 2024). Recent studies have ex- 155

panded retrieval benchmarks to address more com- 156

plex scenarios. Instruction-based datasets (Weller 157

et al., 2024a; Qin et al., 2024; Oh et al., 2024), for 158

instance, evaluate the instruction-following capa- 159

bilities of retrieval models by embedding explicit 160

instructions within queries to better represent users’ 161

retrieval intents. Furthermore, some works have 162

assessed retrieval models’ abilities to handle logi- 163
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cal reasoning tasks, including Boolean logic (Mai164

et al., 2024; Zhang et al., 2024c), negation (Zhang165

et al., 2024a; Weller et al., 2024b), and multi-hop166

reasoning (Su et al., 2024). These efforts mark sig-167

nificant progress in increasing query complexity.168

However, while research in the generative mod-169

eling domain has explored the ability of LLMs170

to handle multi-constraint instructions (He et al.,171

2024; Ferraz et al., 2024; Zhang et al., 2024b), stud-172

ies on retrieval models in multi-condition scenarios173

remain sparse.174

3 MULTICONIR175

We introduce MULTICONIR, a benchmark de-176

signed to evaluate the capacity of retrieval mod-177

els to process multi-condition queries. Formally,178

given a query qk composed of k conditions C =179

{c1, c2, . . . , ck} with k ∈ {1, . . . , 10}, we con-180

struct a structured retrieval setup consisting of:181

(1) Two query formulations, denoted as qinst
k182

and qdesc
k , where qinst

k corresponds to a structured183

instruction-style query, formally expressed as a tu-184

ple qinst
k = ⟨f, C⟩ where f is an explicit function185

describing retrieval constraints, and qdesc
k is a natu-186

ral language descriptive-style query, represented as187

an unstructured sequence about the same set C,188

(2) A positive document d+ that satisfies all k189

conditions, i.e., d+ |= C,190

(3) A sequence of hard negative (HN) docu-191

ments {d0, d1, . . . , dk−1}, where each dj satisfies192

exactly j out of k conditions, formally expressed193

as dj |= {c1, . . . , cj} and dj ̸|= {cj+1, . . . , ck}.194

This controlled design enables a principled eval-195

uation of multi-condition retrieval along three fun-196

damental axes: (1) Complexity Robustness: The197

model’s retrieval effectiveness as k increases, mea-198

sured by its ability to distinguish d+ from dk−1; (2)199

Relevance Monotonicity: The extent to which the200

retrieval model enforces a strict ordering such that201

S(qk, dj) > S(qk, dj+1) for all j, ensuring that202

documents satisfying more conditions are ranked203

higher; and (3) Format Invariance: The stability204

of retrieval performance under transformations of205

query representation, quantified by discrepancies206

in ranking outcomes across query formats.207

3.1 Domain Selection208

To construct the MULTICONIR dataset, we meticu-209

lously selected five domains—Books, Movies, Peo-210

ple, Medical Cases, and Legal Documents—each211

chosen for its practical significance and inherent212

suitability for evaluating multi-condition retrieval 213

capabilities. 214

Books & Movies: These domains represent 215

common consumer searches where nuanced pref- 216

erences are expressed by combining structured at- 217

tributes (e.g., genre, creator, year, cast) with narra- 218

tive elements (e.g., plot details, thematic content 219

like “a story about time travel”). Effective retrieval 220

demands semantic understanding beyond simple 221

keyword matching to process multifaceted queries, 222

such as "an action film directed by Christopher 223

Nolan, starring Leonardo DiCaprio, released after 224

2010, with an intense chase scene." 225

People: Queries about individuals frequently 226

rely on partial or vague information, such as no- 227

table achievements or specific traits. An exam- 228

ple query could be “a Nobel laureate in Physics 229

who studied black holes.” These searches demand 230

that IR systems effectively handle incomplete data 231

and infer connections between various attributes to 232

identify the correct individual. 233

Medical Case & Legal Document: The med- 234

ical case and legal document domains offer more 235

practical and application-driven use cases. In the 236

medical domain, doctors often rely on retrieval 237

systems to reference historical cases to support 238

diagnostic decisions. A typical query might in- 239

clude multiple conditions, such as “Find a case 240

that meets the following conditions: 1) middle- 241

aged female patient; 2) hospitalized for breathing 242

difficulties; 3) has a history of antibiotic allergies; 243

4) has a family history of peanut allergies.” Sim- 244

ilarly, in the legal domain, retrieval users often 245

seek case law with high similarity to ongoing cases, 246

which requires matching various legal and factual 247

attributes in historical court decisions. These com- 248

plex queries require IR systems to perform fine- 249

grained condition matching and understand the in- 250

terdependencies between various factors. 251

3.2 Dataset Construction Pipeline 252

To construct MULTICONIR, we design a multi-step 253

data generation framework. As shown in Fig. 2, 254

this pipeline is highly adaptable across multiple 255

domains, enabling the generation of queries and 256

hard negative (HN) documents that progressively 257

satisfy 1 to 10 conditions. To preserve dataset in- 258

tegrity and mitigate the generalization issues asso- 259

ciated with fully synthetic datasets (Li et al., 2023c; 260

Wang et al., 2024b), we employ LLM-based genera- 261

tion (GPT-4o) exclusively for modifying sentences 262

within hard negatives, rather than altering entire 263
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Figure 2: MULTICONIR Dataset Construction Pipeline: (1) relevant condition sentences are extracted from documents; (2)
these conditions are then used to generate multi-condition queries; (3) hard negative (HN) versions of the condition sentences are
created; and (4) positive documents and progressively challenging HN documents are assembled from these elements.

documents.1 The data creation process consists of264

the following steps, with detailed prompt templates265

provided in Appendix B:266

Step 1: Condition Sentences Extraction. For267

each source document d, we issue a structured268

prompt to GPT-4o that (1) reads the entire text,269

(2) identifies ten non-overlapping conditions that270

describe key features expressed in d, and (3) return271

ten original sentences, where every sentence is se-272

mantically complete, and expresses a distinct condi-273

tion. Documents yielding fewer than ten qualified274

sentences are discarded. The final ten sentences275

constitute the condition set C(d), which we later276

recombine into queries of varying complexity and277

use as the ground-truth positive for multi-condition278

retrieval experiments.279

Step 2: Query Generation. Given the ten-280

sentence condition set C(d), we prompt GPT-281

4o to synthesise a hierarchy of ten queries282

{q1, q2, ..., q10}. Each qk incorporating the first k283

conditions. To enhance linguistic diversity, For ev-284

ery qk we request two forms: (1) Instruction-style285

qinst
k : a bullet-like template (“Find a document that286

satisfies: (1). . . (2). . . ”) for explicit parsing. (2)287

Descriptive-style qdes
k : embedding conditions natu-288

rally within a coherent sentence.289

Step 3: Hard Negative Sentence Construc-290

1Fully LLM-generated datasets may introducing inhert
linguistic biases of the underlying LLMs, and lacks the con-
textual richness and complexity in real-world retrieval (Shu-
mailov et al., 2024). To mitigate these issues, we restricted
LLM interventions to modifying only condition sentences
rather than entire document. We further discuss this problem
in Appendix G.1.

tion. For each condition sentence ci ∈ C(d) we 291

instruct GPT-4o to produce a semantically diver- 292

gent yet fluently written variant hi that no longer 293

satisfies the original constraint. The rewrite must 294

preserve overall length and style while introduc- 295

ing either (i) a subtle alteration of a critical fact 296

(applied to books, movies, medical cases, and le- 297

gal documents) or (ii) an innocuous clause that 298

injects misleading information without changing 299

the existing keywords (used for the people cor- 300

pus). 2 The ten variants form the hard-negative set 301

HNS(d) = {h1, . . . , h10}. 302

Step 4: Hard Negative Document Genera- 303

tion. Starting from the ten-sentence condition set 304

C(d) = {c1, . . . , c10} and its hard-negative coun- 305

terparts HNS(d) = {h1, . . . , h10}, we build an or- 306

dinal ladder of document variants. The positive doc- 307

ument d+ contains the full sequence [c1, . . . , c10]. 308

For each k ∈ {1, . . . , 10} we generate a HN doc- 309

ument d−k =
[
h1, . . . , hk, ck+1, . . . , c10

]
, i.e., the 310

first k conditions are replaced by their semantically 311

perturbed versions while the remaining 10− k con- 312

ditions stay intact. This yields a controlled degrada- 313

tion chain d+→ d−1 → · · ·→ d−10, ranging from a 314

single violated constraint to a completely adversar- 315

ial variant. Coupled with the hierarchical queries 316

{Qk}10k=1, the corpus enables fine-grained evalua- 317

tion of retrieval performance under progressively 318

stricter condition sets. 319

2Retrievers are more robust when adding misleading in-
formation; Modifying critical facts is challenging for both
retrievers and rerankers. A detailed comparison of these two
strategies is given in Appendix G.2.
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Figure 3: Benchmark quality evaluation framework of MUL-
TICONIR. Query realism was assessed by human annotators.
Label accuracy involved initial GPT-4o filtering, followed by
a final human double-check.

