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Abstract

Meta-learning methods have been widely used001
in few-shot named entity recognition (NER),002
especially prototype-based methods. However,003
the Other(O) class is difficult to be repre-004
sented by a prototype vector because there are005
generally a large number of samples in the class006
that have miscellaneous semantics. To solve007
the problem, we propose MeTNet, which gen-008
erates prototype vectors for entity types only009
but not O-class. We design an improved triplet010
network to map samples and prototype vectors011
into a low-dimensional space that is easier to012
be classified and propose an adaptive margin013
for each entity type. The margin plays as a014
radius and controls a region with adaptive size015
in the low-dimensional space. Based on the016
regions, we propose a new inference procedure017
to predict the label of a query instance. We con-018
duct extensive experiments in both in-domain019
and cross-domain settings to show the supe-020
riority of MeTNet over other state-of-the-art021
methods. In particular, we release a Chinese022
few-shot NER dataset FEW-COMM extracted023
from a well-known e-commerce platform. To024
the best of our knowledge, this is the first Chi-025
nese few-shot NER dataset. For reproducibility,026
all the datasets and codes are provided in the027
supplementary materials.028

1 Introduction029

Named entity recognition (NER), as a fundamental030

task in information extraction (Ritter et al., 2012),031

aims to locate and classify words or expressions032

into pre-defined entity types, such as persons,033

organizations, locations, dates and034

quantities. While a considerable number of035

approaches based on deep neural networks have036

shown remarkable success in NER, they generally037

require massive labeled data as training set. Unfor-038

tunately, in some specific domains, named entities039

that need professional knowledge to understand are040

difficult to be manually annotated in a large scale.041

(a)

(b)

Figure 1: (a): Samples in O-class are semantically differ-
ent. (b): The comparison between previous methods and
ours to handle O-class. Left: Since the query instance
whose true label is Location is closest to the proto-
type vector of O-class, previous methods misclassify it
to O-class. Right: We compute prototype vectors for
entity types only and learn an adaptive margin for each
entity type to determine a region. Samples in the region
of a class are labeled with the class, while samples out-
side of all the regions are predicted to be in O-class.

To address the problem, few-shot NER has been 042

studied, which aims to recognize unseen entity 043

types with few annotations. In particular, some 044

models (Fritzler et al., 2019; Hou et al., 2020; Wang 045

et al., 2021) are proposed based on the prototypi- 046

cal network (PROTO) (Snell et al., 2017), which 047

is a popular meta-learning method. The general 048

procedure of these prototype-based NER models is 049

summarized as follows. First, they generate a pro- 050

totype vector for each class, including both entity 051

types and Other(O) class, to represent the class. 052

Then they compute the distance between a query 053

sample (instance) 1 and all these prototype vectors, 054

and predict the query instance to the class with the 055

smallest distance. However, for NER, the O-class 056

1We interchangeably use sample and instance in this paper.
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covers all the miscellaneous words that are not clas-057

