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ABSTRACT

Artistic style, a unique medium for artists to express creativity through elements
like form, color, and composition, poses a challenge for computer vision due to its
intricate patterns and nuanced aesthetics. Contemporary models, often reliant on
specific datasets, face limitations in their generalizability and precision in identi-
fying individual artists’ styles. From an information theory perspective, we ex-
amine the limitations of fine-tuning and investigate techniques to disentangle con-
tent from style information. We note differences in artistic style representation
between unimodal and multimodal models. As a result, we propose a plug-and-
play approach designed to efficiently separate content information within Vision-
Language Models (VLMs), preserving stylistic details. Furthermore, we present
the WeART dataset, a large-scale art dataset with high-quality annotations, to eval-
uate the artistic style representation capabilities of models. Experimental results
show that our method improves the performance of VLMs in style retrieval tasks
across several datasets. We will publicly release the proposed dataset and code.

1 INTRODUCTION

“Style is a simple way of saying complicated things.” – Jean Cocteau

The artistic works of
Qi Baishi

CLIP

DINO v2

The artist of this painting 
is likely Zhang Daqian, 

who is known for 
mastering traditional 
Chinese ink painting.

CSD
(Fine-tuned CLIP)

The artistic works of
Qi Baishi

Decoupled CLIP
(Ours)

The artistic works of 
Qian Yansong

The artistic works of 
Zhang Daqian

The artistic works of 
Bruegel

(a) Artistic Style Retrieval Results (b) Performance Comparison

mAP@1

Query art works 
with the closest 

artistic style

Figure 1: (a) Style representation models are typically divided into two categories: general repre-
sentation models and specific style fine-tuning models. General representation models struggle to
distinguish between content and artistic style when mixed, leading to retrieval results with similar
content but different styles. Specific style fine-tuning models are limited by the diversity of train-
ing datasets, performing poorly with diverse artistic styles. In contrast, our model achieves more
accurate and extensive style representation by decoupling multimodal and unimodal visual repre-
sentations. (b) Performance comparison between our model and other retrieval baseline models.

Artistic style is the essence of an artist’s personalized expression, conveyed through visual elements
such as form, color, and composition to communicate themes and creativity. Despite advancements
in computer vision technology, recognizing and describing this unique style remains challenging,
as illustrated in Figure 1(a). Artistic style encompasses complex visual patterns, aesthetic prefer-
ences, and unique techniques, which are difficult to capture through traditional quantitative analysis
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or natural language descriptions. With the development of generative models, accurately expressing
artistic style in tasks such as image transformation, style transfer, and editing has become crucial.
However, the subjectivity and personalized techniques inherent in artistic style make it challeng-
ing for general image representation methods to capture these subtle differences, often leading to
confusion between style and content.

Currently, most artistic style representation models Wright & Ommer (2022); Wang et al. (2023);
Somepalli et al. (2024); Zhang et al. (2019); Girdhar et al. (2023); Li et al. (2023) rely on classifica-
tion datasets of specific art forms for training. The effectiveness of these methods is limited by the
richness of the datasets, making it difficult to handle a broader range of art categories. Consequently,
these models have limited generalization ability and practicality when faced with unknown artistic
styles or categories. Moreover, current models often face challenges in fine-tuning their style repre-
sentations down to the granularity of individual artists, which results in challenges when it comes to
precisely discerning stylistic variations among works by different artists.

We identify noticeable differences in the representation of artistic styles between multimodal Vision-
Language Models (VLMs) Radford et al. (2021); Li et al. (2022); Zhai et al. (2023); Zhu et al.
(2023) and unimodal self-supervised modelsCaron et al. (2021); Oquab et al. (2023); Chen* et al.
(2021). VLMs can simultaneously capture both semantic information and stylistic features of im-
ages, whereas unimodal self-supervised models excel at recognizing the content representation of
images. Leveraging this disparity, we conduct an in-depth analysis of the overlapping areas between
style and content in image information representation, as well as the overlapping areas between
different modalities in multimodal models. Based on this analysis, we propose a visual representa-
tion decoupling technique grounded in mutual information. The core of this method is to retain the
stylistic features of the image while removing non-stylistic content information, enabling the model
to focus more effectively on representing artistic style.

