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ABSTRACT

Predicting the 3D geometry of molecules is central to applications in drug discov-
ery, materials design, and molecular modeling. However, molecular geometry can
change dramatically across environments (e.g., crystal lattice versus protein bind-
ing pocket). Existing generative approaches are typically environment-agnostic
or require separate models for each environment, which limits generalization. We
introduce EVA-Flow, a unified framework for environment-aware conformation
generation. EVA-Flow combines a variational autoencoder with a flow match-
ing decoder and incorporates environment information through a learned embed-
ding. Across four environments including vacuum, protein-ligand docking, sol-
vation, and crystal packing, EVA-Flow substantially improves generation accu-
racy through pretraining and unification. Analysis of shared molecules that ap-
pear in multiple environments further shows that EVA-Flow generates distinct,
environment-specific conformations rather than memorizing a single geometry.

1 INTRODUCTION

Molecules do not exist in a single fixed shape. Consider the journey of a drug molecule: it may
be synthesized and dissolved in a solvent, crystallized into a solid for storage, redissolved in the
body, and finally bind to a target protein to take effect. At each stage, the surrounding environment,
solvent, crystal lattice, or protein pocket, reshapes the 3D geometry of the molecule. As a result, the
same compound can adopt very different conformations depending on context. These environment-
dependent conformations are not mere structural details; they govern fundamental properties such
as binding affinity (Weikl & Paul, 2014), solubility (Sobornova et al., 2024), and stability, which in
turn determine the efficacy of drugs, the performance of materials (Cruz-Cabeza et al., 2020), and
the reliability of molecular simulations.

Recent generative models have made strong progress in learning molecular conformations, but most
remain environment-agnostic, assuming molecules exist in isolation (Xu et al., 2022; Hassan et al.,
2024). Some methods incorporate environments, but only for specific tasks such as protein–ligand
docking (Corso et al., 2022; 2024), and must be trained separately for each case. This results in
fragmented solutions with limited transferability. These limitations highlight the need for a uni-
fied framework that generalizes across environments by leveraging the flexibility and scalability of
modern generative approaches.

In this work, we propose EVA-Flow, a unified model that produces environment-aware molecular
conformations. The model builds on a variational autoencoder (VAE) (Kingma et al., 2019), where
the encoder embeds both the molecular graph and its environment into a latent representation. This
latent variable captures molecule–environment interactions, similar to collective variables (Fiorin
et al., 2013; Bhakat, 2022). The flow matching (FM) decoder then generate molecular conformations
conditioned on the environment (Lipman et al., 2022)(Figure 1). Unlike prior approaches restricted
to a single context, EVA-Flow generalizes across environments within a single model, learning
conformational distributions in vacuum, protein-ligand docking, solvation, and crystal packing.

Our contributions are summarized as follows:
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(c) Inference.

Figure 1: Architecture of EVA-Flow. (a) The raw environment graph GE is embedded by an envi-
ronment network to produce a low-dimensional vector e. (b) At training time, the encoder fenc takes
the molecular graph G, the environment vector e, and atomic positions x to yield a latent variable z.
A base network, conditioned on (G, z, e), parameterizes a Gaussian base distribution p0(x | G, z, e)
from which an initial conformation x0 is sampled. A time is sampled t ∼ U(0, 1) and xt is calcu-
lated. The flow matching decoder learns a vector field uθ

t (xt, G, z, e). (c) At inference time, z is
sampled from p(z) = N (0, I), and then fed to the Base network. By solving the FM ODE from
xt=0 = x0, a conformer is generated.

• We introduce EVA-Flow, the first unified framework for environment-aware molecular confor-
mation generation. EVA-Flow combines a VAE with a flow matching decoder.

• We design an encoder that integrates molecular and environmental information into a latent
variable to capture molecule–environment interactions.

• We demonstrate that (i) pretraining and unification across environments improve accuracy over
environment-specific models, and (ii) EVA-Flow generates distinct conformations for the same
molecule in different environments, confirming that the model captures genuine environment
dependence rather than memorizing a single geometry.
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2 RELATED WORK

Flow Matching. FM trains a continuous normalizing flow by regressing the velocity field that trans-
ports a simple base distribution to the data along a chosen probability path, yielding a simulation-free
objective and fast ODE sampling(Lipman et al., 2022). Rectified flow (RF) (Liu et al., 2022) and
conditional FM (CFM) (Tong et al., 2023) extend FM to efficient straight-through paths and condi-
tional generation. Equivariant (Hassan et al., 2024) and geometric variants (Chen & Lipman, 2023)
adapt FM to 3D settings and enable geometric constraints and symmetries.

VAE + FM. Hybrid models combine VAE with flows in two ways. (1) Latent FM (better prior):
FM is trained in the VAE latent space to transport a simple Gaussian to the aggregated posterior;
sampling integrates the latent flow and then applies a standard feed-forward decoder, where FM
improves the prior, not the decoder (Dao et al., 2023). (2) FM as decoder: the decoder itself is a
conditional flow that maps a base to the data given the latent code, trained with FM/RF; this leads
to few-step, deterministic sampling and better support for multi-modal outputs (Fischer et al., 2023;
Sargent et al., 2025). Our work follows the latter design, instantiating an environment-aware FM
decoder for conformer generation.

Molecular conformation generation. Generating 3D molecular structures has been extensively
studied with both physics-based and learning-based approaches. Classical methods rely on force
fields and molecular dynamics (MD) simulations, which are accurate but computationally expen-
sive. Recent neural methods generate conformers with equivariant diffusion, flows, or autoregres-
sive torsion models. Most papers consider vacuum (Xu et al., 2022; Hassan et al., 2024); a smaller
body conditions on context such as protein pockets (protein-ligand docking) (Corso et al., 2024).
However, these approaches typically target a single environment, requiring retraining or architec-
ture changes to adapt across settings.

Key challenges in this space include: (i) the lack of unified models that generalize across diverse
environments, and (ii) the difficulty of incorporating complex conditioning inputs such as structured
environments into generative frameworks. EVA-Flow addresses these challenges by combining an
environment-aware encoder with an SE(3)-equivariant FM decoder, enabling a single model to gen-
erate accurate conformers across different environments without requiring task-specific pipelines.

