
Published as a conference paper at ICLR 2022

NODE-GAM:
NEURAL GENERALIZED ADDITIVE MODEL
FOR INTERPRETABLE DEEP LEARNING

1,2,3Chun-Hao Chang, 4Rich Caruana, 1,2,3Anna Goldenberg
1University of Toronto, 2Vector Institute, 3Hospital of Sickkids, 4Microsoft Research
kingsley@cs.toronto.edu, rcaruana@microsoft.com, anna.goldenberg@utoronto.ca

ABSTRACT

Deployment of machine learning models in real high-risk settings (e.g. healthcare)
often depends not only on the model’s accuracy but also on its fairness, robust-
ness, and interpretability. Generalized Additive Models (GAMs) are a class of
interpretable models with a long history of use in these high-risk domains, but they
lack desirable features of deep learning such as differentiability and scalability. In
this work, we propose a neural GAM (NODE-GAM) and neural GA2M (NODE-
GA2M) that scale well and perform better than other GAMs on large datasets, while
remaining interpretable compared to other ensemble and deep learning models. We
demonstrate that our models find interesting patterns in the data. Lastly, we show
that we improve model accuracy via self-supervised pre-training, an improvement
that is not possible for non-differentiable GAMs.

1 INTRODUCTION

As machine learning models become increasingly adopted in everyday life, we begin to require
models to not just be accurate, but also satisfy other constraints such as fairness, bias discovery, and
robustness under distribution shifts for high-stakes decisions (e.g., in healthcare, finance and criminal
justice). These needs call for an easier ability to inspect and understand a model’s predictions.

Generalized Additive Models (GAMs) (Hastie & Tibshirani, 1990) have a long history of being used
to detect and understand tabular data patterns in a variety of fields including medicine (Hastie &
Tibshirani, 1995; Izadi, 2020), business (Sapra, 2013) and ecology (Pedersen et al., 2019). Recently
proposed tree-based GAMs and GA2Ms models (Lou et al., 2013) further improve on original GAMs
(Spline) having higher accuracy and better ability to discover data patterns (Caruana et al., 2015).
These models are increasingly used to detect dataset bias (Chang et al., 2021) or audit black-box
models (Tan et al., 2018a;b). As a powerful class of models, they still lack some desirable features of
deep learning that made these models popular and effective, such as differentiability and scalability.

In this work, we propose a deep learning version of GAM and GA2M that enjoy the benefits of both
worlds. Our models are comparable to other deep learning approaches in performance on tabular data
while remaining interpretable. Compared to other GAMs, our models can be optimized using GPUs
and mini-batch training allowing for higher accuracy and more effective scaling on larger datasets.
We also show that our models improve performance when labeled data is limited by self-supervised
pretraining and finetuning, where other non-differentiable GAMs cannot be applied.

Several works have focused on building interpretable deep learning models that are effective for
tabular data. TabNet (Arik & Pfister, 2020) achieves state-of-the-art performance on tabular data while
also providing feature importance per example by its attention mechanism. Although attention seems
to be correlated with input importance (Xu et al., 2015), in the worst case they might not correlate
well (Wiegreffe & Pinter, 2019). Yoon et al. (2020) proposes to use self-supervised learning on tabular
data and achieves state-of-the-art performance but does not address interpretability. NIT (Tsang
et al., 2018) focuses on building a neural network that produces at most K-order interactions and thus
include GAM and GA2M. However, NIT requires a two-stage iterative training process that requires
longer computations. And their performance is slightly lower to DNNs while ours are overall on par
with it. They also do not perform purification that makes GA2M graphs unique when showing them.
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The most relevant approaches to our work are NODE (Popov et al., 2019) and NAM (Agarwal et al.,
2020). Popov et al. (2019) developed NODE that mimics an ensemble of decision trees but permits
differentiability and achieves state-of-the-art performance on tabular data. Unfortunately, NODE
suffers from a lack of interpretability similarly to other ensemble and deep learning models. On the
other hand, Neural Additive Model (NAM) whose deep learning architecture is a GAM, similar to
our proposal, thus assuring interpretability. However, NAM can not model the pairwise interactions
and thus do not allow GA2M. Also, because NAM builds a small feedforward net per feature, in
high-dimensional datasets NAM may require large memory and computation. Finally, NAM requires
training of 10s to 100s of models and ensemble them which incurs large computations and memory,
while ours only trains once; our model is also better than NAM without the ensemble (Supp. A).

To make our deep GAM scalable and effective, we modify NODE architecture (Popov et al., 2019) to
be a GAM and GA2M, since NODE achieves state-of-the-art performance on tabular data, and its
tree-like nature allows GAM to learn quick, non-linear jumps that better match patterns seen in real
data (Chang et al., 2021). We thus call our models NODE-GAM and NODE-GA2M respectively.

One of our key contributions is that we design several novel gating mechanisms that gradually reduce
higher-order feature interactions learned in the representation. This also enables our NODE-GAM and
NODE-GA2M to automatically perform feature selection via back-propagation for both marginal and
pairwise features. This is a substantial improvement on tree-based GA2M that requires an additional
algorithm to select which set of pairwise feature interactions to learn (Lou et al., 2013).

Overall, our contributions can be summarized as follows:

• Novel architectures for neural GAM and GA2M thus creating interpretable deep learning models.
• Compared to state-of-the-art GAM methods, our NODE-GAM and NODE-GA2M achieve similar

performance on medium-sized datasets while outperforming other GAMs on larger datasets.
• We demonstrate that NODE-GAM and NODE-GA2M discover interesting data patterns.
• Lastly, we show that NODE-GAM benefits from self-supervised learning that improves performance

when labeled data is limited, and performs better than other GAMs.

We foresee our novel deep learning formulation of the GAMs to be very useful in high-risk domains,
such as healthcare, where GAMs have already proved to be useful but stopped short from being
applied to new large data collections due to scalability or accuracy issues, as well as settings where
access to labeled data is limited. Our novel approach also benefits the deep learning community by
adding high accuracy interpretable models to the deep learning repertoire.

2 BACKGROUND

GAM and GA2M: GAMs and GA2Ms are interpretable by design because of their functional
forms. Given an input x ∈ RD, a label y, a link function g (e.g. g is log p

1−p in binary classification),
main effects fj for each feature j, and feature interactions fjj′ , GAM and GA2M are expressed as:

GAM: g(y) = f0 +

D∑
j=1

fj(xj), GA2M: g(y) = f0 +

D∑
j=1

fj(xj) +

D∑
j=1

∑
j′>j

fjj′(xj , xj′).

Unlike full complexity models (e.g. DNNs) that have y = f(x1, ..., xj), GAMs and GA2M are
interpretable because the impact of each feature fj and each feature interaction fjj′ can be visualized
as a graph (i.e. for fj , x-axis shows xj and y-axis shows fj(xj)). Humans can easily simulate how
they work by reading fjs and fjj′ off different features from the graph and adding them together.

GAM baselines: We compare with Explainable Boosting Machine (EBM) (Nori et al., 2019) that
implements tree-based GAM and GA2M. We also compare with splines proposed in the 80s (Hastie
& Tibshirani, 1990) using Cubic splines in pygam package (Servén & Brummitt, 2018).