sified as entity types. These words could span a058

wide range of semantics. For example, in Figure 1a,059

the words “was”, “president”, “budget” and “today”060

are semantically different even if they all belong to061

O-class. A single prototype vector would thus be062

insufficient to model the miscellaneous semantics063

of O-class, which could further lead to the incorrect064

prediction of query instances (see Figure 1b).065

In this paper, to solve the issue, we propose to066

generate prototype vectors only for entity types067

but not O-class. In particular, we design a Meta-068

Learning Triplet Network with adaptive margins,069

namely, MeTNet, to map samples and prototype070

vectors into a low-dimensional space, where the071

inter-class distance between samples is enlarged072

and the intra-class distance between samples and073

their corresponding prototype vectors is shortened.074

We further design an improved triplet loss func-075

tion with adaptive margins, which assigns different076

weights to samples, minimizes the absolute dis-077

tance between an anchor and a positive sample,078

and maximizes the absolute distance between an079

anchor and a negative sample. The adaptive margin080

plays as a radius and controls a region for each081

entity type in the low-dimensional space (see Fig-082

ure 1b). Based on these regions, we further propose083

a novel inference procedure. Specifically, given a084

query instance, we predict it to be in O-class, if it is085

located outside all the regions; otherwise, we label086

it with the entity type of its located region. Further,087

if it is contained in multiple regions, we label it088

with the entity type that has the smallest distance089

between the query instance and the region center.090

Finally, we summarize our main contributions in091

this paper as follows.092

• We propose an improved triplet network with093

adaptive margins (MeTNet) and a new infer-094

ence procedure for few-shot NER.095

• We release the first Chinese few-shot NER096

dataset FEW-COMM, to our best knowledge.097

• We perform extensive experiments to show the098

superiority of MeTNet over other competitors.099

2 Related Work100

2.1 Meta-Learning101

Meta-learning, also known as “learning to learn”,102

aims to train models to adapt to new tasks rapidly103

with few training samples. Some existing meth-104

ods (Snell et al., 2017; Vinyals et al., 2016) are105

based on metric learning. For example, Match- 106

ing Network (Vinyals et al., 2016) computes simi- 107

larities between support sets and query instances, 108

while the prototypical network (Snell et al., 2017) 109

learns a prototype vector for each class and clas- 110

sifies query instances based on the nearest pro- 111

totype vector. Other representative metric-based 112

methods include Siamese Network (Koch et al., 113

2015) and Relation Network (Sung et al., 2018). 114

Further, some approaches, such as MAML (Finn 115

et al., 2017) and Reptile (Nichol et al., 2018), are 116

optimization-based, which aim to train a meta- 117

learner as an optimizer or adjust the optimization 118

process. There also exist model-based methods, 119

which learn a hidden feature space and predict the 120

label of a query instance in an end-to-end man- 121

ner. Compared with the optimization-based meth- 122

ods, model-based methods could be easier to opti- 123

mize but less generalizable to out-of-distribution 124

tasks (Hospedales et al., 2020). The representative 125

model-based methods include MANNs (Santoro 126

et al., 2016), Meta networks (Munkhdalai and Yu, 127

2017), SNAIL (Mishra et al., 2017) and CPN (Gar- 128

nelo et al., 2018). 129

2.2 Few-shot NER 130

Few-shot NER has recently received great atten- 131

tion (Huang et al., 2021; Das et al., 2021; Ma et al., 132

2022) and meta-learning-based methods have been 133

applied to solve the problem. For example, Fritzler 134

et al. (2019) combine PROTO (Snell et al., 2017) 135

with conditional random field for few-shot NER. In- 136

spired by the nearest neighbor inference (Wiseman 137

and Stratos, 2019), StructShot (Yang and Katiyar, 138

2020) employs structured nearest neighbor learning 139

and Viterbi algorithm to further improve PROTO. 140

MUCO (Tong et al., 2021) trains a binary classifier 141

to learn multiple prototype vectors for representing 142

miscellaneous semantics of O-class. ESD (Wang 143

et al., 2021) uses various types of attention based on 144

PROTO to improve the model performance. How- 145

ever, most of these methods use one or multiple 146

prototype vectors to represent O-class, while we 147

compute prototype vectors for entity types only 148

and further design a new inference procedure. 149

Very recently, prompt-based techniques have 150

also been applied in few-shot NER (Cui et al., 2021; 151

Ma et al., 2021; Chen et al., 2021; Cui et al., 2022). 152

However, the performance of these methods is very 153

unstable, which heavily depend on the designed 154

prompts (Cui et al., 2021). Thus, without a large 155
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validation set, their applicability is limited in few-156

shot learning.157

3 Background158

3.1 Problem Definition159

A training set Dtrain consists of word sequences160

and their label sequences. Given a word sequence161

X = {x1, ..., xn}, we denote L = {l1, ..., ln} as162

its corresponding label sequence. We use Ytrain163

to denote the label set of the training data and li ∈164

Ytrain. In addition, given a test set Dtest, let Ytest165

denote the label set of the test set, which satisfies166

Ytrain ∩ Ytest = ∅. Our goal is to develop a model167

that learns from Dtrain and then makes predictions168

for unseen classes in Ytest, for which we only have169

few annotations.170

3.2 Meta-training171

Meta-learning methods include two stages: meta-172

training and meta-testing. In meta-training, the173

model is trained on meta-tasks sampled from174

Dtrain. Each meta-task contains a support set and175

a query set. To create a training meta-task, we176

first sample N classes from Ytrain. After that, for177

each of these N classes, we sample K instances178

as the support set S and L instances as the query179

set Q. The support set is similar as the training180

set in the traditional supervised learning but it only181

contains a few samples; the query set acts as the182

test set but it can be used to compute gradients for183

updating model parameters in meta-training stage.184

Given the support set, we refer to the task of mak-185

ing predictions over the query set as N -way K-shot186

classification.187

3.3 Meta-testing188

In the testing stage, we also use meta-tasks to test189

whether our model can adapt quickly to new classes.190

To create a testing meta-task, we first sample N191

new classes from Ytest. Similar as in meta-training,192

we then sample the support set and the query set193

from the N classes, respectively. The support set is194

used for fine-tuning while the query set is for test-195

ing. Finally, we evaluate the average performance196

on the query sets across all testing meta-tasks.197

4 Method198

In this section, we describe our MeTNet algorithm.199

We first give an overview of MeTNet, which is200

illustrated in Figure 2. MeTNet first represents201

samples with BERT text encoder, based on which202

the embeddings of words and prototype vectors are 203

initialized. Then it generates triples based on the 204

support sets and prototype vectors, and employs 205

an improved triplet network with adaptive margins 206

to map words and prototype vectors into a space 207

that is much easier to classify. For each entity type, 208

an adaptive margin plays as a radius and controls 209

a region centered at the corresponding prototype 210

vector. These regions are further used in the infer- 211

ence stage. Next, we describe each component of 212

MeTNet in detail. 213

4.1 Text Encoder 214

We first represent each word in a low-dimensional 215

embedding vector. Following (Yang and Katiyar, 216

2020; Ding et al., 2021), we use BERT (Devlin 217

et al., 2018) as our text encoder. Specifically, given 218

a sequence of n words [x1, x2, ..., xn], we take the 219

output of the final hidden layer in BERT as the 220

initial representations hi for xi: 221

[h1,h2, ...,hn] = BERTϕ([x1, x2, ..., xn]), (1) 222

where ϕ represents parameters of BERT. Then for 223

each pre-defined entity type cj , we construct its 224

initial prototype vector hcj by averaging the repre- 225

sentations of words labeled as cj . 226

4.2 Triplet Network 227

A triplet network (Hoffer and Ailon, 2015) is com- 228

posed of three sub-networks, which have the same 229

network architecture with shared parameters to be 230

learned. For the triplet network, triples are taken 231

as its inputs. Each triple consists of an anchor, a 232

positive sample and a negative sample, and we feed 233

each sample into a sub-network. 234

Construct Triples We first construct triples for 235

different entity types. Specifically, for each entity 236

type, we take its prototype vector as the anchor, 237

instances in the entity type as positive samples, and 238

other instances as negative ones. Since the number 239

of negative samples is generally larger than that of 240

positive samples, we select k negative samples with 241

the nearest distance to the prototype vector. After 242

that, for each positive sample and each negative 243

sample, we construct triples, respectively. 244

Improved Triplet Loss Given the distance dp be- 245

tween the anchor and the positive sample, and the 246

distance dn between the anchor and the negative 247

sample, the original triplet loss aims to optimize 248

the relative distance among the anchor, the positive 249
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Figure 2: The overall architecture of MeTNet for a 2-way 2-shot problem.

