
Published as a conference paper at ICLR 2024

ON THE PARAMETERIZATION OF SECOND-ORDER OPTI-
MIZATION EFFECTIVE TOWARDS THE INFINITE WIDTH

Satoki Ishikawa
Department of Computer Science
Tokyo Institute of Technology, Japan
riverstone@rio.gsic.titech.ac.jp

Ryo Karakida
Artificial Intelligence Research Center
AIST, Japan
karakida.ryo@aist.go.jp

ABSTRACT

Second-order optimization has been developed to accelerate the training of deep
neural networks and it is being applied to increasingly larger-scale models. In this
study, towards training on further larger scales, we identify a specific parameteriza-
tion for second-order optimization that promotes feature learning in a stable manner
even if the network width increases significantly. Inspired by a maximal update
parameterization, we consider a one-step update of the gradient and reveal the ap-
propriate scales of hyperparameters including random initialization, learning rates,
and damping terms. Our approach covers two major second-order optimization
algorithms, K-FAC and Shampoo, and we demonstrate that our parameterization
achieves higher generalization performance in feature learning. In particular, it
enables us to transfer the hyperparameters across models with different widths.

1 INTRODUCTION

Second-order optimization has been attracting considerable interest in improving the training effi-
ciency of neural networks (Amari, 1998; Pascanu & Bengio, 2014). It accelerates the convergence of
gradient dynamics (Martens & Grosse, 2015; Gupta et al., 2018; Li, 2017) and can optimize neural
networks that are especially hard to train due to highly distorted parameter landscape (Martens et al.,
2018; Zhang et al., 2022a; Beyer et al., 2022). Because of these successes in improving training
efficiency, it is increasingly being applied to even larger-scale models year by year (Osawa et al.,
2023b; Pauloski et al., 2021; Shi et al., 2021; Zhang et al., 2023; 2022b; Anil et al., 2021).

In general, gradient methods depend on some hyper-parameters (HPs), including a learning rate, and
we need careful HP tuning to achieve better performance. The most straightforward approach is to
train the model multiple times and search for better HP, but for large-scale models, the computational
cost is high even for a single training, making it very challenging to find it. In particular, second-order
optimization methods possess not only a learning rate but also a damping term which requires careful
tuning (Pascanu & Bengio, 2014; Martens, 2020).

How can we obtain quantitative insight into appropriate settings of HP that hold on large scales?
Usually, an appropriate scale of HPs depends on the model size and we need to scale them up or
down depending on the network width or depth (Park et al., 2019; Iyer et al., 2023; Dinan et al.,
2023). One approach to obtaining a robust scale of HPs that universally works in large models is
to consider a large limit of the model size (Schoenholz et al., 2017; Lee et al., 2018; Xiao et al.,
2018; Luo et al., 2021). In particular, to obtain a preferable HP that works in first-order gradient
descent, Yang & Hu (2021) proposed Maximum Update Parameterization (MUP; µP). They analyzed
an infinite width limit of neural networks and successfully identified HPs that prevent the parameter
update from vanishing or exploding and ensured stable progress of training, which is independent
of the width. The µP also enables us to avoid the lazy regime, where the model parameters remain
sufficiently close to the initialization and allow feature learning at the maximum scale of the update
in all layers. Moreover, Yang et al. (2021) have demonstrated that since the µP works effectively
towards the infinite width, we can re-use the HP including a learning rate obtained in a smaller model
to the large-scale one. To date, however, these studies have been limited to first-order and entry-wise
optimization (Yang & Littwin, 2023).
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In this work, we consider an infinite width limit and propose a µP for second-order optimization
including two major methods; K-FAC (Martens & Grosse, 2015) and Shampoo (Gupta et al., 2018).
Our main contributions can be summarized as follows:

• We consider a one-step update of the second-order optimization methods in the infinite-width
limit and reveal the HPs (i.e., scales of random initialization, learning rates, damping terms)
that allow the µP (in Section 4.1). We especially clarify that the stable feature learning
requires specific scales of learning rates; K-FAC works for constant learning rates whereas
Shampoo requires scaling depending on the width. Regarding the damping terms, we find
that a classical heuristic scaling of Shampoo satisfies the µP condition while that of K-FAC
requires re-scaling (in Section 4.2).

• In practice, the last layer’s weight is sometimes initialized not by random initialization but by
zero. By carefully considering the one-step update, we find that while the zero initialization
allows feature learning in the usual first-order gradient, it can cause an approach to the
network parameter corresponding to the neural network Gaussian process (NNGP) in the
case of K-FAC (in Section 4.3). This can be regarded as a novel implicit bias specific to
K-FAC that appears in the infinite-width limit.

• We empirically verify the effectiveness of our proposed parameterization in the training of
various neural networks. In particular, it enables us to transfer optimal learning rates and
damping terms from narrow models to wider ones (in Section 5.2, 5.3).

Thus, this work provides quantitative insights that will serve as a foundation for scaling second-order
optimization towards the learning of even larger models in the future.

2 RELATED WORK

Feature learning: In general, it is highly non-trivial that the large limit of the model allows stable
learning under the widely-used standard parameterization (SP). In the infinite width limit, we may
have unstable dynamics (i.e., vanishing/exploding gradient depending on the width) or, more non-
trivially, the lazy regime (a.k.a. neural tangent kernel regime) (Chizat et al., 2019; Jacot et al., 2018).
While the learning dynamics in the lazy regime progress in a stable manner, the parameters remain
sufficiently close to the initialization, and the network is essentially approximated by a linear model.
This means that no feature learning appears, thus there is growing interest in under what conditions
feature learning progresses outside of the lazy regime (Woodworth et al., 2020; Geiger et al., 2021;
Luo et al., 2021; Bordelon & Pehlevan, 2022). Based on an order evaluation of parameter updates
in the middle of training, Yang & Hu (2021) proposed µP for stochastic gradient descent (SGD)
that realizes feature learning in the infinite-width limit. Some experimental studies demonstrated
the utility of µP Yang et al. (2021); Vyas et al. (2023). The theory is also generalized to entry-wise
adaptive gradient methods including Adam (Littwin & Yang, 2023). The second-order optimization
does not belong to the class analyzed in these existing studies, and thus the current work is the
first to challenge this problem. Note that the second-order optimization in the lazy regime has been
investigated by some work (Zhang et al., 2019a; Cai et al., 2019; Karakida & Osawa, 2020).

Second-order optimization: The preconditioned gradient can speed up the convergence of training
dynamics. Natural gradient descent (NGD) (Amari, 1998) is a classical example of second-order
optimization which preconditions the gradient by the inverse of the Fisher information matrix.
However, since the computation of the inverse is computationally demanding, some approximation
is required. K-FAC (Martens & Grosse, 2015; Grosse & Martens, 2016) is such an approximation
for deep neural networks and it has been frequently employed for training large-scale models where
acceleration is particularly important (Osawa et al., 2023b; Pauloski et al., 2020; 2021; Shi et al.,
2021; Zhang et al., 2023; 2022b). Shampoo is another commonly used second-order optimization
method (Gupta et al., 2018) and achieves fast convergence (Anil et al., 2021). Note that second-order
optimization methods contain a damping term. Careful selection of such HPs is known to be important
for the success of training (Martens, 2020; Zhang et al., 2019b; Gao et al., 2020).

2



Published as a conference paper at ICLR 2024

3 PRELIMINARIES

This section explains the second-order optimization in L-layered fully-connected neural networks:

ul = Wlhl−1 + bl, hl = ϕ (ul) (l = 1, ..., L), (1)

where we define weight matrices Wl ∈ RMl×Ml−1 , bias terms bl, and activations hl ∈ RMl . We
set the width of the hidden layer to Ml = M (l = 1, ..., L − 1) for clarity, but this does not
lose the generality of the following analysis. ϕ(·) is a differentiable and polynomially-bounded
activation function and theoretical works in µP usually assume either Tanh function or σ-GELU
function if necessary (Yang & Hu, 2021). Let (xi,yi) be a pair of input and target training sample.
For simplicity, we consider the mean squared loss function for a one-dimensional target: L(θ) =
1
n

∑n
i=1 ∥yi − fθ(xi)∥2 ∈ R, where θ denotes a vector of all parameters and fθ = uL is the output

of the deep neural network. It is straightforward to generalize the following results to the cases of
multi-classes and the cross-entropy loss as mentioned in Section A.5.

