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Abstract—This paper addresses the coverage path planning of
multiple unmanned surface vehicles (USVs) based on electronic
chart displays and information system. An optimized coverage
path planning method is proposed to improve the coverage
percentages and the coverage area of each USV leaves an
additional degree of freedom for the operator to adjust further.
Specifically, a grid representation method is proposed to fully
cover the polygonal work area where three kinds of grids,
namely, “Free”, “Obstacle”, and “Initial USV Position” are
obtained. Next, a simulated annealing-based optimization method
is proposed to optimize the placement of the grid by moving
and rotating such that a more “Free” grid can be obtained.
Then, an improved divide area based on the robot’s initial
position method is proposed to achieve proportional area division.
Finally, the coverage paths are generated by using a spanning
tree coverage method. Simulation results verify the effectiveness
of the proposed simulated annealing-based optimization for the
coverage path planning of multiple USVs.

Index Terms—Coverage path planning, unmanned surface ve-
hicle, electronic chart display and information system, simulated
annealing method.

I. INTRODUCTION

Unmanned surface vehicle (USV), due to their characteris-
tics such as compact size, lightweight construction, and auton-
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omy, serves as pivotal tools in the exploration and development
of the oceans [1]–[4]. Multi-USV systems have a wider range
of applications in ocean survey, sea rescue, marine scientific
research, water patrol, and underwater equipment deployment
compared to single USV [5]–[7]. Coverage path planning is a
key component in the motion control of multiple USVs, which
is to plan multiple paths such that an area can be fully covered.

Many coverage path planning methods are proposed in
recent years. In [8]–[10], a coverage path planning method
based on binary interval neighborhood network algorithm is
proposed, which processes good adaptability and parallelism.
In [11], [12], a coverage path planning method based on cell
decomposition method is proposed, but this method needs to
segment the map more precisely, which leads to higher compu-
tational complexity and reduces the path planning efficiency.
In [13]–[16], a spanning tree coverage (STC) based coverage
path planning method is proposed for multiple robots. The
coverage path generated by this method does not repeat, but
the search path depends on the initial position of each robot,
which is prone to the problem of path overlap. In [17], an STC
method based on auction and bidding process is presented,
which balance the coverage path length of each robot. In [18],
a divide areas based on robots initial positions (DARP) method
is combined with STC method, which improves the coverage
efficiency of multiple robots. However, each of these meth-
ods suffers from insufficient coverage or high computational
requirements.

Based on the above discussions, this paper studies the
coverage path planning of multiple USVs in electronic chart



display and information system (ECDIS). An optimized cover-
age path planning method is proposed to improve the coverage
percentages and reduce the number of turns. First, based on
three types of grid including “Free”, “Obstacle”, and “Initial
USV Position”, a grid map is established over a selected
polygonal work area. Next, a simulated annealing optimization
method is used to optimize the established grip map by moving
and rotating the grids. Then, an improved DARP method is
proposed to achieve the proportional area division and the
coverage paths are generated by using a spanning tree coverage
method. Finally, based on the ECDIS platform, simulation
verifies the effectiveness of the proposed optimization based
coverage path planning for multiple USVs.

II. PROBLEM FORMULATION

ECDIS is a navigation information system with an elec-
tronic chart database, as well as navigational and piloting in-
formation. This information is required to navigate for USV, a
multiple USVs coverage path planning optimization method is
applied to ECDIS. Firstly, the initialization setup is performed.
Next, the map model is transformed, optimized and solved.
Finally, the coverage path for each USV is generated. The
framework of the proposed optimized coverage path planning
method of multiple USVs is shown in Fig. 1.
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Fig. 1. Framework of the proposed optimized coverage path planning method
of multiple USVs based on ECDIS.

Specifically, a polygonal work area (PWA) is selected
manually in ECDIS, then obstacle areas can be selected in
the selected PWA. PWA vertex coordinates and obstacle Q
coordinates are expressed in the format of the world geodetic
system coordinate system 1984 (WGS84) , as shown in the
following:

P WA = {(X1, Y1), ...(Xn, Yn)}, (1)

Q = {{(Xo1|1, Yo1|1), ...(Xo1|p1 , Yo1|p1)},
...{(Xoq|1, Yoq|1), ...(Xoq|pq , Yoq|pq )}},

(2)

where X,Y represent latitude and longitude coordinates; n is
the number of polygon vertices; oi(i = 1, ...q) denotes the
ith obstacle; pi(i = 3, ...q) is the number of vertices in each
obstacle region, and q is the number of obstacles.