sample and the negative sample, which is formu-250

lated as:251

LT = max(0,m+ dp − dn), (2)252

dp = d(fθ(ha), fθ(hp)), (3)253

dn = d(fθ(ha), fθ(hn)), (4)254

where m is a margin, d(·, ·) denotes the Euclidean255

distance function and fθ(·) is the embedding vector256

generated from the triplet network. However, there257

exist three main problems in the original triplet loss258

function. First, the original triplet loss pays more259

attention to the relative distance between dp and dn.260

When dp and dn are both large but their difference261

is small, the loss will be small. But our goal is to op-262

timize absolute size of dp and dn. Second, the loss263

function considers all the samples are equally im-264

portant, but their importance is empirically relevant265

to their distance to the anchor. Third, the margin is266

fixed and unique. However, different entity types267

generally correspond to regions with various sizes.268

To address these problems, we design an improved269

triplet loss as follows:270

LIT =
α

1 + e−(dp−mi)
· dp271

+
1− α

1 + e−(mi−dn)
·max(mi − dn, 0), (5)272

where α is a balancing weight and mi denotes a273

learnable margin of entity type ci. In Equation 5,274

we separately optimize the absolute distances dp275

and dn. On the one hand, we directly minimize276

dp. On the other hand, considering that each entity277

type uses a region to include positive samples, we278

Figure 3: An example to illustrate the inference pro-
cedure in MeTNet. The dashed circles represent the
regions of pre-defined entity types determined by adap-
tive margins. The labels of Q1, Q2 and Q3 are predicted
to be Location, Person and O-class, respectively.

thus maximize dn by pushing the negative sample 279

away from the region. Further, we assign differ- 280

ent weights to samples based on their distances to 281

anchors. Intuitively, the farther the positive sam- 282

ples or the closer the negative samples are to the 283

anchors, the larger the weights should be given 284

to amplify the loss. Finally, we set adaptive mar- 285

gins for different entity types, which play as region 286

radiuses and control region sizes. 287

4.3 Inference 288

In the inference stage, most existing methods cal- 289

culate the distances between a query instance and 290

all the prototype vectors for both entity types and 291

O-class, and predict the query instance to be in the 292

class with the smallest distance. Different from 293
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these methods, our model avoids handling O-class294