Neural Oblivious Decision Trees (NODEs): We describe NODEs for completeness and refer the
readers to Popov et al. (2019) for more details. NODE consists of L layers where each layer has I
differentiable oblivious decision trees (ODT) of equal depth C. Below we describe a single ODT.
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Differentiable Oblivious Decision Trees: An ODT works like a traditional decision tree except
for all nodes in the same depth share the same input features and thresholds, which allows parallel
computation and makes it suitable for deep learning. Specifically, an ODT of depth C compares C
chosen input feature to C thresholds, and returns one of the 2C possible responses. Mathmatically,
for feature functions F c which choose what features to split, splitting thresholds bc, and a response
vector R ∈ R2C , the tree output h(x) is defined as:

h(x) = R ·
([

I(F 1(x) ≤ b1)
I(F 1(x) > b1)

]
⊗
[
I(F 2(x) ≤ b2)
I(F 2(x) > b2)

]
⊗ · · · ⊗

[
I(FC(x) ≤ bC)
I(FC(x) > bC)

])
(1)

Here I is the indicator function, ⊗ is the outer product, and · is the inner product.

Both feature functions F c and I prevent differentiability. To make them differentiable, Popov et al.
(2019) replace F c(x) as a weighted sum of features:

F c(x) =

D∑
j=1

xjentmaxα(F c)j = x · entmaxα(F c). (2)

Here F c ∈ RD are the logits for which features to choose, and entmaxα (Peters et al., 2019) is the
entmax transformation which works like a sparse version of softmax such that the sum of the output
equals to 1. They also replace the I with entmoid which works like a sparse sigmoid that has output
values between 0 and 1. Since all operations are differentiable (entmax, entmoid, outer and inner
products), the ODT is differentiable.

Stacking trees into deep layers: Popov et al. (2019) follow the design similar to DenseNet where
all tree outputs h(x) from previous layers (each layer consists of total I trees) become the inputs to
the next layer. For input features x, the inputs xl to each layer l becomes:

x1 = x, xl = [x,h1(x1), ...,h(l−1)(x(l−1))] for l > 1. (3)

And the final output of the model ŷ(x) is the average of all tree outputs h1, ...,hL of all L layers:

ŷ(x) =
1

LI

L∑
l=1

I∑
i=1

hli(x
l) (4)

3 OUR MODEL DESIGN

GAM design: See Supp. C for a complete pseudo code. To make NODE a GAM, we make three
key changes to avoid any feature interactions in the architecture (Fig. 1). First, instead of letting
F c(x) be a weighted sum of features (Eq. 2), we make it only pick 1 feature. We introduce a
temperature annealing parameter T that linearly decreases from 1 to 0 for the first S learning steps to
make entmaxα(F c/T ) gradually become one-hot:

F c(x) = x · entmaxα(F c/T ), T
S steps−−−−→ 0. (5)

Second, within each tree, we make the logits F c the same across depth C i.e. F 1 = · · · = FC = F
to avoid any feature interaction within a tree. Third, we avoid the DenseNet connection between two
trees that focus on different features j, j′, since they create feature interactions between features j
and j′ if two trees connect. Thus we introduce a gate that only allows connections between trees that
take the same features. Let Gi = entmaxα(Fi/T ) of the tree i. For tree i in layer l and another tree î
in layer l̂ for l̂ < l, the gating weight gl̂ii and the feature function Fli for tree i become:

gl̂ii = Gî ·Gi, Fli(x) = x ·Gi +
1∑l−1

l̂=1

∑I
î=1 gl̂ii

l−1∑
l̂=1

I∑
î=1

hl̂̂i(x)gl̂ii. (6)

Since G becomes gradually one-hot by Eq. 5, after S steps gîi would only become 1 when Gî = Gi

and 0 otherwise. This enforces no feature interaction between tree connections.
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Figure 1: The NODE-GAM architecture. Here we show 4 features with 4 different colors. Each layer
consists of I differentiable oblivious decision trees that outputs h1...hI , where each hi only depends
on 1 feature. We only connect trees between layers if two trees depend on the same features. And we
concatenate all outputs from all layers as inputs to the last linear layer WL to produce outputs.

Attention-based GAMs (AB-GAMs): To make the above GAM more expressive, we add an
attention weight al̂ii in the feature function Fli(x) to decide which previous tree to focus on:

Fli(x) =

D∑
j=1

xjGij +

l−1∑
l̂=1

I∑
î=1

hl̂̂i(x)gl̂iial̂ii where
l−1∑
l̂=1

I∑
î=1

gl̂iial̂ii = 1. (7)

To achieve this, we introduce attention logits Ali for each tree i that after entmax it produces al̂ii:

al̂ii = gl̂iientmaxα(log(gi) +Ali)î. (8)

This forces the attention of a tree i that
∑
î al̂ii = 1 for all î that gl̂ii = 1 and al̂ii = 0 when gl̂ii = 0.

The attention logits A requires a large matrix size [I , (l−1)I] for each layer l > 1 which explodes the
memory. We instead make A as the inner product of two smaller matrices such that A = BC where
B is of size [I , E] and C is of size [E, (l − 1)I], where E is a hyperparameter for the embedding
dimension of the attention.

Last Linear layer: Lastly, instead of averaging the outputs of all trees as the output of the model
(Eq. 4), we add the last linear layer to be a weighted sum of all outputs:

ŷ(x) =

L∑
l=1

I∑
i=1

hli(xl)wli. (9)

Note that in self-supervised learning, wli has multiple output heads to predict multiple tasks.

Regularization: We also include other changes that improves performance. First, we add Dropout
(rate p1) on the outputs of trees hli(xl), and Dropout (rate p2) on the final weights wli. Also, to
increase diversity of trees, each tree can only model on a random subset of features (η), an idea
similar to Random Forest. We also add an `2 penalization (λ) on hli(xl). In binary classification task
where labels y are imbalanced between class 0 and 1, we set a constant as log p(y)

1−p(y) that is added to
the final output of the model such that after sigmoid it becomes the p(y) if the output of the model is
0. We find it’s crucial for `2 penalization to work since `2 induces the model to output 0.
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NODE-GA2Ms — extending NODE-GAMs to two-way interactions: To allow two-way in-
teractions, for each tree we introduce two logits F 1 and F 2 instead of just one, and let F c =
F (c−1) mod 2+1 for c > 2; this allows at most 2 features to interact within each tree (Fig. 7). Besides
temperature annealing (Eq. 5), we make the gating weights gîi = 1 only if the combination of F 1,F 2

is the same between tree î and i (i.e. both trees î and i focus on the same 2 features). We set gîi as:

gîi = min((G1
i ·G1

î
)× (G2

i ·G2
î
) + (G1

i ·G2
î
)× (G2

i ·G1
î
), 1). (10)

We cap the value at 1 to avoid uneven amplifications as gîi = 2 when G1
i = G2

i = G1
î
= G2

î
.

Data Preprocessing and Hyperparameters: We follow Popov et al. (2019) to do target encoding
for categorical features, and do quantile transform for all features to Gaussian distribution (we find
Gaussian works better than Uniform). We use random search to search the architecture space for
NODE, NODE-GAM and NODE-GA2M. We use QHAdam (Ma & Yarats, 2018) and average the
most recent 5 checkpoints (Izmailov et al., 2018). In addition, we adopt learning rate warmup (Goyal
et al., 2017), and do early stopping and learning rate decay on the plateau. More details in Supp. G.

Extracting shape graphs from GAMs: We follow Chang et al. (2021) to implement a function
that extracts main effects fj from any GAM model including NODE-GAM, Spline and EBM. The
main idea is to take the difference between the model’s outputs of two examples (x1, x2) that have
the same values except for feature j. Since the intercept and other main effects are canceled out when
taking the difference, the difference f(x2)− f(x1) is equal to fj(x2j )− fj(x1j ). If we query all the
unique values of xj , we get all values of fj relative to fj(x1j ). Then we center the graph of fj by
setting the average of fj(xj) across the dataset as 0 and add the average to the intercept term f0.