3.1 OVERVIEW OF SECOND-ORDER OPTIMIZATION

Second-order optimization is an algorithm that updates parameters by a preconditioned gradient:
θt+1 = θt − η (C(θt) + ρI)

−1∇θtL(θt), where η is a learning rate, C(θ) is the curvature matrix
and ρ is the damping term. Usually, this inverse is computationally demanding and hard to use.
Therefore, the following seminal works have introduced smaller preconditioners for each layer and
updated rules in a matrix form.

K-FAC: Natural gradient descent (NGD) is the case where C is given by the Fisher information
matrix. K-FAC approximates this C by the Kronecker product of two matrices (Martens & Grosse,
2015; Grosse & Martens, 2016). Its update rule in the matrix form is given by

Wl,t+1 = Wl,t − η(Bl + ρBl
I)−eB∇Wl

L(θt)(Al−1 + ρAl−1
I)−eA , (2)

where eA = eB = 1. The preconditioning matrices are given by Bl = E[δlδl⊤] and Al = E[hlhl
⊤]

where δl = ∇ul
fθ and E[·] is an average over training samples. General exponents eA and eB are

introduced here because some work only considers to use a part of preconditioners like (eA, eB) =
(1, 0) (Benzing, 2022; Amid et al., 2022). The size of damping terms is usually determined in a
heuristic manner as mentioned in Section 6.3.

Shampoo: Gupta et al. (2018) proposed the following update rule as a second-order optimization;

Wl,t+1 = Wl,t − η(Ll + ρLl
I)−e/2∇Wl

L(θt)(Rl−1 + ρRl−1
I)−e/2, (3)

where Ll = E[δlhl−1
⊤hl−1δl

⊤] and Rl = E[hl−1δl
⊤δlhl−1

⊤] with δl = ∇ul
L. In Shampoo,

e = 1/2 is applied. If we neglect the non-diagonal entries of the preconditioners, this is similar to
Adam and AdaGrad.

3.2 ABC-PARAMETERIZATION

ABC-parameterization scales parameters by the width as follows (Yang & Hu, 2021):

Wl = wl/M
al , wl ∼ N (0, σ′2/M2bl), ηl = η′l/M

cl , (4)

The µP is an abc-parameterization that induces feature learning in every layer in a model with infinite
widths. In short, the previous work characterizes feature learning by

∆hl := hl,t − hl,0 = Θ(1)1, (5)

where Θ(·) denotes the Big Theta notation for the order evaluation with respect to the width. Note
that for the lazy regime, we have ∆hl = o(1) in hidden layers. The previous work found that the
feature learning (5) appears for some specific conditions. In particular, the following condition of Wl

updated maximally plays a fundamental role:

∆Wlhl−1 = Θ(1). (6)
1Precisely speaking, this is feature learning (Definition H.9) especially satisfying a stability condition

(Theorem H.6) in Yang & Hu (2021). Note that as in the previous work, the last equality represents the
coordinate size where v = Θ(Ma) means

√
∥v∥2/M = Θ(Ma) for v ∈ RM
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Table 1: µP for K-FAC and Shampoo.
Input weights & all biases Output weights Hidden weights

SP b = 0, c = 0 b = 1/2, c = 0 b = 1/2, c = 0
SGD (e = 0) b = 0, c = −1 b = 1, c = 1 b = 1/2, c = 0
Shampoo (e = 1

2 ) b = 0, c = −1/2 b = 1, c = 1/2 b = 1/2, c = 0
K-FAC (eA,B = 1) b = 0, c = 0 b = 1, c = 0 b = 1/2, c = 0

Yang & Hu (2021) analyzed feature learning in the one-step gradient under this condition. Note
that they also obtain a mathematical expression of forward and backward propagated signals for the
first-order gradient at general time steps by the Tensor Program. For the derivation of the µP, we
focus only on the first one-step gradient as is explained in Section A.2 of Appendices.

In the following sections, we will set al = 0 for all layers in the same way as in the first-order case
(Yang et al., 2021). The previous work has demonstrated that the µP of the first-order gradient is
scale-invariant to the constant shift (a, b, c)← (a, b, c) + (k,−k,−2k). As we will show later, the
µP of second-order optimization also has this indeterminacy and we can eliminate it by al = 0.

4 PREFERABLE SCALING OF HPS IN SECOND-ORDER OPTIMIZATION

4.1 µP FOR SECOND-ORDER OPTIMIZATION

In this section, we derive the µP by considering the first one-step update of second-order optimization.
We suppose that the damping term ρX (X = {A,B,L,R}) satisfies

ρX = ρ′X/MdX , (7)
with a positive constant ρ′X . For simplicity, suppose a one-step update from the initialization where
the gradient and all preconditioners are computed on the same samples (Assumption A.5). We also
suppose common assumptions used in µP for the first-order gradient (Assumptions A.3,A.4). When
the eigenvalues of the preconditioning matrices have an equal width-dependent scale to the damping
term (e.g., ρA = Θ(∥A∥2)), we say that the second-order optimization is valid (Definition A.6).
Then, we obtain the following.
Proposition 4.1 (µP of second-order parameterization). Consider the first one-step update of
K-FAC and Shampoo in the infinite width limit. The second-order optimization becomes valid for

dAl
=

{
−1 1 < l ≤ L

0 l = 1
, dBl

=

{
0 l = L

1 1 ≤ l < L
, dLl

, dRl
=


1 l = 1

0 1 < l < L

−1 l = L

. (8)

It admits the µP for feature learning at

bl =


0 l = 1

1/2 1 < l < L

1 l = L

, cl =


eB − 1 l = 1

eB − eA 1 < l < L

1− eA l = L

, (9)

where we set al = 0 and setting eA = eB = e corresponds to Shampoo.
Rough sketch of derivation. The detailed and comprehensive derivation is presented in Section
A. Here, let us briefly explain the derivation of µP for K-FAC. The µP has two conditions to be
satisfied (A.1,A.2). For an infinitesimal one-step update, these conditions have explicit and tractable
expressions as described in Section A.2. They are applicable to both first-order and second-order
optimization methods. To check the conditions, we use the push-through identity:

∆Wlhl−1 = 1/M2a+c(B + ρBI)
−eBδdiag(χ)h⊤(A+ ρAI)

−eAh

= 1/M2a+cδ(δ⊤δ + ρBI)
−eBdiag(χ)(h⊤h+ ρAI)

−eAh⊤h (10)
where we omitted the layer index and χ means an error vector. In the second line, the size of the
inverse matrix is independent of the width and this expression enables us to carry out the order
evaluation of ∆Wlhl−1. Then, µP’s conditions become

2a1 + c1 + eB − (2eB − 1)(aL + bL) = 0, (11)
2al + cl + eA + eB − 1− (2eB − 1)(aL + bL) = 0, (12)

2aL + cL + eA − 1 = 0, aL + bL − 1 = 0. (13)
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Figure 1: µP achieves feature learning across the width. In SP (Pytorch’s Default), ∆hl in each
layer exhibits dependence on the width. For K-FAC, the default setting of the damping (heuristics)
does not satisfy the condition of µP and we need to utilize the rescaled one as is explained in Section
4.2. We train 3-layer MLP with CIFAR10 in the first line and Myrtle-5 with CIFAR10 in the second
line. This result does not depend on exponential moving averages or activation (Appendix.D).
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Figure 2: The obtained parameterization
is consistent throughout the training. The
order of the curvature matrix in K-FAC does
not change with time. The input layer is pro-
portional to M whereas the output layer is
proportional to 1/M , which is a natural order
in terms of the µP of the SGD. We trained a
3-layer MLP on FashionMNIST dataset.

Fixing a constant shift by setting al = 0, we obtain the result.

Here, let us explain some rather technical details of the result. First, note that we derived the µP
from the one-step update. This is the same as in the original work on µP where the one-step update
determines the µP for the whole (inductive) t-step updates. In fact, we empirically confirm the
effectiveness of µP for t > 1. Second, we focus on the case where the preconditioning matrices
become valid. Even if ρ takes a much larger value than these matrices, the gradient may realize the
feature learning under an appropriate scaling because it reduces to the first-order gradient. However,
such unusual switching between the first and second-order optimization is outside the scope of the
current work. Thus, we refer to the setting of this proposition as µP of second-order parameterization.

Table 1 summarizes the µP for K-FAC and Shampoo. bL = 1 is a common characteristic of µP for
all methods whereas c1 and cL depend on e. One interesting point is that just by setting bL = 1,
K-FAC with µP works for cl = 0. That is, K-FAC does not require scaling of the learning rate
in contrast to the first-order gradient (SGD), which requires cl depending on the width. Moreover,
Eq.(9) indicates that this is unique to the K-FAC (e = 1). In other words, K-FAC’s preconditioning
effectively achieves the µP’s scaling of learning rates of the first-order gradient. Note that we can
also extend µP to the Gauss-Newton method without using the K-FAC approximation (Appendix
A.4.3). As a side note, we also summarize the parameterization for the lazy regime in Section I.

