

EVA-FLOW: ENVIRONMENT-AWARE FLOW MATCHING FOR UNIFIED 3D MOLECULAR CONFORMATION GENERATION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Predicting the 3D geometry of molecules is central to applications in drug discovery, materials design, and molecular modeling. However, molecular geometry can
014 change dramatically across environments (e.g., crystal lattice versus protein binding
015 pocket). Existing generative approaches are typically environment-agnostic
016 or require separate models for each environment, which limits generalization. We
017 introduce *EVA-Flow*, a unified framework for environment-aware conformation
018 generation. *EVA-Flow* combines a variational autoencoder with a flow matching
019 decoder and incorporates environment information through a learned embedding.
020 Across four environments including vacuum, protein-ligand docking, solvation,
021 and crystal packing, *EVA-Flow* substantially improves generation accuracy
022 through pretraining and unification. Analysis of shared molecules that appear
023 in multiple environments further shows that *EVA-Flow* generates distinct,
024 environment-specific conformations rather than memorizing a single geometry.

1 INTRODUCTION

030 Molecules do not exist in a single fixed shape. Consider the journey of a drug molecule: it may
031 be synthesized and dissolved in a solvent, crystallized into a solid for storage, redissolved in the
032 body, and finally bind to a target protein to take effect. At each stage, the surrounding environment,
033 solvent, crystal lattice, or protein pocket, reshapes the 3D geometry of the molecule. As a result, the
034 same compound can adopt very different conformations depending on context. These environment-
035 dependent conformations are not mere structural details; they govern fundamental properties such
036 as binding affinity (Weikl & Paul, 2014), solubility (Sobornova et al., 2024), and stability, which in
037 turn determine the efficacy of drugs, the performance of materials (Cruz-Cabeza et al., 2020), and
038 the reliability of molecular simulations.

039 Recent generative models have made strong progress in learning molecular conformations, but most
040 remain environment-agnostic, assuming molecules exist in isolation (Xu et al., 2022; Hassan et al.,
041 2024). Some methods incorporate environments, but only for specific tasks such as protein–ligand
042 docking (Corso et al., 2022; 2024), and must be trained separately for each case. This results in
043 fragmented solutions with limited transferability. These limitations highlight the need for a unified
044 framework that generalizes across environments by leveraging the flexibility and scalability of
045 modern generative approaches.

046 In this work, we propose *EVA-Flow*, a unified model that produces environment-aware molecular
047 conformations. The model builds on a variational autoencoder (VAE) (Kingma et al., 2019), where
048 the encoder embeds both the molecular graph and its environment into a latent representation. This
049 latent variable captures molecule–environment interactions, similar to collective variables (Fiorin
050 et al., 2013; Bhakat, 2022). The flow matching (FM) decoder then generate molecular conformations
051 conditioned on the environment (Lipman et al., 2022)(Figure 1). Unlike prior approaches restricted
052 to a single context, *EVA-Flow* generalizes across environments within a single model, learning
053 conformational distributions in vacuum, protein-ligand docking, solvation, and crystal packing.

Our contributions are summarized as follows:

Figure 1: Architecture of EVA-Flow. (a) The raw environment graph G_E is embedded by an environment network to produce a low-dimensional vector e . (b) At training time, the encoder f_{enc} takes the molecular graph G , the environment vector e , and atomic positions x to yield a latent variable z . A base network, conditioned on (G, z, e) , parameterizes a Gaussian base distribution $p_0(x | G, z, e)$ from which an initial conformation x_0 is sampled. A time is sampled $t \sim \mathcal{U}(0, 1)$ and x_t is calculated. The flow matching decoder learns a vector field $u_t^\theta(x_t, G, z, e)$. (c) At inference time, z is sampled from $p(z) = \mathcal{N}(0, I)$, and then fed to the Base network. By solving the FM ODE from $x_{t=0} = x_0$, a conformer is generated.

- We introduce EVA-Flow, the first unified framework for environment-aware molecular conformation generation. EVA-Flow combines a VAE with a flow matching decoder.
- We design an encoder that integrates molecular and environmental information into a latent variable to capture molecule–environment interactions.
- We demonstrate that (i) pretraining and unification across environments improve accuracy over environment-specific models, and (ii) EVA-Flow generates distinct conformations for the same molecule in different environments, confirming that the model captures genuine environment dependence rather than memorizing a single geometry.

108
109

2 RELATED WORK

110
111
112
113
114
115

Flow Matching. FM trains a continuous normalizing flow by regressing the velocity field that transports a simple base distribution to the data along a chosen probability path, yielding a simulation-free objective and fast ODE sampling(Lipman et al., 2022). Rectified flow (RF) (Liu et al., 2022) and conditional FM (CFM) (Tong et al., 2023) extend FM to efficient straight-through paths and conditional generation. Equivariant (Hassan et al., 2024) and geometric variants (Chen & Lipman, 2023) adapt FM to 3D settings and enable geometric constraints and symmetries.

116
117
118
119
120
121
122
123

VAE + FM. Hybrid models combine VAE with flows in two ways. (1) Latent FM (better prior): FM is trained in the VAE latent space to transport a simple Gaussian to the aggregated posterior; sampling integrates the latent flow and then applies a standard feed-forward decoder, where FM improves the prior, not the decoder (Dao et al., 2023). (2) FM as decoder: the decoder itself is a conditional flow that maps a base to the data given the latent code, trained with FM/RF; this leads to few-step, deterministic sampling and better support for multi-modal outputs (Fischer et al., 2023; Sargent et al., 2025). Our work follows the latter design, instantiating an environment-aware FM decoder for conformer generation.

124
125
126
127
128
129
130
131

Molecular conformation generation. Generating 3D molecular structures has been extensively studied with both physics-based and learning-based approaches. Classical methods rely on force fields and molecular dynamics (MD) simulations, which are accurate but computationally expensive. Recent neural methods generate conformers with equivariant diffusion, flows, or autoregressive torsion models. Most papers consider vacuum (Xu et al., 2022; Hassan et al., 2024); a smaller body conditions on context such as protein pockets (protein-ligand docking) (Corso et al., 2024). However, these approaches typically target a single environment, requiring retraining or architecture changes to adapt across settings.

132
133
134
135
136

Key challenges in this space include: (i) the lack of unified models that generalize across diverse environments, and (ii) the difficulty of incorporating complex conditioning inputs such as structured environments into generative frameworks. EVA-Flow addresses these challenges by combining an environment-aware encoder with an $SE(3)$ -equivariant FM decoder, enabling a single model to generate accurate conformers across different environments without requiring task-specific pipelines.

137
138
139
140
141

Diffusion in latent space for molecules. A recent work by Joshi et al. (2025) performs conformer generation by running a diffusion process in a learned latent space and decoding to coordinates. While this brings strong scalability and reuse of pretrained latents, it differs from our approach: we keep a VAE encoder but use FM as the decoder in data space, conditioned on the environment.

142
143

3 ENVIRONMENT-AWARE FLOW MATCHING

144
145

3.1 PROBLEM FORMULATION

146
147
148
149
150
151

Let $G = (V, E)$ denote a molecular graph with nodes representing atoms and edges representing bonds. Each atom is associated with a 3D position $x \in \mathbb{R}^{3N}$, where N is the number of atoms. A molecule exists in an environment E , such as a protein pocket, solvent box, or crystalline lattice. Our goal is to learn the conditional distribution: $p(x|G, E)$, capturing how environments modulate molecular conformations. Unlike prior work that trains separate models for each environment, we seek a unified model that generalizes across all E .

152
153

3.2 MODEL ARCHITECTURE

154
155

Our framework, EVA-Flow, is a VAE with a FM decoder, consisting of multiple components (Figure 1).