directly. Instead, we make predictions based on the295

regions of entity types. As shown in Figure 3, the296

entity types Person and Location have their297

own regions controlled by different margins. When298

a query instance (e.g., Q1) is only located in one re-299

gion, we label it with the entity type corresponding300

to the located region; when a query instance (e.g.,301

Q2) is contained in multiple regions, we calculate302

its distances to different region centers and predict303

its entity type to be that with the smallest distance;304

when a query instance (e.g., Q3) is outside all the305

regions, it is labeled with O-class.306

4.4 Training Procedure307

Inspired by MAML (Finn et al., 2017), we first308

update the model parameters θ with samples in the309

support set:310

θ′ = θ − γ∇θLIT (θ;S), (6)311

where γ is the learning rate and S represents the312

support set. With few-step updates, θ becomes313

θ′. Then based on θ′, the triplet network can map314

query instances and prototype vectors into a low-315

dimensional space that is much easier to classify.316

After that, we update the model parameters θ with317

samples in the query set:318

θ ← θ − β∇θLIT (θ′;Q), (7)319

where β is the meta learning rate and Q repre-320

sents the query set. This optimization simulates321

the testing process in the training stage and boosts322

the generalizability of the model to unseen classes323

with only few-step updates. The overall procedure324

of MeTNet is summarized in Appendix A.325

5 Experiments326

In this section, we comprehensively evaluate the327

performance of MeTNet in both in-domain and328

cross-domain settings. The in-domain setting indi-329

cates that both the training set and the test set come330

from the same domain, while the cross-domain set-331

ting indicates that they are from different domains.332

5.1 Datesets333

We use four public English datasets and one334

new Chinese dataset. Statistics of these datasets335

are given in Appendix B. For the English336

datasets, they are FEW-NERD (Ding et al., 2021),337

WNUT17 (Derczynski et al., 2017), Restau-338

rant (Liu et al., 2013) and Multiwoz (Budzianowski339

et al., 2018). Specifically, FEW-NERD designs 340

an annotation schema of 8 coarse-grained (e.g., 341

“Person”) entity types and 66 fine-grained (e.g., 342

“Person-Artist”) entity types, and constructs two 343

tasks. One is FEW-NERD-INTRA, where all the 344

entities in the training set (source domain), vali- 345

dation set and test set (target domain) belong to 346

different coarse-grained types. The other is FEW- 347

NERD-INTER, where only the fine-grained en- 348

tity types are mutually disjoint in different sets. 349

We conduct in-domain experiments on both tasks. 350

To further validate the model’s generalizability on 351

cross-domain tasks, we also use three NER datasets 352

from different domains, namely WNUT17 (Social), 353

Restaurant (Review) and Multiwoz (Dialogue). 354

We also construct and conduct experiments on 355

a Chinese few-shot NER dataset, namely, FEW- 356

COMM. The dataset consists of 66,165 product 357

description texts that merchants display on a large e- 358

commerce platform, including 140,936 entities and 359

92 pre-defined entity types. These entity types are 360

various commodity attributes that are manually de- 361

fined by domain experts, such as “material”, “color” 362

and “origin”. Specifically, we first hire five well- 363

trained annotators to label the texts in one month 364

and then ask four domain experts to review and 365

rectify the results. To the best of our knowledge, it 366

is the first Chinese dataset specially constructed for 367

few-shot NER. Due to the space limitation, please 368

see Appendix C for more details on the dataset. 369

5.2 Baselines 370

We compare MeTNet with eight other few- 371

shot NER models, which can be grouped into 372

three categories: (1) optimization-based meth- 373

ods: MAML (Finn et al., 2017) which adapts to 374

new classes by using support instances and op- 375

timizes the loss of the adapted model based on 376

the query instances. (2) nearest-neighbor-based 377

methods: NNShot (Yang and Katiyar, 2020) and 378

StructShot (Yang and Katiyar, 2020). NNShot 379

determines the tag of a query instance based on 380

the word-level distance and StructShot further im- 381

proves NNShot by an additional Viterbi decoder. 382

(3) prototype-based methods: PROTO (Snell et al., 383

2017), CONTaiNER (Das et al., 2021), ESD (Wang 384

et al., 2021), DecomMETA (Ma et al., 2022) and 385

SpanProto (Wang et al., 2022). Specifically, De- 386

comMETA addresses few-shot NER by sequen- 387

tially tackling few-shot span detection and few-shot 388

entity typing using meta-learning. SpanProto trans- 389
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Method
FEW-NERD-INTER FEW-NERD-INTRA

Average
5-1 5-5 10-1 10-5 5-1 5-5 10-1 10-5

MAML 38.52±0.67 49.86±0.33 30.20±0.78 33.39±0.49 30.14±0.53 38.38±0.41 23.05±0.45 28.52±0.59 34.01
NNShot 55.24±0.40 54.49±0.91 40.21±1.63 49.23±1.15 26.30±1.21 38.91±0.53 24.69±0.23 32.63±2.59 40.21

StructShot 53.65±0.54 56.50±1.17 46.86±0.53 53.25±0.97 30.88±0.96 42.80±0.51 27.25±0.84 33.56±1.06 43.10
PROTO 35.78±0.71 47.01±1.31 30.12±0.77 47.13±0.57 15.68±0.92 36.58±0.87 12.68±0.59 28.99±1.06 31.75

CONTaiNER† 55.95 61.83 48.35 57.12 40.43 53.70 33.84 47.49 49.84
ESD† 66.46±0.49 74.14±0.80 59.95±0.69 67.91±1.41 41.44±1.16 50.68±0.94 32.29±1.10 42.92±0.75 54.47

DecomMETA† 68.77±0.24 71.62±0.16 63.26±0.40 68.32±0.10 52.04±0.44 63.23±0.45 43.50±0.59 56.84±0.14 60.95
SpanProto† 73.36±0.18 75.19±0.77 66.26±0.33 70.39±0.63 54.49±0.39 65.89±0.82 45.39±0.72 59.37±0.47 63.80

MeTNet 74.42±0.61 76.28±0.32 67.91±0.68 71.96±0.35 55.79±0.23 65.41±0.35 47.18±0.89 60.71±0.17 64.96

Table 1: F1 scores (%) of 5-way 1-shot, 5-way 5-shot, 10-way 1-shot and 10-way 5-shot problems over FEW-NERD
dataset. † denotes the results reported in Wang et al. (2022). We highlight the best results in bold.

Method
FEW-COMM

5-1 5-5 10-1 10-5
MAML 28.16±0.57 54.38±0.37 26.23±0.61 44.66±0.44

NNShot 48.40±1.27 71.55±1.37 41.75±0.93 67.91±1.51

StructShot 48.61±0.76 70.62±0.83 47.77±0.83 65.09±0.97

PROTO 22.73±0.86 53.95±0.98 22.17±0.90 45.81±0.99

CONTaiNER 57.13±0.47 63.38±0.68 51.87±0.58 60.98±0.71

ESD 65.37±0.79 73.29±0.95 58.32±0.89 70.93±1.01

DecomMETA 68.01±0.39 72.89±0.45 62.13±0.28 72.14±0.11

SpanProto 70.97±0.41 76.59±0.74 63.94±0.76 74.67±0.33

MeTNet 71.89±0.51 78.14±0.36 65.11±0.64 77.58±0.71

Table 2: F1 scores (%) of 5-way 1-shot, 5-way 5-shot,
10-way 1-shot and 10-way 5-shot problems over FEW-
COMM dataset. We highlight the best results in bold.