Figure 1 empirically confirms that µP realizes the feature learning (5) in the training of MLP and
Myrtle-5. The order of the features was kept during the training, as is shown in Figure 2. Figure 1
also justifies the µP in CNN. In the CNN model, width represents the number of channels (Xiao et al.,
2018; Yang et al., 2021). Although our µP is derived on the MLP and K-FAC for CNN includes
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Figure 3: K-FAC converges to the NNGP solution when the variance of the last layer is close to
zero. When bL in the last layer is increased (other parameters are fixed to µP), K-FAC can converge
to the NNGP solution in one step. Therefore, when bL is increased, it converges to a kernel solution,
which limits b in which feature learning can occur.

an additional approximation in addition to K-FAC for MLP, we empirically observe that the same
parameterization as MLP is also true for CNN.

4.2 JUSTIFICATION OF DAMPING HEURISTICS

Implementations in practice often adjust the damping term of K-FAC using the following heuristics:

ρAl−1
(= 1/ρBl

) :=

√
tr(Al−1)

M

M

tr(Bl)
ρ′ = O(

√
M ·M2(aL+bL)−1), (14)

that is O(M) for the {a, b, c} given in Proposition 4.1. This heuristics is consistent with the valid
damping scales (8) in hidden layers but not in the input and output layers. This causes ∆hl to decay
when using damping heuristics even if a, b, c are set to µP settings. See Section A.6 for more details.
To overcome this problem, we propose to use the following rescaled damping satisfying the valid
damping scale in µP:

ρRe
A := ρ′ tr(h⊤

l−1hl−1), ρRe
B := ρ′ tr(δ⊤l δl). (15)

This rescaling is useful because it enables explicitly expressing the dampings of all layers in a unified
manner. Furthermore, it provides the heuristic scales of the preconditioners (i.e., trace) as proportional
coefficients which are expected to ensure stable learning dynamics. If damping is set consistent with
µP, ∆hl neither decays nor grows with respect to width as shown in Figure 1 (3rd column).

In contrast to the K-FAC, we found that a standard heuristics of the damping, i.e., a constant multiple
of the largest eigenvalue of Ll,Rl, is consistent with the µP in Proposition 4.1 and requires no
modification towards the infinite width. See Section A.6 for more detail.

4.3 IMPLICIT BIAS OF K-FAC TOWARDS NNGP AT ZERO INITIALIZATION

Up to here, we supposed the most common setting where the output weight is given by random
(Gaussian) initialization. However, some recent implementations utilized zero initialization on the
head (Yang et al., 2021; Wightman, 2019; Botev & Martens, 2022). This corresponds to bL =∞,
which also induces feature learning after the second step in SGD. The reason why feature learning
occurs even at b =∞ can be explained as follows. When the last layer is initialized with zero, the
weights after a 1-step SGD update are

Wl,t=1 = ηlhl,0y (l = L), Wl,0 (l < L). (16)

Since WL,t=1 = Θ(1/M), the weights after a 1-step update can be regarded as weights initialized
by µP. Thus feature learning begins from the second step. This is also true for bL > 1. However, in
K-FAC, when the last layer is initialized with zero, a single update results in the weight:

Wl,t=1 = ηl(hl−1,0h
⊤
l−1,0 + ρAI)

−1hl,0y (l = L), Wl,0 (l < L). (17)

Interestingly, this represents an NNGP solution (Lee et al., 2018). When the model can deviate from
the NNGP solution, feature learning begins in the training process, similar to SGD. However, when
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Optimizer bL
Batch Size

4 16 64 256 1024

SGD
0.5 82.60 80.91 78.86 74.50 66.83
1.0 83.62 83.61 82.10 77.99 73.40
64.0 83.98 83.82 82.60 79.53 74.63

K-FAC
0.5 83.18 84.17 83.75 84.07 80.25
1.0 83.84 84.16 84.29 84.33 83.21
64.0 81.56 82.72 82.63 79.51 75.37

Table 2: Test accuracy for differ-
ent batch sizes shows the consis-
tent results (3-layer CNN on Fash-
ionMNIST. The whole dataset size
is set to 1024). The case of bL = 1
consistently performs better than
bL = 0.5 and bL = 64 in K-FAC
but not in SGD. Learning rates are
tuned for each batch size.
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Figure 4: Wider models learn well under µP throughout training. Using µP, training proceeds
equally across widths. In µP, the loss is lower for wider widths throughout training. (Left) We trained
CBOW on WikiText2 by Shampoo with various widths. (Right) We trained ResNet18 on CIFAR100
by K-FAC while increasing the number of channels from 1 to 16.

the batch size is close to the full batch size or the learning rate is set considerably low, moving away
from the NNGP solution becomes challenging and does not incur feature learning. Since K-FAC is
often used for large batch training, we must be careful about its behavior on bL ≫ 1.

Figure 3 confirms this phenomenon. In this experiment, we trained a 3-layer CNN on FashionMNIST
with MSE loss. For simplicity, the dataset size is reduced to 1024 and we are training in full batch.
After sufficient learning, the training accuracy is highest only for bL = 1. Since the parameters are
fixed at the initial kernel solution when bL ≫ 1, we can observe that accuracy at bL ≫ 1 is lower
than bL = 1. However, SGD and Shampoo achieve almost the same accuracy for bL = 1 and bL ≫ 1.
Table 2 shows that when bL ≫ 1(bL = 64), its accuracy on K-FAC is consistently lower than bL = 1
while there is no decrease in accuracy by setting bL = 64 in SGD. In addition, bL = 1 (µP) achieves
higher accuracy than bL = 0.5 (SP) across different batch sizes. We empirically observed that the
difference in accuracy between bL = 1 and bL = 64 decreases as the batch size decreases. The same
behavior can also be observed when using cross-entropy loss (Appendix.E.2).

Note that our purpose is not to fully deny the current usage of zero initialization in relatively finite
neural networks. Our finding claims that the current default settings do not necessarily work well
with large models, and careful attention is required.

5 EXPERIMENTS

5.1 µP IN WIDE NEURAL NETWORKS

µP can invoke feature learning equally across width. This enables a wider model performs better
when trained in µP and given the same HPs (Yang et al., 2021). This section demonstrates that the
above statement is also true for second-order optimization.

Word2Vec: This is a toy model used in the previous work of µP (Yang & Hu, 2021) to check the
advantage of feature learning. We train CBOW on Wikitext2 dataset with Shampoo and evaluate its
embedding vectors by a Word Analogy task2. Figure 4 shows that in SP the accuracy decreases as the
width is increased. In the infinite width limit of SP, the embedding layer is fixed at initialization, and
the accuracy does not increase from the churn rate. However, in µP, increasing the width does not

2K-FAC is very sensitive to bL, and we found it difficult to optimize word2vec in K-FAC. This could be
explained by Section 4.3. Its details are described in Appendix E.5.
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VGG19 (C100) ResNet18 (C100) ResNet50 (INet)
K-FAC Shampoo K-FAC Shampoo K-FAC

width SP µP SP µP SP µP SP µP SP µP
1 64.96 +0.31 63.86 -0.28 66.81 +0.23 66.42 +0.03 61.94 +0.17
2 72.08 +0.65 70.55 -0.66 72.16 +0.28 69.99 +0.22 62.00 +0.12
4 76.38 +0.22 74.61 +0.80 74.38 +0.88 73.85 +0.42 75.64 +0.26
8 78.27 +0.31 76.83 +0.65 74.96 +1.98 76.11 +1.04 78.63 +0.13
16 - - 78.11 +0.56 74.26 +4.00 77.91 +0.61 - -

Table 3: Test accuracies with different widths. µP has a higher accuracy compared with SP in
models with large widths. The learning rate is set slightly small to enlarge the effect of infinite width.
Missing points are owing to the too-long computational time. The results for ResNet18 (CIFAR10)
and ResNet50 (CIFAR100) are in the Appendix.G.1.

decrease the accuracy. These results highlighted that the µP for second-order optimization enables
feature learning even in infinite-width models.
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Figure 5: µP consistently
achieves higher accuracy
for various learning rates.
(ResNet50 on ImageNet)

ResNet: We evaluate the test accuracy for SP and µP with VGG19 on
CIFAR100, ResNet18 on CIFAR100 and ResNet50 on ImageNet. The
number of channels in the middle layers is scaled from the original mod-
els. Original models correspond to width = 4. HPs are fixed regardless
of width. Table 3 indicates that the accuracy can be consistently im-
proved by µP. Figure 4 shows the learning curves for SP and µP with
different widths. In SP, the test loss for width = 16 (wider model) is not
necessarily higher than that for width = 1 (narrower model). However,
in µP, wider models consistently match or outperform narrower models.
This is more evident in the early stages of training.