156
157
158
159
160
161

1. Environment Embedding Network(Figure 1a). The environment is represented as a graph $G_E = (V_E, E_E)$, where nodes correspond to atoms with associated features and edges correspond to bonds or interactions. The construction of G_E is described in Section 4.1. The environment network, f_{env} , consists of two graph convolutional network (GCN) layers (Zhang et al., 2019), followed by a two-layer MLP projection to the environment embedding vector $e \in \mathbb{R}^d$:

$$e = f_{\text{env}}(G_E) \quad (1)$$

162 This embedding provides global information that conditions both the encoder and the decoder.
 163
 164 **2. Encoder** (Figure 1b). The encoder is a GNN-based module that takes as input the molecular
 165 graph G , atomic positions x , and the environment embedding e . Input node features are formed
 166 by concatenating the atomic number, node attributes, and atomic positions. These features are
 167 processed by a stack of GCN layers, producing node embeddings of size $[N, \text{hidden}]$. Each node
 168 embedding is then concatenated with the environment embedding e , and projected through two
 169 linear layers to produce the mean and log-variance for node-level latent variables. This defines a
 170 variational posterior distribution

$$171 \quad q_\phi(z | G, x, e) = \prod_{i=1}^N \mathcal{N}(z_i | \mu_{\phi,i}(G, x, e), \text{diag}(\sigma_{\phi,i}^2(G, x, e))), \quad (2)$$

173 where $\mu_{\phi,i}, \sigma_{\phi,i}^2 \in \mathbb{R}^d$ denote the mean and variance predicted for node i . Equivalently, stacking
 174 all nodes yields

$$175 \quad q_\phi(z | G, x, e) = \mathcal{N}(\mu_\phi(G, x, e), \text{diag}(\sigma_\phi^2(G, x, e))), \quad (3)$$

176 with $\mu_\phi, \sigma_\phi^2 \in \mathbb{R}^{N \times d}$. The latent variables z capture molecule–environment interactions.
 177

178 **3. Base Distribution Network.** To initialize FM, we require a base distribution p_0 . Instead of
 179 using a fixed isotropic Gaussian, we parameterize p_0 with a GNN, f_{base} , conditioned on the
 180 molecular graph G , the environment embedding e , and latent variables z . Specifically, input
 181 node features are constructed by concatenating the atomic number, node attributes, environment
 182 embedding, and latent variables. These features are processed by two GCN layers, followed by
 183 two independent MLP heads that predict the mean and log-variance of a Gaussian distribution:
 184

$$\mu_{\text{base}}, \log \sigma_{\text{base}}^2 = f_{\text{base}}(G, z, e), \quad (4)$$

185 where $\mu_{\text{base}}, \sigma_{\text{base}}^2 \in \mathbb{R}^{N \times 3}$ correspond to the predicted mean and variance for the N atoms in
 186 Cartesian space. This yields a factorized Gaussian base distribution over positions:
 187

$$188 \quad p_0(x | G, e, z) = \prod_{i=1}^N \mathcal{N}(x_i | \mu_{\text{base},i}(G, z, e), \text{diag}(\sigma_{\text{base},i}^2(G, z, e))). \quad (5)$$

189 **4. FM Decoder.** The decoder generates conformations by transporting samples from the base distribution p_0 to the target distribution. We adopt the ETFlow network (Hassan et al., 2024) to
 190 parameterize a time-dependent vector field u_t^θ that takes as input the current molecular structure
 191 x_t , the molecular graph G , the latent variables z , and the environment embedding e :

$$192 \quad \dot{x}_t = u_t^\theta(x_t, G, z, e), \quad x_0 \sim p_0(x | G, z, e), \quad (6)$$

193 where $x_t \in \mathbb{R}^{3N}$ denotes the atomic coordinates at time $t \in [0, 1]$ that is linearly interpolated:
 194

$$195 \quad x_t = (1 - t)x_0 + tx \quad (7)$$

196 **5. Inference**(Figure 1c). At inference time, given the environment graph G_E , we compute the em-
 197 bedding $e = f_{\text{env}}(G_E)$ and sample a latent $z \sim p(z) = \mathcal{N}(0, I)$. The base network $f_{\text{base}}(G, z, e)$
 198 defines a Gaussian $p_0(x | G, z, e)$ from which we sample an initial conformation x_0 . Starting at
 199 $x_{t=0} = x_0$, we solve the FM ODE (Equation (6)) to obtain the final conformer $\hat{x} = x_{t=1}$.
 200

201 3.3 TRAINING OBJECTIVES

202 We jointly optimize the encoder, environment embedding network, base distribution network, and
 203 FM decoder using a composite objective. The total loss consists of four terms, each serving a distinct
 204 role (Figure 1b):

205 **1. Latent Prior Regularization.** This loss ensures the latent variable z remains well-structured and
 206 consistent with a simple prior, preventing degenerate latents.

$$207 \quad \mathcal{L}_{\text{KL}-z} = D_{\text{KL}}(q_\phi(z | x, G, e) || \mathcal{N}(0, I)). \quad (8)$$

208 **2. Base Distribution Regularization.** This loss stabilizes the learned Gaussian base distribution
 209 and prevents drift and collapse of the base distribution.

$$210 \quad \mathcal{L}_{\text{KL}-\text{base}} = D_{\text{KL}}(p_0(x | G, z, e) || \mathcal{N}(0, I)), \quad (9)$$

Figure 2: Dataset composition and overlap. (a) Pretraining data sources: GEOM-Drugs, GEOM-QM9, OE62, SPICE, and CREST-relaxed SPICE. Slice sizes are proportional to molecule counts. (b) Finetuning data composition across environments: vacuum (GEOM-Drugs), docking (PDB-Bind), packing (COD), and solvation (AQM). (c) Venn diagram showing the number of unique molecules in pretraining and finetuning datasets and their overlap.

3. **Latent Consistency Loss.** This loss encourages the latent representation z to capture stable molecule-environment interactions. We compare the encoder’s posterior means for the target conformation x and the initial conformation $x_0 \sim p_0(\cdot|G, z, e)$:

$$\mathcal{L}_{\text{consistency}} = \|\mu_\phi(x_0, G, e) - \mu_\phi(x, G, e)\|_2^2. \quad (10)$$

4. **FM Loss.** This loss trains the decoder to transport samples from the base distribution to the data distribution through continuous-time dynamics.

$$\mathcal{L}_{\text{FM}} = \mathbb{E}_{t, x_t} [\|u_t^\theta(x_t, G, z, e) - u_t(x_0, x)\|^2], \quad (11)$$

where u_t is the analytically defined target velocity field:

$$u_t = x - x_0 \quad (12)$$

All networks are trained jointly at each iteration. We find that weighting the losses is not necessary since they are training orthogonal or complementary components, so our final loss is a sum.

$$\mathcal{L} = \mathcal{L}_{\text{KL}-z} + \mathcal{L}_{\text{KL}-\text{base}} + \mathcal{L}_{\text{consistency}} + \mathcal{L}_{\text{FM}}. \quad (13)$$

4 EXPERIMENTS

4.1 DATASETS

Pretraining. For large-scale pretraining, we combine datasets containing conformations of small organic and drug-like molecules. This includes relaxed conformations from GEOM-QM9 and GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022), as well as higher-energy conformations from the SPICE PubChem subset (Eastman et al., 2023). We further performed relaxation on SPICE dataset using CREST (Pracht et al., 2024) to obtain low-energy conformations. In addition, we include the OE62 dataset (Stuke et al., 2020), which consists of crystal-forming molecules relaxed in vacuum. Altogether, the pretraining corpus contains ~ 418 K molecules and 9.8M conformations (Figure 2a).