forms the sequential tags into a global boundary390

matrix and leverage prototypical learning to cap-391

ture the semantic representations. For more details392

of other baselines, see Appendix D.393

5.3 Experiment Setup394

We implemented MeTNet by PyTorch. The model395

is initialized by He initialization (He et al., 2015)396

and trained by AdamW (Loshchilov and Hutter,397

2017). We run the model for 6,000 epochs with the398

learning rate 0.2 and the meta learning rate 0.0001399

for the improved triplet loss on all the datasets.400

For the text encoder, we use the pre-trained401

bert-base-Chinese model for the FEW-402

COMM dataset and bert-base-uncased403

model for other datasets. In the triplet network,404

we use two feed-forward layers and we set the405

numbers of hidden units to 1024 and 512. We also406

fine-tune the number T of iterations for updating407

parameters on the support set in each meta-task by408

grid search over {1, 3, 5, 7, 9} and set it to 3 on409

all the datasets. Moreover, We set the balancing410

weight α to 0.3 by grid search over {0.1, 0.3, 0.5,411

0.7, 0.9}. For a fair comparison, we substitute the412

text encoder as that of MeTNet for all the baselines,413

use the original codes released by their authors 414

and fine-tune the parameters of the models. We 415

run all the experiments on a single NVIDIA v100 416

GPU. Following Ding et al. (2021), we evaluate 417

the model performance based on 500 meta-tasks in 418

meta-testing and report the average micro F1-score 419

over 5 runs. We utilize the IO schema in our exper- 420

iments, using I-type to denote all the words of 421

a named entity and O to denote other words. For 422

more details of hyper-parameters, see Appendix E. 423

5.4 Results 424

In-domain Experiments The results of in- 425

domain experiments in 1-shot and 5-shot settings 426

on FEW-NERD dataset are shown in Table 1. From 427

the table, MeTNet consistently outperforms all 428

the baselines on the average F1 score. For exam- 429

ple, compared with SpanProto, MeTNet achieves 430

1.16% improvements on the average F1 score; 431

when compared against the PROTO model, MeT- 432

Net leads by 33.21% on the average F1 score, 433

which clearly demonstrates that our model is very 434

effective in improving PROTO. On the FEW- 435

COMM dataset (as shown in Table 2), our model 436

also achieves the best performance across all the 437

settings. All these results show that MeTNet, which 438

learns adaptive margins by an improved triplet net- 439

work, can perform reasonably well. 440

Cross-domain Experiments We train models 441

on FEW-NERD-INTER (General) as the source 442

domain and test our models on WNUT (Social 443

Media), Restaurant (Review) and Multiwoz (Dia- 444

logue), respectively. All the three datasets are in dif- 445

ferent domains from that of FEW-NERD-INTER. 446

Since there is a large generalization gap between 447

the training and test distributions, cross-domain 448

experiments are generally more challenging than 449

in-domain ones. Table 3 shows the results. From 450
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Method
WNUT Restaurant Multiwoz Average

5-1 5-5 5-1 5-5 5-1 5-5 5-1 5-5
MAML 17.77±0.67 23.69±0.71 17.53±0.83 22.81±0.77 20.82±1.01 23.61±0.87 18.71 23.37
NNShot 15.93±0.61 23.78±0.67 19.37±0.73 32.83±0.89 27.77±0.91 42.19±1.03 21.02 32.93

StructShot 17.29±1.01 25.18±0.96 20.75±1.07 34.18±1.18 30.79±1.21 44.01±1.31 22.46 34.08
PROTO 13.04±0.71 23.20±0.93 15.68±1.01 32.71±1.07 22.09±0.81 41.78±0.79 16.94 32.56

CONTaiNER 18.15±1.17 19.54±1.09 27.74±0.89 33.41±0.97 34.88±2.03 41.92±1.93 26.92 31.62
ESD 19.24±0.87 26.00±0.96 24.53±1.03 37.85±0.97 35.81±1.87 42.88±1.05 26.53 35.58

DecomMETA 20.98±0.11 31.17±0.16 29.75±0.27 41.13±0.19 33.79±0.22 47.01±0.36 28.17 39.77
SpanProto 21.94±0.15 32.97±0.15 27.75±0.17 39.15±0.21 36.17±0.23 45.32±0.35 28.62 39.15
MeTNet 23.04±0.78 34.32±0.74 33.01±0.63 46.43±0.57 41.12±0.53 52.73±0.79 32.39 44.49

Table 3: F1 scores (%) of 5-way 1-shot, 5-way 5-shot problems over three datasets for cross-domain experiments.
We highlight the best results in bold.

Method
FEW-NERD-INTER FEW-NERD-INTRA FEW-COMM

5-1 5-5 10-1 10-5 5-1 5-5 10-1 10-5 5-1 5-5 10-1 10-5
MeTNet-piw 64.53 65.71 55.85 56.27 44.17 53.68 33.53 43.71 60.46 67.69 50.75 65.47

MeTNet-piw-rtn 54.87 65.04 43.15 55.89 35.37 49.57 29.23 41.48 53.13 62.89 46.72 63.09
MeTNet-otl 69.73 72.91 57.70 64.31 45.28 60.21 36.61 48.56 64.25 74.52 55.71 73.97

MeTNet-w/o-MAML 72.54 73.16 65.73 70.51 53.52 61.37 43.51 54.36 70.19 72.94 61.18 74.03
MeTNet 74.42 76.28 67.91 71.96 55.79 65.41 47.18 60.71 71.89 78.14 65.11 77.58

Table 4: Ablation study: F1 scores (%) of 5-way 1-shot, 5-way 5-shot, 10-way 1-shot and 10-way 5-shot classification
over FEW-NERD and FEW-COMM datasets. “rtn” means removing triplet network, “piw” means using previous
inference way and “otl” means using original triplet loss. We highlight the best results in bold.