Diffusion in latent space for molecules. A recent work by Joshi et al. (2025) performs conformer
generation by running a diffusion process in a learned latent space and decoding to coordinates.
While this brings strong scalability and reuse of pretrained latents, it differs from our approach: we
keep a VAE encoder but use FM as the decoder in data space, conditioned on the environment.

3 ENVIRONMENT-AWARE FLOW MATCHING

3.1 PROBLEM FORMULATION

Let G = (V,E) denote a molecular graph with nodes representing atoms and edges representing
bonds. Each atom is associated with a 3D position x ∈ R3N , where N is the number of atoms. A
molecule exists in an environment E, such as a protein pocket, solvent box, or crystalline lattice.
Our goal is to learn the conditional distribution: p(x|G,E), capturing how environments modulate
molecular conformations. Unlike prior work that trains separate models for each environment, we
seek a unified model that generalizes across all E.

3.2 MODEL ARCHITECTURE

Our framework, EVA-Flow, is a VAE with a FM decoder, consisting of multiple components (Fig-
ure 1).

1. Environment Embedding Network(Figure 1a). The environment is represented as a graph
GE = (VE, EE), where nodes correspond to atoms with associated features and edges correspond
to bonds or interactions. The construction of GE is described in Section 4.1. The environment
network, fenv, consists of two graph convolutional network (GCN) layers (Zhang et al., 2019),
followed by a two-layer MLP projection to the environment embedding vector e ∈ Rd:

e = fenv(GE) (1)

3
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This embedding provides global information that conditions both the encoder and the decoder.
2. Encoder (Figure 1b). The encoder is a GNN-based module that takes as input the molecular

graph G, atomic positions x, and the environment embedding e. Input node features are formed
by concatenating the atomic number, node attributes, and atomic positions. These features are
processed by a stack of GCN layers, producing node embeddings of size [N, hidden]. Each node
embedding is then concatenated with the environment embedding e, and projected through two
linear layers to produce the mean and log-variance for node-level latent variables. This defines a
variational posterior distribution

qϕ(z | G, x, e) =

N∏
i=1

N
(
zi

∣∣∣µϕ,i(G, x, e), diag
(
σ2
ϕ,i(G, x, e)

))
, (2)

where µϕ,i, σ
2
ϕ,i ∈ Rd denote the mean and variance predicted for node i. Equivalently, stacking

all nodes yields
qϕ(z | G, x, e) = N

(
µϕ(G, x, e), diag(σ2

ϕ(G, x, e))
)
, (3)

with µϕ, σ
2
ϕ ∈ RN×d. The latent variables z capture molecule–environment interactions.

3. Base Distribution Network. To initialize FM, we require a base distribution p0. Instead of
using a fixed isotropic Gaussian, we parameterize p0 with a GNN, fbase, conditioned on the
molecular graph G, the environment embedding e, and latent variables z. Specifically, input
node features are constructed by concatenating the atomic number, node attributes, environment
embedding, and latent variables. These features are processed by two GCN layers, followed by
two independent MLP heads that predict the mean and log-variance of a Gaussian distribution:

µbase, log σ
2
base = fbase(G, z, e), (4)

where µbase, σ
2
base ∈ RN×3 correspond to the predicted mean and variance for the N atoms in

Cartesian space. This yields a factorized Gaussian base distribution over positions:

p0(x | G, e, z) =

N∏
i=1

N
(
xi

∣∣∣µbase,i(G, z, e), diag
(
σ2
base,i(G, z, e)

))
. (5)

4. FM Decoder. The decoder generates conformations by transporting samples from the base dis-
tribution p0 to the target distribution. We adopt the ETFlow network (Hassan et al., 2024) to
parameterize a time-dependent vector field uθ

t that takes as input the current molecular structure
xt, the molecular graph G, the latent variables z, and the environment embedding e:

ẋt = uθ
t (xt, G, z, e), x0 ∼ p0(x | G, z, e), (6)

where xt ∈ R3N denotes the atomic coordinates at time t ∈ [0, 1] that is linearly interpolated:

xt = (1− t)x0 + tx (7)

5. Inference(Figure 1c). At inference time, given the environment graph GE , we compute the em-
bedding e = fenv(GE) and sample a latent z ∼ p(z) = N (0, I). The base network fbase(G, z, e)
defines a Gaussian p0(x | G, z, e) from which we sample an initial conformation x0. Starting at
xt=0 = x0, we solve the FM ODE (Equation (6)) to obtain the final conformer x̂ = xt=1.

3.3 TRAINING OBJECTIVES

We jointly optimize the encoder, environment embedding network, base distribution network, and
FM decoder using a composite objective. The total loss consists of four terms, each serving a distinct
role (Figure 1b):

1. Latent Prior Regularization. This loss ensures the latent variable z remains well-structured and
consistent with a simple prior, preventing degenerate latents.

LKL−z = DKL(qϕ(z|x,G, e)||N (0, I)). (8)

2. Base Distribution Regularization. This loss stabilizes the learned Gaussian base distribution
and prevents drift and collapse of the base distribution.

LKL−base = DKL(p0(x|G, z, e)||N (0, I)), (9)

.
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(a) Pretraining data

drugs
58.6%

244,828

qm9
25.5%

106,587

oe62
6.7%

28,038

spice
4.6%

19,198

crest
4.6%

19,198
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Figure 2: Dataset composition and overlap. (a) Pretraining data sources: GEOM-Drugs, GEOM-
QM9, OE62, SPICE, and CREST-relaxed SPICE. Slice sizes are proportional to molecule counts.
(b) Finetuning data composition across environments: vacuum (GEOM-Drugs), docking (PDB-
Bind), packing (COD), and solvation (AQM). (c) Venn diagram showing the number of unique
molecules in pretraining and finetuning datasets and their overlap.