We construct the environment graph (G_E) during pretraining. For each molecule, we apply the RDKit (Landrum & contributors, 2025) MurckoScaffold package (RDKit, 2025) to extract the molecule’s Bemis–Murcko scaffold (Bemis & Murcko, 1996) by removing substituents and retaining only the core ring systems and the linkers connecting them. The partial graph, together with the atomic positions, is passed to the environment network (Figure 2a).

Finetuning. We finetune and evaluate our model in four environments:

1. **Vacuum.** In vacuum, the molecules are isolated and do not interact with external environment. We use GEOM-Drugs dataset. To build the environment graph, we extract the partial graph similar to the pretraining stage, but the atomic positions are all set to zero (Figure 1a, Vacuum).

270 2. **Protein–Ligand Docking.** In this task, molecules (ligands) adapt to protein binding pockets.
 271 We use PDBBind-v2020 dataset (Liu et al., 2015). The environment graph is constructed from
 272 heavy atoms in the pocket. We add edges between atoms in the same protein residue. The atomic
 273 positions of the binding pocket are included(Figure 1a, Protein-Ligand Docking).
 274 3. **Solvation.** Dissolved molecules interact with the solvent molecules. To learn to predict the
 275 conformations in solution, we use the Aquamarine (AQM) dataset (Medrano Sandonas et al., 2024),
 276 which contains conformations relaxed in implicit water. To construct the environment graph, we
 277 use a water molecule and add solvation descriptors to the node features such as cavity surface
 278 area (sCAV), cavity volume (vCAV), free energy in electrolyte (eSOLV), and non-electrostatic
 279 free energy (eNELEC)(Figure 1a, Solvation). These descriptors provides information on the
 280 interaction between molecules and solvent.
 281 4. **Crystal Packing.** Molecules interact with neighboring molecules in crystals. We use the Crys-
 282 tallography Open Database (COD) (Gražulis et al., 2009; 2012), and filter to the small organic
 283 molecular crystals. We convert the fractional coordinates from the CIF files to Cartesian pos-
 284 itions, and recover the bonds with OpenBabel (O’Boyle et al., 2008; 2011). For the environment
 285 graph, we extract the partial graph and set atomic positions all to zero. We also add to the node
 286 feature the space group number (sg) and lattice parameters ($a, b, c, \alpha, \beta, \gamma$) (Figure 1a, Packing).
 287

288 Further details about data processing and the distributions of number of atoms and the number of
 289 rotatable bonds can be found in Appendices A and B.

290 4.2 EXPERIMENTAL SETUP

291 We compare four training strategies.

292 1. **Pretraining + Individual Finetuning.** We first pretrain the model on the pretraining datasets,
 293 then finetune it on a single environment. In the pretraining, the model is exposed to massive
 294 molecules and conformations to learn valid conformations. In the individual finetuning, the
 295 model learns a specific environment.
 296 2. **Pretraining + Unified Finetuning.** We first perform training on the pretraining datasets (Sec-
 297 tion 4.1), but then finetune on all environments of the finetuning datasets. This setup examines if
 298 model learns to adapt to different environments.
 299 3. **Unified Finetuning.** we skip the pretraining and only train the model across all environments.
 300 4. **Individual Finetuning.** We train separate models for each environment, without pretraining.
 301 This setup serves as a baseline to study the effects of unification and pretraining.

302 To study the effects of scaling, we also explore three models of varying number of parameters: small
 303 (S, 9.4M), medium (M, 29.7M), and large (L, 68.3M).

304 **Evaluation metrics.** We evaluate generated conformers against ground-truth conformers using
 305 distance-based RMSD. We report the Recall and Precision Coverage (COV) and average minium
 306 RMSD (AMR) (Appendix D). For crystal packing, we also align the generated conformation with
 307 the ground-truth one and compute a symmetry-aware RMSD (sRMSD). This value reflects the min-
 308 imal atomic displacement after accounting for lattice symmetry and periodic images.

309 4.3 RESULTS

310 We evaluate conformation generation in four environments under four training setups. The results
 311 are summarized in [Table 1 \(five-layer environment\)](#) and [Table 4 \(two-layer environment\)](#).

312 **Pretraining Improves Generalization.** Across all environments and for large-sized model, Pre-
 313 train+Individual and Pretrain+Unified setups consistently outperform both Unified (no pretraining)
 314 and Individual setups (Table 1, Figures 3a and 3c). The effects are less pronounced for Vacuum envi-
 315 ronment since the dataset is large and dominates the pretraining datasets. For the small and medium
 316 models (Tables 5 and 6, Figures 8 and 9), however, the Individual setup can beat the Pretrained one
 317 in Vacuum and Packing, perhaps due to limited capacity of the model.

318 **Unified vs. Individual Models.** The Unified setup generally performs better than the Individual
 319 one, but the Pretrain+Individual setup is better than the Pretrain+Unified one (Table 1). The results

Figure 3: Recall COV for Vacuum and Docking. (a) Vacuum: comparison of four training setups: Individual (trained on GEOM-Drugs dataset only), Unified (joint training on Docking, Vacuum, Packing, and Solvation), Pretrain+Unified (unified initialized with pretraining), and Pretrain+Individual (pretraining and then on GEOM-Drugs dataset only). (b) Vacuum: effect of model sizes under Pretrain+Unified setup (S/M/L). The reference data points in (a) and (b) denote the results from Hassan et al. (2024); Xu et al. (2022); Jing et al. (2022); Wang et al. (2024); Ganea et al. (2021). (c) Docking: comparison of four training setups: Individual (trained on PDBBind dataset only), Unified, Pretrain+Unified, and Pretrain+Individual. (d) Docking: effect of model sizes under Pretrain+Unified setup (S/M/L). The reference data points in (c) and (d) denote the results from Corso et al. (2022; 2024); Lu et al. (2022); McNutt et al. (2021).

suggest that pretraining and unification can similarly help the model learn valid conformations, but unification can lead to competitions among different environments. A more powerful environment network and a larger environment embedding size may address this.

Scaling. Increasing model size yields clear improvements (Figures 3b, 3d, 8 and 9).

4.4 ANALYSIS

We quantify cross-environment shared molecules to probe whether the model truly conditions on the specified environment rather than memorizing a single geometry. The overlaps are small but non-trivial (e.g., 12 molecules appear in both Solvation and Docking, Figure 4a), which enables us to compare reference and generated conformers for the same molecule across environments. Some example visualizations can be found in Tables 2 and 7 from the Pretrain+Unified setup.

Environment awareness when references differ. For Solvation–Docking (Figure 4c), the two reference conformers for the same molecule differ substantially (2.33Å). In contrast, each generated conformer is close to its own environment’s reference (Solvation: 0.64Å; Docking: 0.95Å), while cross-environment comparisons remain large (> 2.3Å). Similar results are observed for Solvation–

378
 379 Table 1: Conformation generation across four environments **using a five-layer environment network**:
 380 Vacuum, Docking, Solvation, and Packing. We report mean Recall and Precision COV and AMR
 381 at environment-specific RMSD thresholds: 0.5Å for Solvation, 0.75Å for Vacuum and Packing, and
 382 2.0Å for Docking. For Packing, we also report symmetry-aware RMSD (sRMSD). Best results are
 383 **bolded**. **EVA-Flow** results are compared to literature results for Vacuum and Docking environments.