The advantage of µP generally holds regardless of a fixed learning rate.
Figure 5 shows that regardless of the fixed learning rate, µP achieves
higher test accuracy compared with SP. As a side note, the difference
between SP and µP is particularly large when the learning rate is small.

5.2 LEARNING RATE TRANSFER

µP can transfer a learning rate for models with different widths. Learning rate transfer, as defined in a
previous study, means that we can set the optimal learning rate to remain constant relative to the order
of width, and that "wider is better" holds at this optimal learning rate. We confirm this across three
different architectures, MLP, CNN, and ResNet in Figure 6. In the SP for SGD, the optimal learning
rate decreases as the width increases. Similarly, when the damping heuristics of Equation (1) are used
for SP in K-FAC, there is a shift in the optimal learning rate. These shifts in the optimal learning rate
are caused by a lack of stability in these parameterizations. In µP, which is a stable parameterization,
the optimal learning rate is fixed with respect to width. One can also confirm that the wider is better
for a fixed HP. For instance, if MLP is trained with SP in K-FAC, test accuracy at width = 16384 is
lower than width = 512. In contrast, if one uses µP for training, accuracy consistently increases with
the width; thus, µP works as a better parameterization to promote feature learning.

5.3 DAMPING TRANSFER

The damping term is another HP that requires careful tuning in second-order optimization. In µP, we
can re-use the damping obtained in a small model to the large-scale one. As shown in Figure 7, if one
optimizes CNN with K-FAC using the damping heuristics (Eq. 14) in SP (i.e., the default setting), the
optimal damping value increases as the width increases. In contrast, when damping is consistent with
µP, it can be transferred across the widths.

6 CONCLUSION

We proposed a desirable parameterization inspired by µP for second-order optimization to achieve
stable feature learning in infinite-width neural networks. As the computational resources are en-
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Figure 6: µP allows the learning rate (η′) to transfer across widths. Using µP, one can transfer
the learning rate concerning width. In KFAC with SP, the heuristic damping obstructs the transfer of
learning rates. With µP, the transfer succeeds and the wider models perform better They are trained by
MSE loss with 1024 samples. This learning rate transfer also holds for the full dataset (Appendix.F.3).
In addition, µP enables this transfer in Shampoo (Appendix.F.1) and FOOF (Appendix.F.2) as well.
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Figure 7: Under the rescaled damping of
K-FAC, the optimal damping is fixed re-
gardless of width. 3-layer CNN is trained
on FashionMNIST by MSE loss (Full dataset
size). The same transfer can also be observed
for MLP (Appendix.H.2).

riched more and the model becomes larger, there is no guarantee that the current default settings of
initialization, learning rate, and damping terms work well in a similar way to smaller models. In
pursuit of such training of wider models, we empirically confirmed the effectiveness of the µP in
commonly used second-order methods and the necessary modification of the HPs. It is also one of
the advantages of the proposed parameterization that when using µP, HPs tuned in a smaller model
can be transferred to a larger one.

Limitation and future direction. The current work and the framework of µP focus on the wide
neural networks as large-scale models. It would be interesting to investigate the parameterization
effective for the depth. Some studies have scaled weight initialization with respect to depth (Shoeybi
et al., 2019; Radford et al., 2019). Transformer is a widely used architecture in modern deep learning;
however second-order optimization has not yet been established well, and we have still limited
empirical observation in both pertaining (Pauloski et al., 2022; Osawa et al., 2023b) and fine-tuning
(Ding et al., 2023). Moreover, the finite width effect may be non-negligible in the Transformer; thus,
we will need more careful study focused on it (Dinan et al., 2023; Wortsman et al., 2023). From a
theoretical perspective, mathematically rigorous evaluation of feature learning in general steps is
curious as well. Tensor Program (Yang & Littwin, 2023) is a strong candidate for such evaluation,
although it is currently not applicable to the second-order parameterization and analytical evaluation
is still limited even in the first-order gradient. We expect that our proposed parameterization and
empirical observation will serve as a foundation for providing deeper insight into second-order
optimization both in theory and practice.
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Appendices
A DEVIATION OF MUP

In this section, we first explain basic conditions and assumptions for µP in Section A.1. Next, we
provide a derivation of µP for the first-order gradient in Section A.2. This deviation is based on a
one-step update and its perturbation, which is easily generalized to the cases of K-FAC (in Section
A.4.1) and Shampoo (in Section A.4.2).

A.1 SETTING OF µP

Here, let us overview the conditions of µP proposed in Yang & Hu (2021). As we described in
Section 3.2, the previous work defined the feature learning by

∆hl := hl,t − hl,0 = Θ(1). (S.1)

Note that in the appendices, we avoid using bold fonts of vectors and matrices in order to prevent
a messy appearance. Intuitively speaking, the activation varies with the constant order to generate
features in each layer. This is crucial for distinguishing the learning from the lazy regime (Jacot et al.,
2018; Chizat et al., 2019). In the lazy regime, the model can converge to a global minimum but the
trained parameters remain sufficiently close to their initial values and the model is equivalent to a
linearized model. In other words, changes in the hidden layer are infinitesimal, i.e., ∆hl → 0 while
∆f = Θ(1) in the infinite width limit. Thus, the condition S.1 is required to avoid the lazy regime.
For clarity, we set the width of the hidden layers to the same and take the infinite width limit 3:

Ml = M, M →∞ (l = 1, ..., L− 1). (S.2)

To realize the feature learning, they proposed to use the abc-parameterization satisfying the following
two conditions:

Condition A.1 (Wl updated maximally).

∆Wl,thl−1,t = Θ(1), (S.3)

where ∆Wl,t := Wl,t −Wl,0.

This first condition plays a fundamental role in feature learning. As is described in Section H.7 of
Yang & Hu (2021) and we will explain more detail in the next subsection, this condition naturally
appears when one considers the infinitesimal change of the parameter (i.e., ∂η). The previous work
also requires the following condition for µP:

Condition A.2 (WL initialized maximally).

WL,0∆uL−1,t = Θ(1). (S.4)

This condition plays a fundamental role for determining the variance of the weights in the last
layer. Combining this condition with Condition A.1 makes the output change of order 1, that is,
ft − f0 = ∆WL,thL−1,t +WL,0∆hL−1,t = Θ(1). The µP is derived from these two conditions.
Subsequent studies have empirically verified that the successfully facilitates feature learning in
various settings of actual training (Yang et al., 2021; Vyas et al., 2023).

Yang & Hu (2021) also assume

Assumption A.3. ul,0, hl,0 = Θ(1) (l < L), f0 = uL,0 = O(1).

The input and output of the activation function are assumed to be of the order of 1. This assumption
has been commonly employed in the training of neural networks (LeCun et al., 1998). Additionally,

3Our analysis remains applicable even if the widths of different layers vary, as long as all widths approach
infinity in the same order. More precisely, even if the network width is given by Ml = αlM , with each αl > 0
being a constant, the µP remains the same in the infinite width limit of M → ∞.
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the µP setting allows that the network output f can be close to zero at initialization. This assumption
immediately leads to

a1 + b1 = 0, (S.5)
al + bl = 1/2 (1 < l < L), (S.6)

aL + bL ≥ 1/2, (S.7)

as is described in Theorem H.6 of Yang & Hu (2021). We also have
Assumption A.4. For feature learning, we suppose aL + bL > 1/2.

This is the Assumption H.23 of Yang & Hu (2021). This assumption is used to avoid technical
subtleties potentially caused by aL+ bL = 1/2: for random initialization, f0 goes to 0 for aL+ bL >
1/2 while it becomes Gaussian process with a non-zero variance for aL + bL = 1/2. Roughly
speaking, this assumption ensures that a backpropagated error converges to a deterministic constant
(y − f0)→ y in the infinite width limit and makes the derivation more clear by avoiding potential
correlation between the error and trained features.

A.2 µP’S CONDITIONS OF ONE-STEP UPDATE AND PERTURBATION

As a preparation for the second-order optimization, let us explain the µP’s conditions written in an
infinitesimal one-step update. The essentially same perturbation is argued in Section H.7 of Yang &
Hu (2021), but their explicit evaluation focuses on the development of feature kernels, i.e., ||hl,1||2,
and the precise evaluation of this value requires much-complicated argument. Since the current work
is interested only in a simpler problem on the order evaluation of hl,1, it will be more informative and
clearer to show the perturbation argument specific to hl,1 directly. As you can see below, this clarifies
an explicit connection between feature learning and Conditions A.1 & A.2.