Extracting shape graphs from GA2Ms: Designing a black box function to extract from any
GA2M is non-trivial, as each changed feature xj would change not just main effect term fj but also
every interactions ∀j′fjj′ that involve feature j. Instead, since we know which features each tree
takes, we can aggregate the output of trees into corresponding main fj and interaction terms fjj′ .

Note that GA2M can have many representations that result in the same function. For example, for a
prediction value v associated with x2, we can move v to the main effect f2(x2) = v, or the interaction
effect f23(x2, ·) = v that involves x2. To solve this ambiguity, we adopt "purification" (Lengerich
et al., 2020) that pushes interaction effects into main effects if possible. See Supp. D for details.

4 RESULTS

We first show the accuracy of our models in Sec. 4.1. Then we show the interpretability of our models
on Bikeshare and MIMIC2 datasets in Sec. 4.2. In Sec. 4.3, we show that NODE-GAM benefits
from self-supervised pre-training and outperforms other GAMs when labels are limited. In Supp. A,
we show our model outperforms NAM without ensembles. In Supp. B, we provide a strong default
hyperparameter that still outperforms EBM without hyperparameter tuning.

4.1 ARE NODE-GAM AND NODE-GA2M ACCURATE?

We compare our performance on 6 popular binary classification datasets (Churn, Support2, MIMIC2,
MIMIC3, Income, and Credit) and 2 regression datasets (Wine and Bikeshare). These datasets are
medium-sized with 6k-300k samples and 6-57 features (Table 6). We use 5-fold cross validation
to derive the mean and standard deviation for each model. We use 80-20 splits for training and val
set. To compare models across datasets, we calculate 2 summary metrics: (1) Rank: we rank the
performance on each dataset, and then compute the average rank across all 9 datasets (the lower the
rank the better). (2) Normalized Score (NS): for each dataset, we set the worst performance for that
dataset as 0 and the best as 1, and scale all other scores linearly between 0 and 1.

In Table 1, we show the performance of all GAMs, GA2Ms and full complexity models. First, we
compare 4 GAMs (here NODE-GA2M-main is the purified main effect from NODE-GA2M). We find
all 4 GAMs perform similarly and the best GAM in different datasets varies, with Spline as the best
in Rank and NODE-GAM in NS. But the differences are often smaller than the standard deviation.
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Table 1: The performance for 8 medium-sized datasets. The first 6 datasets are binary classification
(ordered by samples) and shown the AUC (%). The last 2 are regression datasets and shown the Root
Mean Squared Error (RMSE). We show the standard deviation of 5-fold cross validation results. We
calculate average rank (Rank, lower the better) and average Normalized Score (NS, higher the better).

GAM GA2M Full Complexity

NODE
GAM

NODE
GA2M
Main

EBM Spline NODE
GA2M

EBM
GA2M NODE XGB RF

Churn 84.9± 0.8 84.9± 0.9 85.0± 0.7 85.1± 0.9 85.0± 0.8 85.0± 0.7 84.3± 0.6 84.7± 0.9 82.9± 0.8

Support2 81.5± 1.3 81.5± 1.1 81.5± 1.0 81.5± 1.1 82.7± 0.7 82.6± 1.1 82.7± 1.0 82.3± 1.0 82.1± 1.0

Mimic2 83.2± 1.1 83.4± 1.3 83.5± 1.1 82.5± 1.1 84.6± 1.1 84.8± 1.2 84.3± 1.1 84.4± 1.2 85.4± 1.3

Mimic3 81.4± 0.5 81.0± 0.6 80.9± 0.4 81.2± 0.4 82.2± 0.7 82.1± 0.4 82.8± 0.7 81.9± 0.4 79.5± 0.7

Income 92.7± 0.3 91.8± 0.5 92.7± 0.3 91.8± 0.3 92.3± 0.3 92.8± 0.3 91.9± 0.3 92.8± 0.3 90.8± 0.2

Credit 98.1± 1.1 98.4± 1.0 97.4± 0.9 98.2± 1.1 98.6± 1.0 98.2± 0.6 98.1± 0.9 97.8± 0.9 94.6± 1.8

Wine 0.71± 0.03 0.70± 0.02 0.70± 0.02 0.72± 0.02 0.67± 0.02 0.66± 0.01 0.64± 0.01 0.75± 0.03 0.61± 0.01

Bikeshare 100.7± 1.6 100.7± 1.4 100.0± 1.4 99.8± 1.4 49.8± 0.8 50.1± 0.8 36.2± 1.9 49.2± 0.9 42.2± 0.7

Rank 5.8 6.2 5.9 5.3 3.2 3.5 4.5 3.9 6.6
NS 0.533 0.471 0.503 0.464 0.808 0.812 0.737 0.808 0.301

Table 2: The performance for 6 large datasets used in NODE paper. The first 3 datasets (Click,
Epsilon and Higgs) are classification datasets and shown the Error Rate. The last 3 (Microsoft, Yahoo
and Year) are shown in Mean Squared Error (MSE). We show the relative improvement (Rel Imp) of
our model NODE-GAM to EBM and find it consistently outperforms EBM up to 7%.

GAM GA2M Full Complexity

NODE
GAM EBM Spline Rel

Imp
NODE
GA2M

EBM
GA2M

Rel
Imp NODE XGB RF

Click 0.3342
± 0.0001

0.3328
± 0.0001

0.3369
± 0.0002 -0.4% 0.3307

± 0.0001
0.3297

± 0.0001 -0.2% 0.3312
± 0.0002

0.3334
± 0.0002

0.3473
± 0.0001

Epsilon 0.1040
± 0.0003 - - - 0.1050

± 0.0002 - - 0.1034
± 0.0003

0.1112
± 0.0006

0.2398
± 0.0008

Higgs 0.2970
± 0.0001

0.3006
± 0.0002 - 1.2% 0.2566

± 0.0003
0.2767

± 0.0004 7.3% 0.2101
± 0.0005

0.2328
± 0.0003

0.2406
± 0.0001

Microsoft 0.5821
± 0.0004

0.5890
± 0.0006 - 1.2% 0.5618

± 0.0003
0.5780

± 0.0001 2.8% 0.5570
± 0.0002

0.5544
± 0.0001

0.5706
± 0.0006

Yahoo 0.6101
± 0.0006

0.6082
± 0.0011 - -0.3% 0.5807

± 0.0004
0.6032

± 0.0005 3.7% 0.5692
± 0.0002

0.5420
± 0.0004

0.5598
± 0.0003

Year 85.09
± 0.01

85.81
± 0.11 - 0.8% 79.57

± 0.12
83.16

± 0.01 4.3% 76.21
± 0.12

78.53
± 0.09

86.61
± 0.06

Average - - - 0.5% - - 3.6% - - -

Next, both NODE-GA2M and EBM-GA2M perform similarly, with NODE-GA2M better in Rank
and EBM-GA2M better in NS. Lastly, within all full complexity methods, XGB performs the best
with not much difference from NODE and RF performs the worst. In summary, all GAMs perform
similarly. NODE-GA2M is similar to EBM-GA2M, and slightly outperforms full-complexity models.