384 Environment	385 Setup	386 Recall		387 Precision		388 Crystal
		389 COV↑	390 AMR↓	391 COV↑	392 AMR↓	
393 Vacuum	GeoDiff	0.4210	0.835	0.2490	1.136	–
	GeoMol	0.4460	0.875	0.4300	0.928	–
	ETFlow (Gaussian)	0.6653	0.640	0.4441	0.903	–
	Torsional Diff.	0.7270	0.582	0.5520	0.778	–
	ETFlow (Harmonic)	0.7953	0.452	0.7438	0.541	–
	MCF-L	0.847	0.390	0.668	0.618	–
	Pretrain+Unified	0.6927	0.621	0.3498	1.228	–
	Pretrain+Individual	0.6754	0.622	0.3327	1.237	–
	Unified	0.6658	0.635	0.3340	1.232	–
	Individual	0.6563	0.656	0.3246	1.250	–
400 Docking	TankBind	0.204	–	–	–	–
	GNINA	0.321	–	–	–	–
	DiffDock	0.382	–	–	–	–
	DiffDock-L	0.430	–	–	–	–
	Pretrain+Unified	0.6605	1.933	0.4663	2.538	–
	Pretrain+Individual	0.6512	2.009	0.4605	2.597	–
	Unified	0.6465	1.975	0.4500	2.567	–
	Individual	0.5385	2.302	0.3182	2.918	–
406 Solvation	Pretrain+Unified	0.9427	0.175	0.6927	0.466	–
	Pretrain+Individual	0.9236	0.186	0.7245	0.409	–
	Unified	0.9172	0.182	0.6624	0.489	–
	Individual	0.4968	0.555	0.2006	0.921	–
410 Packing	Pretrain+Unified	0.5820	0.724	0.3602	1.149	0.061
	Pretrain+Individual	0.5280	0.806	0.3090	1.214	0.062
	Unified	0.5730	0.744	0.3455	1.179	0.064
	Individual	0.3820	0.998	0.2150	1.419	0.074

414
 415 Table 2: Visualization of reference and generation conformations **in Pretrain+Unified setup** for
 416 shared molecules in Solvation-Packing and Solvation-Docking. The conformers are aligned to the
 417 reference of Solvation.

430
 431 Packing (Figure 4b). Together, these trends indicate that the model adapts the conformation to the
 432 requested environment rather than collapsing to a single geometry.

Figure 4: Shared-molecule analysis across environments. (a) Pairwise counts of molecules shared between environments. Darker cells indicate more molecules. (b-d) Pairwise heavy-atom RMSD (Å) between reference and generated conformers shared across: (b) Solvation-Packing (c) Solvation-Docking, and (d) Packing-Docking. In each heatmap we report the mean RMSD after alignment for: ref_A ↔ ref_B, gen_A ↔ ref_A, gen_A ↔ ref_B, gen_B ↔ ref_A, gen_B ↔ ref_B, and gen_A ↔ gen_B (A/B = the two tasks in the panel). Darker cells indicate lower RMSD (better agreement).

When environments agree, generations agree. For Packing–Docking (Figure 4d), the two references are already similar (0.52Å), and the generated conformers across the two environments are also close (0.81Å), consistent with the underlying agreement between environments.

These patterns provide direct evidence that the model is environment-aware rather than memorizing a single canonical geometry.

4.5 ABLATION STUDIES

We ablate key components of our model to quantify their contributions to conformer generation across the four environments, using the Unified setup and small model. The full system (Full) includes model components and training objective as defined in Sections 3.2 and 3.3. We consider three ablations: ‘NoConsist’ removing the latent consistency loss term; ‘NoBase’ replacing the base distribution network by isotropic Gaussian noise for x_0 ; ‘NoFM’ removing the FM decoder and using the base distribution network as the decoder with a regression loss.

Figure 5 reports Recall COV of these ablations for all environments. The full system achieves the highest Recall in every environment. The ablation of the FM decoder consistently underperforms across all environments, because regression tends to learn the conditional mean of a multi-modal conformer distribution, leading to blurred geometry and lower coverage. The ablation of the base distribution network (NoBase) yields a large degradation, indicating that a learned, environment-aware base distribution for x_0 is essential for capturing environment-molecule interactions. The ablation of latent consistency loss (NoConsist) produces a smaller but repeatable drop in Recall COV, suggesting that the latent consistency term stabilizes training and provides regularization.

Figure 5: Recall COV for all environments (Vacuum, Docking, Solvation, Packing) using the Unified setup for small model. ‘Full’ refers to full model; ‘NoConsist’ is removing latent consistency loss; ‘NoBase’ is for replacing the learned base distribution network for initial positions x_0 with isotropic Gaussian noise; ‘NoFM’ is removing the FM decoder and using a regression decoder.

5 CONCLUSION

We introduced EVA-Flow, a unified framework for environment-aware molecular conformation generation that couples a VAE with an environment-conditioned flow-matching decoder and a learned base distribution. Experiments show that EVA-Flow generates more accurate conformers across vacuum, protein–ligand docking, solvation, and crystal packing. Analyses of molecules shared across environments confirm that EVA-Flow produces distinct, environment-specific conformations rather than collapsing to a single geometry.

While EVA-Flow demonstrates the feasibility of unified, environment-aware conformation generation, several limitations remain and point to valuable future directions. First, we focused on a specific architecture: a single FM decoder (ETFlow) with GCN-based networks for the base, encoder, and environment modules. More expressive architectures may further improve generalization and accuracy. Second, our base distribution assumes a simple Gaussian prior; extending it to more structured priors such as harmonic prior could better capture the geometry of conformers. Third, while EVA-Flow is designed to scale, our current models were of modest size. Increasing the capacity of the environment encoder and latent embeddings could further enhance the model’s ability to capture complex molecule-environment interactions. Finally, our evaluation was limited to four environments with high-quality datasets. Extending EVA-Flow to more diverse and challenging contexts, such as surface adsorption on catalysts or solid–liquid interfaces, will require new benchmarks with carefully curated data and poses an exciting direction for future work.

6 REPRODUCIBILITY STATEMENT

All datasets used in this work are either open source or processed with open-source software. Details of the data processing steps are provided in the Appendix. The models we use are also open source. We describe the model architecture in the main text and list all hyperparameters in the Appendix.

REFERENCES

- Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations for property prediction and molecular generation. *Scientific Data*, 9(1):185, 2022.
- Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks. *Journal of medicinal chemistry*, 39(15):2887–2893, 1996.
- Soumendranath Bhakat. Collective variable discovery in the age of machine learning: reality, hype and everything in between. *RSC advances*, 12(38):25010–25024, 2022.
- Yixiang Cao, Ty Balduf, Michael D Beachy, M Chandler Bennett, Art D Bochevarov, Alan Chien, Pavel A Dub, Kenneth G Dyall, James W Furness, Mathew D Halls, et al. Quantum chemical package jaguar: A survey of recent developments and unique features. *The Journal of Chemical Physics*, 161(5), 2024.

540 Ricky TQ Chen and Yaron Lipman. Flow matching on general geometries. *arXiv preprint*
 541 *arXiv:2302.03660*, 2023.

542

543 Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock: Dif-
 544 fusion steps, twists, and turns for molecular docking. *arXiv preprint arXiv:2210.01776*, 2022.

545

546 Gabriele Corso, Arthur Deng, Benjamin Fry, Nicholas Polizzi, Regina Barzilay, and Tommi
 547 Jaakkola. Deep confident steps to new pockets: Strategies for docking generalization. *ArXiv*,
 548 pp. arXiv–2402, 2024.

549

550 Aurora J Cruz-Cabeza, Neil Feeder, and Roger J Davey. Open questions in organic crystal polymor-
 551 phism. *Communications Chemistry*, 3(1):142, 2020.

552

553 Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. *arXiv preprint*
 554 *arXiv:2307.08698*, 2023.

555

556 Peter Eastman, Pavan Kumar Behara, David L Dotson, Raimondas Galvelis, John E Herr, Josh T
 557 Horton, Yuezhi Mao, John D Chodera, Benjamin P Pritchard, Yuanqing Wang, et al. Spice, a
 558 dataset of drug-like molecules and peptides for training machine learning potentials. *Scientific*
 559 *Data*, 10(1):11, 2023.

