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Abstract

Predicting the structure of interacting chains is crucial for understanding biological1

systems and developing new drugs. Large-scale Pre-trained Protein Language2

models (PLMs), such as ESM-2, have shown an impressive ability to extract3

biologically meaningful representations for protein contact and structure prediction.4

In this paper, we show that ESMFold, which has been successful in computing5

accurate atomic structures for single-chain proteins, can be adapted to predict the6

heterodimer structures in a lightweight manner. We propose Linker-tuning, which7

learns a continuous prompt to connect the two chains in a dimer before running8

it as a single sequence in ESMFold. Experiment results show that our method is9

significantly better than the ESMFold-Linker baseline, with relative improvements10

of +28.13% and +54.55% in DockQ score on the i.i.d heterodimer test set and11

the out-of-distribution (OOD) test set HeteroTest2, respectively. Notably, on the12

antibody heavy chain light chain (VH-VL) test set, our method successfully predicts13

all the heavy chain light chain docking interfaces, with 46/68 medium-quality and14

22/68 high-quality predictions, while being 9× faster than AF-Multimer.15

1 Introduction16

Proteins are large biomolecules essential to life. They are sequences compromised of 20 types of17

amino acids and fold into three-dimensional (3D) structures to carry out functions. Predicting the18

3D structures of proteins from amino acid sequences is a long-standing challenge in computational19

biology. It is important for the mechanical understanding of protein functions as well as for designing20

new drugs. In 2021, AlphaFold2 (AF2) strikes a huge success in solving this challenge, achieving21

near experimental accuracy on protein structure prediction [1]. However, this system heavily relies22

on Multiple Sequence Alignments (MSAs) to extract the evolutionary information, but MSAs are not23

always available or high quality, especially for orphan proteins and fast-evolving antibodies [2].24

Inspired by the success of transformer language models in the field of Natural Language Processing25

(NLP), there is a line of work resorting to large-scale PLMs for protein structure prediction [2, 3, 4, 5].26

These PLM-based models, such as ESMFold [3], take only amino acid sequences as input, eliminating27

the need for MSAs. Powered by PLMs, they show strong abilities in capturing protein structure28

information [6, 7]. And they are able to predict protein 3D structures at the atomic level with high29

accuracy while being an order of magnitude faster than AF2. However, these models are developed30

for predicting the structures of single-chain proteins and it is not clear how to use them to predict31

multi-chain protein structures.32

To adapt these models for protein complex prediction, some researchers have proposed to use a33

poly-Glycine linker to join chains and input the linked sequences to the model to predict complex34

structures [8, 9]. The rationale is that the model should identify the linker segment as unstructured35

and fold the linked sequence in a similar way to multiple chains. Experimental result on AF2 shows36
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that this approach is simple yet effective. However, for the PLM-based models, whether a linker is37

effective or not for protein complex prediction remains unexplored. In the work of ESMFold, they38

briefly mention that they use a 25-residue poly-Glycine linker (denoted as G25 in the following) to39

join different chains for a specific protein complex example [3]. But they do not test the performance40

of the linker systematically. Based on existing work, we would like to investigate the following41

questions in this paper: 1) How well can a G25 linker perform on protein complex prediction? 2)42

Can we optimize the linker to achieve a better result? And how?43

Viewing proteins as the language of life, linkers in fact are the same things as prompts in natural44

language. Inspired by prompt engineering [10, 11] in NLP, we propose Linker-tuning, which is to45

automatically learn a linker for the PLM-based model ESMFold on the task of heterodimeric protein46

structure prediction. Our goal is to find a linker that can link the two chains of a heterodimer so the47

structure prediction model can fold it in a similar way as a single-chain protein. How to best achieve48

this goal, however, is non-trivial and remains under-explored for the complicated protein structure49

prediction model. Through preliminary analysis, we find that it is better to place linker optimization50

at the Folding Module instead of at the PLM, which is different from intuition.51

Considering ESMFold is a model with large-scale pre-trained PLM ESM2 that scales up to 15B52

parameters, to accelerate the linker learning procedure, we train and select our model on a proxy53

task called distogram prediction [12], a task that aims to predict inter-residue distance bins in the 3D54

space for each pair of residues in a given protein. After training, we test our learned linker on the 3D55

structure prediction task on three datasets to investigate the generalization ability of our method.56