3. Latent Consistency Loss. This loss encourages the latent representation z to capture stable
molecule-environment interactions. We compare the encoder’s posterior means for the target
conformation x and the initial conformation x0 ∼ p0(·|G, z, e):

Lconsistency = ||µϕ(x0, G, e)− µϕ(x,G, e)||22. (10)

4. FM Loss. This loss trains the decoder to transport samples from the base distribution to the data
distribution through continuous-time dynamics.

LFM = Et,xt [||uθ
t (xt, G, z, e)− ut(x0, x)||2], (11)

where ut is the analytically defined target velocity field:

ut = x− x0 (12)

All networks are trained jointly at each iteration. We find that weighting the losses is not necessary
since they are training orthogonal or complementary components, so our final loss is a sum.

L = LKL−z + LKL−base + Lconsistency + LFM. (13)

4 EXPERIMENTS

4.1 DATASETS

Pretraining. For large-scale pretraining, we combine datasets containing conformations of small or-
ganic and drug-like molecules. This includes relaxed conformations from GEOM-QM9 and GEOM-
Drugs (Axelrod & Gomez-Bombarelli, 2022), as well as higher-energy conformations from the
SPICE PubChem subset (Eastman et al., 2023). We further performed relaxation on SPICE dataset
using CREST (Pracht et al., 2024) to obtain low-energy conformations. In addition, we include the
OE62 dataset (Stuke et al., 2020), which consists of crystal-forming molecules relaxed in vacuum.
Altogether, the pretraining corpus contains ∼418K molecules and 9.8M conformations (Figure 2a).

We construct the environment graph (GE) during pretraining. For each molecule, we apply the
RDKit (Landrum & contributors, 2025) MurckoScaffold package (RDK, 2025) to extract the
molecule’s Bemis–Murcko scaffold (Bemis & Murcko, 1996) by removing substituents and retain-
ing only the core ring systems and the linkers connecting them. The partial graph, together with the
atomic positions, is passed to the environment network (Figure 2a).

Finetuning. We finetune and evaluate our model in four environments:

1. Vacuum. In vacuum, the molecules are isolated and do not interact with external environment.
We use GEOM-Drugs dataset. To build the environment graph, we extract the partial graph
similar to the pretraining stage, but the atomic positions are all set to zero (Figure 1a, Vacuum).

5
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2. Protein–Ligand Docking. In this task, molecules (ligands) adapt to protein binding pockets.
We use PDBBind-v2020 dataset (Liu et al., 2015). The environment graph is constructed from
heavy atoms in the pocket. We add edges between atoms in the same protein residue. The atomic
positions of the binding pocket are included(Figure 1a, Protein-Ligand Docking).

3. Solvation. Dissolved molecules interact with the solvent molecules. To learn to predict the con-
formations in solution, we use the Aquamarine (AQM) dataset (Medrano Sandonas et al., 2024),
which contains conformations relaxed in implicit water. To construct the environment graph, we
use a water molecule and add solvation descriptors to the node features such as cavity surface
area (sCAV), cavity volume (vCAV), free energy in electrolyte (eSOLV), and non-electrostatic
free energy (eNELEC)(Figure 1a, Solvation). These descriptors provides information on the
interaction between molecules and solvent.

4. Crystal Packing. Molecules interact with neighboring molecules in crystals. We use the Crys-
tallography Open Database (COD) (Gražulis et al., 2009; 2012), and filter to the small organic
molecular crystals. We convert the fractional coordinates from the CIF files to Cartesian posi-
tions, and recover the bonds with OpenBabel (O’Boyle et al., 2008; 2011). For the environment
graph, we extract the partial graph and set atomic positions all to zero. We also add to the node
feature the space group number (sg) and lattice parameters (a, b, c, α, β, γ) (Figure 1a, Packing).

Further details about data processing and the distributions of number of atoms and the number of
rotatable bonds can be found in Appendices A and B.

4.2 EXPERIMENTAL SETUP

We compare four training strategies.

1. Pretraining + Individual Finetuning. We first pretrain the model on the pretraining datasets,
then finetune it on a single environment. In the pretraining, the model is exposed to massive
molecules and conformations to learn valid conformations. In the individual finetuning, the
model learns a specific environment.

2. Pretraining + Unified Finetuning. We first perform training on the pretraining datasets (Sec-
tion 4.1), but then finetune on all environments of the finetuning datasets. This setup examines if
model learns to adapt to different environments.

3. Unified Finetuning. we skip the pretraining and only train the model across all environments.
4. Individual Finetuning. We train separate models for each environment, without pretraining.

This setup serves as a baseline to study the effects of unification and pretraining.

To study the effects of scaling, we also explore three models of varying number of parameters: small
(S, 9.4M), medium (M, 29.7M), and large (L, 68.3M).

Evaluation metrics. We evaluate generated conformers against ground-truth conformers using
distance-based RMSD. We report the Recall and Precision Coverage (COV) and average minium
RMSD (AMR) (Appendix D). For crystal packing, we also align the generated conformation with
the ground-truth one and compute a symmetry-aware RMSD (sRMSD). This value reflects the min-
imal atomic displacement after accounting for lattice symmetry and periodic images.

4.3 RESULTS

We evaluate conformation generation in four environments under four training setups. The results
are summarized in Table 1 (five-layer environment) and Table 4 (two-layer environment).

Pretraining Improves Generalization. Across all environments and for large-sized model, Pre-
train+Individual and Pretrain+Unified setups consistently outperform both Unified (no pretraining)
and Individual setups (Table 1, Figures 3a and 3c). The effects are less pronounced for Vacuum envi-
ronment since the dataset is large and dominates the pretraining datasets. For the small and medium
models (Tables 5 and 6, Figures 8 and 9), however, the Individual setup can beat the Pretrained one
in Vacuum and Packing, perhaps due to limited capacity of the model.