560

561 Giacomo Fiorin, Michael L Klein, and Jérôme Hénin. Using collective variables to drive molecular
 562 dynamics simulations. *Molecular Physics*, 111(22-23):3345–3362, 2013.

563

564 Johannes S Fischer, Ming Gui, Pingchuan Ma, Nick Stracke, Stefan A Baumann, and Björn Ommer.
 565 Boosting latent diffusion with flow matching. *arXiv preprint arXiv:2312.07360*, 2023.

566

567 Marvin Friede, Christian Hölzer, Sebastian Ehlert, and Stefan Grimme. dxtb—an efficient and fully
 568 differentiable framework for extended tight-binding. *The Journal of Chemical Physics*, 161(6),
 569 2024.

570

571 Octavian Ganea, Lagnajit Pattanaik, Connor Coley, Regina Barzilay, Klavs Jensen, William Green,
 572 and Tommi Jaakkola. Geomol: Torsional geometric generation of molecular 3d conformer en-
 573 sembles. *Advances in Neural Information Processing Systems*, 34:13757–13769, 2021.

574

575 Saulius Gražulis, Daniel Chateigner, Robert T Downs, Alex FT Yokochi, Miguel Quirós, Luca
 576 Lutterotti, Elena Manakova, Justas Butkus, Peter Moeck, and Armel Le Bail. Crystallography
 577 open database—an open-access collection of crystal structures. *Applied Crystallography*, 42(4):
 578 726–729, 2009.

579

580 Saulius Gražulis, Adriana Daškevič, Andrius Merkys, Daniel Chateigner, Luca Lutterotti, Miguel
 581 Quiros, Nadezhda R Serebryanaya, Peter Moeck, Robert T Downs, and Armel Le Bail. Crys-
 582 talligraphy open database (cod): an open-access collection of crystal structures and platform for
 583 world-wide collaboration. *Nucleic acids research*, 40(D1):D420–D427, 2012.

584

585 Stefan Grimme, Christoph Bannwarth, and Philip Shushkov. A robust and accurate tight-binding
 586 quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of
 587 large molecular systems parametrized for all spd-block elements (z= 1–86). *Journal of chemical*
 588 *theory and computation*, 13(5):1989–2009, 2017.

589

590 Colin R Groom, Ian J Bruno, Matthew P Lightfoot, and Suzanna C Ward. The cambridge structural
 591 database. *Structural Science*, 72(2):171–179, 2016.

592

593 Majdi Hassan, Nikhil Shenoy, Jungyoon Lee, Hannes Stark, Stephan Thaler, and Dominique Beaini.
 594 Equivariant flow matching for molecular conformer generation. In *ICML 2024 Workshop on*
 595 *Structured Probabilistic Inference \& Generative Modeling*, 2024.

596

597 Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional dif-
 598 fusion for molecular conformer generation. *Advances in neural information processing systems*,
 599 35:24240–24253, 2022.

600

601 Chaitanya K Joshi, Xiang Fu, Yi-Lun Liao, Vahe Gharakhanyan, Benjamin Kurt Miller, Anuroop
 602 Sriram, and Zachary W Ulissi. All-atom diffusion transformers: Unified generative modelling of
 603 molecules and materials. *arXiv preprint arXiv:2503.03965*, 2025.

594 Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. *Foundations*
 595 *and Trends® in Machine Learning*, 12(4):307–392, 2019.
 596

597 Greg Landrum and contributors. Rdkit: Open-source cheminformatics. <https://www.rdkit.org>, 2025. Version 2025.03.6; accessed 2025-09-14.
 598

599 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 600 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.
 601

602 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 603 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.
 604

605 Zhihai Liu, Yan Li, Li Han, Jie Li, Jie Liu, Zhixiong Zhao, Wei Nie, Yuchen Liu, and Renxiao Wang.
 606 Pdb-wide collection of binding data: current status of the pdbind database. *Bioinformatics*, 31
 607 (3):405–412, 2015. doi: 10.1093/bioinformatics/btu626.
 608

608 Wei Lu, Qifeng Wu, Jixian Zhang, Jiahua Rao, Chengtao Li, and Shuangjia Zheng. Tankbind:
 609 Trigonometry-aware neural networks for drug-protein binding structure prediction. *Advances in
 610 neural information processing systems*, 35:7236–7249, 2022.
 611

611 Andrew T McNutt, Paul Francoeur, Rishal Aggarwal, Tomohide Masuda, Rocco Meli, Matthew
 612 Ragoza, Jocelyn Sunseri, and David Ryan Koes. Gnina 1.0: molecular docking with deep learn-
 613 ing. *Journal of cheminformatics*, 13(1):43, 2021.
 614

615 Leonardo Medrano Sandonas, Dries Van Rompaey, Alessio Fallani, Mathias Hilfiker, David Hahn,
 616 Laura Perez-Benito, Jonas Verhoeven, Gary Tresadern, Joerg Kurt Wegner, Hugo Ceulemans,
 617 et al. Dataset for quantum-mechanical exploration of conformers and solvent effects in large
 618 drug-like molecules. *Scientific Data*, 11(1):742, 2024.
 619

619 Noel M O’Boyle, Chris Morley, and Geoffrey R Hutchison. Pybel: a python wrapper for the open-
 620 babel cheminformatics toolkit. *Chemistry Central Journal*, 2(1):5, 2008.
 621

622 Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and Geof-
 623 frey R Hutchison. Open babel: An open chemical toolbox. *Journal of cheminformatics*, 3(1):33,
 624 2011.
 625

625 Philipp Pracht, Stefan Grimme, Christoph Bannwarth, Fabian Bohle, Sebastian Ehlert, Gereon Feld-
 626 mann, Johannes Gorges, Marcel Müller, Tim Neudecker, Christoph Plett, et al. Crest—a program
 627 for the exploration of low-energy molecular chemical space. *The Journal of Chemical Physics*,
 628 160(11), 2024.
 629

629 *RDKit MurckoScaffold module documentation*. RDKit, 2025. Accessed 2025-09-14.
 630

631 Kyle Sargent, Kyle Hsu, Justin Johnson, Li Fei-Fei, and Jiajun Wu. Flow to the mode: Mode-seeking
 632 diffusion autoencoders for state-of-the-art image tokenization. *arXiv preprint arXiv:2503.11056*,
 633 2025.
 634

635 Valentina V Sobornova, Konstantin V Belov, Michael A Krestyaninov, and Ilya A Khodov. Influ-
 636 ence of solvent polarity on the conformer ratio of bicalutamide in saturated solutions: Insights
 637 from noesy nmr analysis and quantum-chemical calculations. *International Journal of Molecular
 638 Sciences*, 25(15):8254, 2024.
 639

639 Annika Stuke, Christian Kunkel, Dorothea Golze, Milica Todorović, Johannes T Margraf, Karsten
 640 Reuter, Patrick Rinke, and Harald Oberhofer. Atomic structures and orbital energies of 61,489
 641 crystal-forming organic molecules. *Scientific data*, 7(1):58, 2020.
 642

642 Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 643 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 644 with minibatch optimal transport. *arXiv preprint arXiv:2302.00482*, 2023.
 645

646 Yuyang Wang, Ahmed AA Elhag, Navdeep Jaitly, Joshua M Susskind, and Miguel Ángel Bautista.
 647 Swallowing the bitter pill: Simplified scalable conformer generation. In *International Conference
 648 on Machine Learning*, pp. 50400–50418. PMLR, 2024.

648 Thomas R Weikl and Fabian Paul. Conformational selection in protein binding and function. *Protein*
649 *Science*, 23(11):1508–1518, 2014.
650

651 David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
652 ology and encoding rules. *Journal of chemical information and computer sciences*, 28(1):31–36,
653 1988.