In summary, our main contributions are as follows:57

• We propose Linker-tuning, a lightweight adaptation method that automatically learns a58

linker in the continuous space to adapt the single-chain ESMFold for heterodimer structure59

prediction.60

• We show that our method outperforms the ESMFold-Linker baseline by large margins on61

both contact and structure prediction tasks on the heterodimer test set.62

• We find that our method generalizes well to predict heterodimers with low sequence similarity63

and antibody VH-VL complex.64

2 Biological background65

Linker In biology, linkers are short amino acid sequences created in nature to separate multiple66

domains in a single protein [13]. Biologists have found that linkers rich in Glycine act as independent67

units and do not affect the function of the individual proteins to which they attach [14, 15]. Therefore,68

we can use the Glycine-rich linker to join interacting chains to make it a single sequence, hoping it69

folds in the way they suppose to. Grounded in biological principles, we further extend the natural70

discrete linkers to virtual continuous linkers for better protein complex structure prediction.71

Distogram and contact map The 3D structure of a protein is expressed as (x, y, z) coordinates of72

the residues’ atoms in the form of a pdb file [16]. The distance between two residues in a protein73

3D structure is defined as the Euclidean distance between their Cβ atoms (Cα for Glycine). Binning74

all the inter-residue distances in a protein into k distance bins, we can obtain the distogram matrix75

[12]. For a protein with L residues, the distogram d is an L× L matrix, with entry dij referring to76

the distance category of residue i and j. In a coarser granularity, we can compute the contact map77

c ∈ RL×L, where cij = 1 means the distance between residue i and j is less than or equal to 8Å.78

For protein complexes, we are especially interested in the inter-chain contact maps where the contacts79

are formed by two residues from different chains. The inter-chain contact map reflects the interface80

of interacting proteins, which is essential for predicting the 3D structure of the complex.81

3 Related work82

3.1 Protein structure prediction83

Single-chain protein structure prediction In recent years, single-chain protein structure prediction84

has attracted increasing attention from researchers in the Artificial Intelligence (AI) community,85
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mainly due to the ground-breaking success of the deep learning model AF2. Deep learning based86

protein structure prediction methods can be classified into two main categories: 1) MSA-based87

methods, such as AF2, that take protein sequences and MSAs as input and predict 3D structures88

[1, 17, 18]; 2) PLM-based methods, such as ESMFold, that take only protein sequences as input89

and predict 3D structures [3, 2, 4, 5, 19, 20, 21, 22, 23]. PLM-based methods do not rely on MSAs,90

which are time-consuming in searching homologs and not always available for some proteins like91

orphan proteins. Instead, they adopt large-scale pre-trained PLMs to learn evolutionary and structural92

meaningful representations for 3D structure prediction. In this work, we build our method upon PLM-93

based methods. Specifically, we adopt ESMFold [3] as the backbone since its code and pre-trained94

weights are all released and convenient to use. The overall architecture of ESMFold contains two95

parts: 1) ESM2: a PLM pre-trained with masked language modeling objective and scales up to 15B96

parameters; 2) Folding Module: contains Folding Trunk (similar to Evoformer in AF2) and Structure97

Module (same as the one in AF2), which are responsible for structure folding.98

Multi-chain protein structure prediction In biology, multi-chain proteins are protein complexes99

formed by interacting single-chain proteins where the interactions are driven by the same physical100

forces as protein folding [24]. Recently, there is a line of work repurposing single-chain AF2 for101

protein complex structure prediction. The methods can be summarized into two main categories:102

1) input-adapted methods that provide AF2 with pseudo-multimer inputs either by adding a large103

number to the residue_index between chains to indicate chain break [25, 26, 27, 28] or using a linker104

to join chains [8, 9]; and 2) training-adapted methods that retrain AF2 on multimeric proteins, such105

as AF-Multimer, the state-of-the-art (SOTA) method [29]. On the one hand, the two types of methods106

either do not update any parameters, or update all parameters of the base model, while our method107

falls in between, adding only a tiny number of extra parameters to the base model. On the other hand,108

existing work mainly focuses on the MSA-based method AF2, with little attention being paid to the109

PLM-based methods. In this work, we focus on adapting the PLM-based methods for two-chain110

protein structure prediction, which has not yet been explored.111

3.2 Prompt engineering112

In the NLP community, with the rise of large-scale pre-trained language models (LMs) such as GPT-3113