In Table 2, we test our methods on 6 large datasets (all have samples > 500K) used in the NODE
paper, and we use the same train-test split to be comparable. Since these only provide 1 test split
we report standard deviation across multiple random seeds. First, on a cluster with 32 CPU and
120GB memory, Spline goes out of memory on 5 out of 6 datasets and EBM also can not be run on
dataset Epsilon with 2k features, showing their lack of ability to scale to large datasets. For 5 datasets
that EBM can run, our NODE-GAMs runs slightly better than EBM. But when considering GA2M,
NODE-GA2M outperforms EBM-GA2M up to 7.3% in Higgs and average relative improvement of
3.6%. NODE outperforms all GAMs and GA2Ms substantially on Higgs and Year, suggesting both
datasets might have important higher-order feature interactions.
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Figure 2: The shape plots of 4 (out of 11) features of 4 models (NODE-GA2M, NODE-GAM, EBM,
and Spline) trained on the Bikeshare dataset.
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Figure 3: The shape plots of 4 interactions of NODE-GA2M trained on the Bikeshare dataset.

4.2 SHAPE GRAPHS OF NODE-GAM AND NODE-GA2M: BIKESHARE AND MIMIC2

In this section, we highlight our key findings, and show the rest of the plots in Supp. I.

Bikeshare dataset: Here we interpret the Bikeshare dataset. It contains the hourly count of rental
bikes between the years 2011 and 2012 in Capital bikeshare system located in Washington, D.C. Note
that all 4 GAMs trained on Bikeshare are equally accurate with < 0.1% error difference (Table 1).

In Fig. 2, we show the shape plots of 4 features: Hour, Temperature, Month, and Week day. First,
Hour (Fig. 2a) is the strongest feature with two peaks around 9 AM and 5 PM, representing the
time that people commute, and all 4 models agree. Then we show Temperature in Fig. 2b. Here
temperature is normalized between 0 and 1, where 0 means -8°C and 1 means 39°C. When the
weather is hot (Temp > 0.8, around 30°C), all models agree rental counts decrease which makes
sense. Interestingly, when it’s getting colder (Temp < 0.4, around 11°C) there is a steady rise shown
by NODE-GAM, Spline and EBM but not NODE-GA2M (blue). Since it’s quite unlikely people rent
more bikes when it’s getting colder especially below 0°C, the pattern shown by GA2M seems more
plausible. Similarly, in feature Month (Fig. 2c), NODE-GA2M shows a rise in summer (month 6− 8)
while others indicate a strong decline of rental counts. Since we might expect more people to rent
bikes during summer since it’s warmer, NODE-GA2M might be more plausible, although we might
explain it due to summer vacation fewer students ride bikes to school. Lastly, for Weekday (Fig. 2d)
all 4 models agree with each other that the lowest number of rentals happen at the start of the week
(Sunday and Monday) and slowly increase with Saturday as the highest number.

In Fig. 3, we show the 4 feature interactions (out of 67) from our NODE-GA2M. The strongest effect
happens in Hr x Working day (Fig. 3(a)): this makes sense since in working day (orange), people
usually rent bikes around 9AM and 5PM to commute. Otherwise, if the working day is 0 (blue),
the number peaks from 10AM to 3PM which shows people going out more often in daytime. In Hr
x Weekday (Fig. 3(b)), we can see more granularly that this commute effect happens strongly on
Monday to Thursday, but on Friday people commute a bit later, around 10 AM, and return earlier,
around 3 or 4 PM. In Hr x Temperature (Fig. 3(c)), it shows that in the morning rental count is high
when it’s cold, while in the afternoon the rental count is high when it’s hot. We also find in Hr x
Humidity (Fig. 3(d)) that when humidity is high from 3-6 PM, people ride bikes less. Overall these
interpretable graphs enable us to know how the model predicts and find interesting patterns.

MIMIC2: MIMIC2 is the hospital ICU mortality prediction task (Johnson et al., 2016a). We extract
17 features within the first 24 hour measurements, and we use mean imputation for missingness.
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Figure 4: The shape plots of 4 GAMs trained on MIMIC-II dataset (4 of the 17 features are shown).
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Figure 5: The shape plots of 4 interactions of NODE-GA2M trained on the MIMIC2 dataset.

We show the shape plots (Fig. 4) of 4 features: Age, PFratio, Bilirubin and GCS. In feature Age
(Fig.. 4(a)), we see the all 4 models agree the risk increases from age 20 to 90. Overall NODE-
GAM/GA2M are pretty similar to EBM in that they all have small jumps in a similar place at age 55,
80 and 85; spline (red) is as expected very smooth. Interestingly, we see NODE-GAM/GA2M shows
risk increases a bit when age < 20. We think the risk is higher in younger people because this is
generally a healthier age in the population, so their presence in ICU indicates higher risk conditions.

In Fig. 4(b), we show PFratio: a measure of how well patients oxygenate the blood. Interestingly,
NODE-GAM/GA2M and EBM capture a sharp drop at 332. It turns out that PFratio is usually not
measured for healthier patients, and the missing values have been imputed by the population mean
332, thus placing a group of low-risk patients right at the mean value of the feature. However, Spline
(red) is unable to capture this and instead have a dip around 300-600. Another drop captured by
NODE-GAM/GA2M from 400− 500 matches clinical guidelines that > 400 is healthy.

Bilirubin shape plot is shown in Fig. 4(c). Bilirubin is a yellowish pigment made during the normal
breakdown of red blood cells. High bilirubin indicates liver or bile duct problems. Indeed, we can see
risk quickly goes up as Bilirubin is > 2, and all 4 models roughly agree with each other except for
Spline which has much lower risk when Billirubin is 80, which is likely caused by Spline’s smooth
inductive bias and unlikely to be true. Lastly, in Fig. 4(d) we show Glasgow Coma Scale (GCS): a
bedside measurement for how conscious the patient is with 1 in a coma and 5 as conscious. Indeed,
we find the risk is higher for patients with GCS=1 than 5, and all 4 models agree.

In Fig. 5, we show the 4 of 154 feature interactions learned in the NODE-GA2M. First, in Age x
Bilirubin (Fig. 5(a)), when Billirubin is high (>2), we see an increase of risk (blue) in people with age
18− 70. Risk decreases (red) when age > 80. Combined with the shape plots of Age (Fig. 4(a)) and
Bilirubin (Fig. 4(c)), we find this interaction works as a correction effect: if patients have Bilirubin >
2 (high risk) but are young (low risk), they should have a higher risk than what their main (univariate)
effects suggest. On the other hand, if patients have age > 80 (high risk) and Bilirubin > 2 (high risk),
they already get very high risk from main effects, and in fact the interaction effect is negative to
correct for the already high main effects. It suggests that Billirubin=2 is an important threshold that
should affect risk adjustments.

Also in GCS x Bilirubin plot (Fig. 5(b)), we find similar effects: if Bilirubin >2, the risk of GCS is
correctly lower for GCS=1,2 and higher for 3-5. In Fig. 5(c) we find patients with GCS=1-3 (high
risk) and age>80 (high risk), surprisingly, have even higher risk (blue) for these patients; it shows
models think these patients are more in danger than their main effects suggest. Finally, in Fig. 5(d)
we show interaction effect GCS x PFratio. We find PFratio also has a similar threshold effect: if
PFratio > 400 (low risk), and GCS=1,2 (high risk), model assigns higher risk for these patients while
decreasing risks for patients with GCS=3,4,5.
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Figure 6: The relative improvement (%) over NODE-GAM without self-supervision (No-SS) on 6
datasets with various labeled data ratio. The higher number is better.