654 Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
655 metric diffusion model for molecular conformation generation. *arXiv preprint arXiv:2203.02923*,
656 2022.

657 Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional networks: a
658 comprehensive review. *Computational Social Networks*, 6(1):1–23, 2019.
659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A DATA PREPARATION
703704 **GEOM QM9 and Drugs** For GEOM QM9 and Drugs datasets, we used the data processing script
705 provided by the ETFlow work. We used the same splitting of train, validation, and test. For each
706 molecule, we kept the top 30 conformers with the highest Boltzmann weights. Each molecule
707 was saved as a single PyTorch Geometric object with attributes atomic numbers, atomic positions,
708 and SMILES string. The resulting QM9 training set includes 106,587 molecules with 794,960
709 conformations, QM9 validation set includes 13,323 molecules with 99,945 conformations. The
710 test set has 1,000 molecules. The resulting Drugs training set has 244,828 molecules with 5,770,377
711 conformations and the validation set has 30,330 molecules with 715,592 conformations. The test set
712 has 1,000 molecules.
713714 **SPICE and CREST-relaxed SPICE** We used the PubChem subset of the SPICE dataset (Eastman
715 et al., 2023). This subset includes small, drug-like molecules comprised of between 18 and 50 atoms
716 with elements Br, C, Cl, F, H, I, N, O, P, and S.
717718 Since the conformers in SPICE dataset are not fully relaxed, we build a relaxed set for the molecules
719 in SPICE dataset. For each molecule, we first used RDKit to generate 50 conformers with
720 `EmbedMultipleConfs` using parameters `pruneRmsThresh=0.01`, `maxAttempts=5`,
721 `useRandomCoords=False` corresponding to a pruning threshold of similar conformers of
722 0.01Å, a maximum of five embedding attempts per conformer, coordinate initialization from the
723 eigenvalues of the distance matrix, and a random seed. If no conformers were successfully gen-
724 erated then `numConfs` was increased to 500. Afterwards, the conformers were optimized in the
725 RDKit default MMFF force field. We deduplicated the conformers using RDKit’s `GetBestRMS`,
726 unless the calculation took longer than 48 hours then we switched to RDKit’s `AlignMol`. After
727 removing the duplicate conformers that exhibited an $\text{RMSD} < 0.1\text{\AA}$, the ten conformers with the
728 lowest energy were further optimized with an approximate energy model known as *extended tight*
729 *binding* (xTB) (Grimme et al., 2017; Friede et al., 2024). The conformer with the lowest xTB energy
730 was used as input to the CREST simulation. We used the default hyperparameters from CREST ver-
731 sion 3.0.2 including a 6 kcal/mol cutoff on final conformers. Any SMILES strings containing slash
732 or backslash indicate a cis/trans stereochemistry were skipped since their SMILES string is not
733 preserved during the above procedure.
734735 For both the original SPICE dataset and the CREST-relaxed dataset, we prepare the data in the Py-
736 Torch Geometric Data objects. For each molecule, we built an RDKit molecule object from SMILES
737 string. However, the order of atoms extracted from the RDKit molecule object can be different from
738 the atomic positions in the datasets. To fix this order issue, we used RDKit’s `GetSubstructMatch`
739 function to build a mapping. We make sure the atomic positions align with the atomic numbers and
740 the RDKit molecule built from the SMILES. These three components make the PyTorch Geometric
741 Data object.
742743 We did a random splitting of the datasets at 0.8:0.1:0.1 to train, validation, and test. The resulting
744 train set has 19,198 molecules with 959,802 and 2,203,392 conformers for SPICE and CREST,
745 respectively. The validation set has 2508 molecules with 125,370 and 278,673 conformers for SPICE
746 and CREST. The test set has 2,941 molecules.
747748 **OE62** We prepare the data in the PyTorch Geometric Data objects. For each molecule, we read
749 the SMILES string and PBE-relaxed coordinates from the dataset. We build an RDKit molecule
750 object from the SMILES string. Similar to SPICE dataset, the order of atoms extracted from the
751 RDKit molecule object can be different from the coordinates. We used RDKit’s `GetSubstructMatch`
752 function to build a mapping to make sure the atomic positions align with the order of the RDKit
753 molecule. The PyTorch Geometric Data object consists of SMILES string, coordinates, and atomic
754 numbers.
755756 We did a random splitting of the datasets at 0.8:0.1:0.1 to train, validation, and test. The resulting
757 train set has 28,038 molecules and the validation set has 4,297 molecules, and the test set has 3,933
758 molecules. Each molecule has one conformation.
759760 **PDBBind** We use the PDBBind-v2020 dataset. For each protein-ligand pair, we read the ligand
761 sdf file and use RDKit’s `Chem.SDMolSupplier` to build an RDKit molecule object. We then add
762

756 hydrogen to the molecule and write a canonical SMILES. Then we use RDKit to make a molecule
 757 from the SMILES string. We notice that these two molecule objects, one from sdf file and the other
 758 from SMILES string, generate different orders of atoms. Therefore, we use the trick of RDKit’s
 759 GetSubstructMatch to align the two molecule objects and find the order of coordinates that match
 760 the order of atoms in the RDKit molecule built from SMILES string. The atomic numbers are
 761 extracted from the RDKit molecule built from SMILES string.

762 We take the protein’s binding pocket as the environment graph. We used PDBParser to read pocket
 763 pdb file. We only include heavy atoms in the graph. We add an edge between two heavy atoms if
 764 they are within one residue. We add node features using ETFlow’s approach by setting chirality,
 765 degree, formal charge, implicit valence, number of hydrogen, hybridization, and number of radical
 766 electrons all to “misc”, and no aromaticity or rings.

767 The final PyTorch Geometric Data object includes ligand’s SMILES string, list of atomic numbers,
 768 atomic positions, and protein pocket’s list of atomic numbers, node features, edge indices, and
 769 atomic positions.

770 We inherit the splitting of the PDBBind dataset. After skipping examples that the ligands fail to
 771 generate a valid RDkit molecule, the resulting train set has 9,940 examples and the validation set
 772 has 614 examples, and the test set has 218 examples. Each example has one conformation for the
 773 ligand.

775 **Aquamarine (AQM)** We read SMILES string from the dataset and build an RDKit molecule
 776 object from the SMILES string. We add hydrogen to the molecule. We then check if the given order
 777 of atoms agrees with the order extracted from the RDKit molecule. If not, we build a second RDKit
 778 molecule from the given coordinates and use the RDKit’s GetSubstructMatch to map the coordinates
 779 to the order of the SMILES-generated RDKit molecule.

780 In addition, to construct the raw environment graph, we use water molecule’s graph since the dataset
 781 is collected in the presence of implicit water. We use ETFlow’s approach to generate node feature
 782 and edge indices. We also include four descriptors that summarizes the interaction between the
 783 solute molecule and water solvent:

- 785 • sCAV: surface area of cavity;
- 786 • vCAV: volume of cavity;
- 787 • eSOLV: free energy in electrolyte;
- 788 • eNELEC: non-electrostatic free energy.

790 We normalize each descriptor by subtracting the mean of that descriptor across the dataset and then
 791 divided by the standard deviation. These descriptors are added to the node features for each node.

792 After filtering examples that failed generating valid RDKit molecule objects, the final PyTorch Geo-
 793 metric Data object include the solute molecule’s SMILES string, atomic numbers, and coordinates,
 794 as well as water molecule’s atomic numbers, node features, and edge indices. The coordinates of
 795 the water atoms are all set to zero.

796 We did a random splitting of the datasets at 0.8:0.1:0.1 to train, validation, and test. The resulting
 797 train set has 1,276 molecules and the validation set has 175 molecules, and the test set has 157
 798 molecules. Each molecule has one conformation.