[30], “pre-train, prompt, and predict" has become a prevalent paradigm to steer the LM to perform a114

wide range of downstream tasks [10]. In this paradigm, the downstream tasks are reformulated in a115

form that is similar to the LM pre-training task using a textual prompt [30, 31]. The key challenge in116

prompt-based learning is to find the right prompt for a specific task, termed “prompt engineering".117

There is a line of work that automatically search the right prompts for downstream tasks [32, 33]. In118

particular, instead of natural language prompts, some researchers propose to use continuous prompts,119

directly performing prompting in the embedding space of the LM [34, 11]. In their experiment,120

continuous prompts achieve strong results in both language understanding and generation tasks. In121

this work, we follow the idea of continuous prompting, searching for the linkers in the continuous122

space.123

4 Method: Linker-tuning124

To adapt the single-chain model for multi-chain protein structure prediction, we propose a lightweight125

adaptation method called Linker-tuning and a novel weighted distogram loss. The basic idea of our126

method is to optimize linkers, i.e., prompts, in the embedding space of ESMFold.127

4.1 Problem formulation128

Continuous linker tuning of ESMFold for protein complex structure prediction is a continuous opti-129

mization problem. Our goal is to find a linker that maximizes the performance of ESMFold on protein130

complex prediction. To be specific, we first denote training data as Dtrain = {(x1, y1), ..., (xn, yn)}131

where xi = (xA
i , x

B
i ) and xA

i , x
B
i represent the amino acid sequences of two chains, yi is the structure132

of protein xi. For a specified linker length L, the linker optimization problem is defined as follows:133

l∗ = argmin
l∈EL

1

n

n∑
i=1

L(xi, yi, l) (1)
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Figure 1: Overview of Linker-tuning method with ESMFold as backbone. (A) Training. Based
on ESMFold (shown in blue colors), we add a linker embedding module EL (shown in yellow colors)
with linker length L. Given a protein with multiple chains, we add the linker specified in the linker
embedding module between each chain before running it as a single chain through the ESMFold
model. The model outputs a distogram with the linker part removed. We use a weighted distogram
loss as the objective function to train the linker embedding module while freezing all the parameters
in ESMFold. (B) Inference. After training, ESMFold with our linker embedding module can be
treated as a whole black box model, denoted as ESMFold-Linker*. The input for this model is
just protein sequences. And the model outputs a predicted distogram as well as all the atoms’ 3D
coordinates for the protein.

where l denotes a linker, EL ⊂ RL×d denotes a specific embedding space with embedding dimension134

of d, L(xi, yi, l) denotes complex structure prediction loss w.r.t. protein (xi, yi) using linker l.135

Therefore, the linker optimization is placed at the task level instead of at the instance level.136

4.2 Model architecture137

Our method is implemented based on ESMFold, a PLM-based strong structure prediction model.138

As shown in Figure 1, we place the continuous linker at Folding Module of ESMFold, which takes139

both the sequence representation from ESM2 and the amino acid sequence as input. There are two140

main reasons that motivate us to place the continuous linker at Folding Module instead of at ESM2.141

First, we can utilize the pre-trained distogram head while avoiding backpropagating to the giant142

ESM2 model. If we put it on the ESM2 side, the combined depth of training will go up to 104143

layers, making it easily suffer from gradient vanishing and exploding. Second, preliminary analysis144

on inter-chain contact prediction (shown in Table 4) shows that using Folding Module on top of145

ESM2-3B increases prediction precision dramatically over ESM2-3B while ESM2-3B just performs146

slightly better ESM2-650M, implying that Folding Module is more sensitive to structure prediction147

and easier to control.148

We implement a plug-in linker embedding module, which contains L× d learnable parameters where149

d is the embedding dimension of Folding Module. During training, only the linker embedding module150

is trainable, while all the original parameters in ESMFold are frozen. Therefore, ESM2 is just a151

sequence feature extractor that generates features for Folding Module. As shown in Figure 1(A), we152

first use a poly-Glycine linker of the same length as the continuous linker to join different chains for153

the ESM2 input. Then we obtain the protein sequence representation and input it to Folding Module154

along with the chains connected by the continuous linker. Finally, the distogram head outputs a155
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probability distribution pD
ij ∈ R64 of each residue pair (i, j) on 64 distance bins, which is used for156

computing the loss function. After training, we view ESMFold and the linker embedding module as157

a whole and name it as ESMFold-Linker*. As shown in Figure 1(B), it can be used to predict the158

distograms as well as the 3D coordinates of all the residues for multi-chain protein sequences.159