Benchmark Quality Assurance. The reliability320

of MULTICONIR was audited on two complemen-321

tary fronts (Fig. 3). (1) Query Realism Evalua-322

tion. From each of the five domains we randomly323

sampled 100 multi-condition queries (500 in total)324

and asked ten trained annotators to judge whether325

each query was natural, precise, and contextual326

plausibility (realistic vs. unrealistic). The result-327

ing inter-annotator agreement reached 93.7%, with328

Fleiss’ κ = 0.84. (2) Document–label validity.329

To detect false positives/negatives, we first applied330

GPT-4o to the entire corpus: the model verified for331

every document variant d−k whether exactly k of332

the ten conditions were satisfied, and we discarded333

mismatched instances. We then drew another 100334

document–query pairs per domain (500 total) for335

manual spot-checking; two independent annotators336

reviewed each pair and a third adjudicated disagree-337

ments, yielding a residual error rate of 2.4%. After338

these filtering steps the final benchmark sizes for339

each domain are summarised in Table 1, and the340

full evaluation protocol is detailed in Appendix C.341

3.3 Evaluation Metrics342

Conventional IR metrics—e.g., Precision@1,343

NDCG@k—only confirm whether a highly rele-344

vant document appears early, but they cannot dis-345

tinguish how well a model orders candidates that346

satisfy different numbers of query conditions. We347

therefore propose Win Rate: the proportion of pair-348

wise comparisons in which a candidate that fulfils349

more conditions ranks above one that fulfils fewer.350

We further discuss the difference of Win Rate and351

traditional IR metrics in the Appendix D352

Complexity Robustness Queries range from353

query1 to query10, each progressively incorporat-354

ing 1 to 10 conditions. The candidate set comprises355

a Positive document that fully satisfies all condi-356

tions and a HN1 document, which is derived from357

the positive by modifying a single condition. Com-358

plexity robustness is measured using Win Rate359

(WR) 3under various k, defined as: 360

WRk =
1

N

N∑
i=1

1(S(qk, d
+) > S(qk, dk−1)), 361

where S(qi, d
+) and S(qi, d

−) denote similarity 362

scores for the positive document and hard negative. 363

Relevance Monotonicity The query is fixed as 364

query10 (containing all 10 conditions), while the 365

candidate set includes one positive and ten hard 366

negatives (d0−d9), each containing 0–9 conditions. 367

We evaluate performance using WRk,k−1 be- 368

tween adjacent hard negatives: 369

WRk,k−1 =
1

N

N∑
i=1

1
(
S(q10, dk)

> S(q10, dk−1)
)
,

370

Format invariance. We compare two query for- 371

mats: (1) Instruction-style, which explicitly lists 372

conditions (e.g., Find a movie that meets the fol- 373

lowing conditions: 1. Action genre, 2. Directed by 374

James Cameron). (2) Descriptive-style, which in- 375

tegrates conditions into a natural query (e.g., Find 376

an action movie directed by James Cameron). 377

To quantify ranking variability between query 378

styles, we define the Flip Rate (FR): 379

FR =
1

N

N∑
i=1

1
(
1(Sinst(q10, dk) > Sinst(q10, dk−1))

̸= 1(Sdesc(q10, dk) > Sdesc(q10, dk−1))
)
,

380

where Sinst and Sdesc denote similarity scores under 381

instruction-style and descriptive-style queries. The 382

indicator function returns 1 if the ranking order 383

of positive and hard negative documents changes 384

between query styles and 0 otherwise. A higher FR 385

indicates greater sensitivity to query formulation. 386

4 Experiments 387

We evaluate 15 representative retrieval and rerank- 388

ing models from diverse architectures and vary- 389

ing model sizes, including sparse retrieval model: 390

BM25 (Robertson and Zaragoza, 2009); BERT- 391

based retrieval models: gte-large-en-v1.5 (Li 392

et al., 2023b) and jina-embeddings-v3 (Stu- 393

rua et al., 2024); LLM-based retrieval mod- 394

els: NV-Embed-v2 (Lee et al., 2024), bge-en- 395

icl (Li et al., 2024), gte-Qwen2-7B-instruct (Li 396

3In Complexity Robustness evaluation, WRk and Preci-
sion@1 are numerically equivalent.
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Domain Number Avg. Length Source Example
D+ Q D− Q D

People 420 4200 4200 31.2 225.2 People Wikipedia Dat(Mahajan, 2017) Table 7
Books 482 4820 4820 25.6 235.3 Books Dataset (Rustamov, 2021) Table 8
Movies 500 5000 5000 24.8 184.6 Wikipedia Movie Plots (Robischon, 2018) Table 9
Medical Case 479 4790 4790 28.4 212.1 Medical Cases (HPE AI Solutions, 2023) Table 10
Legal Document 426 4260 4260 34.1 302.2 LexGLUE (Chalkidis et al., 2022) Table 11

Table 1: Data statistics of MutiConIR. For each dataset, we show the number of positive documents (D+ ), queries (Q) and hard
negative documents(D−), and the average length (in words) of queries and documents, and the source dataset of each domain.