To evaluate the capability of existing models to represent artistic style, we introduce a new high-
quality dataset named WeART. This dataset contains 197,632 images from public museum col-
lections, artists’ public blogs, and personal portfolios, covering seven art categories and including
works by 661 internationally renowned artists. Through extensive screening and strict selection cri-
teria, WeART ensures the high-definition quality and integrity of each artwork. In terms of scale,
diversity, and image quality, WeART provides valuable resources for the study of artistic style and
promotes further research and technological advancements in this field.

Experimental results demonstrate that our method adheres to the principles of mutual information
analysis and achieves performance enhancements in style retrieval tasks, as shown in Figure 2(b),
across two annotated artist datasets, WikiART Saleh & Elgammal (2015) and WeART. Notably, our
decoupling approach is designed to be modular and flexible, ensuring compatibility with a variety
of VLMs and fine-tuned style representation models. This not only enhances their artistic represen-
tation capabilities but also improves the robustness and adaptability of these models.

In summary, the main contributions of this paper include:

• Analyze existing artistic style and general image representation models from an informa-
tion theory perspective, identifying key criteria for effective style models.

• Develop a comprehensive decoupling method that isolates content-independent artistic
styles from VLMs, enhancing the model’s stylistic representation.

• Introduce the WeART dataset, which improves scale, diversity, and image quality over
existing art datasets. Experiments show our method’s effectiveness on both WikiART and
WeART datasets, demonstrating cross-model compatibility.

2 RELATED WORK

2.1 STYLE REPRESENTATION LEARNING

Learning style representation Graham et al. (2012); Lun et al. (2015); Matthews & Merriam (2020);
Silva et al. (2021); Srinivasa Desikan et al. (2022) is both challenging and crucial. Effective style
representation enhances our understanding of artistic styles and supports applications such as fine-
grained image retrieval, creative generation guidance, and copyright infringement detection. Early
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methods relied on basic visual attributes, including color distribution, texture patterns, and com-
positional structure. Specific characteristics unique to different art forms, such as oil paintings or
Chinese paintings, were employed to capture distinctive stylistic features.

For instance, ArtFID Wright & Ommer (2022) compiled multiple art datasets and trained a classifi-
cation network, proposing a style evaluation metric. Similarly, Lee et al. Lee et al. (2021) utilized
separate neural network modules for image style and content to facilitate style-based image retrieval.
Wang et al. Wang et al. (2023) developed an attribution model trained on synthesized styles to iden-
tify images with similar styles. Additionally, Li et al. Li et al. (2023) employed the Gram matrix
to extract textural features and clustered these into a style space. SomePalli et al. Somepalli et al.
(2024) introduced a framework for extracting style descriptors. However, these efforts are based on
fine-tuning datasets of specific artists, limiting their applicability to out-of-distribution (OOD) art
styles.

2.2 STYLE TRANSFER

Artistic style transfer Dumoulin et al. (2016); Gatys et al. (2016); Huang & Belongie (2017); Luan
et al. (2017); Park et al. (2020); Wang et al. (2022); Zhang et al. (2013) aims to apply the artistic
style of one image to another, generating a new image with a specific style. Gatys et al. Gatys et al.
(2016) introduced a method based on Convolutional Neural Networks (CNNs) in 2015, optimizing
content and style features, which quickly gained attention.