4.3 SELF-SUPERVISED PRE-TRAINING

By training GAMs with neural networks, it enables self-supervised learning that learns representations
from unlabeled data which improves accuracy in limited labeled data scenarios. We first learn a
NODE-GAM that reconstructs input features under randomly masked inputs (we use 15% masks).
Then we remove and re-initialize the last linear weight and fine-tune it on the original targets under
limited labeled data. For fine-tuning, we freeze the embedding and only train the last linear weight
for the first 500 steps; this helps stabilize the training. We also search smaller learning rates [5e−5,
1e−4, 3e−4, 5e−4] and choose the best model by validation set. We compare our self-supervised
model (SS) with 3 other baselines: (1) NODE-GAM without self-supervision (No-SS), (2) EBM and
(3) Spline. We randomly search 15 attention based AB-GAM architectures for both SS and No-SS.

In Figure 6, we show the relative improvement over the AUC of No-SS under variously labeled data
ratio 0.5%, 1%, 2%, 5%, and 10% (except Credit which 0.5% has too few positive samples and thus
crashes). And we run 3 different train-test split folds to derive mean and standard deviation. Here
the relative improvement means improvement over No-SS baselines. First, we find NODE-GAM
with self-supervision (SS, blue) outperforms No-SS in 6 of 7 datasets (except Income) with MIMIC2
having the most improvement (6%). This shows our NODE-GAM benefits from self-supervised
pre-training. SS also outperforms EBM in 3 out of 6 datasets (Churn, MIMIC2 and Credit) up to 10%
improvement in Churn, demonstrating the superiority of SS when labeled data is limited.

5 LIMITATIONS, DISCUSSIONS AND CONCLUSIONS

Although we interpret and explain the shape graphs in this paper, we want to emphasize that the
shown patterns should be treated as an association not causation. Any claim based on the graphs
requires a proper causal study to validate it.

In this paper, we assumed that the class of GAMs is interpretable and proposed a new deep learning
model in this class, so our NODE-GAM is as interpretable to other GAMs. But readers might wonder
if GAMs are interpretable to human. Hegselmann et al. (2020) show GAM is interpretable for doctors
in a clinical user study; Tan et al. (2019) find GAM is more interpretable than the decision tree
helping users discover more patterns and understand feature importance better; Kaur et al. (2020)
compare GAM to post-hoc explanations (SHAP) and find that GAM significantly makes users answer
questions more accurately, have higher confidence in explanations, and reduce cognitive load.

In this paper we propose a deep-learning version of GAM and GA2M that automatically learn which
main and pairwise interactions to focus without any two-stage training and model ensemble. Our
GAM is also more accurate than traditional GAMs in both large datasets and limited-labeled settings.
We hope this work can further inspire other interpretable design in the deep learning models.
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A COMPARISON TO NAM (AGARWAL ET AL., 2020) AND THE UNIVARIATE
NETWORK IN NID (TSANG ET AL., 2017)

First, we compare with NAM’s (Agarwal et al., 2020) performance without and with the ensemble.
Since NAM requires an extensive hyperparameter search and to be fair with NAM, we focus on 3 of
their 5 datasets (MIMIC2, COMPAS, Credit) and use their reported best hyperparameters to compare.
We find that NODE-GAM is better than NAM without ensemble consistently across 3 datasets.

Table 3: Comparison to NAM (Agarwal et al., 2020) with and without the ensemble.
NODE
GAM

NAM
(no ensemble)

NAM
(Ensembled) EBM Spline

COMPAS 74.2 (0.9) 73.8 (1.0) 73.7 (1.0) 74.3 (0.9) 74.1 (0.9)
MIMIC-II 83.2 (1.1) 82.4 (1.0) 83.0 (0.8) 83.5 (1.1) 82.5 (1.1)

Credit 98.1 (1.1) 97.5 (0.8) 98.0 (0.2) 97.4 (0.9) 98.2 (1.1)

As the reviewer points out, in the NID paper (Tsang et al., 2017) they also have a similar idea to
NAM that trains a univariate network alongside an MLP to model the main effect. But there are two
key differences between the univariate network in NID and NAM: (1) NAM proposes a new jumpy
activation function - ExU - that can model quick, non-linear changes of the inputs as part of their
hyperparameter selection, and (2) NAM uses multiple networks to ensemble. To be thorough, we
compare with NAM that only uses normal units to resemble the univariate network in NID. We also
considered whether removing the ensemble would disproportionately impact ExU activations since
ExU activations are more prone to overfitting.

We show the performance in Table 4. We show the results in 2 of their 5 datasets (MIMIC-II, Credit)
that find ExU perform better than normal units (in other 3 datasets normal units perform better). First,
we find that after ensemble normal units perform quite similar to ExU in MIMIC2 but worse in Credit.
And given that in 3 other datasets NAM already finds normal units to perform better, we think normal
units and ExU probably have similar accuracy. Besides, ensemble helps improve performance much
more for ExU units but not so much for normal units, since ExU is a more low-bias high-variance
unit that benefits more from ensembles. In either case, their performance without ensemble is still
inferior to our NODE-GAM.
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Table 4: Comparison to NAM with normal units v.s. ExU units, and with and without ensemble.
NAM-normal NAM-normal (Ensembled) NAM-ExU NAM-ExU (Ensembled)

MIMIC-II 82.7 (0.8) 82.9 82.4 (1.0) 83.0 (0.8)
Credit 97.3 (0.8) 97.4 97.5 (0.8) 98.0 (0.2)

COMPAS 73.8 (1.0) 73.7 (1.0) - -

Table 5: The default performance for 6 large datasets. The NODE-GA2M-Default is the model with
default hyperparameter, and the Rel Diff is the relative difference of performance between default
and tuned NODE-GA2M. The first 3 datasets (Click, Epsilon and Higgs) are classification datasets
and shown the Error Rate. The last 3 (Microsoft, Yahoo and Year) are shown in Mean Squared Error
(MSE).

NODE
GA2M
Default

NODE
GA2M

EBM
GA2M

Rel
Diff

Click 0.3332
± 0.0001

0.3307
± 0.0001

0.3297
± 0.0001 -0.4%

Epsilon 0.1063
± 0.0001

0.1050
± 0.0002 - -0.8%

Higgs 0.2656
± 0.0003

0.2566
± 0.0003

0.2767
± 0.0004 -3.7%

Microsoft 0.5670
± 0.0003

0.5617
± 0.0003

0.5780
± 0.0001 -0.9%

Yahoo 0.6002
± 0.0004

0.5807
± 0.0004

0.6032
± 0.0005 -3.4%

Year 80.56
± 0.22

79.57
± 0.12

83.16
± 0.01 -1.1%

B THE PERFORMANCE OF NODE-GA2M AND TABNET WITH DEFAULT
HYPERPARAMETERS

To increase the ease of use, we provide a strong default hyperparameter of the NODE-GA2M. In
Table 5, compared to the tuned NODE-GA2M, the default hyperparmeter increases the error by
0.4%-3.7%, but still consistently outperforms EBM-GA2M.

C PSEUDO-CODE FOR NODE-GAM

Here we provide the pseudo codes for our model in Alg. 1-4. We highlight our key changes that
make NODE as a GAM in red, and the new architectures or regularization in blue. We show a single
GAM decision tree in Alg. 1, a single GA2M tree in Alg. 2, model algorithm in Alg. 3, and the model
update in Alg. 4.

D PURIFICATION OF GA2M

Note that GA2M can have many representations that result in the same function. For example, for a
prediction value v associated with x2, we can move v to the main effect f2(x2) = v, or the interaction
effect f23(x2, ·) = v that involves x2. To solve this ambiguity, we adopt "purification" (Lengerich
et al., 2020) that pushes interaction effects into main effects if possible.