4.3 Weighted distogram loss160

Intuitively, to predict the structure of a protein complex, we need to know two things: 1) the structures161

of each chain, on which ESMFold has been trained; and 2) the interaction interface between chains,162

which ESMFold has never seen before. Therefore, we propose to weight the intra-chain predictions163

and inter-chain predictions differently, with a focus on learning better interface between chains.164

Formally, let NA, NB be the number of residues in two chains in a protein complex, N = NA +NB165

be the total number of residues in the protein complex. Let yij ∈ R64 denote the one-hot labels of166

the 3D space distance bins between residue pair (i, j) and pij ∈ R64 be the corresponding predicted167

probability. We define a weighted distogram loss for a protein complex as follows:168

L(x, y, l) = L1(x
A, yA) + L1(x

B , yB) + λL2(x, y, l) (2)

where L1(., .) denotes the single-chain distogram loss given as follows:169

L1(xA, yA) = − 2

NA(NA + 1)

NA∑
i=1

NA∑
j≥i

64∑
b=1

yijblog(p
D
ijb) (3)

and L2(x, y, l) denotes the inter-chain distogram loss defined as follows:170

L2(x, y, l) = − 1

NANB

NA∑
i=1

NB∑
j=1

64∑
b=1

yijblog(p
D
ijb) (4)

and λ ≥ 2 is a hyperparameter controlling the attention we place on the interface of a protein complex.171

In our method, we use the weighted distogram loss as the training objective and validation metric.172

5 Experiments173

5.1 Experiment setting174

Datasets We mainly perform experiments on heteromers of two chains. For training, we use the175

dataset from APOC [35], which contains heterodimers released in the Protein Data Bank (PDB)176

before 2018-09-30. After filtering out similar sequences at a 40% sequence identity threshold, it177

is split into train/valid/test1 sets by CDPred [36]. We further filter out those proteins that contain178

missing Cβ coordinates (Cα for Glycine) in the pdb file. The resulting train/valid/test sample sizes are179

2,946/193/172, respectively. The average number of residues in the test set is 367, with a maximum180

of 998. Furthermore, we use the largest blind test set HeteroTest22 from CDPred, which contains181

55 heterodimers released in PDB between 2021-09-01 to 2021-10-20 [36]. The average number of182

residues is 505, with a maximum of 979. In addition, we use the antibody VH-VL test set from183

XtrimoDock [37]. It contains 68 samples released in PDB after 2022-02-01. Each sample consists of184

one heavy and one light chain, forming the fragment variable region (Fv), which is a critical part of185

antigen binding. The average number of residues is 231, with a range of [223, 244].186

Models We use ESMFold-v13 as our backbone model. ESMFold-v1 consists of a 3B ESM2 model187

and a 670M Folding Module, which is the largest yet publicly available ESMFold checkpoint. For the188

Linker-tuning method, the linker length L is set to 25, equal to the length of the manual poly-Glycine189

linker. So the plug-in linker embedding module contains 0.027M parameters. We initialize the linker190

embedding using the embedding of Glycine. During training, only the linker embedding module191

is trainable, while all the original parameters in ESMFold are frozen. The hyperparameter λ in the192

1https://github.com/BioinfoMachineLearning/CDPred/tree/main/example/training_datalists
2https://zenodo.org/record/6647564#.ZDWvMuxBxhE
3https://dl.fbaipublicfiles.com/fair-esm/models/esmfold_3B_v1.pt
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weighted distogram loss is set to 4. We train the model on a single Nvidia A100 80GB GPU with193

batch_size=1 and num_epoch=15. The protein sequences in the training set are cropped to 225194

residues to fit in GPU memory using the multi-chain cropping algorithm from AF-Multimer [29].195

The number of recycles is set to 1 during training to reduce computation. We use Adam optimizer196

with a learning rate of 5e-4. We select the best model based on the validation weighted distogram197

loss. During inference, the number of recycles is set to 3.198

Baselines We compare our method with several baselines and one SOTA model as follows:199