the table, we see that our model performs very well451

in both the 1-shot and 5-shot settings. This clearly452

shows the generalizability of our model.453

5.5 Ablation Study454

We conduct an ablation study to understand the455

characteristics of the main components of MeTNet.456

To show the importance of the proposed margin-457

based inference method, one variant generates pro-458

totype vectors for both entity types and O-class. In459

the inference stage, it computes the distance be-460

tween a query instance and all these prototype vec-461

tors, and predict the query instance to be in the class462

with the smallest distance, which is similar as pre-463

vious methods. We call this variant MeTNet-piw464

(use previous inference way). To study the impor-465

tance of the triplet network in mapping prototype466

vectors and samples into a low-dimensional space467

that is easier to classify, we further remove the468

triplet network and replace it with a fully-connected469

layer. Due to the removal of the triplet network,470

adaptive margins cannot be learned, so we adopt471

the same inference procedure as in MeTNet-piw.472

We call this variant MeTNet-piw-rtn (use previous473

inference way and remove triplet network ). To474

show the importance of the improved triplet loss, 475

we replace it with the original triplet loss and call 476

this variant MeTNet-otl2 (original triplet loss). Fi- 477

nally, we remove the MAML training procedure 478

to explore the impact of MAML on the model and 479

call this variant MeTNet-w/o-MAML. 480

The results of ablation study are shown in Ta- 481

ble 4. From the table, we observe: (1) MeTNet 482

beats MeTNet-piw clearly. For example, in 5-way 483

1-shot problem on the FEW-COMM dataset, the F1 484

score of MeTNet is 71.89% while that of MeTNet- 485

piw is only 60.46%. This shows that the margin- 486

based inference can effectively enhance the model 487

performance. (2) The advantage of MeTNet-piw 488

over MeTNet-piw-rtn across all the datasets further 489

shows that the triplet network can learn better em- 490

beddings for samples with different classes in the 491

low-dimensional space. (3) MeTNet leads MeTNet- 492

otl in all the classification tasks. This demonstrates 493

that our improved triplet loss is highly effective. (4) 494

Compared against MeTNet-w/o-MAML, MeTNet 495

leads by 3.55% on the average F1 score, which 496

shows the importance of MAML to the model. 497

2We fine-tune the margin m in MeTNet-otl by grid search
over {1, 3, 5, 7, 9} and set it to 5.
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Figure 4: F1 scores (%) of 5-way 1-shot, 5-way 5-shot,
10-way 1-shot and 10-way 5-shot classification over
FEW-NERD-INTER datasets. “-itl-w” means using the
improved triplet loss without important weights to sam-
ples; “-itl-am” represents using the improved triplet loss
without adaptive margins (use a fixed margin instead);
“-otl”2 denotes using the original triplet loss and “-cl”
represents using contrastive loss (Hadsell et al., 2006).

5.6 Loss Function Analysis498

We next conduct an in-depth experiment for loss499

functions on FEW-NERD-INTER dataset. The500

results are shown in Figure 4. From the results,501

we see that MeTNet beats MeTNet-itl-w clearly,502

which demonstrates that it is effective that we as-503

sign different weights to samples based on their dis-504

tances to anchors. Further, MeTNet leads MeTNet-505

itl-am, which shows that adaptive margins effec-506

tively enhance the model performance. Moreover,507

compared with other loss functions (e.g. original508

triplet loss (Hoffer and Ailon, 2015) and contrastive509

loss (Hadsell et al., 2006)), we see that MeTNet510

leads them in all the classification tasks, which511

indicates that our improved triplet loss is highly512

effective. For other datasets, we observe similar513

results that are deferred to Appendix F.514

5.7 Visualization515

Figure 5 visualizes the word-level representations516

of a query set generated by PROTO and MeTNet in517

the 5-way 1-shot and 5-way 5-shot settings on the518

FEW-NERD-INTER dataset. Note that PROTO519

generates prototype vectors for both entity types520

and O-class, while MeTNet only generates that for521

entity types. From the figure, we see that words in522

O-class are widely distributed, so using a prototype523

vector to represent O-class is insufficient. For those524

samples closer to other prototype vectors, they are525

easily misclassified. Instead of representing O-class526

with a prototype vector, MeTNet addresses the527

Figure 5: t-SNE visualizations on the FEW-NERD-
INTER test sets. The representations are obtained from
PROTO and MeTNet. The dashed circles represent the
regions determined by adaptive margins.

problem by learning adaptive margins for entity 528

types only and using a margin-controlled region to 529

make prediction. Samples outside these regions are 530

labeled with O-class. Further, our method MeTNet 531

can generate word embeddings that are clearly sep- 532

arated, which further explains the effectiveness of 533

MeTNet. 534

6 Conclusion 535

In this paper, we studied the few-shot NER prob- 536

lem and proposed MeTNet, which is a meta- 537

learning triplet network with adaptive margins. As 538

a prototype-based method, MeTNet uses a triplet 539

network to map samples and prototype vectors into 540

a low-dimensional space that is easier to be classi- 541

fied. Further, to solve the problem that O-class is se- 542

mantically complex and thus hard to be represented 543

by a prototype vector, MeTNet only generates pro- 544

totype vectors for entity types. We designed an 545

improved triplet loss function with adaptive mar- 546

gins. We also presented a margin-based inference 547

procedure to predict the label of a query instance. 548

We performed extensive experiments in both in- 549

domain and cross-domain settings. Experimental 550

results show that MeTNet can achieve significant 551

performance gains over other state-of-the-art meth- 552

ods. In particular, we released the first Chinese 553

few-shot NER dataset FEW-COMM from a large- 554

scale e-commerce platform, which aims to provide 555

more insight for future study on few-shot NER. 556

8



Ethics Statement557

The proposed method has no obvious potential558

risks. All the scientific artifacts used/created are559

properly cited/licensed, and the usage is consistent560

with their intended use. The paper collects a new561

dataset FEW-COMM, which does not contain any562

sensitive information. The dataset is keeping with563

the rules and reviewed by experts to ensure that it564

does not create additional risks. Also, we open up565

our codes and hyperparameters to facilitate future566

reproduction without repeated energy cost.567
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A Pseudocode701