800 **Crystallography Open Database (COD)** (Gražulis et al., 2009). According to their website,
 801 the COD is “An open-access collection of crystal structures of organic, inorganic, metal-organic
 802 compounds and minerals, excluding biopolymers.” We utilize the organic crystals in this dataset for
 803 our so-called *packing* fine-tuning experiment. One may think of a molecular crystal as a conformer
 804 of an organic molecule that has been placed into a periodic lattice, where copies of this conformer
 805 are placed at regular distances extending infinitely over all of space. The periodicity implies that
 806 there a repeating smallest tile, or so-called asymmetric unit. This is necessary so that we can define
 807 a notion of local structure in our environment embedding. We now describe the nature of our subset.

808 We considered all of the structures in COD, then we applied the following filters:

- 809 • The structure must contain organic molecules.

- 810 • The structure must not be marked as disordered. “Disorder is a violation of crystal symme-
811 try, where an atom is distributed over several positions or shared by several atoms, resulting
812 in an average structure.” (Groom et al., 2016).
- 813
- 814 • The structure must not be marked as missing Hydrogen.
- 815
- 816 • The structure is allowed to contain metals.
- 817
- 818 • The structure must have SMILES (Weininger, 1988).
- 819
- 820 • There must be only one fragments in the SMILES, defined by having no `.` in the string.
- 821
- 822 • The structure must pass `clean_st` (Cao et al., 2024).
- 823
- 824 • The structure must have only one fragment according to `extractStructure` (Cao
et al., 2024).
- 825
- 826 • The structure must contain only one formula unit (molecule) in the asymmetric unit (a
property typically called $Z' = 1$) according to `renumber_molecules_to_match`,
`group_with_comparison`, and `get_rmsd_allowing_refl` (Cao et al., 2024).
- 827
- 828

829 We determined the topology using `renumber_molecules_to_match` rather than relying on the
830 SMILES strings provided by the COS since they are often unreliable. Furthermore, extracted the
831 space group, Wyckoff position, and atomic coordinates of each formula unit (molecule). This en-
832 abled us to construct its environment for embedding. The result is a set of 20,765 molecular crystals
833 with symmetry information and a single formula unit (molecule) in the asymmetric unit.

834 We then process the examples into PyTorch Geometric Data objects. We read the sdf files from
835 the dataset, and build RDKit molecule object using `Chem.MolFromMolBlock`. A SMILES string
836 is then generated from `Chem.MolToSmiles`, which is then used to build a second RDKit molecule
837 object. We check if the order of atoms in the two molecule objects are the same. If not, we use the
838 `GetSubstructMatch` trick to map them and obtain the atomic positions in the same order of atoms as
the molecule object from SMILES string.

839 We also obtain lattice parameters including the unit cell’s lengths (a, b, c) and angles (α, β, γ) and
840 space group number from the dataset.

841 The molecule’s SMILES string, list of atomic numbers, coordinates, and the lattice parameters are
842 included in the PyTorch Geometric Data object.

843 After filtering examples that fail to generate valid RDkit molecule object, we did a random splitting
844 of the dataset at 0.8:0.1:0.1 to train, validation, and test. The resulting train set has 20,765 molecules
845 and the validation set has 3,239 molecules, and the test set has 3,235 molecules. Each molecule has
846 one conformation.

847 B DISTRIBUTION OF NUMBER OF ATOMS AND NUMBER OF ROTATABLE 848 BONDS

849 To characterize the intrinsic difficulty of conformer generation across datasets, we re-
850 port histograms of molecular size (number of atoms, N_{atoms}) and flexibility (number of
851 rotatable bonds, N_{rot}) for each dataset (Figures 6 and 7). We compute N_{rot} using
852 `rdMolDescriptors.CalcNumRotatableBonds` from RDKit with its default definition
853 (non-ring single bonds between non-terminal heavy atoms).

854 Across the pretraining sets (GEOM Drugs, GEOM QM9, SPICE, CREST-relaxed SPICE, and
855 OE62), N_{atoms} concentrates in the mid-size regime with means in the $\sim 17\text{--}44$ range, while N_{rot} is
856 typically modest (most molecules have fewer than 15 rotatable bonds).

857 For the finetuning sets (GEOM Drugs, PDBBind, AQM, and COD), the atom-count distribution
858 shifts larger with means in the $\sim 38\text{--}64$ range. In particular, the PDBBind dataset exhibits a long
859 tail (very large molecules), indicating increased geometric and torsional complexity.

Figure 6: The histograms of the number of atoms and the number of rotatable bonds in the pretraining datasets, including GEOM Drugs, GEOM QM9, SPICE, CREST-relaxed SPICE, and OE62.

C TRAINING DETAILS AND HYPERPARAMETERS

For pretraining, we train EVA-Flow for a fixed 500 epochs. For each epoch, we randomly sample 50,000 examples from the pretraining datasets with a probability of 0.5 for GEOM-Drugs, 0.2 for OE62, 0.1 for GEOM-QM9, 0.1 for SPICE, and 0.1 for CREST. We use the epoch number as the random seed. For the learning rate, we use the Adam Optimizer with a cosine annealing learning rate which goes from a maximum of 8×10^{-4} to a minimum 10^{-7} over 500 epochs with a weight decay of 10^{-10} . We use 8 A100 GPUs.

For unified finetuning, we train EVA-Flow for a fixed 500 epochs. For each epoch, we randomly sample 50,000 examples from the pretraining datasets with a probability of 0.6 for GEOM-Drugs (Vacuum), 0.2 for COD (Packing), 0.15 for PDBBind (Docking), and 0.05 for AQM (Solvation).

Figure 7: The histograms of the number of atoms and the number of rotatable bonds in the finetuning datasets, including PDBBind, AQM, and COD. The GEOM Drugs dataset is the same as the one in the pretraining datasets (Figure 6).

We use the epoch number as the random seed. For the learning rate, we use the Adam Optimizer with a cosine annealing learning rate which goes from a maximum of 8×10^{-4} to a minimum 10^{-7} over 500 epochs with a weight decay of 10^{-10} . We use 8 A100 GPUs.

For individual finetuning, we train EVA-Flow for a fixed 500 epochs on each full dataset. For the learning rate, we use the Adam Optimizer with a cosine annealing learning rate which goes from a maximum of 8×10^{-4} to a minimum 10^{-7} over 500 epochs with a weight decay of 10^{-10} . We use 8 A100 GPUs.

D EVALUATION METRIC DEFINITION

We compute average minimus RMSD (AMR) and Coverage (COV) Recall and Precision to assess the performance of molecular conformer generation following the approaches of (Ganea et al., 2021; Xu et al., 2022; Jing et al., 2022). Recall measures the extent to which the generated conformers capture the ground-truth conformers, while Precision indicates the proportion of generated conformers that match the ground-truth conformers. Using C_g to denote the set of generated conformations, and C_r the set of reference conformations, we calculate these metrics using the following equations:

$$\text{AMR-R}(C_g, C_r) = \frac{1}{|C_r|} \sum_{\mathbf{R} \in C_r} \min_{\hat{\mathbf{R}} \in C_g} \text{RMSD}(\mathbf{R}, \hat{\mathbf{R}}) \quad (14)$$

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 3: Hyperparameters for EVA-Flow