• ESMFold-Linker: ESMFold-v1 with chains joined by the G25 linker as input.200

• ESMFold-Gap: ESMFold-v1 with residue_index_offset set to 512.201

• AlphaFold-Linker [29]: AF2 with a 21 residue repeated Glycine-Glycine-Serine linker.202

• HDOCK [38]: rigid docking with single chains predicted by AF2.203

• AF-Multimer(v3 best) [29]: AF-Multimer contains five models that are trained on all protein204

structures released in PDB before 2021-09-30. We take the best prediction from the five205

AF-Multimer models.206

Metrics For protein complex 3D structure prediction, we use DockQ [39] to evaluate the quality207

of the predicted interfaces. As defined by Critical Assessment of PRediction Interactions (CAPRI),208

interfaces with DockQ < 0.23 means incorrect prediction, interfaces with 0.23 ≤ DockQ < 0.49209

means acceptable prediction, 0.49 ≤ DockQ < 0.80 means medium quality prediction, and DockQ ≥210

0.80 means high-quality prediction. To evaluate the whole predicted protein complex structure rather211

than the interfaces, we adopt two commonly used global structure metrics, namely, Root Mean212

Squared Deviation (RMSD), and Template-Modeling Score (TM-Score) [40]. Besides, we use the213

top-k precision as an evaluation metric for inter-chain contact prediction. We set k = Ns/5, where214

Ns is the minimum chain length for a given protein complex.215

5.2 General heterodimer structure prediction216

Table 1 shows the protein complex structure prediction results of our methods and the baselines on217

the heterodimer test set and HeteroTest2. On the i.i.d. heterodimer test set, ESMFold-Linker achieves218

a 0.32 DockQ score and a 0.76 TM-score on average. By optimizing the linker, our model, i.e.,219

ESMFold-Linker*, achieves a 0.36 DockQ score and a 0.79 TM-score on average on the same test220

set, outperforming the ESMFold-Linker baseline by 13.61% and 3.28%, respectively. Interestingly,221

the gain of the interface quality (13.61%) is much larger than the gain of the whole structure quality222

(3.28%), indicating that our learned linker mainly improves the interfaces more than the overall223

structures. We further improve the ESMFold-Linker* by incorporating a large chain break, which224

adds a large number to the residue index in Folding Module. And the model ESMFold-Linker*-225

Gap achieves a 0.41 DockQ score and 0.80 TM-score, outperforming ESMFold-Linker by 28.13%226

and 5.26%, respectively. On the OOD test set HeteroTest2, we observe similar results. ESMFold-227

Linker*-Gap surpasses ESMFold-Linker by 54.55% DockQ score and 4.82% TM-score, respectively,228

suggesting that our learned linker can generalize well to OOD data.229

Compared to AlphaFold-Linker, a model that takes linked sequences and MSAs as input, our best230

model ESMFold-Linker*-Gap achieves similar DockQ scores on both test sets, with lower values in231

RMSD. Meanwhile, it outperforms the classic docking method HDOCK with AF2 predicted chains232

as input in terms of DockQ score and RMSD. Furthermore, we compare it with the SOTA model233

AF-Multimer.4 From Table 1, we can see there is still a large gap between our method and the234

AF-Multimer(v1 best) on HeteroTest2. There are three main reasons responsible for this gap: 1) The235

base model for AF-Multimer is AF2, which is a model stronger than ESMFold in general, especially236

for those proteins that have high-quality MSAs; 2) AF-Multimer is a fully fine-tuned version of AF2237

on a larger protein complex structure dataset while our model is a prompt tuning method trained only238

on the heterodimer dataset; 3) AF-Multimer ensembles five models, while we only use one model.239

However, our method is able to predict some proteins that are hard for both ESMFold-Linker and240

AF-Multimer. As shown in Figure 2, ESMFold-Linker* successfully predicts the interface of the241

4We use AF-Multimer v1 here because of the overlapping training data of AF-Multimer v3 and HeteroTest2.
Since AF-Multimer v1 contains the heterodimer test set in its training data, we do not report the performance.
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Table 1: Structure prediction results on Heterodimer data.
Heterodimer test HeteroTest2