With deep learning advancements, style transfer methods have evolved. Improved algorithms like
Fast Style Transfer Johnson et al. (2016) and Arbitrary Style Transfer Huang & Belongie (2017)
enhance computational efficiency and transfer effectiveness. Technologies like Generative Adver-
sarial Networks (GANs) Goodfellow et al. (2014) and Variational Autoencoders (VAEs) Kingma
(2013) have further improved the quality and diversity of generated images. Recently, Diffusion
Models Ho et al. (2020) have shown significant potential, generating high-quality images by pro-
gressively adding noise and learning the denoising process.

𝑆(𝑠𝑡𝑦𝑙𝑒)

C(𝑐𝑜𝑛𝑡𝑒𝑛𝑡)

Z!(Image	Representation) Z"(Text	Representation)
I 𝑍!; 𝐶	 	𝑍")

I(𝑍!; 𝑍"; 𝐶)

I(𝑍! , 𝑍"; 𝑆)
Decoupled Artistic Style Representation

I 𝑍"; 𝐶	 	𝑍!)

Figure 2: We utilize mutual information analy-
sis to separate artistic style representations. Three
circles represent image features from VLMs, text
features, and style-related information; their inter-
sections illustrate shared mutual information. By
mitigating content-related feature, this method en-
ables the precise extraction of style features.

However, the current landscape is marked by
an absence of objective and quantifiable bench-
marks for assessing style transfer efficacy.
Traditional metrics for image quality assess-
ment, such as the Fréchet Inception Distance
(FID)Heusel et al. (2017) and the Inception
Score (IS)Barratt & Sharma (2018), fail to di-
rectly measure the stylistic resemblance be-
tween the generated image and its reference
counterpart.

3 MOTIVATION AND ANALYSIS

We start by providing a formal definition of
the modalities and information within image-
text models: we denote the image modality as
Xi, the textual modality as Xt , style-related
information as S, and style-unrelated informa-
tion, which we consider as content informa-
tion, as C. As shown in Figure 2, Using the
definition of mutual information, we can parti-
tion the style-related information within image-
text models into three components, as shown in
equation (1):

I (Xi, Xt;S) = I (Xi;Xt;S) + I (Xi;S | Xt) + I (Xt;S | Xi) . (1)

I (Xi;Xt;S) represents the shared style information, I (Xi;S | Xt) represents the style information
exclusive to the image modality. Similarly, I (Xt;S | Xi) signifies the style information carried
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solely by the text modality. At the same time, the style-related information I (Xi, Xt;S) in the
image can be obtained by decoupling and removing the content-related information from the total
mutual information, as shown in Equation (2):

I (Xi, Xt;S) = I(Xi;Xt)− I (Xi, Xt | S) = I(Xi;Xt)− I (Xi, Xt;C) . (2)

Current contrastive learning based VLMs primarily focus on increasing the mutual information
I(Xi;Xt) between images and text, and further enhancing task-relevant information I (Xi;Xt;S)
during the supervised fine-tuning phase, yet they neglect the modeling of unique information in im-
ages and texts. Typically, such methods generate a pair of representations Tosh et al. (2021); Tsai
et al. (2020) as:

Zi = argmax
Zi:=Eimg(Xi)

I (Zi;Xt) , Zt = argmax
Zt:=Etxt(Xt)

I (Zt;Xi) . (3)

Zi can encode images Xi and Zt can encode text Xt , by maximizing a lower bound on I(Xi;Xt)
using the InfoNCE loss. From the standpoint of information theoryLiang et al. (2021; 2024), we are
able to obtain:

I (Zi, Zt;S) = I (Xi, Xt;S)− I (Xi;S | Zt)− I (Xt;S | Zi) < I (Xi, Xt;S) . (4)

Comprehensive and extensive datasets can effectively reduce the information gap between X and Z.
However, fine-tuning with small-scale data often exaggerates this gap, thereby impacting the model’s
applicability and robustness. Decoupling style representations from the image representations of
large-scale trained VLMs is a more general approach. We can decompose the mutual information
that is relevant to content but irrelevant to style into the following three components:

I (Zi, Zt;S) = I(Zi;Zt)− I (Zi, Zt;C)

= I(Zi;Zt)− I (Zi;Zt;C)− I (Zi;C | Zt)− I (Zt;C | Zi) .
(5)

Unimodal Self-Supervised Models

Multimodal Vision-Language Models

mAP mAR F1-Score

Figure 3: Multimodal VLMs exhibit strong performance on ImageNet also demonstrate excellence
in artistic style retrieval on the WikiART dataset. In contrast, Unimodal self-supervised models
show an opposing trend.