To purify an interaction fjj′ , we first bin continuous feature xj into at most K quantile bins with
K unique values x1j , ...x

K
j and for xj′ as well. Then for every xkj , we move the average akj of

interactions fjj′ to main effects fj :

∀Kk=1x
k
j , akj =

1

NK′

K′∑
k′=1

fjj′(x
k
j , x

k′

j′ ), fjj′(x
k
j , x

k′

j′ ) = fjj′(x
k
j , x

k′

j′ )−akj , fj(x
k
j ) = fj(x

k
j )+a

k
j
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Algorithm 1 A GAM differentiable oblivious decision tree (ODT)
Input: Input X ∈ RD, Temperature T (T −→ 0), Previous layers’ outputs Xp ∈ RP , Previous
layers’ feature selection Gp ∈ RP×D, Attention Matrix A ∈ RP
Hyperparameters: Tree Depth C, Column subsample ratio η
Trainable Parameters: Feature Selection Logits F ∈ RD , Split Thresholds b ∈ RC , Split slope
S ∈ RC , Node weights W ∈ R2C

if η < 1 then
n = max(Dη, 1) . Number of subset features
i = shuffle(range(D))[int(n):] . Randomly choose features to exclude
F [i] = − inf . Exclude features

end if
G = EntMax(F /T ) . Go through EntMax to generate soft one-hot vector (Eq. 5)
K = X ·G . Pick 1 feature softly
if XP is not None then

g = GPG ∈ RP . Calculate gating weights g (Eq. 6)
g′ = g/

∑
g if A is None else g·entmaxα(log(g) +A) . Attention-based GAM (Eq.8)

K = K +Xp · g′ . Add previous outputs with g normalized to 1
end if
H = EntMoid((K − b)/S) ∈ RC . Generate soft binary value

e =

([
H1

(1−H1)

]
⊗ · · · ⊗

[
(HC)

(1−HC)

])
∈ R2C . Go through the decision tree

h = e ·W . Select one weight value softly as the output

Return: h, G . Return tree response h and feature selection G

Algorithm 2 A GA2M differentiable oblivious decision tree (ODT)
Input: Input X ∈ RD, Temperature T (T −→ 0), Previous layers’ outputs Xp ∈ RP , Previous
layers’ feature selection G1

p,G
2
p ∈ RP×D, Attention Matrix A ∈ RP

Hyperparameters: Tree Depth C, Column subsample ratio η
Trainable Parameters: Feature Selection Logits F 1,F 2 ∈ RD , Split Thresholds b ∈ RC , Split
slope S ∈ RC , Node weights W ∈ R2C

if η < 1 and first time running then
n = max(Dη, 1) . Number of subset features
i = shuffle(range(D))[n:] . Randomly exclude features
F 1[i] = − inf , F 2[i] = − inf . Exclude features

end if
G1 = EntMax(F 1/T ), G2 = EntMax(F 2/T ) . Get soft one-hot vector (Eq. 5)
K1 = X ·G1, K2 = X ·G2 . Pick 1 feature softly
if XP is not None then

g = min((G1 ·G1
P )× (G2 ·G2

P ) + (G1 ·G2
P )× (G2 ·G1

P ), 1) . Gating weights (Eq. 10)
g′ = g/

∑
g if A is None else g·entmaxα(log(g) +A) . Attention-based GAM (Eq.8)

K1 = K1 +Xp · g′ . Add previous outputs with g normalized to 1
K2 = K2 +Xp · g′

K = [K1,K2,K1, ...,K2] ∈ RC . Alternating between K1 and K2

end if
H = EntMoid((K − b)/S) ∈ RC . Generate soft binary value

e =

([
H1

(1−H1)

]
⊗ · · · ⊗

[
(HC)

(1−HC)

])
∈ R2C . Go through the decision tree

h = e ·W . Select one weight value softly as the output

Return: h, [G1,G2] . Return tree response h and feature selection [G1,G2]

This is one step to purify fjj′ to fj . Then we purify fjj′ to fj′ , and so on until all akj and ak
′

j′ are
close to 0.
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Algorithm 3 The NODE-GAM / NODE-GA2M algorithm
1: Input: Input X ∈ RD
2: Hyperparameters: number of layers L, number of trees I per layer, tree depth C, current

optimization step s, temperature annealing step S, Attention Embedding E
3: Trainable Parameters: the decision trees Ml in each layer l (either GAM trees (Alg. 1) or

GA2M trees (Alg. 2)), the final output weights WL ∈ R(LI) and bias w04:
5: if E > 0 then . Use attention-based GAM
6: Initialize Bl ∈ R(l−1)I×E and Cl ∈ RE×I for l = 2...L
7: end if
8: T = 10−2(s/S) if s ≤ S else 0 . Slowly decrease temperature to 0
9: Xp = None, Gp = None . Initialize previous trees’ outputs Xp and feature selections Gp

10: for l = 1 to L do
11: Al = None if E = 0 or l = 1 else BlCl . Calculate attention matrix
12: hl,Gl = Ml(X, T ,Xp,Gp,A

l) . Run total I trees in Ml by Alg. 1 or 2
13: hl = Dropout(hl) . Dropout rate p1
14: Xp = hl if Xp is None else [Xp,hl] . Concatenate outputs hl
15: Gp = Gl if Gp is None else [Gp,Gl] . Concatenate feature selection Gl

16: end for
17: WL = Dropout(WL) . Dropout rate p2
18: R = Xp ·WL + w0 . Go through last linear layer
19: Return: R, XP . Return model response R and all trees’ outputs XP

Algorithm 4 Our model’s update
1: Input: An input X ∈ RD, target y, Node-GAM modelM
2:
3: R,XP =M(X) . Run Node-GAM (Alg. 3)
4: L = BCELoss(y,R) if binary classification else MSELoss(y,R)
5: L = L+ λ

∑
(XP )

2 . Add the `2 on the output of trees
6: Optimize L by Adam optimizer

E NODE-GA2M FIGURES

Here we show the architecutre of NODE-GA2M in Figure 7.

F DATASET DESCRIPTIONS

Here we describe all 8 datasets we use and we summarize them in Table 6.

• Churn: this is to predict which user is a potential subscription churner for telecom company.
https://www.kaggle.com/blastchar/telco-customer-churn

• Support2: this is to predict mortality in the hospital by several lab values. http://
biostat.mc.vanderbilt.edu/DataSets

• MIMIC-II and MIMIC-III dataset (Johnson et al., 2016b): this is an ICU patient datasets to
predict mortality of patients in a tertiary academic medical center in Boston, MA, USA.

• Income: UCI Dua & Graff (2017). This is a dataset from census collected in 1994, and
the goal is to predict who has income >50K/year. https://archive.ics.uci.edu/
ml/datasets/adult

• Credit: this is to predict which transaction is a fraud. The features provided are the coeffi-
cient of PCA components to protect privacy. https://www.kaggle.com/mlg-ulb/
creditcardfraud

• Bikeshare (Dua & Graff, 2017): this is the hourly bikeshare rental counts in Wash-
ington D.C., USA. https://archive.ics.uci.edu/ml/datasets/bike+
sharing+dataset
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Figure 7: The NODE-GA2M architecture. Here we show 4 features with 4 different colors. Each
layer consists of I differentiable oblivious decision trees that outputs h1...hI , where each hi depends
on at most 2 features. We only connect trees between layers if two trees depend on the same two
features. And we concatenate all outputs from all layers as inputs to the last linear layer WL to
produce outputs.