Unified vs. Individual Models. The Unified setup generally performs better than the Individual
one, but the Pretrain+Individual setup is better than the Pretrain+Unified one (Table 1). The results

6
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(a) Vacuum: Setups
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(b) Vacuum: Scaling
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(c) Docking: Setups
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(d) Docking: Scaling
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Figure 3: Recall COV for Vacuum and Docking. (a) Vacuum: comparison of four training setups: In-
dividual (trained on GEOM-Drugs dataset only), Unified (joint training on Docking, Vacuum, Pack-
ing, and Solvation), Pretrain+Unified (unified initialized with pretraining), and Pretrain+Individual
(pretraining and then on GEOM-Drugs dataset only). (b) Vacuum: effect of model sizes under
Pretrain+Unified setup (S/M/L). The reference data points in (a) and (b) denote the results from
Hassan et al. (2024); Xu et al. (2022); Jing et al. (2022); Wang et al. (2024); Ganea et al. (2021).
(c) Docking: comparison of four training setups: Individual (trained on PDBBind dataset only),
Unified, Pretrain+Unified, and Pretrain+Individual. (d) Docking: effect of model sizes under Pre-
train+Unified setup (S/M/L). The reference data points in (c) and (d) denote the results from Corso
et al. (2022; 2024); Lu et al. (2022); McNutt et al. (2021).

suggest that pretraining and unification can similarly help the model learn valid conformations, but
unification can lead to competitions among different environments. A more powerful environment
network and a larger environment embedding size may address this.

Scaling. Increasing model size yields clear improvements (Figures 3b, 3d, 8 and 9).

4.4 ANALYSIS

We quantify cross–environment shared molecules to probe whether the model truly conditions on
the specified environment rather than memorizing a single geometry. The overlaps are small but
non-trivial (e.g., 12 molecules appear in both Solvation and Docking, Figure 4a), which enables us
to compare reference and generated conformers for the same molecule across environments. Some
example visualizations can be found in Tables 2 and 7 from the Pretrain+Unified setup.

Environment awareness when references differ. For Solvation–Docking (Figure 4c), the two
reference conformers for the same molecule differ substantially (2.33Å). In contrast, each generated
conformer is close to its own environment’s reference (Solvation: 0.64Å; Docking: 0.95Å), while
cross–environment comparisons remain large (> 2.3Å). Similar results are observed for Solvation-
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Table 1: Conformation generation across four environments using a five-layer environment network:
Vacuum, Docking, Solvation, and Packing. We report mean Recall and Precision COV and AMR
at environment-specific RMSD thresholds: 0.5Å for Solvation, 0.75Å for Vacuum and Packing, and
2.0Å for Docking. For Packing, we also report symmetry-aware RMSD (sRMSD). Best results are
bolded. EVA-Flow results are compared to literature results for Vacuum and Docking environments.

Environment Setup Recall Precision Crystal

COV↑ AMR↓ COV↑ AMR↓ sRMSD↓

Vacuum

GeoDiff 0.4210 0.835 0.2490 1.136 –
GeoMol 0.4460 0.875 0.4300 0.928 –
ETFlow (Gaussian) 0.6653 0.640 0.4441 0.903 –
Torsional Diff. 0.7270 0.582 0.5520 0.778 –
ETFlow (Harmonic) 0.7953 0.452 0.7438 0.541 –
MCF-L 0.847 0.390 0.668 0.618 –

Pretrain+Unified 0.6927 0.621 0.3498 1.228 –
Pretrain+Individual 0.6754 0.622 0.3327 1.237 –
Unified 0.6658 0.635 0.3340 1.232 –
Individual 0.6563 0.656 0.3246 1.250 –

Docking

TankBind 0.204 – – – –
GNINA 0.321 – – – –
DiffDock 0.382 – – – –
DiffDock-L 0.430 – – – –

Pretrain+Unified 0.6605 1.933 0.4663 2.538 –
Pretrain+Individual 0.6512 2.009 0.4605 2.597 –
Unified 0.6465 1.975 0.4500 2.567 –
Individual 0.5385 2.302 0.3182 2.918 –

Solvation

Pretrain+Unified 0.9427 0.175 0.6927 0.466 –
Pretrain+Individual 0.9236 0.186 0.7245 0.409 –
Unified 0.9172 0.182 0.6624 0.489 –
Individual 0.4968 0.555 0.2006 0.921 –

Packing

Pretrain+Unified 0.5820 0.724 0.3602 1.149 0.061
Pretrain+Individual 0.5280 0.806 0.3090 1.214 0.062
Unified 0.5730 0.744 0.3455 1.179 0.064
Individual 0.3820 0.998 0.2150 1.419 0.074

Table 2: Visualization of reference and generation conformations in Pretrain+Unified setup for
shared molecules in Solvation-Packing and Solvation-Docking. The conformers are aligned to the
reference of Solvation.

Solvation-Packing Solvation-Docking

ref solv gen solv ref pack gen pack ref solv gen solv ref dock gen dock

Packing (Figure 4b). Together, these trends indicate that the model adapts the conformation to the
requested environment rather than collapsing to a single geometry.
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Figure 4: Shared-molecule analysis across environments. (a) Pairwise counts of molecules shared
between environments. Darker cells indicate more molecules. (b-d) Pairwise heavy-atom RMSD
(Å) between reference and generated conformers shared across: (b) Solvation-Packing (c) Solvation-
Docking, and (d) Packing-Docking. In each heatmap we report the mean RMSD after alignment
for: ref A ↔ ref B, gen A ↔ ref A, gen A ↔ ref B, gen B ↔ ref A, gen B ↔ ref B, and gen A
↔ gen B (A/B = the two tasks in the panel). Darker cells indicate lower RMSD (better agreement).

When environments agree, generations agree. For Packing–Docking (Figure 4d), the two refer-
ences are already similar (0.52Å), and the generated conformers across the two environments are
also close (0.81Å), consistent with the underlying agreement between environments.

These patterns provide direct evidence that the model is environment-aware rather than memorizing
a single canonical geometry.

4.5 ABLATION STUDIES

We ablate key components of our model to quantify their contributions to conformer generation
across the four environments, using the Unified setup and small model. The full system (Full)
includes model components and training objective as defined in Sections 3.2 and 3.3. We consider
three ablations: ‘NoConsist’ removing the latent consistency loss term; ‘NoBase’ replacing the base
distribution network by isotropic Gaussian noise for x0; ‘NoFM’ removing the FM decoder and
using the base distribution network as the decoder with a regression loss.