As illustrated in Figure 3, we observe that VLMs exhibit characteristics that are markedly different
from those of self-supervised image representation models. Due to variations in training data, data
augmentation strategies, and evaluation methods, VLMs that perform well on ImageNet also excel
in artistic style retrieval tasks. In contrast, self-supervised models demonstrate the opposite trend.
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Self-supervised image models are trained using only the image modality, and robust data augmen-
tation strategies effectively disrupt the style information while preserving the content information.
Consequently, we believe that self-supervised models, such as DINOv2, contain more content infor-
mation exclusive to the image side compared to multimodal models like CLIP.

Furthermore, we note that in the text representations of multimodal models, the content features
described by the text include not only the shared information between images and text but also
information exclusive to the text. Therefore, our research aims to decouple and obtain representa-
tions related solely to style by removing the image-exclusive informationI (Zi;C | Zt) contained
in DINOv2 from the multimodal models, as well as the shared informationI (Zi;Zt;C) and text-
exclusive information I (Zt;C | Zi) from the text representations of VLMs.

4 METHODOLOGY

4.1 FEATURE SPACE CONSISTENCY MAPPING

Based on the analysis of style representation disentanglement in VLMs presented in the previous
chapter, our goal is to map three distinct types of information features into a shared feature space
and integrate them to effectively disentangle image style features. As depicted in Figure 4(a), we use
a large-scale image-text paired dataset to fine-tune the self-supervised model DINOv2. This ensures
that the image content representation features generated by DINOv2 match the dimensions and
scales of the representation features from the CLIP model, thus achieving feature space consistency.
We select a subset of the CC3MChangpinyo et al. (2021) dataset filtered by the LLaVA Liu et al.
(2024) project, containing 595,000 high-quality images and their corresponding text descriptions, as
our training dataset.

Training commenced with the publicly available DINOv2 model, continuing its original training
and image augmentation strategies, within a student-teacher framework. The key addition to the
original model is an extra constraint: the student model’s output distribution must align with the
feature output distribution of the CLIP model for the corresponding text descriptions. This ensures
consistency between the output spaces of DINOv2 and CLIP and enhances the model’s focus on
image content information.

The loss function employed during training is as follows:

Loss = min
θstudent

H (Pteacher(i), Pstudent(i)) + min
θstudent

H (CLIPtext(t), Pstudent(i)) , (6)

where where H denotes the Cross Entropy Loss, i represents the real image data, and t stands for
the paired text data. It’s worth noting that the text and image representations in CLIP are already
within the same feature space, thus requiring no additional alignment operations.

4.2 FEATURE EXTRACTION AND DECOUPLING

Subsequently, we obtained three features of the artworks through three different methods, as shown
in Figure 4(b): first, image features extracted using the CLIP model which incorporates all in-
formation I(Zi;Zt); second, image features extracted using the DINOv2 model which captures
single-modal information I (Zi;C | Zt) from images ; and third, text description features derived
after generating image descriptions with LLMs such as GPT-4, and then extracting text information
I (Zi;Zt;C) + I (Zt;C | Zi) by using the CLIP text encoder.