• Wine (Dua & Graff, 2017): this is to predict the wine quality based on a variety of lab values.
https://archive.ics.uci.edu/ml/datasets/wine+quality

For 6 datasets used in NODE, we use the scripts from NODE paper (https://github.com/
Qwicen/node) which directly downloads the dataset. Here we still cite and list their sources:

• Click: https://www.kaggle.com/c/kddcup2012-track2

• Higgs: UCI (Dua & Graff, 2017) https://archive.ics.uci.edu/ml/
datasets/HIGGS

• Epsilon: https://www.k4all.org/project/large-scale-learning-challenge/

• Microsoft: https://www.microsoft.com/en-us/research/project/
mslr/

• Yahoo: https://webscope.sandbox.yahoo.com/catalog.php?
datatype=c.

• Year (Dua & Graff, 2017): https://archive.ics.uci.edu/ml/datasets/
yearpredictionmsd

F.1 PREPROCESSING

For NODE and NODE-GAM/GA2M, we follow Popov et al. (2019) to do target encoding for
categorical features, and do quantile transform1 with 2000 bins for all features to Gaussian distribution
(we find Gaussian performs better than Uniform). We find adding small gaussian noise (e.g. 1e-5)
when fitting quantile transformation (but no noise in transformation stage) is crucial to have mean 0
and standard deviation close to 1 after transformation.

1sklearn.preprocessing.quantile_transform
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Table 6: All dataset statistics and descriptions.
Domain # Samples # Features Positive rate Description

Churn Retail 7,043 19 26.54% Subscription churner
Support2 Healthcare 9,105 29 25.92% Hospital mortality
MIMIC-II Healthcare 24,508 17 12.25% ICU mortality
MIMIC-III Healthcare 27,348 57 9.84% ICU mortality

Income Finance 32,561 14 24.08% Income prediction
Credit Retail 284,807 30 0.17% Fraud detection

Bikeshare Retail 17,389 16 - Bikeshare rental counts
Wine Nature 4,898 12 - Wine quality

Click Ads 1M 11 50% 2012 KDD Cup
Higgs Nature 11M 28 53% Higgs bosons prediction

Epsilon - 500K 2k 50% PASCAL Challenge 2008
Microsoft Ads 964K 136 - MSLR-WEB10K

Yahoo Ads 709K 699 - Yahoo LETOR dataset
Year Music 515K 90 - Million Song Dataset

G HYPERPARAMETERS SELECTION

In order to tune the hyperparameters, we performed a random stratified split of full training data into
train set (80%) and validation set (20%) for all datasets. For datasets we compile of medium-sized
(Income, Churn, Credit, Mimic2, Mimic3, Support2, Bikeshare), we do a 5-fold cross validation for
5 different test splits. For datasets in NODE paper (Click, Epsilon, Higgs, Microsoft, Yahoo, Year),
we use train/val/test split provided by the NODE paper author. Since they only provide 1 test split,
we report standard deviation by different random seeds on these datasets. For medium-sized datasets,
we only tune hyperparameters on the first train-val-test fold split, and fix the hyperparameters to run
the rest of 4 folds. This means that we do not search hyperparameters per fold to avoid computational
overheads. All NODE, NODE-GAM/GA2M are run with 1 TITAN Xp GPU, 4 CPU and 8GB
memory. For EBM and Spline, they are run with a machine with 32 CPUs and 120GB memory.

Below we describe the hyperparameters we use for each method:

G.1 EBM

For EBM, we set inner_bags=100 and outer_bags=100 and set the maximum rounds as 20k to make
sure it converges; we find EBM performs very stable out of this choice probably because we set total
bagging as 10k that makes it stable; other parameters have little effect on final performance.

For EBM GA2M, we search the number of interactions for 16, 32, 64, 128 and choose the best one
on validation set. On large datasets we set the number of iterations as 64 as we find it performs quite
well on medium-sized datasets.

G.2 SPLINE

We use the cubic spline in PyGAM package (Servén & Brummitt, 2018) that we follow Chang et al.
(2021) to set the number of knots per feature to a large number 50 (we find setting it larger would
crash the model), and search the best lambda penalty between 1e-3 to 1e3 for 15 times and return the
best model.

G.3 NODE, NODE-GA2M AND NODE

We follow NODE to use QHAdam (Ma & Yarats, 2018) and average the most recent 5 checkpoints.
In addition, we adopt learning rate warmup at first 500 steps. And we early stop our training for no
improvement for 11k steps and decay learning rate to 1/5 if no improvement happens in 5k steps.
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Here we list the hyperparameters we find works quite well and we do not do random search on these
hyperparameters:

• optimizer: QHAdam (Ma & Yarats, 2018) (same as NODE paper)

• lr_warmup_steps: 500

• num_checkpoints_avged: 5

• temperature_annealing_steps (S): 4k

• min_temperature: 0.01 (0.01 is small enough for making one-hot vector. And after S steps
we set the function to produce one-hot vector exactly.)

• batch_size: 2048, or the max batch size that fits in GPU memory with minimum 128.

• Maximum training time: 20 hours. This is just to avoid model training for too long.

We use random search to find the best hyperparameters which we list the range in below. We list the
random search range for NODE:

• num_layers: {2, 3, 4, 5}. Default: 3.

• total tree counts (= num_trees × num_layers): {500, 1000, 2000, 4000}. Default: 2000.

• depth: {2, 4, 6}. Default: 4.

• tree_dim: {0, 1}. Default: 0.

• output_dropout (p1): {0, 0.1, 0.2}. Default: 0.

• colsample_bytree: {1, 0.5, 0.1, 1e-5}. Default: 0.1.

• lr: {0.01, 0.005}. Default: 0.01.

• l2_lambda: {0., 1e-7, 1e-6, 1e-5}. Default: 1e-5.

• add_last_linear (to add last linear weight or not): {0, 1}. Default: 1.

• last_dropout (p2, only if add_last_linear=1): {0, 0.1, 0.2, 0.3}. Default: 0.5.

• seed: uniform distribution [1, 100].

For NODE-GAM and NODE-GA2M, we have additional parameters:

• arch: {GAM, AB-GAM}. Default: AB-GAM.

• dim_att (dimension of attention embedding E): {8, 16, 32}. Default: 16.

We show the best hyperparameters for each dataset in Section H. And we show the performance of
default hyperparameter in Suppl. B,

G.4 XGBOOST

For large datasets in NODE, we directly report the performance from the original NODE paper. For
medium-sized data, we set the depth of xgboost as 3, and learning rate as 0.1 with n_estimators=50k
and set early stopping for 50 rounds to make sure it converges.

G.5 RANDOM FOREST (RF)

We use the default hyperparameters from sklearn and set the number of trees to a large number 1000.

H BEST HYPERPARAMETERS FOUND IN EACH DATASET

Here we report the best hyperparameters we find for 9 medium-sized datasets in Table 7 (NODE-
GAM), Table 8 (NODE-GA2M), and Table 9 (NODE). We report the best hyperparameters for large
datasets in Table 10 (NODE-GAM) and Table 11 (NODE-GA2M).
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Table 7: The best hyperparameters for NODE-GAM architecture.
Dataset Compas Churn Support2 Mimic2 Mimic3 Adult Credit Bikeshare Wine
batch
size 2048 2048 2048 2048 512 2048 2048 2048 2048