et al., 2023b), gte-Qwen2-1.5B-instruct (Li397

et al., 2023b), e5-mistral-7b-instruct (Wang et al.,398

2024a), GritLM-7B (Muennighoff et al., 2024),399

LLM2Vec (BehnamGhader et al., 2024); Point-400

wise reranking models: bge-reranker-v2-m3 (Chen401

et al., 2024), bge-reranker-v2-gemma (Chen et al.,402

2024), FollowIR-7B (Weller et al., 2024a); Fine-403

tuned list-wise reranker: RankZephyr (Pradeep404

et al., 2023); Advanced LLM for zero-shot ranking:405

GPT-4o (OpenAI, 2024). Details of each model are406

provided in Appendix A.407

4.1 Results for Complexity Robustness408

Table 2 presents the average Win Rate scores409

for evaluating complexity robustness across five410

datasets. The results reveal several notable trends:411

Performance decline with more conditions As412

the number of conditions in the query increases,413

the performance of both retrieval and reranking414

models declines. This suggests that with more415

conditions, models struggle to accurately distin-416

guish between positives and HNs. Among all mod-417

els, GPT-4o maintained the highest win rate from418

Query1 to Query10, with its performance declining419

by 9.23%. GritLM-7B exhibits the lowest perfor-420

mance degradation of 6.13%.The remaining mod-421

els all exceeded 10% decline.422

Rerankers exhibit steeper performance drop423

As shown in Table 2, fine-tuned rerankers outper-424

form retrievers with single-condition queries. How-425

ever, as the number of conditions increases, their426

performance declines more sharply. Eventually,427

rerankers even fell behind some retrievers. The428

Win Rates for all rerankers declined by over 25%,429

with an average decline of 35.76%. For retriever430

models, the average decline was 14.06%.431

4.2 Results for Relevance Monotonicity432

Fig. 4 illustrates the trend of average WRk,k−1433

in the multi-condition retrieval setting of Task 2,434

which evaluates the model’s ability to distinguish 435

the relevance hierarchy among documents with 436

varying conditions. The complete results are pro- 437

vided in Table 12. Several key observations can be 438

made: 439

Relevance monotonicity struggle As documents 440

become increasingly hard (i.e., satisfying more 441

conditions in the query), it becomes harder for 442

retrieval and reranking models to accurately dis- 443

tinguish dk and dk−1, leading to a decline in Win 444

Rate performance. This failure emphasizes the 445

challenge of preserving relevance monotonicity in 446

multi-condition retrieval settings and highlights a 447

gap in current model capabilities when handling 448

complex queries. 449

Sensitive to exact match and complete mis- 450

matches We observe a slight upward trend at the 451

end of Win Rate curves for most dense retrievers, 452

likely due to their contrastive learning-based train- 453

ing. Traditional contrastive learning treats retrieval 454

as a binary task, pulling query-positive pairs closer 455

while pushing negatives further apart, without ac- 456

counting for partial matches. As a result, dense 457

retrievers perform more reliably in clear-cut “exact 458

match” or “complete mismatch” cases. 459

4.3 Results for Format Invariance 460

Table 13 presents the Flip Rate induced by query 461

format variations. GPT-4o showed the lowest flip 462

rate of 6.98%, showcasing the robustness of ad- 463

vanced LLMs against variations in query style. Ad- 464

ditionally, most models exceed 10%, indicating a 465

substantial impact of query formulation on retrieval 466

performance. 467

Dense retrieval models show relatively lower 468

sensitivity than rerankers, with Flip Rates between 469

8% to 16%. GritLM-7B (8.21%), NV-Embed-v2 470

(9.12%), and LLM2Vec (9.78%) exhibit less vari- 471

ation. In contrast, reranking models show signifi- 472

cantly higher sensitivity to query format changes, 473
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Model Query1 Query2 Query3 Query4 Query5 Query6 Query7 Query8 Query9 Query10 Decline

Sparse Retriever

BM25 28.59 34 33.14 36.53 37.38 37.95 38.08 38.41 38.86 39.87 ↓-11.28

Dense Retriever

jina-embeddings-v3 76.09 71.26 71.84 71.04 65.59 65.65 64.75 64.24 64.62 60.71 ↓15.38
gte-large-en-v1.5 75.87 77.26 73.79 70.22 70.71 67.40 67.53 64.97 65.36 61.36 ↓14.51

NV-Embed-v2 80.53 80.32 78.81 75.70 75.68 72.61 73.28 71.54 70.00 68.02 ↓12.51
bge-en-icl 83.42 80.65 78.44 76.77 74.54 73.00 74.23 73.25 69.70 68.00 ↓15.42

gte-Qwen2-7B-instruct 70.75 72.22 69.99 68.51 65.20 63.53 62.22 62.20 59.15 56.17 ↓14.58
gte-Qwen2-1.5B-instruct 73.64 74.97 72.23 71.37 69.94 67.46 66.92 64.64 63.65 58.68 ↓14.96

e5-mistral-7b-instruct 75.05 70.85 68.18 67.45 63.70 61.60 59.70 59.07 57.85 58.12 ↓16.93
GritLM-7B 82.08 80.32 78.38 76.40 76.40 73.50 75.69 74.62 74.53 75.95 ↓6.13
LLM2Vec 83.13 77.42 75.49 75.48 72.49 72.56 70.56 70.73 68.71 67.00 ↓16.13

Fine-tuned Reranker

bge-reranker-v2-m3 87.14 85.56 78.62 76.05 74.29 68.41 67.86 59.48 55.59 44.87 ↓42.27
bge-reranker-v2-gemma 91.07 90.02 86.70 84.99 83.17 79.00 75.89 72.29 67.11 56.09 ↓34.98

followIR 83.41 79.72 76.25 74.60 70.12 67.94 62.62 55.93 48.59 43.52 ↓39.89
RankZephyr 92.72 90.29 88.38 87.69 84.57 80.88 78.93 75.99 72.39 66.84 ↓25.88

Zero-shot LLM for Ranking

GPT-4o 95.49 94.89 93.71 92.11 90.81 89.08 88.43 88.08 86.82 85.26 ↓9.23

Table 2: Impact of increasing condition quantity in queries on average Win Rate (Task 1). The Decline reflects the
degree of Win Rate reduction from query1 to query10.

Figure 4: Relevance Monotonicity Distinction. Win Rate re-
flects the success rate between documents satisfying different
numbers of conditions under a multi-condition query.

with Flip Rates exceeding 20%. The highest Flip474

Rate observed is 33.81% for bge-reranker-v2-m3.475

5 Analysis476

5.1 Retrievers vs. Rankers477

Our experiments reveal notable differences be-478

tween retrievers and rerankers across the three479

tasks. Fine-tuned rerankers exhibited excel-480

lent ranking performance under single-condition481

queries, but their efficacy rapidly diminished as the482

number of conditions increased. Retrievers demon-483

strate greater robustness under multi-condition484

queries and query style variations.485

We hypothesize that one contributing factor to486

these performance disparities lies in the training487

datasets. Many dense retrieval models are trained488

on a mixture of retrieval-specific and general tex- 489

tual datasets (Lee et al., 2024; BehnamGhader et al., 490

2024; Wang et al., 2024a). Such diverse training en- 491

hances their generalization across various retrieval 492

scenarios and query styles, which, in turn, improves 493

their robustness against query complexity. 494

Beyond training data, we posit that the distinct 495

input processing mechanisms also contribute to 496

the observed performance differences. Retriever 497

models typically employ a bi-encoder architecture, 498

processing queries and documents independently. 499

Conversely, rerankers, which process a concate- 500

nation of the query and document as a single in- 501

put, appear more susceptible to input complexifi- 502

cation—whether arising from an increase in query 503

conditions or changes in query style. To validate 504

this speculation, we re-evaluated the Win Rate 505

for the relevance monotonicity task under multi- 506

condition queries using documents that padded to 507

512 and 1024 words. Results as shown in Fig.5 , re- 508

vealed that fine-tuned rerankers are highly sensitive 509

to such increases in document length, which further 510

illustrates the sensitivity of rerankers to complex 511

input. In contrast, retriever models demonstrated 512

greater robustness to length modifications. 513

5.2 Condition Position Impact on Focus 514

Our experimental findings indicate that the position 515

of a condition significantly influences the model’s 516

subsequent similarity judgment. This phenomenon 517
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(a) Retrieval Performance when padding to 512 words (b) Retrieval Performance when padding to 512 words

Figure 5: Retrieval performance when padding the document set to 512 words and 1024 words. Rerankers are highly sensitive
to increases in document length, showing rapid performance degradation, whereas retrievers remain comparatively robust.

(a) Mean pooling (b) <EOS> pooling (c) Latent attention layer pooling

Figure 6: Impact of condition position on different pooling methods. The condition is placed at different positions (1–10) in the
query, with other positions filled by ten “[unused0]” tokens (example from Table 8). The dashed line represents the original data,
while the solid line shows the Gaussian-smoothed trend (kernel size = 1) for clarity.

was observed consistently across both retriever and518

reranker models.519

To illustrate position effects in retriever mod-520

els, we conducted a targeted study on how relo-521

cating a single condition within the query influ-522

ences its similarity score. We selected represen-523

tative retriever models employing distinct pooling524

strategies: mean pooling, <EOS> pooling, and la-525

tent layer pooling. The results, as depicted in Fig.6,526

revealed that models utilizing mean pooling tend527

to weight the early tokens most heavily: similarity528

drops steadily as the condition is shifted toward the529

tail of the query. <EOS> shows the opposite bias,530

emphasising the final tokens. Latent layer pooling531

heightened focus on both the beginning and end532

of the query, with comparatively less focus on the533

middle.534

Similarly, for reranker models, we selected a535

cross-encoder model (bge-reranker-m3) to visu-536

alize the attention heatmap. Fig.7 in Appendix537

F.4 shows a non-uniform distribution of attention538

across different token positions. This implies that539

these rerankers tend to assign differential focus to540

specific conditions or tokens within the concate-541

nated query-document input, rather than distribut-542

ing their attention uniformly across all elements.543

6 Conclusion 544

In this work, we introduced MULTICONIR, a novel 545

benchmark designed to rigorously evaluate infor- 546

mation retrieval models in realistic multi-condition 547

scenarios, a critical area where existing evaluation 548

frameworks are lacking. Through three specifi- 549

cally designed tasks—complexity robustness, rel- 550

evance monotonicity, and query format sensitiv- 551

ity—conducted across five diverse domains. Exper- 552

iments revealed that existing models struggle with 553

multi-condition retrieval, with their performance 554

degrading as the number of conditions increases; 555

rerankers excel for single-condition queries but fail 556

in multi-condition scenarios. Notably, rerankers 557

are more sensitive to complex inputs. GPT-4o out- 558

performs specialised IR systems, exposing a perfor- 559

mance gap in handling complex information needs. 560

Our findings highlight an urgent need for 561

new modeling approaches and training paradigms 562

specifically tailored for robust multi-condition un- 563

derstanding. MULTICONIR serves as a valuable 564

resource to drive this research, benchmark progress, 565

and ultimately propel information retrieval systems 566

towards a more sophisticated, human-like compre- 567

hension of complex information needs. 568
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Limitations569