The initial positions of the USVs in the PWA, which can
also be represented in WGS84 format:

posinit = {(Xs1 , Ys1), ...(Xsm , Ysm}, (3)

where m is the USV number; si(i = 1, ...m) denotes the ith
USV. As an output of this method, a set of paths is generated,
one path for each USV involved in the mission, thus providing
complete coverage of the PWA:

pathall = {{(Xz1|1, Yz1|1), ...(Xz1|r1 , Yz1|r1)},
...{(Xzm|1, Yzm|1), ...(Xzm|rt , Yzm|rt)}},

(4)

where ri(i = 1, ...t) is the number of waypoints per USV;
zi(i = 1, ...m) denotes the ith path.

III. COVERAGE PATH PLANNING DESIGN

This section presents simulated annealing-based optimiza-
tion for the coverage path planning of multiple unmanned
surface vehicles in ECDIS. It includes the grid representation,
grid placement optimization, and area division and coverage
path generation.

A. Grid Representation

Traditional ECDIS-based USV path planning algorithms
need to read the chart information of all points in the work
area to create a grid map. In this paper, the optimization for
coverage path planning based on simulated annealing involves
extracting PWA vertex information and obstacle area vertex
information. These are subsequently converted into a grid map
based on the desired planning accuracy. This greatly decreases
the computation time and lowers the requirement on computer
configuration. After the conversion, a node is created at the
center of each grid cell in grid map. Through the nodes, the
minimum spanning tree is constructed, and eventually the
coverage paths are generated with it. Considering different
task requirements, set the planning accuracy in meters (δ),
i.e., half the distance between neighboring trajectories. Thus,
the distance between two nodes is ∆ = 2× δ.

To represent the PWA, creat a rectangular border that holds
a× b grids of side length ∆. As shown in Fig. 2 (red border):

a = bXmax −Xmin

∆
c, (5)

b = bYmax − Ymin

∆
c, (6)

and bkc denotes the floor of k (largest integer less than the
given real number).

After that, grids are incorporated, where each grid center
represents a node. These nodes can exist in three states: Free,
Obstacle, and Initial USV s′ Position. These states dictate
their treatment in the path planning process, illustrated in
Fig. 3 with green, black, and red colors respectively.

B. Grid Placement Optimization

Limitations of the grid map-based path planning method
include the inability of the grid map to fully select the planning
area for representation, which leads to insufficient coverage
of the planning area. To address this limitation, a common
adopted solution is to generate more accurate grid maps by
lowering the size of the accuracy, but it will also lead to a
significant increase in time and cost to perform the tasks,



Fig. 2. Standard and augmented rectangular borders.

Fig. 3. Nodes are placed on polygons.

and higher requirement on computer configuration. In this
paper, an optimization method based on a simulated annealing
algorithm is proposed to optimize the representation of grid
maps.

The method is that by rotating and moving standard rect-
angular border, there will be more Free nodes contained in
PWA, which will effectively increase the overall coverage. For
example, the number of Free nodes before optimization is
45 shown in Fig. 4 , and after rotation and movement, the
number of Free nodes increases to 49 in Fig. 5. Based on
this, optimization is performed using the simulated annealing
algorithm to maximize the overall coverage of the PWA.
Define the translation of the polygon’s X-axis to be Cx, in
a range [0,∆], the translation of the polygon’s Y-axis to be
Cy , in a range [0,∆], and the angle of rotation of the polygon
to be Cθ, in a range [0, 90◦].

Define an optimization index F to denote the model asso-
ciated with PWA coverage potential given a certain planning
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Fig. 4. Grid map before optimization.
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Fig. 5. Grid map after optimization.

accuracy, and is expressed as:

F = k1 · F1 + k2 · F2 − k3 · F3. (7)

F consists of three independent normalized Fi terms satisfy-
ing:

0 ≤ Fi ≤ 1 ∈ <, i ∈ {1, 2, 3}, (8)

The term F1 denotes the basic objective of the whole
optimization process, i.e., fitting the maximum number of
nodes possible within a given PWA, defined as follows:

F1 =
β
Sp

∆2

, (9)

where β represents the number of nodes placed within the
polygon; Sp represents the area of the polygon. The theoretical
maximum number of nodes that can be accommodated within
a given polygon is denoted as:

β ≤ Sp
∆2

, (10)



both Sp and ∆ are constants after region selection. Therefore,
maximizing the F1 term results in the maximal placement of
nodes within the polygon.