Express the first one-step update of the weight by

∆Wl,1 =
η′

M2al+cl
Gl, (S.8)

Gl := PA∇wl
L0PB , (S.9)

where PA and PB are preconditioners. Note that∇wl
L0 depends only on the initialization (t = 0).

We have

Wl,1hl−1,1 = (Wl,0 +
η′

M2al+cl
Gl)ϕ(ul−1,1(η)), (S.10)

where we remarked the dependence of {W1,1, ...,Wl−1,1} on η by ul−1,1(η).

If the derivative of the one-step update with respect to the learning rate is Θ(1), this implies that
feature learning appears. While Yang & Hu (2021) explicitly evaluated ∂η′ ||hl,1||2

∣∣
η′=0

, let us
evaluate here the following quantities which have an explicit expansion by the chain rule with respect
to η′:

∂η′hl,1

∣∣
η′=0

= ϕ′(ul) ◦
1

M2al+cl
Glhl−1,0 +

l−1∑
k=1

∂hl,0

∂ul−k
◦ v(l, k) (l < L), (S.11)

∂η′ft=1

∣∣
η′=0

=
1

M2aL+cL
GLhL−1,0 +WL,0∂η′hL−1,1

∣∣
η′=0

, (S.12)

where
v(l, k) :=

1

M2al−k+cl−k
Gl−khl−k−1,0. (S.13)

We can find connections between (S.11, S.12) and Conditions (A.1, A.2) as follows:

∂η′(∆Wl,1hl−1,1)
∣∣
η′=0

=
1

M2al+cl
Glhl−1,0 (l = 1, ..., L), (S.14)

and
∂η′(WL,0∆hL−1,1)

∣∣
η′=0

= WL,0∂η′hL−1,1

∣∣
η′=0

. (S.15)

That is, under the perturbation with a small η′, the conditions reduce to
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Condition A.1’
1

M2al+cl
Glhl−1,0 = Θ(1). (S.16)

Condition A.2’
WL,0∂η′hL−1,1

∣∣
η′=0

= Θ(1). (S.17)

After all, one can see that the Conditions of µP (A.1,A.2) reduces to explicit representations
(S.16,S.17) under the perturbation. If Conditions A.1’ and A.2’ hold, it implies (S.11, S.12) of
Θ(1) and then the feature learning (S.1) appears. One can say that the µP is the "maximal" update
because it induces all layers trained as much as possible.

A.3 CASE OF FIRST-ORDER OPTIMIZATION

As an exercise for preparing second-order optimization, we first evaluate Conditions A.1’ and A.2’
for the first-order gradient with the preconditioners PA = PB = I . The second-order cases are
shown later.

On Condition A.1’. To avoid cumbersome notation, we omit the initialization index t = 0 as long as
it doesn’t lead to confusion. We can express the gradient Gl by

Gl = δldiag(χ)h⊤
l−1, (S.18)

where forward and backward signals are given by matrix forms hl, δl ∈ RMl×n. Note that the
backward signals are given by the chain rule:

δl = ϕ′(ul) ◦ (W⊤
l+1δl+1) (l < L− 1), (S.19)

δL = en, (S.20)

where we defined en := (1, ..., 1) ∈ Rn. We also introduced an error vector

χ := y − f ∈ Rn. (S.21)

As is pointed out in the previous works, the important point of Glhl−1 (in other words, ∆Wlhl−1) is
that Gl and hl−1 are not independent. We have

Glhl−1,0 = δldiag(χ)(h⊤
l−1hl−1). (S.22)

Here, let us introduce
KA

l := h⊤
l hl/M, KB

l := δ⊤l δl. (S.23)

For the random initialization, these two matrices are well known as intermediate components of the
neural tangent kernel, as discussed in Jacot et al. (2018); Yang (2020); Karakida & Osawa (2020).
They are also known as essential components of the Fisher information matrix, which characterizes
the geometric structure of the parameter space (Karakida et al., 2019; 2021). Assume that the
activation function and its derivatives are polynomially-bounded. Then, in the infinite width limit,
these two matrices become deterministic constants independent of the width. In more detail, the
tensor program ensures almost sure convergence of the moments composed of the forward and
backpropagated signals (hl and δl) (Yang, 2020). The l-layer component of the neural tangent kernel
is given by Kl

A ◦Kl
B where ◦ denotes the Hadamard product. The kernel (KA

l )nn′ is Θ(1). Since
we suppose the abc-parameterization, δL−1 = Θ(WL) = Θ(1/MaL+bL). This leads to

(KB
l )nn′ = Θ(1/M2(aL+bL)−1), (S.24)

for 1 ≤ l < L, that is, the coordinate size is given by

δl = Θ(1/M (aL+bL)). (S.25)

After all, we have

∂η′(∆Wl,1hl−1,1)
∣∣
η′=0

=
1

M2al+cl−1
δldiag(χ)Al−1 = Θ(1/Mrl), (S.26)
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with

rl =


2a1 + c1 + (aL + bL) (l = 1),

2al + cl − 1 + (aL + bL) (1 < l < L),

2aL + cL − 1 (l = L),

(S.27)

where we used the fact that χ is a constant vector of Θ(1) in the infinite width limit under Assumption
A.4. Compared to r1<l<L, r1 does not include −1 because M0 = Θ(1) and A0 = Θ(1/M). The
case of rL does not include aL + bL because δL = Θ(1).

On Condition A.2’. We can represent Eq. (S.17) by

∂η′(WL,0∆hL−1,1)

= WL,0 (ϕ
′(uL−1) ◦ (∂η′(WL−1,0∆hL−2,1) + ∂η′(∆WL−1,1hL−2,1))) . (S.28)

Note that

WL,0(ϕ
′(uL−1) ◦ ∂η′(∆WL−1,1hL−2,1)

∣∣
η′=0

)

= eM (δL−1 ◦
1

M2aL−1+cL−1
GL−1hL−2) (S.29)

=
1

M2aL−1+cL−1−1
eM (δL−1 ◦ (δL−1diag(χ)AL−2)). (S.30)

Because δL−1 has the coordinate size of Eq. (S.25) and the product with eM means the summation
over M , we obtain

∂η′(WL,0∆hL−1,1)
∣∣
η′=0

= Θ(1/MaL+bL−1+rL−1). (S.31)

Finally, from Eqs. (S.27) and (S.31), the µP is given by
2a1 + c1 + (aL + bL) = 0,

2al + cl − 1 + (aL + bL) = 0,

2aL + cL − 1 = 0,

aL + bL − 1 = 0.

(S.32)

A.4 CASE OF SECOND-ORDER OPTIMIZATION

What we need to do here is to find the abc-parameterization satisfying Conditions A.1’ and A.2’
for the preconditioners PA and PB (S.9) of the second-order optimization methods. We assume the
following:
Assumption A.5. The gradient of the loss ∇θL, preconditioners PA and PB are calculated on the
same batch of training samples at the first one step.

Furthermore, we consider the situation where the second-order optimization is valid, defined as
follows.
Definition A.6 (Valid second-order optimization). Suppose that each preconditioning matrix X has a
damping term ρX as X + ρXI . We define the second-order optimization as valid if the eigenvalues
of X have an equal width-dependent scale to the damping term, that is, ρX = Θ(∥X∥2).

This valid situation is rational because it prevents the effect of preconditioner from vanishing in the
infinite width limit. It also avoids the damping term’s faster convergence to zero, a scenario that can
potentially lead to numerical instability when computing inverses for rank-deficient preconditioners.

A.4.1 µP FOR K-FAC

On Condition A.1’: For K-FAC, we have

1

M2al+cl
Glhl−1 =

1

M2al+cl
(Bl + ρBl

I)−eBδldiag(χ)h⊤
l−1(Al−1 + ρAl−1

I)−eAhl−1, (S.33)

where
Al := hlh

⊤
l , Bl := δlδ

⊤
l . (S.34)
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As a technical remark, we define (or implement) the metric matrix Bl using δl = ∇ul
fθ for our

derivations. If the implementation is based on the derivative on wl, we have to multiply 1/Mal to Bl.
Since the results are essentially the same, we are using more readable notations here without al.

Under Assumption A.5, for eA, eB ∈ {0, 1}, we can apply the push-through identity, i.e., (I +
XY )−1X = X(I + Y X)−1, as follows.