While MULTICONIR provides a novel benchmark570

for evaluating retrieval models in multi-condition571

scenarios, several limitations should be acknowl-572

edged. First, our dataset relies on automated query573

generation and hard negative creation, which may574

introduce biases in condition representation despite575

efforts to ensure accuracy. These biases could af-576

fect retrieval models’ ability to distinguish fine-577

grained differences. Second, our evaluation focuses578

on retrieval tasks and does not cover reasoning-579

based retrieval or interactive search scenarios. Real-580

world systems often incorporate reranking, user581

feedback, and hybrid retrieval, which are not ex-582

plicitly modeled. Lastly, our dataset does not fully583

consider query reformulation strategies or multi-584

turn retrieval, limiting its applicability to dynamic585

search environments. These limitations highlight586

the need for further research into multi-condition587

retrieval, particularly in addressing dataset biases,588

expanding evaluation scopes, and integrating re-589

trieval with realistic user interactions.590

Ethics Statement591

This study adheres to ethical standards in AI re-592

search, ensuring transparency and reproducibility593

in dataset construction and model evaluation while594

exclusively using publicly available pre-trained595

models for experiments. Dataset Considerations:596

MULTICONIR is built from publicly available597

sources and does not contain sensitive or person-598

ally identifiable information. Given its inclusion599

of medical and legal documents, we apply strict600

data filtering and safety measures to respect model601

safety constraints and prevent the generation of602

harmful or misleading content. Additionally, we603

recognize that automatically generated queries and604

hard negatives may introduce biases. Therefore,605

during dataset construction, we take measures to606

minimize the impact of inherent language model607

biases on retrieval tasks. MultiConIR aims to ad-608

vance multi-condition retrieval research while en-609

suring data fairness and ethical compliance. We610

encourage future research to further explore bias611

detection strategies in retrieval dataset, enhancing612

model fairness and reliability in diverse corpus en-613

vironments.614
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A Details of Models841

For each model used in this paper, Table 3 provides details on model size, architecture, maximum input842

context length, and whether instructions is included. The GPT-4o model utilized for dataset generation843

and ranking in this work was the "2024-07-01-preview" version.844

Model Size Architecture Instruction Max length Pooling Method

Sparse Retriever

BM25 (Robertson and Zaragoza, 2009) N/A Sparse No N/A N/A

Dense Retriever

jina-embeddings-v3 (Sturua et al., 2024) 572M Encoder No 4K Mean
gte-large-en-v1.5 (Li et al., 2023b) 434M Encoder No 8K <GLS>
NV-Embed-v2 (Lee et al., 2024) 7.8B Decoder Yes 32K Latent Attention Layer

bge-en-icl (Li et al., 2024) 7.1B Decoder Yes 32K <EOS>
gte-Qwen2-7B-instruct (Li et al., 2023b) 7.6B Decoder Yes 131K <EOS>

gte-Qwen2-1.5B-instruct (Li et al., 2023b) 1.5B Decoder Yes 131K <EOS>
e5-mistral-7b-instruct (Wang et al., 2024a) 7.1B Decoder Yes 32K <EOS>

GritLM-7B (Muennighoff et al., 2024) 7.2B Decoder Yes 4K Mean
LLM2Vec (BehnamGhader et al., 2024) 7.5B Decoder Yes 8K Mean

Fine-tuned Reranker

bge-reranker-v2-m3 (Chen et al., 2024) 568M Cross-Encoder No 8k N/A
bge-reranker-v2-gemma (Chen et al., 2024) 2.5B Decoder Yes 8K N/A

followIR (Weller et al., 2024a) 7.2B Decoder Yes 4K N/A
RankZephyr (Pradeep et al., 2023) 7B Decoder Yes 32K N/A

Zero-shot LLM for Ranking

GPT-4o (OpenAI, 2024) N/A Decoder Yes 128K N/A

Table 3: Details of models used in experiments. We list the number of parameters of each model except the
sparse model (BM25). Regarding the model architecture, we distinguish between sparse models, dense models,
and rerankers. Dense models are further classified as Encoders or Decoders. Rerankers are categorized into Cross
Encoders and Decoders (LLM-based generative relevance scoring). The Instruction column indicates whether
instructions are included in the retrieval process. Max length denotes the maximum input length used for each
model in the experiments. The Pooling Method represents the approach used by the model to obtain embeddings.

For Dense Retrieval models that require instructions (NV-Embed-v2, bge-en-icl, gte-Qwen2-7B-instruct,845

gte-Qwen2-1.5B-instruct, e5-mistral-7b-instruct, GritLM-7B, and LLM2Vec), we use the following846

instruction:847

“Given a domain retrieval query, retrieve documents that meet the specified conditions.”848

For LLM-based rerankers (bge-reranker-v2-gemma and followIR), we adopt the model’s default prompt.849

For example, bge-reranker-v2-gemma uses the following prompt:850

“Given a query A and a passage B, determine whether the passage contains an answer to the query by851

providing a prediction of either ‘Yes’ or ‘No’.”852

For models that do not require instructions, we directly input the query and document, such as jina-853

embeddings-v3, gte-large-en-v1.5, and bge-reranker-v2-m3.854

B Prompt Templates For Constructing MULTICONIR DATASET855

Table 4, 5, and 6 present the prompts used in Steps 1 to 3 for constructing our MULTICONIR dataset.856

For placeholders, {domain} ∈ {People, Books, Movies, Medical Case, Legal Document}. {do-857

main_features} specifies key attributes within a particular domain. In the medical case domain, {do-858

main_features} ∈ { patient symptoms, clinical diagnosis, drug allergies, family medical history, surgical859

details, postoperative outcomes, hospitalization duration, recovery status.} In the legal document domain,860

{domain_features} ∈ { case type, involved parties, court ruling, legal provisions, evidence summary,861

defense strategy. } In the movies domain, {domain_features} ∈ { summary, lead actors, release date,862

release area, genre, detailed plots. } In the books domain, {domain_features} ∈ { author, publication863
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year, genre, main content, detailed plots. } In the people domain, {domain_features} ∈ { profession, 864

nationality, notable achievements, social impact, related events. }

Task Prompt
Step 1: Condi-
tion Sentence Ex-
traction

I will provide you a document of {domain}, you should extract ten detailed
sentences that represent the key conditions the document satisfies.

Please adhere to the following guidelines:
- Extract fine-grained condition-related sentences relevant to {domain}, such as
{domain_features}.
- Do not paraphrase; use the original sentences from the document.
- Ensure each sentence is semantically intact and not conflict with the context.
- Format the output as an array, e.g., [“sentence1”, “sentence2”, ..., “sen-
tence10”].

Here is the document: {domain_document}.
Return array only.

Table 4: Prompt for GPT-4o to extract condition sentence (Step 1).

865

C Benchmark Quality Evaluation 866

To guarantee the reliability of MULTICONIR, we applied a two–stage audit that examines both query 867

realism and document–label validity. Figure 3 gives a visual outline; full numbers appear in Table 1. 868

Query realism. From each of the five domains (People, Books, Movies, Medical, Legal) we randomly 869

sampled 100 multi-condition queries, yielding a 500-item evaluation set. Ten trained graduate annotators 870

independently rated every query for linguistic naturalness, precision of constraints, and contextual 871

plausibility (realistic vs. unrealistic). Inter-annotator agreement reached 93.7% with Fleiss’ κ = 0.84, 872

indicating near-perfect consensus that the automatically generated queries resemble genuine information 873

needs. 874

Document–label validity. 875

1. LLM filtering. We applied GPT-4o to the entire corpus. For every positive document d+ the model 876

verified that all ten conditions in C(d) were satisfied; for each hard-negative document d−k it checked 877

that exactly k−1 conditions held. Instances failing these criteria (false positives or false negatives) 878

were discarded, reducing domain sizes to: People (420), Books (482), Movies (500), Medical (479), 879

Legal (426). 880

2. Human spot-check. To confirm the LLM filter, we randomly drew another 100 document–query 881

pairs per domain (500 in total). Two independent annotators judged whether the labelled number of 882

satisfied conditions was correct; disagreements were resolved by a third adjudicator. The residual 883

error rate was 2.4%, implying that the automatic filter removed the vast majority of mis-labelled 884

items. 885

D Discussion: Win Rate vs. Traditional IR Metrics 886

Why introduce Win Rate? MULTICONIR poses multi-condition queries for which models must sense 887

fine-grained semantic differences. We focus on two abilities: (i) discriminating the positive document 888

from a hard negative as the number of query conditions grows (Task 1); (ii) preserving a monotonic 889

ordering in which a document satisfying k conditions outranks one satisfying k−1 under the same query 890

(Task 2). 891
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Task Prompt
Step 2: Query
Generation
(Instruction-style)

I will provide you {num} condition-related sentences; formulate a retrieval
query for me.