In addition, the F2 term provides better options for node
placement within the polygon, increasing the coverage of the
PWA edge region. The definition of F2 is given as:

F2 =
Sp
Ss
, (11)

where Ss represents the area of the enhanced bounding box.
In the example in Fig. 2, Sp represents the blue area of the
polygon and Ss represents the area of the yellow rectangular
bounding box. Because PWA is constant, Ss can be minimized
by maximizing the overall F2 term. The purpose of adding this
term is mainly to control the rotation angle Cθ to optimize.
as a result, the F2 item is also normalized.

Finally, the F3 term improves the location of nodes within
a selected PWA, allowing for path alignment at the boundaries
of the region and increasing the coverage of the range of the
edge region. F3 is defined as follows:

F3 =
||Xmaxs

−Xmax| − |Xmin −Xmins
||

2 · |Xmaxs −Xmins |
+

||Ymaxs
− Ymax| − |Ymin − Ymins

||
2 · |Ymaxs − Ymins |

,

(12)

where {Xmaxs
, Xmins

, Ymaxs
, Ymins

} are the vertices of the
augmented rectangular border (yellow border in Fig. 2), and
{Xmax, Xmin, Ymax, Ymin} are the vertices of the standard
rectangular border (red border in Fig. 2). The F3 term is used
to reconcile the absolute difference between the edge of the
polygon and the augmented rectangular border in each axis,
i.e., to fine-tune Cx and Cy so that the resulting paths are
centered, and F3 is normalized as well.

In order to optimize the node representation and placement
for a given PWA and planning accuracy, a simulated annealing
algorithm is used to find a solution of (Cx, Cy, Cθ) that
maximizes F . F1 and F2 contribute positively to the overall
optimization index and act as rewards, while F3 acts as a
penalty by appropriately reducing the F1 and F2 terms. k1,
k2, and k3 are constants to regulate each term, and they are
allowed to take values in the following range:

0 ≤ k1, k2, k3 ≤ 1 ∈ <, k1 + k2 = 1. (13)

An overview of the grid placement optimization algorithm is
given in Algorithm 1, where T is the initialization temperature,
Tmin is the minimum temperature, α is the temperature drop
rate, K is the number of iterations at each temperature, γ is a
constant, P is the acceptance probability of solution, and the
algorithm returns the global optimal solution Fmax and Cx,
Cy , Cθ when the optimal solution is reached.

C. Area Division and Coverage Path Generation

In this section, the DARP algorithm is first improved to
achieve proportional area division. The divided area is then
combined with the STC algorithm to provide an independent
path for each USV.

Algorithm 1 Grid placement optimization
Input: T , Tmin, α, K, δ, k1, k2, k3, γ
Output: Fmax, Cx, Cy , Cθ

1: Initialize: Cx = δ; Cy = δ; Cθ = 0; Fmax = 0
2: while T > Tmin do
3: while (i <= K − 1) do
4: Fcur = k1 · F1 + k2 · F2 − k3 · F3; // Get the current

solution’s optimization index
5: if Fcur > Fmax then
6: Fmax = Fcur;// Update the optimization index
7: end if
8: if (i = K − 1) then
9: Create a new state for new solution

10: Cxnew
= Cxcur

+ random(0, 1)× 2× δ;
11: Cynew

= Cycur
+ random(0, 1)× 2× δ;

12: Cθnew
= Cθcur

+ random(0, 1)× 90;
13: else
14: Create a neighboring state for new solution
15: if (random(0, 1) > γ) then
16: Cxnew

= Cxcur
+ random(0, 1)× δ/4;

17: else
18: Cxnew

= Cxcur
+ random(0, 1)× δ/(−4);

19: end if
20: if (random(0, 1) > γ) then
21: Cynew

= Cycur
+ random(0, 1)× δ/4;

22: else
23: Cynew

= Cycur
+ random(0, 1)× δ/(−4);

24: end if
25: if (random(0, 1) > γ) then
26: Cθnew = Cθcur + random(0, 1)× 45;
27: else
28: Cθnew

= Cθcur
+ random(0, 1)× (−45);

29: end if
30: end if
31: P = e(Fcur−Fnew)/T ); // Calculate the acceptance

probability
32: if P > random(0, 1) then
33: Fmax = Fnew; // Update optimization index
34: end if
35: end while
36: T = T × α; // Update temperature
37: end while

The traditional DARP method provides equal area partition,
which means that all USVs will be assigned exactly the
same proportion of area. In this work, DARP is extended and
now capable to perform proportional area division, where the
percentage is defined by the user, facilitating the simultaneous
operation of heterogeneous USVs with different energies in
the same task:

m∑
i=1

Gi = 1, (14)

where Gi denotes the percentage of regions of the ith USV.



Each sub-region is generated to cover the path after com-
pleting the task area division. In this paper, the STC method
is used as the basic method for generating coverage path
planning. The principle of the STC method is to generate a
minimum spanning trees (MSTs) in each subregion and then
generate paths around each MST.