We denote the image features extracted by the CLIP model as a⃗, the text features extracted by the
CLIP model as b⃗, the image features extracted by the DINOv2 model as c⃗, and the final decoupled
style features as s⃗. The mathematical representation of the decoupling process is as follows:

d⃗ = Norm(⃗b+ c⃗); s⃗ = Norm(⃗a− Projd⃗ a⃗) = Norm(⃗a− a⃗ · d⃗
d⃗ · d⃗

· d⃗). (7)

As shown in Figure 4(c), the text representation generated by the CLIP model (denoted as b⃗) inte-
grates both the content information between the image and text and unique text information. The
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a small orange cat 

crouching down and 
looking at a frog 

with interest.

CLIP Image
Encoder

DINO Image
Encoder

Image Embedding a Image Embedding b

CLIP Text
Encoder

Text Embedding c (b)

SoftMax SoftMax

An image of  Corgi 
dog with large, 

upright ears and a 
pink tongue 
sticking out.

DINO Student
Network

DINO Teacher
Network

CLIP Text
Encoder

EMA

Text Embedding Y Image Embedding X! Image Embedding X"

Cross Entropy Loss
stop gradient 

(a)

Cross Entropy Loss

Please describe the 
content of this painting 

in one sentence.

d = 𝑁𝑜𝑟𝑚(𝒃 + 𝒄)

𝒃
𝒄
𝒂

s = 𝑁𝑜𝑟𝑚(𝒂 − 𝑝𝑟𝑜𝑗𝒅𝒂)
𝑝𝑟𝑜𝑗𝒅𝒂

(c)

Figure 4: The feature extraction process is outlined as follows: (a) Fine-tune the DINOv2 model uti-
lizing a large image-text dataset. The goal is to harmonize the dimensions and scales of the DINO
features with those of the CLIP features. (b) Implement three unique feature extraction methodolo-
gies: CLIP image features, DINOv2 single-modal features, and CLIP text features. (c) Differentiate
between image-specific information and shared information by employing orthogonal projection and
subtraction operations.

DINOv2 model’s representation (denoted as c⃗) focuses on capturing the image’s content features.
After retraining for alignment, DINOv2’s representation aligns with CLIP’s text representation in the
same space. Thus, we can add these two representations and normalize them to obtain a composite
vector d⃗, representing the image’s content information.

To separate the content representation from the image representation generated by the CLIP model
(denoted as a⃗) while retaining the style representation, we use the orthogonal projection technique.
We first calculate the projection of a⃗ in the direction of d⃗, extracting all content features related to
d⃗. Then, we subtract this projection from a⃗, leaving the component orthogonal, which represents
the image’s style features. Finally, we normalize this orthogonal component to ensure a consistent
scale, obtaining a pure image style representation s⃗.

5 WEART: PRECISE AND HIGH-QUALITY DATASET FOR ARTISTIC STYLES

Adilson 
Farias,
Brazil

Children Book

Traditional Chinese Art

Tang Yin, 
Ming 
Dynasty

Modern Chinese Art

Qi Baishi,
China

Western Painting

Pablo 
Picasso,
Spanish

Video Game

Konstantinos 
Skenteridis,
Greece

Martin Haake,
Germany

Contemporary Art

Figure 5: Artworks Displayed in the WeART Dataset and Distribution of the Number of Artists and
Artworks (Log Scale).

To effectively evaluate artists’ styles, it is essential to have a comprehensive dataset that spans vari-
ous eras, regions, and art forms, complete with accurate author labels and high aesthetic evaluations.
The largest publicly available manually annotated dataset, WikiArt, includes approximately 80,000
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works from 195 artists, primarily from Europe and America, focusing on Western classical and
contemporary styles. However, the limited diversity of WikiArt restricts its utility in thoroughly
assessing models’ capabilities.

In contrast, the LAION-Aesthetics dataset Somepalli et al. (2024), collected from the internet, is
vast in scale but suffers from low-quality labels. Issues such as poor annotation quality, incorrect or
missing artist labels, and imbalanced distributions are prevalent. Additionally, these datasets often
feature low-resolution images with background noise, typically derived from photos or screenshots,
rendering them unsuitable for precise art style evaluation tasks.