Here are a few examples for reference:
- {Instruction-style example 1}
- {Instruction-style example 2}

Please adhere to the following guidelines:
- Each sentence represents a condition; with {num} sentences, the number of
conditions is {num}.
- The query should be instruction-style, explicitly listing all conditions. - Each
condition should be around 10 words.
- Make conditions concise, summarizing each sentence.
- You can paraphrase and modify keywords while maintaining meaning.

Here are the sentences: {info}.
Return one query only. Do not include extra information.

Step 2: Query
Generation
(Descriptive-style)

I will provide you {num} condition-related sentences; formulate a retrieval
query for me.

Here are a few examples for reference:
- {Descriptive-style example 1}
- {Descriptive-style example 2}

Please adhere to the following guidelines:
- Each sentence represents a condition; with {num} sentences, the number of
conditions is {num}.
- The query should be descriptive-style, integrating and describing all conditions
in natural language.
- Each condition should be around 10 words.
- Make conditions concise, summarizing each sentence.
- You can paraphrase and modify keywords while maintaining meaning.

Here are the sentences: {info}.
Return one query only. Do not include extra information.

Table 5: Prompt for GPT-4o to generate queries with varying conditions (Step 2).

Limitations of conventional metrics.892

• Precision@1 coincides with Win Rate in Task 1 (one positive vs. one HN) but, in Task 2, observes893

only the top result and ignores the intended hierarchy d+ ≻ HN1 ≻ · · · ≻ HN10.894

• NDCG@k introduces graded relevance but still weights absolute rank more than pairwise consistency,895

thus blurring step-wise violations of the monotonic order.896

• Recall proved even less informative in early pilot runs dominated by easy negatives: high recall was897

achievable without respecting the semantic precision that MULTICONIR is designed to test.898

How Win Rate fills the gap. Win Rate computes the proportion of pairwise comparisons in which a899

document that fulfils more conditions is ranked above one that fulfils fewer. Hence, it matches Precision@1900

in the degenerate Task 1 case, yet remains sensitive to every local inversion in the graded Task 2 ladder,901

offering a sharper lens on a model’s ability to capture incremental semantic constraints.902
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Task Prompt
Step 3: Hard
Negative Sentence
Making (For
Books, Movies,
Medical Case, and
Legal Document
Datasets)

I will provide you one query and one sentence, generate a modified sentence
for me.

Here are a few examples for reference:
Query: - {query}
Sentence: - {condition sentence}
Modified: - {hard negative sentence}

Please adhere to the following guidelines:
- Modify the sentence so that its meaning no longer aligns with the query.
- Keep key terms unchanged.
- Ensure the new sentence is semantically different from the original.

Here is the query: {query}.
Here is the Sentence: {information}.
Return only the modified sentence.

Step 3: Hard
Negative Sentence
Making (For
People Dataset)

I will provide you one query and one sentence, generate a modified sentence
for me.

Here are a few examples for reference:
Query: - Who is the American artist that went to RISD?
Sentence: - He went to RISD for graduate school.
Modified: - He went to ACCA for graduate school, but his sister went to RISD.

Please adhere to the following guidelines:
- Modify the sentence so that its meaning no longer aligns with the query.
- Keep key terms unchanged, but introduce dummy information to mislead the
retrieval model. For example, if the original sentence states, “He went to RISD
for graduate school,” you can modify it to, “He went to ACCA for graduate
school, but his sister went to RISD,” where the key term (RISD) remains but is
assigned to an irrelevant entity (his sister).
- Ensure the new sentence is semantically different from the original by using
different wording and synonymous substitution.
- The changed sentence should prevent the query from retrieving it as relevant
information.

Here is the query: {query}.
Here is the sentence: {information}.
Return only the modified sentence.

Table 6: Prompt for GPT-4o to modify the condition sentence to hard negative sentence (Step 3).

E Examples Of The MULTICONIR Dataset 903

Tables 8, 9, 7, 10, and 11 illustrate examples from their respective domains. 904

F Complete Results 905

F.1 Complete Results Of Task 2 906

Table 12 presents the experimental results of Task 2, where Win Rate reflects the success rate between 907

documents that satisfy different numbers of conditions under a multi-condition query (query10, which 908
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Query 3 Positive HN 1
Find a notable individual who
meets these criteria:

1. Studies plasma mela-
tonin to assess biological
rhythm disorders.

2. Identified 25-hour circa-
dian rhythms in totally
blind individuals.

3. Worked at NIMH in
Bethesda, Maryland
before 1981.

Relying on a very precise as-
say for plasma melatonin, a hor-
mone that has a clearly defined
24-hour pattern of secretion, bio-
logical rhythm disorders can be
assessed and their treatment can
be monitored. Totally blind in-
dividuals have 25-hour circadian
rhythms, drifting an hour later
each day unless they take a mela-
tonin capsule at a certain time
every day. Prior to moving to
Oregon in 1981, Lewy was at
the National Institute of Men-
tal Health (NIMH) in Bethesda,
Maryland, working with senior
colleague Thomas Wehr. In
Oregon, he has worked closely
with Robert L. Sack. He de-
scribes his research as follows:
’My laboratory studies chrono-
biologic sleep and mood disor-
ders.’ Alfred J. Lewy, aka Sandy
Lewy, graduated from Univer-
sity of Chicago in 1973 after
studying psychiatry, pharmacol-
ogy, and ophthalmology. As of
December 2005, he had 94 pub-
lications available on PubMed.
He is a full professor and vice-
chair of the Department of Psy-
chiatry at OHSU (Oregon Health
Science University) and holds an
MD and PhD. Current research
is focused on developing bright
light exposure and melatonin ad-
ministration as treatment modal-
ities for these disorders. These
disorders include winter depres-
sion, jet lag, maladaptation to
shift work, and certain types of
sleep disturbances.

Relying on a very precise as-
say for plasma melatonin, a hor-
mone that has a clearly defined
24-hour pattern of secretion, bio-
logical rhythm disorders can be
assessed and their treatment can
be monitored. Totally blind in-
dividuals have 25-hour circadian
rhythms, drifting an hour later
each day unless they take a mela-
tonin capsule at a certain time ev-
ery day. After to moving to Ore-
gon in 1981, Lewy was at the Na-
tional Institute of Mental Health
(NIMH) in Bethesda, Maryland,
working with senior colleague
Thomas Wehr. In Oregon, he
has worked closely with Robert
L. Sack. He describes his re-
search as follows: ’My labora-
tory studies chronobiologic sleep
and mood disorders.’ Alfred J.
Lewy, aka Sandy Lewy, gradu-
ated from University of Chicago
in 1973 after studying psychiatry,
pharmacology, and ophthalmol-
ogy. As of December 2005, he
had 94 publications available on
PubMed. He is a full professor
and vice-chair of the Department
of Psychiatry at OHSU (Oregon
Health Science University) and
holds an MD and PhD. Current
research is focused on develop-
ing bright light exposure and
melatonin administration as treat-
ment modalities for these disor-
ders. These disorders include
winter depression, jet lag, mal-
adaptation to shift work, and cer-
tain types of sleep disturbances.