The pseudocode of MeTNet training procedure is702

summarized in Algorithms 1.703

Algorithm 1 MeTNet Training Procedure
Input: Training data {Dtrain,Ytrain}; ep epochs and the

number T of iterations of the model updated by the sup-
port set in a task; N classes in the support set or the
query set; K samples in each class in the support set and
L samples in each class in the query set; the pre-trained
BERT parameter ϕ; the model parameter θ; the setM
of adaptive margins;

Output: ϕ, θ andM after training;
1: Randomly initialize θ andM;
2: for each i ∈ [1, ep] do
3: Y ← Sample(Ytrain, N);
4: S,Q ← ∅, ∅;
5: for y ∈ Y do
6: S ← S ∪ Sample(Dtrain{y},K);
7: Q ← Q∪ Sample(Dtrain{y}\S, L);
8: end for
9: HS ,HQ ← BERTϕ(S),BERTϕ(Q);

10: HP ← ∅;
11: for y ∈ Y do
12: HP ← HP ∪ mean(HS{y});
13: end for
14: for t ∈ T do
15: Construct triples byHS ,HP ;
16: Input triples to the triplet network;
17: Calculate LIT by Equation 5;
18: Update θ to θ′ by Equation 6;
19: end for
20: Construct triples byHQ,HP ;
21: Input triples to the triplet network;
22: Calculate LIT by Equation 5;
23: Update ϕ and θ based on θ′ by Equation 7;
24: end for
25: return ϕ, θ andM

B Statistics of Datasets704

Datasets # Sentences # Entities # Classes Domain
FEW-COMM 66.2k 140.9k 92 Commodity
FEW-NERD 188.2k 491.7k 66 General

WNUT 4.7k 3.1k 6 Social Media
Restaurant 9.2k 15.3k 8 Review
Multiwoz 23.0k 20.7k 14 Dialogue

Table 5: Statistics of datasets. # Classes corresponds to
the number of pre-defined entity types in a dataset.

We use four public English datasets and one new705

Chinese dataset we proposed. Statistics of these706

datasets are given in Table 5.707

C FEW-COMM708

C.1 Entity types709

As introduced in Section 5.1 of the main text, FEW-710

COMM is manually annotated with 92 pre-defined711

entity types, and we list all the types and the num- 712

ber of samples belonging to each type in Table 6. 713

We find that since FEW-COMM is collected from 714

real application scenarios, there is a long-tailed dis- 715

tribution problem, which is a common problem in 716

real scenarios. How to overcome the influence of 717

long-tailed distribution on the model is a crucial 718

research direction. 719

C.2 Splits 720

We divided the training set, validation set and test 721

set in a ratio of 6:2:2. Among them, the training set 722

includes 55 entity types, the validation set includes 723

18 entity types, and the test set includes 19 entity 724

types. The entity types contained in the three sets 725

are disjoint. 726

C.3 Examples 727

We provide some examples on FEW-COMM 728

dataset for further understanding, which is shown 729

in Table 7. 730

D Baselines 731

We compare MeTNet with eight other few-shot 732

NER models. 733

• MAML (Finn et al., 2017) adapts to new 734

classes by using support instances and opti- 735

mizes the loss of the adapted model based on 736

the query instances. 737

• NNShot (Yang and Katiyar, 2020) determines 738

the tag of a query instance based on the word- 739

level distance. 740

• StructShot (Yang and Katiyar, 2020) further 741

improves NNShot by an additional Viterbi de- 742

coder. 743

• PROTO (Snell et al., 2017) computes the pro- 744

totype vector by averaging all the sample em- 745

beddings in the support set for each class. 746

• CONTaiNER (Das et al., 2021) proposes a 747

contrastive learning method that optimizes the 748

inter-token distribution distance for few-shot 749

NER. 750

• ESD (Wang et al., 2021) uses various types 751

of attention based on PROTO to improve the 752

model performance. 753
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Table 6: All the pre-defined entity types and the number of samples belonging to each type in FEW-COMM dataset.

Entity types # Samples Entity types # Samples Entity types # Samples Entity types # Samples
其他属性 44259 功能功效 13412 材质 11126 适用人群 9483
颜色 6955 产地 4959 适用对象 2520 成分 2356
适用季节 1791 品质等级 1671 接口 1379 适用时间 1292
运输服务 1245 型号 1210 商品特色 1135 国产/进口 920
分类 897 形状形态 874 香型 860 组合形式 808
适用性别 801 连接方式 786 控制方式 706 领型 697
甜度 674 适用品牌 636 送礼对象 614 供电方式 585
面料材质 569 风味 564 大小 550 口感 546
系列 530 筒高 510 造型 503 厚度 486
是否有机 483 技术类型 478 厚薄 472 填充材质 469
适用运营商 466 袖长 465 适用车型 462 糖含量 460
光度 457 脂肪含量 456 是否带盖 451 加热方式 447
长短 444 版型 441 适用衣物 440 资质认证 439
外观 436 消毒方式 430 是否清真 430 部位 428
是否净洗 426 长度 426 适用生肖 426 配件类型 424
袖型 422 果肉颜色 419 适用空间 419 适用燃料 416
适用星座 415 酸碱度 413 剂型 413 锅底类型 412
销售方式 412 鞋垫材质 410 适用人数 406 裙型 404
定制服务 403 存储容量 403 成熟状态 403 是否去皮 402
是否去骨 402 冲泡方式 402 赠品 401 宽度 401
裤长 401 粗细 401 礼盒类型 400 结构 400
色系 399 净含量 376 发酵程度 321 抽数 214
保质期 86 内容 44 段位 40 装订方式 11

Table 7: Examples in FEW-COMM dataset. We marked the entities with the corresponding entity types.