To address these issues, we constructed WeART, a high-quality dataset associating artists with their
works, as shown in Figure 5. WeART contains 197,632 images from public museums, artists’ blogs,
and collections, covering seven major art genres and works from 661 renowned artists. Rigorous
screening ensures quality and accuracy, with each artist having at least two works and over 88%
having more than five. We manually removed duplicates and overly similar images, ensuring no
artist has more than 2000 works. For large or irregularly proportioned artworks, such as Chinese
paintings, we performed meticulous manual cropping to maintain artistic expressiveness and aes-
thetic quality.

WeART complements WikiArt with an artist repetition rate of less than 3%. The majority of the art-
works within WeART are high-definition scans with minimal background noise, ensuring clarity and
completeness. Professional curation guarantees the uniqueness and consistency of the artists’ styles.
WeART addresses gaps in existing art style evaluation datasets by introducing data on children’s
picture books and Chinese paintings, all with clear attribution to their authors. At approximately
three times the size of WikiArt, WeART significantly enhances both the quality and diversity of the
dataset, providing a valuable resource for the study of art styles.

6 EXPERIMENTS RESULTS

6.1 TRAINING SETTINGS

Training Dataset: CC3M dataset Changpinyo et al. (2021) is a large-scale collection of images
paired with captions, curated to facilitate research in image captioning and visual-semantic align-
ment. It contains over 3 million images sourced from the web, each accompanied by machine-
generated captions aimed at accurately describing the visual content.

Settings: The retraining experiment of the DINOv2 model on the CC3M dataset uses 4 V100 GPUs,
with a batch size of 128 and 100 training epochs. The learning rate is set to 1e-5, with linear warm-up
during the initial epochs followed by a cosine learning rate decay. During training, all input images
are resized to a resolution of 224×224 and then augmented through normalization. All baseline
models are sourced from the official open-source code repository.

6.2 RESULTS

To evaluate the efficacy of our proposed Decoupled Style CLIP model (DS-CLIP), we conduct a
rigorous comparative analysis against the original CLIP model and a suite of VLMs. As delin-
eated in Table 1, our DS-CLIP model, without the need for additional fine-tuning on style-specific
data, demonstrates enhancements in both accuracy and recall over the original CLIP model. More-
over, it consistently excels across all benchmark assessments. Furthermore, by applying a similar
decoupling strategy to the SigLIP model, we successfully augment its style retrieval proficiency.
Collectively, these experimental findings underscore the universal and potent impact of decoupling
content information on enhancing the stylistic representation within VLMs, without the necessity
for style-labeled datasets.

In a further exploration of the decoupling technique’s efficacy, we fine-tune CLIP models using the
WeART dataset and then implement our decoupling approach. The comparative analysis of accuracy
and recall metrics pre- and post-decoupling is presented in Table 2. Our decoupling method proves
effective in bolstering the artistic style representation, even post fine-tuning. Interestingly, while
models fine-tuned on larger, more generic datasets like LAION show improvement, the smaller,
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WikiArt: Query 15501/ Values: 63748
Model mAP@1 mAP@10 mAP@100 R@10 R@100

CLIP RN50 Radford et al. (2021) 39.9 23.9 10.2 58.1 79.5
MoCov3 ViT-B Chen* et al. (2021) 45.8 27.8 13.0 70.1 88.3
DINOv2 ViT-B Oquab et al. (2023) 40.2 23.4 11.1 63.9 85.3
DINOv2 ViT-LOquab et al. (2023) 40.0 23.1 10.9 64.5 85.2
CLIP ViT-B Radford et al. (2021) 47.2 30.8 16.1 73.7 91.3
CLIP ViT-L Radford et al. (2021) 58.4 46.9 22.8 81.6 94.4
SigLIP Zhai et al. (2023) 58.5 47.2 22.6 82.1 94.6