(i) For 1 < l < L, We have

1

M2al+cl
Glhl−1 (S.35)

=
MeB(2(aL+bL)−1)−eA

M2al+cl−1
δl (K

B
l + ρBl

M1−2(aL+bL)I)−eBdiag(χ)(KA
l−1 + ρAl−1

MI)−eAAl−1︸ ︷︷ ︸
=:Kl

.

(S.36)

It is noteworthy that in a similar way to Eq. (S.26), Kl converges to a deterministic value in the
infinite width limit. Since KA

l is a deterministic constant of Θ(1), its eigenvalues are also Θ(1).
This means that the damping where the second-order optimization becomes valid is dAl

= −1. As
a side note, for dAl

< −1, the damping term in (KA
l + ρAl−1

MI)−eA becomes dominant and the
contribution of the preconditioner vanishes in the infinite width limit. In contrast, we may take
dAl

> −1 if KA
l is positive-definite. Similarly, we have dBl

= 2(aL + bL)− 1.

we have ∂η′(∆Wl,1hl−1,1)
∣∣
η′ = Θ(1/Mrl) with

rl = 2al + cl + eA + eB − 1− (2eB − 1)(aL + bL) = 0. (S.37)

(ii) For l = L, δL has the coordinate size Θ(1) and this means δL(δ
⊤
L δL + ρBI)

−eB = Θ(1).
Therefore, we easily obtain dAl

= −1, dBL
= 0 and

rL = 2aL + cL + eA − 1 = 0. (S.38)

(iii) For l = 1, note that the input h0 has the coordinate size Θ(1) and (h⊤
0 h0+ρAI)

−eAh⊤
0 = Θ(1).

Therefore, we have dAl
= −1, dBL

= 2(aL + bL)− 1 and

r1 = 2a1 + c1 + eB − (2eB − 1)(aL + bL) = 0. (S.39)

On Condition 2’. We have

WL,0(ϕ
′(uL−1) ◦ ∂η′(∆WL−1,1hL−2,1))

∣∣
η′=0

= eM (δL−1 ◦
1

M2aL+cL
GL−1hL−2) (S.40)

=
MeB(2(aL+bL)−1)−eA

M2al+cl−1
eM (δL−1 ◦ (δL−1KL−1)), (S.41)

with Kl given by Eq. (S.36). To satisfy Condition 2’, we need

aL + bL − 1 + rL−1 = 0. (S.42)

Finally, by combining Conditions A.1’ and A.2’, we obtain the abc-parameterization of µP as
2a1 + c1 + eB − (2eB − 1)(aL + bL) = 0,

2al + cl + eA + eB − 1− (2eB − 1)(aL + bL) = 0,

2aL + cL + eA − 1 = 0,

aL + bL − 1 = 0.

(S.43)

By setting al = 0, we can eliminate the indeterminacy of the parameterization and obtain Proposition
4.1. By setting eA = eB = 0, we recover the case of the first-order gradient method.
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A.4.2 µP FOR SHAMPOO

Here, let us consider a general e > 0.

On Condition A.1’: For Shampoo, we have
1

M2al+cl
Glhl−1 =

1

M2al+cl
(Ll + ρLl

I)−e/2δldiag(χ)h⊤
l−1(Rl−1 + ρRl−1

I)−e/2hl−1, (S.44)

where we use δl defined in Eq. (S.19).

(i) For 1 < l < L, In a similar way to the case of K-FAC, we use the push-through identity. The
update is given by

1

M2al+cl
Glhl−1 =

1

M2al+cl
(δldiag(χ)h⊤

l−1hl−1diag(χ)δ⊤l + ρLl
I)−e/2δldiag(χ)

· h⊤
l−1(hl−1diag(χ)δ⊤l δldiag(χ)h⊤

l−1 + ρRl−1
I)−e/2hl−1. (S.45)

Note that we may multiply 1/M2al to the metric matrices Ll and Rl when their implementation is
based on the derivative on wl.

Under Assumption A.5, we use the following push-through identity here:
Lemma A.7 (e.g., Petersen et al. (2008)). For any analytic function g and real matrices X and Y ,

g(XY )X = Xg(Y X). (S.46)

First, let us consider

Q := (hl−1diag(χ)δ⊤l δldiag(χ)h⊤
l−1 + ρRl−1

I)−e/2hl−1. (S.47)

Let us express the largest eigenvalue of X by ∥X∥2. we have

∥hl−1diag(χ)δ⊤l δldiag(χ)h⊤
l−1∥2 = ∥diag(χ)δ⊤l δldiag(χ)h⊤

l−1hl−1∥2 (S.48)

= Θ(1/M2(aL+bL)−2). (S.49)

By setting ρRl−1
= (aL + bL) − 1 and taking a certain constant ρ′Rl−1

satisfying
∥hl−1diag(χ)δ⊤l δldiag(χ)h⊤

l−1∥2/ρRl−1
< 1, the inverse matrix in Q has a matrix series expan-

sion that converges. Thus, we can use Lemma A.7 and obtain

Q = hl−1(diag(χ)δ⊤l δldiag(χ)h⊤
l−1hl−1 + ρRl−1

I)−e/2. (S.50)

Applying the same argument to the Ll side of (S.45), We obtain
1

M2al+cl
Glhl−1 =

1

M2al+cl
δl(diag(χ)h⊤

l−1hl−1diag(χ)δ⊤l δl + ρLl
I)−e/2diag(χ)

· h⊤
l−1hl−1(diag(χ)δ⊤l δldiag(χ)h⊤

l−1hl−1 + ρRl−1
I)−e/2. (S.51)

In a similar way to Eq. (S.36), we obtain

rl = 2al + cl + 2e− 1− (2e− 1)(aL + bL). (S.52)

(ii) For l = 1, L, Similar to the case with K-FAC, by carefully handling RL for l = L and L0 for
l = 0, we immediately find

r1 = 2a1 + c1 + e− (2e− 1)(aL + bL), (S.53)
rL = 2aL + cL + e− 1. (S.54)

On Condition 2’. In the same way as in the case of K-FAC, we have

aL + bL − 1 + rL−1 = 0. (S.55)

In summary, we obtain the abc-parameterization of µP as
2a1 + c1 + e− (2e− 1)(aL + bL) = 0,

2al + cl + 2e− 1− (2e− 1)(aL + bL) = 0,

2aL + cL + e− 1 = 0,

aL + bL − 1 = 0.

(S.56)
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A.4.3 GAUSS-NEWTON METHOD

From the standpoint of computational cost, practical applications use approximate second-order
optimization methods. For K-FAC and Shampoo two smaller pre-conditioners are applied to the
first-order gradient in matrix form. Although other forms of second-order optimization are not so
often utilized in deep learning, mentioning methods beyond K-FAC and Shampoo could be valuable,
particularly from the perspective of demonstrating the theoretical applicability of these techniques.

Let us consider Gauss-Newton method in a layer-wise manner. We choose this setting because the
K-FAC and Shampoo are layer-wise and it makes the comparison easier. It is also straightforward to
apply similar order evaluation to the case without layer-wise approximation. The vector form of the
Gauss-Newton gradient is given by

(∇w⃗l
L⊤∇w⃗l

L+ ρlI)
−1∇w⃗l

L = (J⊤
l diag(χ2)Jl + ρlI)

−1J⊤
l χ (S.57)

= J⊤
l (diag(χ2)JlJ

⊤
l + ρlI)

−1χ, (S.58)

where Jl = ∇w⃗l
f is a n×MlMl−1 Jacobian matrix. Put χ̃l := (diag(χ2)JlJ

⊤
l + ρlI)

−1χ. Then,
the matrix form of the gradient (S.58) is given by

∇wl
L = δldiag(χ̃l)h

⊤
l−1, (S.59)

under al = 0. This corresponds to Gl in Eq.(S.18) and we can easily apply the same order evaluation
shown in Section . The point is that JlJ⊤

l is the NTK matrix for the l-th layer and we have

JlJ
⊤
l = (δlδ

⊤
l ) ◦ (hl−1h

⊤
l−1). (S.60)

From Eq. (S.25) and aL + bL = 1, we can see that JlJ⊤
l is Θ(1) for 1 < l < L, Θ(1/M) for l = 1

and Θ(M) for l = L and determines the order of χ̃. Thus, the µP for the layer-wise Gauss-Newton
method is as follows:

bl =


0 l = 1

1/2 1 < l < L

1 l = L

, cl = 0, dl =


1 l = 1

0 1 < l < L

−1 l = L

. (S.61)

where ρl = ρ′l/M
dl . Thus, bl and cl are the same as in K-FAC and ρl is the same as in Shampoo.