Figure 5 reports Recall COV of these ablations for all environments. The full system achieves the
highest Recall in every environment. The ablation of the FM decoder consistently underperforms
across all environments, because regression tends to learn the conditional mean of a multi-modal
conformer distribution, leading to blurred geometry and lower coverage. The ablation of the base
distribution network (NoBase) yields a large degradation, indicating that a learned, environment-
aware base distribution for x0 is essential for capturing environment-molecule interactions. The
ablation of latent consistency loss (NoConsist) produces a smaller but repeatable drop in Recall
COV, suggesting that the latent consistency term stabilizes training and provides regularization.
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Figure 5: Recall COV for all environments (Vacuum, Docking, Solvation, Packing) using the Unified
setup for small model. ‘Full’ refers to full model; ‘NoConsist’ is removing latent consistency loss;
‘NoBase’ is for replacing the learned base distribution network for initial positions x0 with isotropic
Gaussian noise; ‘NoFM’ is removing the FM decoder and using a regression decoder.

5 CONCLUSION

We introduced EVA-Flow, a unified framework for environment-aware molecular conformation gen-
eration that couples a VAE with an environment-conditioned flow-matching decoder and a learned
base distribution. Experiments show that EVA-Flow generates more accurate conformers across vac-
uum, protein–ligand docking, solvation, and crystal packing. Analyses of molecules shared across
environments confirm that EVA-Flow produces distinct, environment-specific conformations rather
than collapsing to a single geometry.

While EVA-Flow demonstrates the feasibility of unified, environment-aware conformation gener-
ation, several limitations remain and point to valuable future directions. First, we focused on a
specific architecture: a single FM decoder (ETFlow) with GCN-based networks for the base, en-
coder, and environment modules. More expressive architectures may further improve generalization
and accuracy. Second, our base distribution assumes a simple Gaussian prior; extending it to more
structured priors such as harmonic prior could better capture the geometry of conformers. Third,
while EVA-Flow is designed to scale, our current models were of modest size. Increasing the ca-
pacity of the environment encoder and latent embeddings could further enhance the model’s ability
to capture complex molecule-environment interactions. Finally, our evaluation was limited to four
environments with high-quality datasets. Extending EVA-Flow to more diverse and challenging con-
texts, such as surface adsorption on catalysts or solid–liquid interfaces, will require new benchmarks
with carefully curated data and poses an exciting direction for future work.

6 REPRODUCIBILITY STATEMENT

All datasets used in this work are either open source or processed with open-source software. Details
of the data processing steps are provided in the Appendix. The models we use are also open source.
We describe the model architecture in the main text and list all hyperparameters in the Appendix.
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A DATA PREPARATION

GEOM QM9 and Drugs For GEOM QM9 and Drugs datasets, we used the data processing script
provided by the ETFlow work. We used the same splitting of train, validation, and test. For each
molecule, we kept the top 30 conformers with the highest Boltzmann weights. Each molecule
was saved as a single PyTorch Geometric object with attributes atomic numbers, atomic positions,
and SMILES string. The resulting QM9 training set includes 106,587 molecules with 794,960
conformations, QM9 validation set includes 13,323 molecules with 99,945 conformations. The
test set has 1,000 molecules. The resulting Drugs training set has 244,828 molecules with 5,770,377
conformations and the validation set has 30,330 molecules with 715,592 conformations. The test set
has 1,000 molecules.

SPICE and CREST-relaxed SPICE We used the PubChem subset of the SPICE dataset (Eastman
et al., 2023). This subset includes small, drug-like molecules comprised of between 18 and 50 atoms
with elements Br, C, Cl, F, H, I, N, O, P, and S.

Since the conformers in SPICE dataset are not fully relaxed, we build a relaxed set for the molecules
in SPICE dataset. For each molecule, we first used RDKit to generate 50 conformers with
EmbedMultipleConfs using parameters pruneRmsThresh=0.01, maxAttempts=5,
useRandomCoords=False corresponding to a pruning threshold of similar conformers of
0.01Å, a maximum of five embedding attempts per conformer, coordinate initialization from the
eigenvalues of the distance matrix, and a random seed. If no conformers were successfully gen-
erated then numConfs was increased to 500. Afterwards, the conformers were optimized in the
RDKit default MMFF force field. We deduplicated the conformers using RDKit’s GetBestRMS,
unless the calculation took longer than 48 hours then we switched to RDKit’s AlignMol. After
removing the duplicate conformers that exhibited an RMSD < 0.1Å, the ten conformers with the
lowest energy were further optimized with an approximate energy model known as extended tight
binding (xTB) (Grimme et al., 2017; Friede et al., 2024). The conformer with the lowest xTB energy
was used as input to the CREST simulation. We used the default hyperparameters from CREST ver-
sion 3.0.2 including a 6 kcal/mol cutoff on final conformers. Any SMILES strings containing slash
or backslash indicate a cis/trans stereochemistry were skipped since their SMILES string is not
preserved during the above procedure.

For both the original SPICE dataset and the CREST-relaxed dataset, we prepare the data in the Py-
Torch Geometric Data objects. For each molecule, we built an RDKit molecule object from SMILES
string. However, the order of atoms extracted from the RDKit molecule object can be different from
the atomic positions in the datasets. To fix this order issue, we used RDKit’s GetSubstructMatch
function to build a mapping. We make sure the atomic positions align with the atomic numbers and
the RDKit molecule built from the SMILES. These three components make the PyTorch Geometric
Data object.

We did a random splitting of the datasets at 0.8:0.1:0.1 to train, validation, and test. The resulting
train set has 19,198 molecules with 959,802 and 2,203,392 conformers for SPICE and CREST,
respectively. The validation set has 2508 molecules with 125,370 and 278,673 conformers for SPICE
and CREST. The test set has 2,941 molecules.

OE62 We prepare the data in the PyTorch Geometric Data objects. For each molecule, we read
the SMILES string and PBE-relaxed coordinates from the dataset. We build an RDKit molecule
object from the SMILES string. Similar to SPICE dataset, the order of atoms extracted from the
RDKit molecule object can be different from the coordinates. We used RDKit’s GetSubstructMatch
function to build a mapping to make sure the atomic positions align with the order of the RDKit
molecule. The PyTorch Geometric Data object consists of SMILES string, coordinates, and atomic
numbers.