DS-CLIP ViT-B 48.6 31.5 16.9 75.4 92.6
DS-CLIP ViT-L 60.6 48.2 23.4 82.7 95.0
DS-CLIP SigLIP 59.7 48.3 23.6 82.9 94.6

WeArt: Query 20235/ Values 177338
CLIP RN50 Radford et al. (2021) 39.9 24.8 18.0 65.7 85.4
MoCov3 ViT-B Chen* et al. (2021) 42.7 30.5 17.4 68.6 89.2
DINOv2 ViT-B Oquab et al. (2023) 37.3 32.5 16.6 77.6 91.1
DINOv2 ViT-L Oquab et al. (2023) 36.4 32.1 16.4 77.0 91.0
CLIP ViT-B Radford et al. (2021) 62.4 48.8 26.4 83.6 94.5
CLIP ViT-L Radford et al. (2021) 66.8 54.4 30.4 88.4 96.5
SigLIPZhai et al. (2023) 66.4 55.3 30.4 89.2 97.8

DS-CLIP ViT-B 63.6 50.0 27.8 84.8 94.9
DS-CLIP ViT-L 67.3 55.3 31.4 89.6 97.6
DS-CLIP SigLIP 66.9 55.2 31.6 89.4 98.1

Table 1: The performance of VLMs and our decoupled models on WikiART and WeART datasets.

WikiArt
Model mAP@1 mAP@10 mAP@100 R@10 R@100

CLIP ViT-B (FT) Radford et al. (2021) 55.0 46.4 28.6 80.0 93.0
CLIP ViT-L (FT) Radford et al. (2021) 63.7 53.9 35.5 84.7 95.2

GDA ViT-B Wang et al. (2023) 42.6 32.2 18.1 67.3 87.1
CSD ViT-B Somepalli et al. (2024) 56.2 46.1 28.1 80.3 93.6
CSD ViT-L Somepalli et al. (2024) 64.1 53.5 35.4 85.7 95.2

DS-CLIP ViT-B 58.9 47.0 29.3 81.1 93.6
DS-CLIP ViT-L 65.2 54.6 36.2 85.3 95.4

Table 2: The performance of WeART fine-tuned CLIP and DS-CLIP is compared with other fine-
tuned CLIP models on the WikiART dataset. The query settings are consistent with CSD.

curated WeART dataset stands out for its exceptional capacity to refine the CLIP model’s stylistic
representation.

6.3 CASE STUDY

In Figure 6, we present a comparison of image retrieval results using diverse artworks as queries,
conducted with our DS-CLIP model and the standard CLIP model. In each set of displayed retrieval
results, the top two items are shown side by side, with the DS-CLIP retrieval results highlighted with
a blue background and the CLIP model results indicated with a yellow background. Our observations
suggest that the CLIP model tends to place a strong emphasis on the content and structural features
of the images during retrieval, often at the expense of considering the artistic style. This results in
retrieval outcomes that may be visually similar in terms of content but differ notably in artistic style.
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(a) Retrieval in Children Book (b) Retrieval in Modern Chinese Art (c) Retrieval in Ancient Chinese Art

(d) Retrieval in Western Paintings (e) Retrieval in Movie and Game (f) Retrieval in Contemporary ART

Figure 6: A case study is performed comparing the decoupled DS-CLIP/ViT-L model (blue back-
ground) with the baseline CLIP/ViT-L model (yellow background).

In contrast, the DS-CLIP model decouples artistic style features, thereby reducing the influence of
content similarity on the retrieval process and enhancing retrieval accuracy.

DINOv2 / ViT-L CLIP / ViT-L DS-CLIP / ViT-L

Figure 7: The t-SNE visualization is performed on the ViT-L representation models generated by
DINOv2, CLIP, and DS-CLIP. Colored points represent works from 10 selected artists.