DockQ↑ RMSD↓ TM-score↑ DockQ↑ RMSD↓ TM-score↑

ESMFold-Linker 0.32
±0.34

10.76
±8.68

0.76
±0.19

0.11
±0.20

20.10
±10.31

0.62
±0.19

ESMFold-Gap 0.34
±0.35

10.37
±8.89

0.77
±0.19

0.11
±0.21

20.17
±11.70

0.63
±0.19

AlphaFold-Linker 0.42
±0.40

9.38
±9.46

0.83
±0.17

0.17
±0.32

20.95
±11.93

0.71
±0.18

HDOCK 0.36
±0.38

9.74
±8.66

0.81
±0.17

0.15
±0.29

19.49
±11.72

0.68
±0.18

ESMFold-Linker*(ours) 0.36
±0.35

9.19
±8.04

0.79
±0.19

0.14
±0.23

19.03
±10.93

0.65
±0.20

ESMFold-Linker*-Gap(ours) 0.41
±0.35

8.59
±8.39

0.80
±0.19

0.17
±0.25

18.53
±11.27

0.65
±0.20

AF-multimer(v1 best) 0.30
±0.35

15.07
±11.78

0.73
±0.20

Figure 2: Comparison of predicted structure quality and inference time of heterodimer 7D7F_AD by
ESMFold-Linker, ESMFold-Linker*(ours), and AF-Multimer(v3 best). 7D7F is a membrane protein
comprising 917 residues in the A and D chains. Structures are drawn using Protein Imager [41]. Gray
indicates the ground truth structure.

membrane protein 7D7F_AD with a DockQ score of 0.39 while ESMFold-Linker and AF-Multimer242

cannot predict the interface correctly.243

5.3 Antibody heavy chain light chain docking244

We further test our method on antibodies, an important type of protein in designing new drugs.245

Particularly, we focus on the heavy chain and the light chain docking. Table 2 shows the structure246

prediction results of MSA-free methods (first two methods) and MSA-based methods (last four247

methods) on the VH-VL test set. As an MSA-free model, ESMFold-Linker predicts all the interfaces248

successfully with an average DockQ score of 0.737, better than the classical docking method HDOCK.249

But it still lacks behind AlphaFold-Linker. For the three linker-based models, the distributions of their250

DockQ scores are shown in Figure 3. Equipped with the optimized linker, ESMFold-Linker* achieves251

an average DockQ score of 0.753, with 7 more high-quality interface predictions than ESMFold-252

Linker and 5 more high-quality interface predictions than AlphaFold-Linker. This result indicates253

that our learned linker trained on the general heterodimer dataset generalizes well to antibody data.254

Although the interface prediction performance of our method still falls behind AF-Multimer(v3 best),255

the gap in the DockQ score is much smaller compared to the case in HeteroTest2. Besides, it is256

quite close in TM-score to XtrimoDock [37], which is trained on an antibody-antigen dataset. Given257

our method only requires sequences as input, it can be a potentially useful model in the scenario of258

antibody design where the evolving antibody might not have MSAs.259
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Table 2: Structure prediction results on VH-VL.

DockQ↑ RMSD↓ TM-score↑

ESMFold-Linker 0.737
±0.084

1.459
±0.474

0.955
±0.019

ESMFold-Linker*(ours) 0.753
±0.083

1.388
±0.498

0.959
±0.019

HDOCK 0.705
±0.202

2.0318
±2.405

0.926
±0.101

AlphaFold-Linker 0.746
±0.089

1.4068
±0.520

0.957
±0.021

AF-multimer (v3 best) 0.779
±0.091

1.287
±0.518

0.963
±0.020

XtrimoDock 0.775
±0.021

1.264
±0.572

0.965
±0.097 Figure 3: Boxplot of DockQ on VH-VL.

6 Analysis and Discussion260

Table 3: Inference time.

Time

ESMFold-Gap 3 min
ESMFold-Linker 4 min
ESMFold-Linker* 4 min

AF-Multimer 36 min

ESMFold-Linker* is 9× faster than AF-Multimer in inference261

We report the structure inference time of the MSA-free methods262

(ESMFold-Gap, ESMFold-Linker, and ESMFold-Linker*) and the263

SOTA MSA-based model AF-Multimer on the VH-VL dataset using264

A100 80G GPU. Table 3 shows the total model inference time on265

the VH-VL test set, where AF-Multimer’s time is only for one266

model, excluding the time of MSA search. As shown in Table 3, on267

the VH-VL test set with an average sequence length of 231, both268

ESMFold-Linker and ESMFold-Linker* take 4 minutes to run the269

inference, which is 9× faster than AF-Multimer.270

Large chain break or linker, or both? We perform an ablation study on ESMFold with chain break271