日本[产地]黑色[颜色]数字帆布[材质]烧饼包灯芯绒[材质]钱包证件包对开简约大容量[功能功效]笔袋

春夏[适用季节]爆款纯色[颜色]男女通用[适用性别]防晒冰袖套跑男[其他属性]骑行紫外线护臂【蓝色[颜色]直筒[版型]无指盒装】

洁丽雅（grace）浴巾a类纯棉[材质]加大加厚[其他属性]成人[适用人群]家用柔软吸水[功能功效]

精品[品质等级]霏慕情趣内衣女式[适用性别]性感透明[颜色]诱惑镂空蕾丝[材质]刺绣薄纱[其他属性] 7114/2

金丝绒[材质]阔腿裤秋冬[适用季节]加绒[其他属性]高腰垂感宽松直筒[版型]显瘦[功能功效]百搭休闲拖地长裤子

绳子拉车绳货车[适用车型]刹车绳子捆绑带拖车绳紧绳器马扎耐磨[功能功效]尼龙[材质]扁带拉紧加粗20米

情趣丝袜修腿显瘦[功能功效]蕾丝[材质]花边白色长筒丝袜高筒[筒高]情趣连体袜子

电动电瓶车头盔灰[颜色]女士[适用性别]夏季[适用季节]半盔防晒全盔可爱夏天轻便[其他属性]安全帽/个

棉拖鞋女士[适用性别]家居室内厚底防滑月子鞋冬季[适用季节]毛绒[材质]保暖情侣[适用人群]棉鞋红色[颜色]

时尚布艺围裙厨房无袖[袖长]口袋围腰成人[适用人群]格子围裙

【心中最爱】-33朵玫瑰爱心礼盒[形状形态]鲜花-送爱人[送礼对象]花店送花上门[运输服务]

泳帽女士[适用性别]长发防水[功能功效]护耳游泳硅胶[材质]布帽舒适[其他属性]不勒头帽子游泳泡温泉1个

airism宽松圆领[领型] t恤(五分袖[袖长]黑色[颜色] )

中啡冷萃[冲泡方式]速溶即溶纯黑[颜色]小罐胶囊2gx16颗/盒
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Figure 6: F1 scores (%) of 5-way 1-shot, 5-way 5-shot, 10-way 1-shot and 10-way 5-shot classification. “-itl-w”
means using the improved triplet loss without important weights to samples; “-itl-am” represents using the improved
triplet loss without adaptive margins (use a fixed margin instead); “-otl” denotes using the original triplet loss and
“-cl” represents using contrastive loss (Hadsell et al., 2006).

• DecomMETA (Ma et al., 2022) addresses754

few-shot NER by sequentially tackling few-755

shot span detection and few-shot entity typing756

using meta-learning.757

• SpanProto (Wang et al., 2022) transforms the758

sequential tags into a global boundary matrix759

and leverage prototypical learning to capture760

the semantic representations.761

E Details of Hyper-parameters762

Hyper-parameters Scope
Meta Learning Rate β {1e− 5, 1e-4, 1e− 3, 1e− 2, 1e− 1}

Learning Rate γ {0.1, 0.2, 0.3, 0.4, 0.5}
Iterations on the support set T {1, 3, 5, 7, 9}

Balancing Weight α {0.1, 0.3, 0.5, 0.7, 0.9}
Dropout Rate ϵ {0.1, 0.2, 0.3}
Batch Size BS {1, 2, 3, 4, 5}

Table 8: The searching scope for all hyper-parameters.
We highlight the best settings in bold. Note that the
batch size in the N -way K-shot setting represents the
number of episodes in one batch.

The searching scope of each hyper-parameter763

is shown in Table 8. The model is initialized764

by He initialization (He et al., 2015) and trained765

by AdamW (Loshchilov and Hutter, 2017). We766

run the model for 6,000 epochs with the learn-767

ing rate 0.2 and the meta learning rate 0.0001768

for the improved triplet loss on all the datasets.769

For the text encoder, we use the pre-trained770

bert-base-Chinese model for the FEW-771

COMM dataset and bert-base-uncased772

model for other datasets. In the triplet network, we773

use two feed-forward layers and we set the numbers774

of hidden units to 1024 and 512. We also fine-tune775

the number T of iterations for updating parameters776

on the support set in each meta-task by grid search777

over {1, 3, 5, 7, 9} and set it to 3 on all the datasets. 778

Moreover, We set the balancing weight α to 0.3 779

by grid search over {0.1, 0.3, 0.5, 0.7, 0.9}. We 780

run all the experiments on a single NVIDIA v100 781

GPU. Following Ding et al. (2021), we evaluate 782

the model performance based on 500 meta-tasks in 783

meta-testing and report the average micro F1-score 784

over 5 runs. We utilize the IO schema in our exper- 785

iments, using I-type to denote all the words of a 786

named entity and O to denote other words. 787

F Loss Function Analysis 788

We conduct an in-depth experiment for the loss 789

function. The results are shown in Figure 6. From 790

the results, we see that MeTNet beats MeTNet- 791

itl-w and MeTNet-itl-am clearly, which demon- 792

strates that the our improvements including sample 793

weights and adaptive margins effectively enhance 794

the model performance. Further, compared with 795

other loss functions (e.g. triplet loss (Hoffer and 796

Ailon, 2015) and contrastive loss (Hadsell et al., 797

2006)), we see that MeTNet leads them in all the 798

classification tasks, which demonstrates that our 799

improved triplet loss is highly effective. 800
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