Table 7: An example in domain of People

contains ten conditions), i.e., dk vs. dk−1.909

F.2 Complete Results Of Task3910

Table 13 presents the complete results of Format Invariance.911
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Query 5 Positive HN 1
Find a notable individual who
meets these criteria:

1. Details Bernie Madoff’s
$65B Ponzi collapse.

2. Covers the impact on na-
tional media.

3. Investigates Madoff’s
history of fraud.

4. Offers deep insight into
Madoff’s family.

5. Contains exclusive
news and material.

The collapse of Bernie Madoff’s
Ponzi scheme led to the instant
evaporation of $65 billion of
wealth. The effects of Mad-
off’s brazen fraud were felt most
closely in New York and Palm
Beach but the story was, and con-
tinues to be, front page news
across the country. Brian Ross
and his team of investigators shed
an unyielding light onto Mad-
off’s scheme–how he got started,
how he succeed for so long, who
helped him, and who shielded
him from early investigations.
This is an incisive and voyeuris-
tic look into this first family of
financial crime. The Madoff
Chronicles includes a vast ar-
ray of news and material that
readers won’t find anywhere
else. Contains a reproduction
of Bernie’s Little Black Book.
Ross has also secured Madoff’s
calendar for the past three years
and other never-before-seen doc-
uments from inside the Madoff
empire, straight from his desk.
Read key details of how Madoff
carried out his scam and the rev-
elation that he began the fraud
from almost the first day, in the
1960s. Extensive cooperation
by Madoff’s personal assistant,
Eleanor Squillari. Contains in-
criminating connections between
Madoff and certain members of
the SEC.

The collapse of Bernie Madoff’s
Ponzi scheme led to the instant
evaporation of $65 billion of
wealth. The effects of Mad-
off’s brazen fraud were felt most
closely in New York and Palm
Beach but the story was, and con-
tinues to be, front page news
across the country. Brian Ross
and his team of investigators shed
an unyielding light onto Mad-
off’s scheme–how he got started,
how he succeed for so long, who
helped him, and who shielded
him from early investigations.
This is an incisive and voyeuris-
tic look into this first family of
financial crime. The Madoff
Chronicles includes a vast array
of news and material. Contains
a reproduction of Bernie’s Little
Black Book. Ross has also se-
cured Madoff’s calendar for the
past three years and other never-
before-seen documents from in-
side the Madoff empire, straight
from his desk. Read key details
of how Madoff carried out his
scam and the revelation that he
began the fraud from almost the
first day, in the 1960s. Exten-
sive cooperation by Madoff’s per-
sonal assistant, Eleanor Squillari.
Contains incriminating connec-
tions between Madoff and certain
members of the SEC.

Table 8: An example in domain of Book

F.3 Complete Results Of Document Length 912

Table 14 and Table 15 present the effect of document length on retrieval performance, with documents 913

padded to 512 and 1024 words, respectively. We use repeated filler text, such as “The grass is green. 914

The sky is blue. The sun is yellow. Here we go. There and back again.”, following the setting in Wang 915

et al. (2023). The filler text is inserted between the original document sentences until the total text length 916

reaches 512 or 1024 words. 917
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Query 8 Positive HN 1
Find a movie that matches all
conditions:

1. Originated from Ameri-
can.

2. Plot: Mrs. Lowe and
Black were lovers.

3. Plot: Terry carelessly
spends money.

4. Plot: Terry promoted to
ship foreman.

5. Cast: Mary Miles
Minter, Allan Forrest.

6. Plot: Julia Deep works
behind exchange desk.

7. Director: Lloyd Ingra-
ham.

8. Plot: Terry’s spending
takes a toll.

Origin/Ethnicity: American
Meanwhile, it is revealed Mrs.
Lowe and Black were once
lovers. He is spending his
money carelessly and doesn’t
put any time in paying the bills,
much to the dislike of the depart-
ment store owner Timothy Black.
Soon, Terry is promoted to a fore-
man on a ship.
Cast: Mary Miles Minter, Al-
lan Forrest Julia Deep is a young
woman working behind the ex-
change desk at a department
store.
Director: Lloyd Ingraham
After a while, Terry’s money
spending takes its toll. Lottie
gets distracted and does not no-
tice Terry and Julia at the park.
Release Year: 1918

Origin/Ethnicity: American
Meanwhile, it is revealed Mrs.
Lowe and Black were once
lovers. He is spending his
money carelessly and doesn’t
put any time in paying the bills,
much to the dislike of the depart-
ment store owner Timothy Black.
Soon, Terry is promoted to a fore-
man on a ship.
Cast: Mary Miles Minter, Al-
lan Forrest Julia Deep is a young
woman working behind the ex-
change desk at a department
store.
Director: Lloyd Ingraham
Eventually, Terry’s frugality
leads to financial growth. Lot-
tie gets distracted and does not
notice Terry and Julia at the park.
Release Year: 1918

Table 9: An example in domain of Movie

F.4 Attention heatmap of cross-encoder model918

Figure 7 shows the attention-score heat map produced by the cross-encoder reranker (bge-reranker-m3)919

for the input query–document pair. As we progressively add conditions to the query and compute the920

attention distribution between each condition and its corresponding segment in the document, we observe921

that the cross-encoder allocates attention unevenly across positions. Fig.7922

G Findings In Constructing MULTICONIR Dataset923

G.1 The Use Of LLM-generated Data in Retrieval924

In recent years, artificial datasets generated by LLMs have become a common practice for training925

and evaluating retrieval models (Su et al., 2024; Lee et al., 2024; Weller et al., 2024a). For instance,926

E5-Mistral (Wang et al., 2024a) rely entirely on LLM-generated datasets for fine-tuning. While this927

approach can significantly expand training corpora, prior studies have highlighted its potential drawbacks,928

including introducing inherit linguistic biases of the underlying LLMs (Shumailov et al., 2024), potentially929

constraining the retrieval model’s performance and generalizability. Furthermore, purely artificial data930

often lacks the contextual richness and complexity found in real-world retrieval scenarios (Li et al., 2023c;931

Wang et al., 2024b), making it difficult to capture the actual needs of users’ queries accurately.932

During our dataset construction, we observed similar issues. When using LLM-generated transforma-933

tions to modify positive documents into hard negatives, the model often restructured expressions to fit934

its learned patterns, even when explicitly instructed to modify only a few condition-related words while935

keeping the rest unchanged. For example, in the legal documents dataset, a positive sentence like: “The936

defendant was convicted of fraud under Section 420 of the Penal Code and sentenced to five years in937

prison.” was frequently modified by the LLM into a generic pattern, such as: “The defendant was found938

guilty of fraud and received a prison sentence.”939

Similarly, in medical case documents, a sentence like: “The patient reported experiencing persistent940
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Query 7 Positive HN 1
Find a case where the patient:

1. Underwent ascending
aortic arch angiogram.

2. Had left common carotid
artery angiogram.

3. Received right com-
mon carotid artery
angiogram.

4. Undergone left subcla-
vian artery angiogram.

5. Had right iliac an-
giogram with runoff.

6. Performed bilateral cere-
bral angiograms.

7. Experienced TIA and
moderate carotid steno-
sis.

PROCEDURE PERFORMED:
1. Selective ascending aortic arch
angiogram. 2. Selective left com-
mon carotid artery angiogram. 3.
Selective right common carotid
artery angiogram. 4. Selective
left subclavian artery angiogram.
5. Right iliac angio with runoff.
6. Bilateral cerebral angiograms
were performed as well via right
and left common carotid artery
injections.
INDICATIONS FOR PROCE-
DURE: TIA, aortic stenosis,
postoperative procedure. Mod-
erate carotid artery stenosis.
ESTIMATED BLOOD LOSS:
400 ml.
After obtaining informed con-
sent, the patient was brought to
the cardiac catheterization suite
in postabsorptive and nonsedated
state. Using modified Seldinger
technique, a 6-French sheath was
placed into the right common
femoral artery and vein without
complication.

PROCEDURE PERFORMED:
1. Selective ascending aortic arch
angiogram. 2. Selective left com-
mon carotid artery angiogram. 3.
Selective right common carotid
artery angiogram. 4. Selective
left subclavian artery angiogram.
5. Right iliac angio with runoff.
6. Bilateral cerebral angiograms
were performed as well via right
and left common carotid artery
injections.
INDICATIONS FOR PROCE-
DURE: TIA, aortic stenosis, post-
operative procedure. Severe
carotid artery stenosis.
ESTIMATED BLOOD LOSS:
400 ml.
After obtaining informed con-
sent, the patient was brought to
the cardiac catheterization suite
in postabsorptive and nonsedated
state. A 6-French sheath was
used in the left femoral artery
and vein with minor complica-
tions, employing the modified
Seldinger technique.