and linker to better understand the contribution of each operation. Table 4 shows the comparison272

of inter-chain contact prediction precision of ESMFold-based methods on the heterodimer test set273

and HeteroTest2.5 As shown in Table 4, it is hard to tell whether ESMFold-Linker or ESMFold-Gap274

is better. However, combining the two (ESMFold-Linker-Gap) provides significant performance275

gains over using either operation alone on both datasets. We observe similar effects in our method276

when incorporating chain break with the optimized linker. Compared to using a chain break, the277

major limitation of using a linker is that it increases the computation cost (shown in Table 3). But278

we can enjoy the advantage of a large degree of freedom for improvement and better performance.279

Empirically, combining the two gives a better performance than just using each of them.280

Table 4: Comparison of inter-chain contact prediction results on Heterodimer data.

(%) Heterodimer test HeteroTest2

top Ns/5 top Ns/2 top Ns top Ns/5 top Ns/2 top Ns

ESM2-650M-Linker 12.02 9.89 8.33
ESM2-3B-Linker 12.14 10.86 8.89

ESMFold-Linker 49.88 47.04 40.64 23.00 18.92 13.72
ESMFold-Gap 51.15 48.13 40.82 22.09 18.21 13.08
ESMFold-Linker*(ours) 57.55 53.04 44.37 27.11 22.14 15.46
ESMFold-Linker-Gap 57.72 53.44 45.41 25.20 19.84 14.66
ESMFold-Linker*-Gap(ours) 60.40 56.27 48.00 28.00 23.69 17.26

The learned linker allows more chain twist while rarely interacting with the chains In Figure 4,281

we visualize the predicted contact maps of two proteins with the linker inside to understand how the282

5The contact map probabilities are obtained from the predicted distogram probabilities by summing the
probability mass in each distribution below 8.25Å.
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Figure 4: Contact maps of viral proteins 7VYR_HL (A) and 7WPE_YZ (B).

linker interacts with the chains. The two proteins are 7VYR_HL and 7WPE_YZ, corresponding to a283

good case (0.77 DockQ score) and a bad case (0.01 DockQ score) in our model ESMFold-Linker*.284

As shown in Figure 4, both the G25 linker (middle) and our learned linker (right) seem to rarely285

interact with the protein chains in both cases. This result indicates that ESMFold is able to recognize286

the linker part as a disordered region and fold the connected sequences as multi-domain proteins.287

Furthermore, there are more predicted contacts using the learned linker than using the G25 linker in288

both cases. This result suggests that the learned linker allows the connecting chains to freely twist289

and rotate to recruit binding partners more than the manual linker.290

Limitations Our method has some limitations. First, if the base model (ESMFold-v1) is not good291

at predicting a certain type of protein complexes, such as the heterodimers in HeteroTest2, adding an292

optimized linker can not make it a strong model for that type of data since the trainable parameter size293

is very small. Second, our method is tested on heterodimers, whether it generalizes to homodimers or294

multi-chain proteins is unknown. Third, the linker is only optimized at the Folding Module, while the295

linker at ESM2 remains constant. And the linker length is treated as a hyperparameter, which can be296

further optimized to improve performance and speed.297

7 Conclusions and future work298

The use of prompts in protein structure prediction models is not always clear due to the high299

complexity of models and a general lack of biological knowledge for AI researchers. In this work,300

we have proposed Linker-tuning, a prompt tuning method to adapt the single-chain pre-trained301

ESMFold for heterodimer structure prediction. As proof-of-concept, we showcase that we can place302

a soft prompt in ESMFold. The task is reformulated as a pre-trained task itself under the biological303

prior. Experiments show that merely tuning a prompt on ESMFold can significantly improve the304

predicted complex structure quality over the discrete prompt handcrafted with strong biological305

insight. Hopefully, our work can inspire more work on AI for Protein Science.306

There are two directions for future work. Firstly, we would like to extend our work to antibody-307

antigen structure prediction, a critical task with direct relevance to drug design. Secondly, we are308

going to explore structural-aware antibody design using our method since it is efficient and fast. By309

pursuing these directions, our objective is to make progressive contributions towards the development310

of effective drugs for disease treatment and pain relief.311
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