We did a random splitting of the datasets at 0.8:0.1:0.1 to train, validation, and test. The resulting
train set has 28,038 molecules and the validation set has 4,297 molecules, and the test set has 3,933
molecules. Each molecule has one conformation.

PDBBind We use the PDBBind-v2020 dataset. For each protein-ligand pair, we read the ligand
sdf file and use RDKit’s Chem.SDMolSupplier to build an RDKit molecule object. We then add
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hydrogen to the molecule and write a canonical SMILES. Then we use RDKit to make a molecule
from the SMILES string. We notice that these two molecule objects, one from sdf file and the other
from SMILES string, generate different orders of atoms. Therefore, we use the trick of RDKit’s
GetSubstructMatch to align the two molecule objects and find the order of coordinates that match
the order of atoms in the RDKit molecule built from SMILES string. The atomic numbers are
extracted from the RDKit molecule built from SMILES string.

We take the protein’s binding pocket as the environment graph. We used PDBParser to read pocket
pdb file. We only include heavy atoms in the graph. We add an edge between two heavy atoms if
they are within one residue. We add node features using ETFlow’s approach by setting chirality,
degree, formal charge, implicit valence, number of hydrogen, hybridization, and number of radical
electrons all to “misc”, and no aromaticity or rings.

The final PyTorch Geometric Data object includes ligand’s SMILES string, list of atomic numbers,
atomic positions, and protein pocket’s list of atomic numbers, node features, edge indices, and
atomic positions.

We inherit the splitting of the PDBBind dataset. After skipping examples that the ligands fail to
generate a valid RDkit molecule, the resulting train set has 9,940 examples and the validation set
has 614 examples, and the test set has 218 examples. Each example has one conformation for the
ligand.

Aquamarine (AQM) We read SMILES string from the dataset and build an RDKit molecule
object from the SMILES string. We add hydrogen to the molecule. We then check if the given order
of atoms agrees with the order extracted from the RDKit molecule. If not, we build a second RDKit
molecule from the given coordinates and use the RDKit’s GetSubstructMatch to map the coordinates
to the order of the SMILES-generated RDKit molecule.

In addition, to construct the raw environment graph, we use water molecule’s graph since the dataset
is collected in the presence of implicit water. We use ETFlow’s approach to generate node feature
and edge indices. We also include four descriptors that summarizes the interaction between the
solute molecule and water solvent:

• sCAV: surface area of cavity;
• vCAV: volume of cavity;
• eSOLV: free energy in electrolyte;
• eNELEC: non-electrostatic free energy.

We normalize each descriptor by subtracting the mean of that descriptor across the dataset and then
divided by the standard deviation. These descriptors are added to the node features for each node.

After filtering examples that failed generating valid RDKit molecule objects, the final PyTorch Geo-
metric Data object include the solute molecule’s SMILES string, atomic numbers, and coordinates,
as well as water molecule’s atomic numbers, node features, and edge indices. The coordinates of
the water atoms are all set to zero.

We did a random splitting of the datasets at 0.8:0.1:0.1 to train, validation, and test. The resulting
train set has 1,276 molecules and the validation set has 175 molecules, and the test set has 157
molecules. Each molecule has one conformation.

Crystallography Open Database (COD) (Gražulis et al., 2009). According to their website,
the COD is “An open-access collection of crystal structures of organic, inorganic, metal-organic
compounds and minerals, excluding biopolymers.” We utilize the organic crystals in this dataset for
our so-called packing fine-tuning experiment. One may think of a molecular crystal as a conformer
of an organic molecule that has been placed into a periodic lattice, where copies of this conformer
are placed at regular distances extending infinitely over all of space. The periodicity implies that
there a repeating smallest tile, or so-called asymmetric unit. This is necessary so that we can define
a notion of local structure in our environment embedding. We now describe the nature of our subset.

We considered all of the structures in COD, then we applied the following filters:

• The structure must contain organic molecules.
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• The structure must not be marked as disordered. “Disorder is a violation of crystal symme-
try, where an atom is distributed over several positions or shared by several atoms, resulting
in an average structure.” (Groom et al., 2016).

• The structure must not be marked as missing Hydrogen.

• The structure is allowed to contain metals.

• The structure must have SMILES (Weininger, 1988).

• There must be only one fragments in the SMILES, defined by having no . in the string.

• The structure must pass clean st (Cao et al., 2024).

• The structure must have only one fragment according to extractStructure (Cao
et al., 2024).

• The structure must contain only one formula unit (molecule) in the asymmetric unit (a
property typically called Z ′ = 1) according to renumber molecules to match,
group with comparison, and get rmsd allowing refl (Cao et al., 2024).

We determined the topology using renumber molecules to match rather than relying on the
SMILES strings provided by the COS since they are often unreliable. Furthermore, extracted the
space group, Wyckoff position, and atomic coordinates of each formula unit (molecule). This en-
abled us to construct its environment for embedding. The result is a set of 20,765 molecular crystals
with symmetry information and a single formula unit (molecule) in the asymmetric unit.

We then process the examples into PyTorch Geometric Data objects. We read the sdf files from
the dataset, and build RDKit molecule object using Chem.MolFromMolBlock. A SMILES string
is then generated from Chem.MolToSmiles, which is then used to build a second RDKit molecule
object. We check if the order of atoms in the two molecule objects are the same. If not, we use the
GetSubstructMatch trick to map them and obtain the atomic positions in the same order of atoms as
the molecule object from SMILES string.

We also obtain lattice parameters including the unit cell’s lengths (a, b, c) and angles (α, β, γ) and
space group number from the dataset.

The molecule’s SMILES string, list of atomic numbers, coordinates, and the lattice parameters are
included in the PyTorch Geometric Data object.

After filtering examples that fail to generate valid RDkit molecule object, we did a random splitting
of the dataset at 0.8:0.1:0.1 to train, validation, and test. The resulting train set has 20,765 molecules
and the validation set has 3,239 molecules, and the test set has 3,235 molecules. Each molecule has
one conformation.