Table 10: An example in domain of Medical Case

chest pain and shortness of breath, leading to a diagnosis of angina.” was often transformed into a 941

standardized version: “The patient was diagnosed with a heart condition after reporting chest pain.” 942

These modifications eroded the diversity and long-tail characteristics of real-world data, reducing the 943

fine-grained variability necessary for retrieval tasks. Instead of preserving rich domain-specific details, 944

LLM-generated transformations tended to normalize distinct cases into overly generic patterns, which 945

could misrepresent real-world retrieval challenges. 946

Empirical results further confirm the limitations of fully LLM-generated training data. The E5-Mistral 947

model, which relies entirely on synthetic data, performs the worst on MULTICONIR. In Task 1, as shown 948

in Table 2, it exhibits the highest performance decline (16.93%) among retrieval models, and in Task 2, 949

as shown in Table 12, its average win rate (60.36%) is the lowest among retrieval models, trailing the 950

second-worst model (Jina-Embeddings-V2) by 5%. These results reinforce the generalization challenges 951

posed by fully synthetic datasets in retrieval tasks, highlighting the importance of incorporating real-world 952

document structures and constraints in training data. 953

To mitigate this, our pipeline minimizes document-wide modifications, instead restricting LLM inter- 954

ventions to condition sentences only. This targeted approach preserves real-world data authenticity while 955

introducing controlled semantic perturbations, ensuring that retrieval models are trained on meaningful 956

and realistic hard negatives rather than fully synthetic documents. 957
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Figure 7: Attention heatmap of cross-encoder model (bge-reranker-m3).

G.2 Impact of Different Hard Negative Construction Strategies958

To systematically examine the impact of hard negative sentence (HNS) construction on retrieval models,959

we experimented with two distinct approaches: (1) Key Information Modification – altering critical960

details while maintaining overall sentence structure (applied to books, movies, medical cases, and legal961

documents). (2) Keyword Retention with Dummy Information – keeping all original keywords intact962

while injecting irrelevant dummy information (used for the people dataset).963

A key objective of this study was to investigate how different HNS construction strategies affect retrieval964

difficulty. Our initial hypothesis was that the second approach (retaining keywords but adding dummy965

information) would pose a greater challenge for retrieval models, particularly Dense Retrievers, since hard966

negatives in this setting contain all the key terms present in positive documents.967

However, our experimental results contradicted this expectation. As shown in Fig.8 on the people968

dataset, Dense Retrieval models remained highly stable, demonstrating a strong ability to differentiate969

semantic nuances even when all keywords were retained. This suggests that Dense Retrieval primarily970

relies on contextual embeddings rather than simple keyword matching, allowing it to distinguish between971

truly relevant documents and distractors with superficial lexical overlap.972

In contrast, Reranker models exhibited a significant performance drop when dealing with dummy-973

information-based HNS. This suggests that Rerankers are more sensitive to this type of negative con-974

struction, likely due to their cross-encoder or generative architectures, which process both the query and975

document jointly. Since Rerankers typically assign scores based on fine-grained textual relevance, the976

presence of keyword overlap without genuine semantic alignment may mislead them more than Dense977

Retrieval models.978

These findings highlight important considerations for hard negative sampling in multi-condition retrieval.979

While Dense Retrievers appear robust to surface-level keyword retention, Rerankers are more vulnerable980

to semantically misleading negatives, suggesting that future retrieval pipelines should adapt negative981

sampling strategies based on the target retrieval model architecture.982
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(a) Task1 on Peole dataset (b) Task1 on Legal dataset

Figure 8: Impact of different HNS construction strategies.
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Query 10 Positive HN 1
Find a case where:
1. Michigan Leg-
islature enacted a
statute in 1987.
2. Petitioners chal-
lenged the statute
under Contract
Clause and Due
Process Clause.
3. The statute
affected workers
injured before
March 31, 1982.
4. Petitioners
argued a 1981 law
allowed reduction
of workers’ com-
pensation benefits.
5. The Michigan
Supreme Court ac-
cepted petitioners’
interpretation in
1985.
6. Legislature
introduced a bill to
overturn the court’s
decision.
7. House Bill 5084
was introduced in
October 1985.
8. The bill became
law on May 14,
1987.
9. Petitioners were
ordered to refund
nearly $25 million.
10. Michigan
Supreme Court
upheld the statute
for lacking vested
rights and rational
purpose.

In 1987, the Michigan Legislature en-
acted a statute that had the effect of re-
quiring petitioners General Motors Cor-
poration (GM) and Ford Motor Com-
pany (Ford) to repay workers’ com-
pensation benefits GM and Ford had
withheld in reliance on a 1981 work-
ers’ compensation statute. Petitioners
challenge the provision of the statute
mandating these retroactive payments
on the ground that it violates the Con-
tract Clause and the Due Process Clause
of the Federal Constitution. The benefit
coordination provision did not specify
whether it was to be applied to workers
injured before its effective date, March
31, 1982. Petitioners took the posi-
tion that the 1981 law allowed them
to reduce workers’ compensation ben-
efits to workers injured before March
31, 1982, who were receiving benefits
from other sources. In 1985, petition-
ers’ interpretation was accepted by the
Michigan Supreme Court. Chambers
v. General Motors Corp., decided to-
gether with Franks v. White Pine Cop-
per Div., Copper Range Co., 422 Mich.
636, 375 N.W.2d 715. The Michigan
Legislature responded almost immedi-
ately by introducing legislation to over-
turn the court’s decision. On October
16, 1985, before the Michigan Supreme
Court had ruled on the motion for re-
hearing in Chambers, House Bill 5084
was introduced. The amended Sen-
ate bill passed into law on May 14,
1987. 1987 Mich.Pub.Acts No. 28.
As a result of the 1987 statute, peti-
tioners were ordered to refund nearly
$25 million to disabled employees. The
Michigan Supreme Court upheld the
statute against these challenges, on
the ground that the employers had
no vested rights in coordination for
Contract Clause purposes, and that
the retroactive provisions furthered a
rational legislative purpose. 436 Mich.
515, 462 N.W.2d 555 (1990).

In 1987, the Michigan Legislature en-
acted a statute that had the effect of re-
quiring petitioners General Motors Cor-
poration (GM) and Ford Motor Com-
pany (Ford) to repay workers’ com-
pensation benefits GM and Ford had
withheld in reliance on a 1981 work-
ers’ compensation statute. Petitioners
challenge the provision of the statute
mandating these retroactive payments
on the ground that it violates the Con-
tract Clause and the Due Process Clause
of the Federal Constitution. The benefit
coordination provision did not specify
whether it was to be applied to workers
injured before its effective date, March
31, 1982. Petitioners took the posi-
tion that the 1981 law allowed them
to reduce workers’ compensation ben-
efits to workers injured before March
31, 1982, who were receiving benefits
from other sources. In 1985, petition-
ers’ interpretation was accepted by the
Michigan Supreme Court. Chambers
v. General Motors Corp., decided to-
gether with Franks v. White Pine Cop-
per Div., Copper Range Co., 422 Mich.
636, 375 N.W.2d 715. The Michigan
Legislature responded almost immedi-
ately by introducing legislation to over-
turn the court’s decision. On October
16, 1985, before the Michigan Supreme
Court had ruled on the motion for re-
hearing in Chambers, House Bill 5084
was introduced. The amended Senate
bill passed into law on May 14, 1987.
1987 Mich.Pub.Acts No. 28. As a re-
sult of the 1987 statute, petitioners were
ordered to refund nearly $25 million
to disabled employees. The Michigan
Supreme Court found the statute in-
valid on the grounds that the retroac-
tive provisions did not further a ra-
tional legislative purpose and that the
employers had vested rights in coordi-
nation for Contract Clause purposes.
436 Mich. 515, 462 N.W.2d 555 (1990).

Table 11: An example in domain of Legal Document
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Model d1_vs_d0 d2_vs_d1 d3_vs_d2 d4_vs_d3 d5_vs_d4 d6_vs_d5 d7_vs_d6 d8_vs_d7 d9_vs_d8 d10_vs_d9 Avg.