A.5 EXTENSION TO OTHER LOSSES

Until now, we have considered the MSE loss with a one-dimensional target. Extending these results
to multi-dimensional target cases is straightforward. Suppose that the target sample yi is a C-
dimensional vector, with C = Θ(1). For a multi-dimensional target, its gradient (S.18) is given
by

Gl = δ̃l diag(χ)(1c ⊗ h⊤
l ). (S.62)

We defined δ̃l = [δ
(1)
l , ..., δ

(C)
l ], where δ

(k)
l denotes the backward signal from the k-th output unit,

and
χ = y − f ∈ RnC . (S.63)

Since (1c ⊗ h⊤
l )hl = (1c ⊗ h⊤

l hl), we can apply the same arguments as those shown in Section A.2.
Consequently, we can easily obtain the same µP for multi-dimensional targets.

Similarly, we can obtain the same µP for the case of a C-class cross-entropy loss. For SGD and
Shampoo, we just need to replace the error vector in the gradient (S.18) with

χ = y − σ(f) ∈ RnC , (S.64)

where y is the one-hot encoded true label vector and σ(f) denotes a softmax function with
the input logits f . For each input sample xi, the softmax is defined by σ(fk(xi)) :=

exp(fk(xi))/
∑C

k′ exp(fk′(xi)) for i = 1, ..., n and k = 1, ..., C. Thus, from the same argument as
for MSE loss with a multi-dimensional target, we can obtain the same µP.

For K-FAC, note that the Fisher information matrix is given with the following backward part:

Bl = δ̃lΛδ̃
⊤
l , (S.65)
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where Λ(σ) is an nC × nC block diagonal matrix which is composed of C × C block matrices;
diag(σ(f(xi))) − σ(f(xi))σ(f(xi))

⊤ (i = 1, ..., n). Because Λ depends only on f and its size is
independent of the width, its contribution amounts to merely a constant multiplication. In addition, the
only difference from the MSE case lies in the backward part. We can easily employ the push-through
identity as

(δ̃lΛδ̃
⊤
l + ρBl

)−1δ̃l = δ̃l(Λδ̃
⊤
l δ̃l + ρBl

)−1. (S.66)
Therefore, we can obtain the same µP as those presented in Proposition 4.1.

A.6 DAMPING HEURISTICS

When using damping heuristics in K-FAC, second-order optimization does not become valid. In
addition, ∆hl decay with width if a, b, c are set to µP settings. This mechanism can be explained as
follows. Consider the damping of the input layer determined by Eq. (14).

ρAl−1
(= 1/ρBl

) :=

√
M

tr(Bl)
ρ = Θ(M (aL+bL)−1/2). (S.67)

According to Eq. (8), the appropriate damping scales are ρA = Θ(1) and ρB = Θ(1/M2(aL+bL)−1).
Thus, if we use damping heuristics, second-order optimization is not valid because ρA and ρB are
both larger than the appropriate damping scale. Since the order of the damping term is larger than the
appropriate damping scaling and ρA · ρB = 1, ∆W1h0 is of the same order as SGD. Thus the scale
of ∆W1h0 will be as follows:

∂η′(∆W1,1h0,1)
∣∣
η′=0

= Θ(1/M2a1+c1+aL+bL). (S.68)

Thus, ∆h1 will decay when c1 = 0 and bL ≥ 0.

On the other hand, in the case of Shampoo, even if we use the damping of heuristics (determined
by a constant multiple of the maximum eigenvalue), second-order optimization becomes valid. This
mechanism can be explained as follows. The following three matrices all share the largest eigenvalue.

Ll + ρI = δlhl−1
⊤hl−1δl

⊤ + ρI, (S.69)

Rl + ρI = hl−1δl
⊤δlhl−1

⊤ + ρI, (S.70)

Kl + ρI = h⊤
l−1hl−1δ

⊤
l δl + ρI. (S.71)

Since the matrix size of Kl is independent of width, the maximum and mean eigenvalues of Kl are of
the same order with respect to width. Thus, the maximum eigenvalues of Rl and Ll are of the same
order as the mean eigenvalue of Kl.

B EXPERIMENTAL DETAILS

B.1 MODELS

We considered the following models for vision tasks.

• MLP: We considered a 3-layer multilayer perceptron (MLP) with ReLU activation. The
MLP models do not include bias.

• CNN: We considered 3-layer CNN with ReLU activation. The models consist of a two-layer
convolution and a linear layer. We trained with different hidden widths where the width
represents the output dimension of the first layer. Max pooling is applied after the activation
function.

• Myrtle-5: We considered Myrtle family (Shankar et al., 2020) as an example for CNN. We
trained with different hidden widths where the width represents the output dimension of the
first layer.

• ResNet: We considered ResNet18 and ResNet50 (He et al., 2016) with different hidden
widths where widths represent the number of channels. We used the existing implemen-
tation4 for training CIFAR10. In addition, we used models from Pytorch Image models
(Wightman, 2019) for ImageNet training.

4https://github.com/uoguelph-mlrg/Cutout
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In addition to these four models, we also considered CBOW as a language model.

• CBOW: We used CBOW model for the word embedding task (Mikolov et al., 2013). The
CBOW model is a network consisting of an embedding layer that embeds words and a linear
layer that predicts context words. The models do not include an activation function.

B.2 DETAILS OF FIGURES

This section explains the experimental setting for each figure. In all experiments, we implemented
second-order optimization based on the ASDL library (Osawa et al., 2023a). Note that ρ in the
below represents a proportionality constant for damping as ρRe

A = ρ
Ml−1

tr(h⊤
l−1hl−1) and ρRe

B =
ρ
Ml

tr(δ⊤l δl).

Figure 1 In the upper graph, we trained a 3-layer MLP on the MNIST dataset with cross-entropy
loss. In the second graph, we trained a Myrtle-5 on the CIFAR10 with cross-entropy loss. Both
graphs represent ∆hl at the 10th iteration. The training sets have been reduced to 256 samples, and
we trained models by full-batch training. We apply no data augmentation.

Figure 2 We trained a 3-layer MLP on FashionMNIST with η = 0.001, ρ = 1. Its parameterization
follows µP settings. We apply no data augmentation.

Figure 3 We trained a 3-layer CNN on FashionMNIST with different bL for 50 epochs. This
graph shows the ratio between the gradient and the preconditioned gradient. Layer-wise learning rate
follows the scaling of c in muP in Eq. 9. The learning rate is tuned by grid search. Its settings are as
follows.

• Learning rate : 2z where z ∈ {1, 0,−1, ...,−20}
• Damping term ρ for K-FAC: 1
• Damping term ρ for Shampoo: 1e-3

In Table.2, we experimented with exactly the same settings as above, but with different batch sizes.

Figure 4 (Left) We trained Context as a Bag-of-Words (CBOW) on WikiText2 by Shampoo with
η = 0.1, ρ = 10−6 and τ = 0.1. We test the embeddings by the word analogy task on WordSim353.
We used words that appeared more than 128 times in the dataset.

Figure 4 (Right) We trained ResNet18 on CIFAR100 by K-FAC with η = 0.003, ρ = 10 and
τ = 0.5. We use a cross-entropy loss with label smoothing. We apply RandomCrop, RandomHor-
izontalFlip, AutoAugment, and Cutout as data augmentation. In Table 3, we experimented with
exactly the same settings when training ResNet18 on CIFAR100.

Figure 5 We trained ResNet50 on ImageNet by K-FAC with ρ = 0.001 and τ = 0.05. We use a
cross-entropy loss with label smoothing. We apply RandomCrop, RandomHorizontalFlip, and Cutout
as data augmentation. In addition, to prevent instability in the training, we used gradient clipping in
Grosse & Martens (2016). In Table 3, we experimented with exactly the same settings when training
ResNet50 on ImageNet.

Figure 6 In the first row, we trained 3-layer MLP on MNIST for 20 epochs. The number of samples
is reduced to 1024 and trained by MSE loss. In training with K-FAC, we used ρ = 0.001 for heuristics
damping and ρ = 1 for rescaled damping.

In the second row, we trained a 3-layer CNN on FashionMNIST for 50 epochs. The number of
samples is reduced to 1024 and trained by MSE loss. In training with K-FAC, we used ρ = 1 for
heuristics damping and ρ = 100 for rescaled damping.

In the last row, we trained ResNet18 on FashionMNIST for 20 epochs. The number of samples is
reduced to 1024 and trained by MSE loss. In training with K-FAC, we used ρ = 10 for heuristics
damping and ρ = 10 for rescaled damping.
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Figure 7 We trained a 3-layer CNN on FashionMNIST for 50 epochs with η = 0.003. The number
of samples is reduced to 1024 and trained by MSE loss.