Hyper-parameter	Small	Medium	Large
bsz	32	16	8
num_layers	20	30	40
hidden_channels	160	240	320
num_heads	8	12	16
neighbor_embedding	True	True	True
cutoff_lower	0.0	0.0	0.0
cutoff_higher	10.0	10.0	10.0
node_attr_dim	10	10	10
edge_attr_dim	1	1	1
reduce_op	True	True	True
activation	SILU	SILU	SILU
attn_activation	SILU	SILU	SILU
latent_dim	128	192	256
env_dim	128	192	256
encoder_num_layer	2	2	3
base_num_layer	2	2	2
env_num_layer	2	2	5
FM decoder # param	9.1M	29.1M	67.0M
encoder # param	102K	227K	505K
env # param	68.0K	96.8K	133K
base # param	146K	327K	580K
total # param	9.4M	29.7M	68.3M

$$\text{COV-R}(C_g, C_r) = \frac{1}{|C_r|} |\{\mathbf{R} \in C_r | \text{RMSD}(\mathbf{R}, \hat{\mathbf{R}}) < \delta, \hat{\mathbf{R}} \in C_g\}| \quad (15)$$

$$\text{AMR-P}(C_r, C_g) = \frac{1}{|C_g|} \sum_{\hat{\mathbf{R}} \in C_g} \min_{\mathbf{R} \in C_r} \text{RMSD}(\hat{\mathbf{R}}, \mathbf{R}) \quad (16)$$

$$\text{COV-P}(C_r, C_g) = \frac{1}{|C_g|} |\{\hat{\mathbf{R}} \in C_g | \text{RMSD}(\hat{\mathbf{R}}, \mathbf{R}) < \delta, \mathbf{R} \in C_r\}| \quad (17)$$

A lower AMR score signifies improved accuracy, while a higher COV score reflects greater diversity in the generative model. The threshold δ is set to 0.5 Å for Solvation, 0.75 Å for Vacuum (Hassan et al., 2024) and Packing, and 2.0 Å for Docking (Corso et al., 2022).

E MORE RESULTS

The performance of large models with a two-layer environment network, and small and medium models across four environments are presented in Table 4, Figures 8 and 9 and Tables 5 and 6.

F MOLECULE VISUALIZATION

The visualization of reference and generated conformers for molecules shared in the Packing-Docking environments.

G USE OF LLMs

We used large language models (LLMs) to check grammar, correct typos, and refine word usage.

1026 Table 4: Conformation generation across four environments [using a two-layer environment network](#):
 1027 Vacuum, Docking, Solvation, and Packing. We report mean Recall and Precision COV and AMR
 1028 at environment-specific RMSD thresholds: 0.5Å for Solvation, 0.75Å for Vacuum and Packing, and
 1029 2.0Å for Docking. For Packing, we also report symmetry-aware RMSD (sRMSD). Best results are
 1030 **bolded**.

Environment	Setup	Recall		Precision		Crystal
		COV↑	AMR↓	COV↑	AMR↓	
Vacuum	Pretrain+Individual	0.6794	0.617	0.3279	1.230	–
	Pretrain+Unified	0.6453	0.632	0.3234	1.236	–
	Unified	0.6224	0.690	0.3029	1.272	–
	Individual	0.6563	0.656	0.3246	1.250	–
Docking	Pretrain+Individual	0.6558	2.013	0.4500	2.617	–
	Pretrain+Unified	0.6233	2.033	0.4302	2.648	–
	Unified	0.5944	2.260	0.4266	2.882	–
	Individual	0.5385	2.302	0.3182	2.918	–
Solvation	Pretrain+Individual	0.9299	0.184	0.8790	0.265	–
	Pretrain+Unified	0.9172	0.190	0.7278	0.452	–
	Unified	0.8535	0.252	0.5175	0.617	–
	Individual	0.4968	0.555	0.2006	0.921	–
Packing	Pretrain+Individual	0.5280	0.789	0.3092	1.211	0.057
	Pretrain+Unified	0.4930	0.837	0.2785	1.263	0.069
	Unified	0.4400	0.885	0.2492	1.304	0.068
	Individual	0.3820	0.998	0.2150	1.419	0.074

1057 Table 5: Conformation generation for Small models. We report Recall and Precision Coverage at
 1058 environment-specific RMSD thresholds: 0.5Å for Solvation, 0.75Å for Vacuum and Packing, and
 1059 2.0Å for Docking. For Packing, we also report symmetry-aware RMSD (sRMSD).
 1060

Environment	Setup	Recall		Precision		Crystal
		Coverage↑	AMR↓	Coverage↑	AMR↓	
Vacuum	Pretrain+Unified	0.4760	0.884	0.2082	1.464	–
	Unified	0.4349	0.941	0.1934	1.508	–
	Individual	0.5200	0.830	0.2355	1.405	–
Docking	Pretrain+Unified	0.5767	2.283	0.4035	2.893	–
	Unified	0.5442	2.277	0.3814	2.903	–
	Individual	0.5116	2.557	0.3186	3.198	–
Solvation	Pretrain+Unified	0.8662	0.236	0.5637	0.554	–
	Unified	0.8726	0.246	0.5637	0.562	–
	Individual	0.4968	0.558	0.2006	0.896	–
Packing	Pretrain+Unified	0.4830	0.861	0.2740	1.286	0.062
	Unified	0.4620	0.880	0.2645	1.299	0.064
	Individual	0.3580	1.022	0.2065	1.415	0.072

Figure 8: Recall and Precision Coverage for Vacuum. (a) Precision Coverage of three model sizes, small, medium and large. (b) Large model: comparison of Precision Coverage for three training setups: Individual (trained on PDBBind dataset only), Unified (joint training on Docking, Vacuum, Packing, and Solvation), and Pretrain+Unified (Unified initialized with pretraining). (c)(c) Small model: comparison of Recall and Precision Coverage for three training setups: Individual, Unified, and Pretrain+Unified. (c)(d) Medium model: comparison of Recall and Precision Coverage for three training setups: Individual, Unified, and Pretrain+Unified. The cross in (a) and (b) denotes the state-of-the-art result from Hassan et al. (2024).

Table 6: Conformation generation for Medium models. We report Recall and Precision Coverage at environment-specific RMSD thresholds: 0.5Å for Solvation, 0.75Å for Vacuum and Packing, and 2.0Å for Docking. For Packing, we also report symmetry-aware RMSD (sRMSD).

Environment	Setup	Recall		Precision		Crystal
		Coverage↑	AMR↓	Coverage↑	AMR↓	
Vacuum	Pretrain+Unified	0.5691	0.758	0.2650	1.337	–
	Unified	0.5196	0.816	0.2447	1.402	–
	Individual	0.5822	0.748	0.2730	1.329	–
Docking	Pretrain+Unified	0.5721	2.364	0.3744	2.987	–
	Unified	0.5023	2.527	0.3372	3.161	–
	Individual	0.4791	2.566	0.3233	3.203	–
Solvation	Pretrain+Unified	0.8599	0.246	0.5780	0.575	–
	Unified	0.4841	0.539	0.2070	0.863	–
	Individual	0.5287	0.555	0.2245	0.892	–
Packing	Pretrain+Unified	0.4110	0.929	0.2402	1.338	0.064
	Unified	0.3250	1.078	0.1795	1.493	0.078
	Individual	0.4210	0.927	0.2412	1.332	0.068

Figure 9: Recall and Precision Coverage for Docking. (a) Precision Coverage of three model sizes, small, medium and large. (b) Large model: comparison of three training setups: Individual (trained on PDDBind dataset only), Unified (joint training on Docking, Vacuum, Packing, and Solvation), and Pretrain+Unified (Unified initialized with pretraining). (c)(c) Small model: comparison of three training setups: Individual, Unified, and Pretrain+Unified. (c)(d) Medium model: comparison of three training setups: Individual, Unified, and Pretrain+Unified. The cross in (a) and (b) denotes the state-of-the-art result from Xu et al. (2022).

1188 Table 7: Visualization of reference and generation conformations for the shared molecules in
 1189 Packing-Docking. The molecules are aligned to the reference conformers of Docking environment.
 1190