B DISTRIBUTION OF NUMBER OF ATOMS AND NUMBER OF ROTATABLE
BONDS

To characterize the intrinsic difficulty of conformer generation across datasets, we re-
port histograms of molecular size (number of atoms, Natoms) and flexibility (number of
rotatable bonds, Nrot) for each dataset (Figures 6 and 7). We compute Nrot using
rdMolDescriptors.CalcNumRotatableBonds from RDKit with its default definition
(non-ring single bonds between non-terminal heavy atoms).

Across the pretraining sets (GEOM Drugs, GEOM QM9, SPICE, CREST-relaxed SPICE, and
OE62), Natoms concentrates in the mid-size regime with means in the ∼ 17–44 range, while Nrot is
typically modest (most molecules have fewer than 15 rotatable bonds).

For the finetuning sets (GEOM Drugs, PDBBind, AQM, and COD), the atom-count distribution
shifts larger with means in the ∼ 38− 64 range. In particular, the PDBBind dataset exhibits a long
tail (very large molecules), indicating increased geometric and torsional complexity.
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Figure 6: The histograms of the number of atoms and the number of rotatable bonds in the pretrain-
ing datasets, including GEOM Drugs, GEOM QM9, SPICE, CREST-relaxed SPICE, and OE62.

C TRAINING DETAILS AND HYPERPARAMTERS

For pretraining, we train EVA-Flow for a fixed 500 epochs. For each epoch, we randomly sample
50,000 examples from the pretraining datasets with a probability of 0.5 for GEOM-Drugs, 0.2 for
OE62, 0.1 for GEOM-QM9, 0.1 for SPICE, and 0.1 for CREST. We use the epoch number as the
random seed. For the learning rate, we use the Adam Optimizer with a cosine annealing learning
rate which goes from a maximum of 8 × 10−4 to a minimum 10−7 over 500 epochs with a weight
decay of 10−10. We use 8 A100 GPUs.

For unified finetuning, we train EVA-Flow for a fixed 500 epochs. For each epoch, we randomly
sample 50,000 examples from the pretraining datasets with a probability of 0.6 for GEOM-Drugs
(Vacuum), 0.2 for COD (Packing), 0.15 for PDBBind (Docking), and 0.05 for AQM (Solvation).
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Figure 7: The histograms of the number of atoms and the number of rotatable bonds in the finetuning
datasets, including PDBBind, AQM, and COD. The GEOM Drugs dataset is the same as the one in
the pretraining datasets (Figure 6).

We use the epoch number as the random seed. For the learning rate, we use the Adam Optimizer
with a cosine annealing learning rate which goes from a maximum of 8× 10−4 to a minimum 10−7

over 500 epochs with a weight decay of 10−10. We use 8 A100 GPUs.

For individual finetuning, we train EVA-Flow for a fixed 500 epochs on each full dataset. For the
learning rate, we use the Adam Optimizer with a cosine annealing learning rate which goes from a
maximum of 8× 10−4 to a minimum 10−7 over 500 epochs with a weight decay of 10−10. We use
8 A100 GPUs.

D EVALUATION METRIC DEFINITION

We compute average minimus RMSD (AMR) and Coverage (COV) Recall and Precision to assess
the performance of molecular conformer generation following the approaches of (Ganea et al., 2021;
Xu et al., 2022; Jing et al., 2022). Recall measures the extent to which the generated conformers
capture the ground-truth conformers, while Precision indicates the proportion of generated conform-
ers that match the ground-truth conformers. Using Cg to denote the set of generated conformations,
and Cr the set of reference conformations, we calculate these metrics using the following equations:

AMR-R(Cg, Cr) =
1

|Cr|
∑

R∈Cr

min
R̂∈Cg

RMSD(R, R̂) (14)
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Table 3: Hyperparameters for EVA-Flow

Hyper-parameter Small Medium Large

bsz 32 16 8
num layers 20 30 40
hidden channels 160 240 320
num heads 8 12 16
neighbor embedding True True True
cutoff lower 0.0 0.0 0.0
cutoff higher 10.0 10.0 10.0
node attr dim 10 10 10
edge attr dim 1 1 1
reduce op True True True
activation SILU SILU SILU
attn activation SILU SILU SILU
latent dim 128 192 256
env dim 128 192 256
encoder num layer 2 2 3
base num layer 2 2 2
env num layer 2 2 5

FM decoder # param 9.1M 29.1M 67.0M
encoder # param 102K 227K 505K
env # param 68.0K 96.8K 133K
base # param 146K 327K 580K
total # param 9.4M 29.7M 68.3M

COV-R(Cg, Cr) =
1

|Cr|
|{R ∈ Cr|RMSD(R, R̂) < δ, R̂ ∈ Cg}| (15)

AMR-P(Cr, Cg) =
1

|Cg|
∑

R̂∈Cg

min
R∈Cr

RMSD(R̂,R) (16)

COV-P(Cr, Cg) =
1

|Cg|
|{R̂ ∈ Cg|RMSD(R̂,R) < δ,R ∈ Cr}| (17)

A lower AMR score signifies improved accuracy, while a higher COV score reflects greater diversity
in the generative model. The threshold δ is set to 0.5 Åfor Solvation, 0.75 Åfor Vacuum (Hassan
et al., 2024) and Packing, and 2.0 Åfor Docking (Corso et al., 2022).

E MORE RESULTS

The performance of large models with a two-layer environment network, and small and medium
models across four environments are presented in Table 4, Figures 8 and 9 and Tables 5 and 6.

F MOLECULE VISUALIZATION

The visualization of reference and generated conformers for molecules shared in the Packing-
Docking environments.

G USE OF LLMS

We used large language models (LLMs) to check grammar, correct typos, and refine word usage.
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Table 4: Conformation generation across four environments using a two-layer environment network:
Vacuum, Docking, Solvation, and Packing. We report mean Recall and Precision COV and AMR
at environment-specific RMSD thresholds: 0.5Å for Solvation, 0.75Å for Vacuum and Packing, and
2.0Å for Docking. For Packing, we also report symmetry-aware RMSD (sRMSD). Best results are
bolded.