Furthermore, we present an analysis of the feature distributions of the DINOv2, CLIP, and DS-CLIP
models. Using t-SNE technology Van der Maaten & Hinton (2008), in Figure 7, we visualize the
ViT-L representations obtained from these three models. In the visualization results, the colored
dots represent randomly sampled artworks from ten artists, with each color corresponding to one
artist. The analysis reveals that, compared to the baseline model, DS-CLIP exhibits superior per-
formance in clustering artistic styles, indicating that our model has a notable advantage in capturing
and distinguishing different artistic styles.

6.4 MEASURING ARTISTIC STYLE IN GENERATIVE DIFFUSION MODELS

We analyze the performance of six advanced text-to-image generative models ?Podell et al. (2023);
Chen et al. (2023); Sauer et al. (2024) in replicating artistic styles. Using one thousand works by two
hundred artists from WikiART and WeART, we generate three variants per work with each model,
resulting in a dataset of 21,000 images. The prompt “Draw [specific content description] in the style
of [artist’s name]” guides the generation process, and the DS-CLIP score evaluates the results.

9
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Figure 8 illustrates that these models encounter challenges with Chinese paintings and sketches,
especially when replicating the styles of ancient Chinese masters. Conversely, they demonstrate
proficiency in capturing the styles of Western artists such as Van Gogh and Picasso, as well as those
of contemporary illustrators. Among the evaluated models, Flux.1 stands out for its artist style
representation capabilities, whereas Stable Diffusion 1.5 shows less effectiveness in comparison.

0.41 0.52 0.390.53

0.43

Artworks by Wu Guanzhong

Artworks by Julius

Artworks by Bao LuLu

Stable Diffusion 3 Stable Diffusion XL

0.39 0.56 0.46

0.64 0.670.48 0.59

the DS-CLIP score distribution of artists

the DS-CLIP score distribution of generated models

Figure 8: The case evaluation results of the generated content are presented, along with the DS-CLIP
score distribution results of some artists and the score distribution results of the generative models.

6.5 ABLATION STUDY

In Table 3, we conduct extensive ablation studies to evaluate the effectiveness of different feature
decoupling methods and their combinations. The results indicate that combining the image features
decoupled from the CLIP model, which contains all information, with the text description features
extracted by the CLIP model significantly improves retrieval accuracy and recall. In contrast, decou-
pling the image features from the untrained DINOv2 model alone leads to a substantial decrease in
retrieval accuracy and recall. However, when we decouple both the trained DINOv2 image features
and the CLIP text features simultaneously, the retrieval performance is optimal. All experiments are
conducted on the same query dataset, query and values are the same as Table 1, with each experiment
repeated three times, and the results averaged to ensure reliability.

Ablation WikiART WeART
CLIPimg CLIPtxt DINO DINOtrain mAP@1 mAP@10 R@1 MAP@1 mAP@10 R@10

✓ 58.4 46.9 81.6 66.8 54.4 88.4
✓ ✓ 59.7 47.5 82.2 67.5 55.0 89.1
✓ ✓ 59.8 47.3 81.9 67.2 54.6 88.9
✓ ✓ ✓ 55.3 43.7 79.5 61.4 49.9 84.8
✓ ✓ ✓ 60.6 48.2 82.7 67.4 55.3 89.6

Table 3: Ablation Study on the Impact of Decoupling Different Features.

7 CONCLUSION

In this paper, we introduce a universal decoupling method for enhancing artistic style represen-
tation. By removing text-side representations and content-related information from single-modal
components within VLMs, we achieve the decoupling of artistic style. Additionally, we present
the WeART dataset, a large-scale collection of artworks with high-quality annotations, designed to
evaluate the artistic style representation capabilities of models. Experimental results demonstrate
that our decoupling approach improves performance in style retrieval tasks across multiple datasets.
For future work, we plan to incorporate additional artistic forms into our evaluation dataset and to
explore more effective methods of combining representations.
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