num
layers 5 3 4 4 3 3 5 2 5

num
trees 800 166 125 500 1333 666 400 250 800

depth 4 4 2 4 6 4 2 2 2

addi
tree
dim

2 2 1 1 0 1 2 1 1

output
dropout 0.3 0.1 0.1 0 0.2 0.1 0.2 0.2 0

colsample
bytree 0.5 0.5 1e-5 0.5 1e-5 0.5 0.1 0.5 0.5

lr 0.01 0.005 0.01 0.01 0.005 0.01 0.01 0.005 0.005

l2
lambda 1e-5 1e-5 1e-6 1e-7 1e-7 0 0 1e-7 1e-5

add
last

linear
1 1 1 0 1 1 1 1 1

last
dropout 0 0 0 0 0 0 0 0.3 0.1

seed 67 48 43 99 97 46 87 55 31

arch AB-GAM AB-GAM GAM AB-GAM GAM GAM AB-GAM GAM GAM

dim
att 16 8 - 32 - - 8 - -

I COMPLETE SHAPE GRAPHS IN BIKESHARE AND MIMIC2

We list all main effects of Bikeshare in Fig. 8 and top 16 interactions effects in Fig. 9. We list all
main effects of MIMIC2 in Fig. 10 and top 16 interactions effects in Fig. 11.
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Table 8: The best hyperparameters for NODE-GA2M architecture.
Dataset Compas Churn Support2 Mimic2 Mimic3 Adult Credit Bikeshare Wine
batch
size 2048 2048 256 256 512 256 512 2048 512

num
layers 4 3 2 2 4 2 2 4 4

num
trees 1000 333 2000 2000 1000 2000 1000 125 1000

depth 2 2 6 6 6 6 6 6 6

addi
tree
dim

2 2 2 0 1 2 0 1 1

output
dropout 0.2 0 0.1 0 0.2 0.1 0.2 0 0.2

colsample
bytree 0.2 0.5 1 0.2 0.5 1 0.2 0.5 0.5

lr 0.005 0.005 0.01 0.005 0.01 0.01 0.01 0.01 0.01

l2
lambda 0 0 0 1e-5 0 0 0 0 0

add
last

linear
1 0 0 0 0 1 1 1 0

last
dropout 0.2 0.2 0 0 0 0 0 0.3 0

seed 32 31 33 10 87 33 38 83 87

arch GAM AB-GAM AB-GAM AB-GAM AB-GAM GAM AB-GAM GAM AB-GAM

dim
att - 32 32 8 16 - 32 - 16
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Table 9: The best hyperparameters for NODE architecture.
Dataset Compas Churn Support2 Mimic2 Mimic3 Adult Credit Bikeshare Wine
batch
size 2048 2048 2048 2048 2048 2048 512 2048 2048

num
layers 5 4 2 3 2 2 3 3 2

num
trees 100 125 1000 166 1000 1000 1333 333 500

depth 2 2 4 6 4 4 6 4 4

addi
tree
dim

1 0 0 0 0 0 1 1 1

output
dropout 0 0 0.2 0.2 0.2 0.2 0.2 0.1 0

colsample
bytree 0.2 0.5 0.2 0.2 0.2 0.2 0.2 0.5 1

lr 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.01

l2
lambda 0 1e-5 1e-7 1e-6 1e-7 1e-7 1e-6 1e-5 0

add
last

linear
0 0 0 0 0 0 1 1 0

last
dropout 0 0 0 0 0 0 0 0.3 0

seed 3 26 93 17 93 93 82 49 73
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Table 10: The best hyperparameters for NODE-GAM architecture for 6 large datasets.
Dataset Click Epsilon Higgs Microsoft Yahoo Year
batch
size 2048 2048 2048 2048 2048 2048

num
layers 5 5 5 4 4 2

num
trees 800 400 200 125 500 500

depth 4 4 4 6 4 2

addi
tree
dim

2 2 2 2 0 1

output
dropout 0 0.1 0 0.1 0.2 0.1

colsample
bytree 1e-5 0.1 0.5 0.1 0.1 0.5

lr 5e-3 1e-2 5e-3 5e-3 5e-3 1e-2

l2
lambda 1e-7 0 1e-5 0 1e-6 1e-6

add
last

linear
0 1 1 0 0 1

last
dropout 0 0.1 0 0.1 0.2 0.1

seed 97 31 67 67 14 58

arch AB-GAM AB-GAM AB-GAM AB-GAM AB-GAM AB-GAM

dim
att 32 16 32 8 8 16
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Table 11: The best hyperparameters for NODE-GA2M architecture for 6 large datasets.
Dataset Click Epsilon Higgs Microsoft Yahoo Year
batch
size 2048 2048 2048 1024 2048 512

num
layers 3 2 2 4 5 5

num
trees 1333 2000 1000 500 800 800

depth 4 2 4 6 4 6

addi
tree
dim

2 2 0 0 0 0

output
dropout 0.2 0.2 0 0.1 0.2 0.2

colsample
bytree 0.5 0.5 1 1 0.5 1

lr 0.005 0.01 0.01 0.005 0.005 0.005

l2
lambda 1e-6 1e-6 1e-6 0 0 1e-6

add
last

linear
1 1 1 1 1 1

last
dropout 0.15 0.3 0 0.15 0 0

seed 36 5 95 69 25 78

arch AB-GAM AB-GAM AB-GAM AB-GAM AB-GAM AB-GAM

dim
att 32 32 8 8 32 16
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Figure 8: The shape plots of all features (main effects) in Bikeshare. We also show the feature
importance (Imp).
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Figure 9: The shape plots of top 16 interactions in Bikeshare. We also show the feature importance
(Imp).
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Figure 10: The shape plots of all features (main effects) in MIMIC2. We also show the feature
importance (Imp).

25



Published as a conference paper at ICLR 2022

1 2 3 4 5
GCS

0

50

100

150

200

250

300

SB
P

GCS_SBP (Imp=8.80e-02)

1 2 3 4 5
GCS

0

20

40

60

80

Bi
lir

ub
in

GCS_Bilirubin (Imp=8.41e-02)

20 40 60 80 100
Age

0

20

40

60

80

Bi
lir

ub
in

Age_Bilirubin (Imp=5.66e-02)

20 40 60 80 100
Age

0

50

100

150

200

HR

Age_HR (Imp=4.79e-02)

0 50 100 150 200 250
Urea

0

20

40

60

80

Bi
lir

ub
in

Urea_Bilirubin (Imp=4.77e-02)

1 2 3 4 5
GCS

0

500

1000

1500

2000

2500

PF
ra

tio

GCS_PFratio (Imp=4.29e-02)

0 50 100 150 200
HR

0

500

1000

1500

2000

2500

PF
ra

tio
HR_PFratio (Imp=4.24e-02)

0 50 100 150 200
HR

0

50

100

150

200

250

Ur
ea

HR_Urea (Imp=4.13e-02)

20 40 60 80 100
Age

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

GC
S

Age_GCS (Imp=4.09e-02)

0 500 1000 1500 2000 2500
PFratio

0

200

400

600

800

W
BC

PFratio_WBC (Imp=3.98e-02)

20 40 60 80 100
Age

0

200

400

600

800

W
BC

Age_WBC (Imp=3.76e-02)

1 2 3 4 5
GCS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
na

l

GCS_Renal (Imp=3.62e-02)

1 2 3 4 5
GCS

0

50

100

150

200

HR

GCS_HR (Imp=3.58e-02)

100 120 140 160
Na

0

20

40

60

80

Bi
lir

ub
in

Na_Bilirubin (Imp=3.45e-02)

1 2 3 4 5
GCS

100

110

120

130

140

150

160

170

Na

GCS_Na (Imp=3.36e-02)

0 500 1000 1500 2000 2500
PFratio

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
na

l

PFratio_Renal (Imp=3.29e-02)

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.10

0.05

0.00

0.05

0.10

0.2

0.1

0.0

0.1

0.2

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.2

0.1

0.0

0.1

0.2

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.2

0.1

0.0

0.1

0.2

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.2

0.1

0.0

0.1

0.2

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Figure 11: The shape plots of top 16 interactions in MIMIC2. We also show the feature importance
(Imp).
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