Environment Setup Recall Precision Crystal

COV↑ AMR↓ COV↑ AMR↓ sRMSD↓

Vacuum

Pretrain+Individual 0.6794 0.617 0.3279 1.230 –
Pretrain+Unified 0.6453 0.632 0.3234 1.236 –
Unified 0.6224 0.690 0.3029 1.272 –
Individual 0.6563 0.656 0.3246 1.250 –

Docking

Pretrain+Individual 0.6558 2.013 0.4500 2.617 –
Pretrain+Unified 0.6233 2.033 0.4302 2.648 –
Unified 0.5944 2.260 0.4266 2.882 –
Individual 0.5385 2.302 0.3182 2.918 –

Solvation

Pretrain+Individual 0.9299 0.184 0.8790 0.265 –
Pretrain+Unified 0.9172 0.190 0.7278 0.452 –
Unified 0.8535 0.252 0.5175 0.617 –
Individual 0.4968 0.555 0.2006 0.921 –

Packing

Pretrain+Individual 0.5280 0.789 0.3092 1.211 0.057
Pretrain+Unified 0.4930 0.837 0.2785 1.263 0.069
Unified 0.4400 0.885 0.2492 1.304 0.068
Individual 0.3820 0.998 0.2150 1.419 0.074

Table 5: Conformation generation for Small models. We report Recall and Precision Coverage at
environment-specific RMSD thresholds: 0.5Å for Solvation, 0.75Å for Vacuum and Packing, and
2.0Å for Docking. For Packing, we also report symmetry-aware RMSD (sRMSD).

Environment Setup Recall Precision Crystal

Coverage↑ AMR↓ Coverage↑ AMR↓ sRMSD↓

Vacuum
Pretrain+Unified 0.4760 0.884 0.2082 1.464 –

Unified 0.4349 0.941 0.1934 1.508 –
Individual 0.5200 0.830 0.2355 1.405 –

Docking
Pretrain+Unified 0.5767 2.283 0.4035 2.893 –

Unified 0.5442 2.277 0.3814 2.903 –
Individual 0.5116 2.557 0.3186 3.198 –

Solvation
Pretrain+Unified 0.8662 0.236 0.5637 0.554 –

Unified 0.8726 0.246 0.5637 0.562 –
Individual 0.4968 0.558 0.2006 0.896 –

Packing
Pretrain+Unified 0.4830 0.861 0.2740 1.286 0.062

Unified 0.4620 0.880 0.2645 1.299 0.064
Individual 0.3580 1.022 0.2065 1.415 0.072
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(b) Precision: Large Setup
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(c) Recall: Small
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(d) Precision: Small
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(e) Recall: Medium
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(f) Precision: Medium
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Figure 8: Recall and Precision Coverage for Vacuum. (a) Precision Coverage of three model sizes,
small, medium and large. (b) Large model: comparison of Precision Coverage for three training
setups: Individual (trained on PDBBind dataset only), Unified (joint training on Docking, Vacuum,
Packing, and Solvation), and Pretrain+Unified (Unified initialized with pretraining). (c)(c) Small
model: comparison of Recall and Precision Coverage for three training setups: Individual, Unified,
and Pretrain+Unified. (c)(d) Medium model: comparison of Recall and Precision Coverage for three
training setups: Individual, Unified, and Pretrain+Unified. The cross in (a) and (b) denotes the state-
of-the-art result from Hassan et al. (2024).

Table 6: Conformation generation for Medium models. We report Recall and Precision Coverage
at environment-specific RMSD thresholds: 0.5Å for Solvation, 0.75Å for Vacuum and Packing, and
2.0Å for Docking. For Packing, we also report symmetry-aware RMSD (sRMSD).

Environment Setup Recall Precision Crystal

Coverage↑ AMR↓ Coverage↑ AMR↓ sRMSD↓

Vacuum
Pretrain+Unified 0.5691 0.758 0.2650 1.337 –

Unified 0.5196 0.816 0.2447 1.402 –
Individual 0.5822 0.748 0.2730 1.329 –

Docking
Pretrain+Unified 0.5721 2.364 0.3744 2.987 –

Unified 0.5023 2.527 0.3372 3.161 –
Individual 0.4791 2.566 0.3233 3.203 –

Solvation
Pretrain+Unified 0.8599 0.246 0.5780 0.575 –

Unified 0.4841 0.539 0.2070 0.863 –
Individual 0.5287 0.555 0.2245 0.892 –

Packing
Pretrain+Unified 0.4110 0.929 0.2402 1.338 0.064

Unified 0.3250 1.078 0.1795 1.493 0.078
Individual 0.4210 0.927 0.2412 1.332 0.068
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(b) Precision: Large Setup
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(c) Recall: Small
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(d) Precision: Small
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(e) Recall: Medium
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(f) Precision: Medium
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Figure 9: Recall and Precision Coverage for Docking. (a) Precision Coverage of three model sizes,
small, medium and large. (b) Large model: comparison of three training setups: Individual (trained
on PDBBind dataset only), Unified (joint training on Docking, Vacuum, Packing, and Solvation),
and Pretrain+Unified (Unified initialized with pretraining). (c)(c) Small model: comparison of three
training setups: Individual, Unified, and Pretrain+Unified. (c)(d) Medium model: comparison of
three training setups: Individual, Unified, and Pretrain+Unified. The cross in (a) and (b) denotes the
state-of-the-art result from Xu et al. (2022).
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Table 7: Visualization of reference and generation conformations for the shared molecules in
Packing-Docking. The molecules are aligned to the reference conformers of Docking environment.

Packing-Docking

ref dock gen dock ref pack gen pack

23


	Introduction
	Related work
	Environment-Aware Flow Matching
	Problem Formulation
	Model Architecture
	Training Objectives

	Experiments
	Datasets
	Experimental Setup
	Results
	Analysis
	Ablation Studies

	Conclusion
	Reproducibility statement
	Data Preparation
	Distribution of Number of Atoms and Number of Rotatable Bonds
	Training details and hyperparamters
	Evaluation metric definition
	More results
	Molecule visualization
	Use of LLMs