IV. SIMULATIONS

In this section, simulation results are presented to illustrate
the effectiveness of the simulated annealing based optimized
coverage path planning method for multiple USVs.

(a) Coverage path without optimiza-
tion.

(b) Coverage path optimized with F1

term.

(c) Coverage path optimized with F1

and F2 terms.
(d) Coverage path optimized with F1,
F2 and F3 terms.

Fig. 6. Node placement optimizes coverage paths.

TABLE I
OPTIMIZATION PARAMETER RESULT ANALYSIS.

Non-Optimized F1 F1+F2 F1+F2+F3
Poc(%) 76.35 81.36 83.67 91.42
Turns 26 16 16 16

N-Turns 0.13 0.08 0.08 0.08
Length(km) 3.84 4.48 4.48 4.48
N-Length 19.59 22.85 22.86 22.86

In the simulation, a part of Dalian harbor is selected in
ECDIS as PWA. In order to validate the effectiveness of the
method, the number of USV is selected as 1, and planning
accuracy as 20m. The simulation results can be seen in Fig.
6. Fig. 6 (a) shows the coverage path without optimization;
Fig. 6 (b) shows the optimization results under F1 term; Fig.
6 (c) shows the optimization results under F1 term and F2

term; Fig. 6 (d) shows the optimization results under F1

term, F2 term and F3 term. Table I compares five criteria
under different methods. It shows that the proposed method
is able to increase percentage of coverage (POC), path length,
and normalized path length (N-Length) ( m

1000m2 ), as well as
decrease in number of turns and normalized number of turns
(N-Turns) ( Turns1000m2 ). Specifically, the number of turns without

optimization is 26, the coverage is 76.35%, and the path length
is 3.84 km. After the introduction of the F1 term the number
of turns is 16, the coverage is 81.36%, and the path length is
4.48 km. It can be seen that the number of turns is significantly
decreased and the coverage is significantly improved. After the
introduction of the F1 term and the F2 term, the number of
turns is 16, the coverage is 83.67% and the path length is 4.48
km. F2 term is mainly used for the rotation of the generated
path to obtain the optimal Cθ. After the introduction of the
F1,F2 and F3, the number of turns is 16, the coverage rate
is 91.42%, and the path length is 4.8 km. F3 term makes the
generated path centrally placed, which is more conducive to
the coverage of the edge region.

Therefore, the introduction of the optimization index F has
a major improvement on both the number of turns and the cov-
erage. Apart from that, planning accuracy is also a key factor
affecting the coverage. For the same PWA, optimized coverage
can reach more than 97% when the planning accuracy is 10
meters, at the expense of more computing time.

In addition, in order to verify whether the number of USVs
has impact on the effectiveness of the optimization method,
and also to verify the planning effect of proportional area
division. 20km2 sea area near West Ant Island of Dalian is
selected as PWA, and the planning accuracy is defined as 50
meters. The coverage paths are planned for the number of
USVs as 5, 10, 20, and 50 respectively. The planning results
for 5 USVs and 50 USVs are shown in Fig. 8 and Fig. 9,
where the red area is the PWA and the yellow areas are the
obstacle areas. The area division proportions of the 5 USVs
in Fig. 7 are set to 10%, 10%, 20%, 20%, 40%. Table II
indicates optimized data for different number of USVs. The
results show that the number of USVs has no significant effect
on the coverage of the generated paths, while the algorithm
running time rises significantly when USVs number reaches
50.

Fig. 7. Coverage paths for 5 USVs assigned by proportional area division.



Fig. 8. Coverage paths for 5 USVs.

Fig. 9. Coverage paths for 50 USVs.

TABLE II
OPTIMIZED DATA FOR DIFFERENT NUMBER OF USVS.

Number of USVs Poc(%) Turns Length(km) Time(s)
5 97.68 839 33.34 91.70

10 97.63 969 33.33 93.71
20 97.71 1218 33.53 96.39
50 97.56 1924 33.02 908.70

V. CONCLUSION

This paper investigates the coverage path planning of mul-
tiple USVs in ECDIS. A simulated annealing-based opti-
mization for the coverage path planning of multiple USVs
is proposed. Simulations of multiple target sea areas are
conducted to verify the effectiveness of the proposed coverage
path planning method for increasing coverage percentages,
reducing the number of turns, and increasing the operator’s de-
gree of freedom. The simulated annealing-based optimization
for the coverage path planning of multiple USVs in ECDIS
proposed herein may provide a feasible method for future
large-scale maritime coverage operations of multiple USVs.
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