Sparse Retriever

BM25 13.91 16.50 16.81 18.14 22.10 29.04 37.78 38.87 39.93 40.19 25.90

Dense Retriever

jina-embeddings-v3 73.43 70.52 67.45 66.66 65.32 63.40 63.15 62.82 65.13 60.35 65.82
gte-large-en-v1.5 76.74 73.85 72.70 69.91 70.32 68.05 67.39 64.09 65.14 62.58 69.08

NV-Embed-v2 82.57 76.39 74.45 72.10 73.27 69.15 69.48 66.74 68.75 71.57 72.45
bge-en-icl 79.40 70.58 69.36 68.13 64.80 63.12 63.01 61.72 61.31 63.69 66.51

gte-Qwen2-7B-instruct 79.84 74.02 70.57 69.97 65.44 60.54 61.35 59.42 59.55 60.40 66.11
gte-Qwen2-1.5B-instruct 74.30 71.80 72.28 68.49 69.32 65.69 67.08 64.97 63.46 65.09 68.25

e5-mistral-7b-instruct 75.11 67.88 62.73 58.61 56.87 54.52 55.26 54.03 56.68 61.94 60.36
GritLM-7B 79.59 77.73 73.40 74.71 75.56 72.15 73.52 71.87 72.01 75.21 74.58
LLM2Vec 83.50 74.25 73.43 72.24 70.36 67.21 66.99 67.07 66.49 67.48 70.90

Fine-tuned Reranker

bge-reranker-v2-m3 76.08 68.06 63.83 62.06 60.65 58.35 54.79 50.60 48.57 44.96 58.80
bge-reranker-v2-gemma 87.98 82.08 78.07 77.10 76.21 72.13 68.84 65.63 62.32 56.13 72.65

followIR 61.99 59.82 60.87 60.76 59.91 56.41 51.63 47.93 44.71 43.52 54.76
RankZephyr 90.20 86.04 83.96 83.14 82.23 79.41 76.07 72.43 70.26 66.84 79.06

Zero-shot LLM for Ranking

GPT-4o 93.37 92.76 92.20 91.16 90.51 89.55 88.38 86.82 85.96 85.26 89.60

Table 12: Average Win Rate Comparison Between Documents in Task 2

Model People Books Movies Medical Legal Avg.

Sparse Retriever

BM25 14.86 17.88 16.84 19.25 12.14 16.19

Dense Retriever

jina-embeddings-v3 10.55 8.65 10.24 14.72 13.10 11.45
gte-large-en-v1.5 11.74 8.84 12.96 15.70 15.16 12.88

NV-Embed-v2 10.17 8.80 7.52 10.17 8.94 9.12
bge-en-icl 13.48 12.74 15.18 19.81 14.44 15.13

gte-Qwen2-7B-instruct 12.71 15.56 13.62 16.37 17.56 15.16
gte-Qwen2-1.5B-instruct 12.38 13.26 10.48 16.81 12.51 13.09

e5-mistral-7b-instruct 9.17 9.92 8.20 10.75 12.25 10.06
GritLM-7B 8.52 5.35 8.32 8.98 9.86 8.21
LLM2Vec 12.81 7.93 9.56 8.12 10.49 9.78

Fine-tuned Reranker

bge-reranker-v2-m3 42.40 32.22 34.82 28.35 31.24 33.81
bge-reranker-v2-gemma 27.50 18.94 16.52 13.42 24.41 20.16

followIR 35.81 31.60 23.70 25.07 28.43 28.92
RankZephyr 20.21 16.34 14.86 11.53 25.31 17.65

Zero-shot LLM for Ranking

GPT-4o 7.21 4.22 6.78 6.32 10.35 6.98

Table 13: Flip Rate for query format shift (Task 3). The Flip Rate reflects the win rate reversal when switching the query format
from instruction-style to descriptive-style.
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Model d1_vs_d0 d2_vs_d1 d3_vs_d2 d4_vs_d3 d5_vs_d4 d6_vs_d5 d7_vs_d6 d8_vs_d7 d9_vs_d8 d+_vs_d9 Avg.

Sparse Retriever

BM25 11.91 14.34 14.75 14.45 15.99 24.75 36.58 37.68 38.02 39.34 24.78

Dense Retriever

jina-embeddings-v3 64.8 60.11 58.61 58.31 57.83 56.36 56.42 57.20 58.56 58.59 58.68
gte-large-en-v1.5 66.63 61.15 57.66 59.44 56.26 55.10 53.64 53.14 51.34 54.51 56.89

NV-Embed-v2 68.83 62.87 60.97 62.16 61.78 61.80 62.04 61.10 62.75 64.78 62.91
bge-en-icl 70.55 62.18 59.35 60.33 59.70 60.19 59.28 58.95 60.16 60.23 61.09

gte-Qwen2-7B-instruct 68.63 64.87 61.91 60.28 61.98 58.70 59.28 59.06 60.28 59.69 61.47
gte-Qwen2-1.5B-instruct 69.51 66.38 63.47 61.89 60.13 58.76 58.57 57.36 58.62 62.11 61.68

e5-mistral-7b-instruct 69.98 63.50 60.30 59.3 56.77 54.52 53.05 53.14 51.47 53.99 57.60
GritLM-7B 73.46 70.37 69.19 70.36 68.36 67.05 68.34 61.55 58.38 59.57 66.66
LLM2Vec 70.57 68.37 67.10 67.10 66.35 58.73 36.04 36.81 35.37 37.03 54.35

Fine-tuned Reranker

bge-reranker-v2-m3 73.65 66.55 63.28 61.65 54.60 38.54 28.42 27.92 28.14 28.02 47.08
bge-reranker-v2-gemma 82.39 77.63 71.80 70.00 65.10 56.91 41.75 32.01 28.84 29.96 55.64

followIR 50.48 51.78 49.64 46.27 37.60 25.22 24.41 24.51 25.67 24.71 36.03
RankZephyr 85.41 79.91 72.91 70.41 64.41 52.91 47.91 45.41 42.30 42.56 60.41

Zero-shot LLM for Ranking

GPT-4o 89.41 88.15 87.50 87.80 86.30 84.90 83.20 82.95 81.10 80.35 85.17

Table 14: Effect of document length on retrieval performance (padded to 512 words).

Model d1_vs_d0 d2_vs_d1 d3_vs_d2 d4_vs_d3 d5_vs_d4 d6_vs_d5 d7_vs_d6 d8_vs_d7 d9_vs_d8 d+_vs_d9 Avg.

Sparse Retriever

BM25 12.25 14.32 14.86 14.81 15.97 24.48 36.00 37.53 38.85 39.53 24.86

Dense Retriever

jina-embeddings-v3 64.56 59.74 58.13 57.20 55.47 55.90 55.33 53.70 54.75 54.81 56.96
gte-large-en-v1.5 68.62 61.61 58.47 54.77 54.97 54.52 54.44 49.88 39.09 38.34 53.47

NV-Embed-v2 59.23 61.26 62.58 62.81 64.57 63.95 62.98 63.49 65.65 67.55 63.41
bge-en-icl 66.08 61.93 60.83 59.63 59.34 61.04 61.08 51.67 36.00 35.95 55.36

gte-Qwen2-7B-instruct 66.06 63.23 63.36 61.35 59.63 58.56 56.62 57.97 36.61 35.96 55.94
gte-Qwen2-1.5B-instruct 68.46 63.66 62.02 62.21 59.47 60.78 59.38 58.71 35.01 34.91 56.46

e5-mistral-7b-instruct 66.97 61.11 59.05 54.53 54.40 54.47 53.02 54.55 53.88 53.57 56.56
GritLM-7B 71.47 67.97 69.41 56.02 54.49 52.58 54.21 56.35 54.87 57.26 59.46
LLM2Vec 74.81 72.05 71.55 26.85 26.68 26.35 25.24 26.16 26.04 27.27 40.30

Fine-tuned Reranker

bge-reranker-v2-m3 76.56 70.75 56.83 18.33 19.86 19.09 18.55 20.75 19.88 21.78 34.24
bge-reranker-v2-gemma 83.48 77.02 66.34 19.76 20.54 19.81 20.64 19.34 20.65 21.46 36.90

followIR 52.36 51.43 19.70 18.35 17.15 17.11 17.78 16.94 17.77 18.75 24.73
RankZephyr 84.34 76.84 66.64 35.14 33.34 34.04 31.54 32.64 30.74 31.24 45.65

Zero-shot LLM for Ranking

GPT-4o 88.80 86.50 85.80 86.10 83.50 82.00 80.20 79.50 78.30 77.63 82.83

Table 15: Effect of document length on retrieval performance (padded to 1024 words).
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