Table 3 We trained VGG19 on CIFAR100 for 300 epochs, ResNet18 on CIFAR100 for 300 epochs
and ResNet50 on ImageNet for 55 epochs. For VGG19 training with K-FAC, we set the learning rate
η = 0.01, for ResNet18 training with shampoo, we set η = 0.001, and for ResNet50 training with
K-FAC, we set η = 0.2. In all other settings, η = 0.003.

C ADDITIONAL DESCRIPTION OF SECOND-ORDER OPTIMIZATION

C.1 K-FAC

Natural gradient descent (Amari, 1998) is an optimization algorithm that preconditions the gradient
by the inverse of the Fisher information matrix. Its update rule is given by

θt+1 = θt − ηt (F (θt) + ρI)
−e∇L(θt), (S.72)

where

F (θ) = Ex∼q(x),t′∼pθ(t′|x)

[
∇ log pθ (t

′ | x)∇ log pθ (t
′ | x)⊤

]
, (S.73)

is the Fisher information matrix. Here, we use the general exponent e. While e = 1 is commonly
used, NGD with e < 1 has also been explored in some studies (Huh, 2020; Amari et al., 2021).

K-FAC (Martens & Grosse, 2015; Grosse & Martens, 2016) is an approximation algorithm for NGD.
It approximates Fl(θt) by Kronecker product of two matrices

Fl(θt) + ρI ≈ (Bl + ρBI)⊗ (Al−1 + ρAI), (S.74)

where Bl = E
[
δlδl

⊤
]

and Al = E
[
hlhl

⊤
]
. Exponential moving average is often utilized to stabilize

the estimation of the K-FAC curvature matrix.

A
(t+1)
l = ξA

(t)
l + (1− ξ)E

[
hlhl

⊤
]
, (S.75)

B
(t+1)
l = ξB

(t)
l + (1− ξ)E

[
δlδl

⊤
]
. (S.76)

C.2 SHAMPOO

Adaptive gradient descent utilizes the square root of batched empirical Fisher

F batch
emp (θ) = EB∼pdata

[
∇LB(θ)∇LB(θ)

T
]
, (S.77)

instead of F (θt) where∇LB(θ) =
1
|B|

∑
(x,t)∈B∇ log pθ (t | x) represents the mini-batch gradient.

Shampoo approximates this batched empirical Fisher by Kronecker product of two matrices (Gupta
et al., 2018).

F batch
emp (θ) + ρI ≈ (Rl + ρRI)⊗ (Ll−1 + ρLI), (S.78)

where Ll = E[δlhl−1
⊤hl−1δl

⊤] and Rl = E[hl−1δl
⊤δlhl−1

⊤]. Summation is often utilized to
stabilize the estimation of the Shampoo curvature matrix while exponential moving average is also
well utilized.

L
(t+1)
l = L

(t)
l + E[δlhl−1

⊤hl−1δl
⊤], (S.79)

R
(t+1)
l = R

(t)
l + E[hl−1δl

⊤δlhl−1
⊤]. (S.80)

This summation prevents L(t)
l and R

(t)
l from becoming a zero matrix, which ensures stable learning

even at an infinite width limit.
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Figure S.1 : Exponential moving average does not affect order evaluation. Exponential moving
average has almost no effect on the behavior of ∆h. More precisely, regardless of the exponential
moving average, ∆hl decays in the input and hidden layers with increasing width when trained with
SP, but it does not decay when trained with µP. We trained a 3-layer MLP on CIFAR10. In K-FAC
we used rescaled damping.

D ADDITIONAL EXPERIMENTS ON EMPIRICAL VERIFICATION OF µP

D.1 ADDITIONAL EXPERIMENTS ON ∆h

Exponential moving average If we take an exponential moving average over the curvature matrix,
we cannot use the push-through identity in Eq. 10. However, even in this case, the behavior of ∆h
is consistent with the order evaluation. Figure S.1 shows that the exponential moving average has
almost no effect on the order of ∆h. This shows that even if we use an exponential moving average,
µP is still reasonable.
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Figure S.2 : µP achieves feature learning in MLP with tanh activation We trained a 3-layer MLP
on MNIST using cross-entropy loss. Even if the activation function for the MLP is tanh, we observed
the same behavior as in Figure 1.
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Activation Function The behavior of ∆h is not affected by the activation function. We trained
3-layer MLP with tanh activation in Figure S.2 . It shows the same behavior as when we trained
3-layer MLP with relu activation (Figure 1).

E ADDITIONAL EXPERIMENTS ON THE VARIANCE OF THE LAST LAYER

E.1 TRAIN CURVE

Figure S.3 shows the learning curves for the experiment in Figure 3. K-FAC can reach the NNGP
solution in one step. Thus, we can observe that K-FAC reaches high test accuracy from the first step
for b = 64. However, the accuracy at b = 1 is higher than that at b = 64 since the training process
for b = 64 stays at the initial value.

Note that the optimal learning rate of b = 64 is smaller than that of b = 0.5 or b = 1. This is because
the NNGP solution is a sharp local solution, and a large learning rate makes the subsequent behavior
unstable.
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Figure S.3 : Train Curve Comparison for different bL K-FAC achieves high accuracy in one step
when bL = 64 since K-FAC can achieve NNGP solution in one step. However, K-FAC can not escape
from the NNGP solution. In this figure, we trained 3-layer CNNs on Fashion-MNIST with batch size
= 1024.

E.2 CHOICE OF LOSS FUNCTION

The experiment in Figure 3 is performed with MSE loss to clarify the connection with NNGP solution.
This result is easily extended from MSE loss to cross-entropy loss. Figure S.4 shows that even with
a cross-entropy loss, K-FAC shows higher accuracy only when bL is at or near 1 in the last layer.
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Figure S.4 : K-FAC converges to NNGP solution even in the cross-entropy loss. We experimented
with a 3-layer CNN, moving only the last layer bL from µP. The loss function is cross-entropy. K-FAC
shows that the regions of high accuracy are concentrated only around b = 1.
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E.3 CHOICE OF MODEL ARCHITECTURE

The experiment in Figure 3 was performed with a 3-layer CNN model. This result can be generalized
to other architectures. Figure S.5 indicates that accuracy at bL = 1 is higher than bL = 0.5. In this
example, train accuracy for bL ≫ 1 is consistently higher than the train accuracy for bL = 0.5. In
ResNet-18, the maximum value appears to be obtained at bL = 2, but this may be due to the constant
factor rather than order, which occurs when experiments are conducted with finite widths.
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Figure S.5 : µP is effective in various architecture. According to the K-FAC µP, bL = 1 has a
higher accuracy than bL = 0.5. This is consistent across various models. MLPs are trained with
MNIST, while other models are trained with FashionMNIST. The number of samples is reduced
to 1024. MLP and CNN are trained in full batches, while Myrtle and ResNet18 are trained in
mini-batches with a batch size of 128.

E.4 ON THE EFFECT OF MOMENTUM
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Figure S.6 : K-FAC converges to NNGP solution even without momentum. We experimented
with a 3-layer CNN, moving only the last layer bL from µP. The loss function is cross-entropy. K-FAC
shows that the regions of high accuracy are concentrated only around b = 1.

Figure S.7 : µP is effective across batch-size without momentum We trained FashionMNIST
with a 3-layer CNN with different batch sizes. We did not use momentum in this figure. The values
represent the accuracy of the training dataset.

Optimizer b
Batch Size

4 16 64 256 1024

SGD
0.5 80.52 78.69 75.05 67.94 49.70
1.0 82.85 80.41 77.58 73.12 64.30
64.0 83.59 81.23 77.25 73.63 70.53

K-FAC
0.5 77.60 79.66 83.94 82.14 78.63
1.0 79.10 81.69 83.92 83.16 80.27
64.0 76.06 76.95 77.28 76.04 75.94
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Figure S.6 and Figure S.7 represents the results for training 3-layer CNN without momentum. Since
momentum is known to have the effect of escaping from the saddle point, it is expected that it is more
difficult to escape from the NNGP solution without momentum. However, there was almost no effect
of removing momentum on the relationship between accuracy and bL while the overall accuracy is
lowered by removing momentum.
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Figure S.8 : Effect of bL on Accuracies of Word Analogy In K-FAC, only a limited range of bL has
high accuracy, whereas Shampoo has nearly 40% accuracy over a wide range of bL. cl is correctly
set to match the µP setting.

Feature learning is especially important in word2vec, which requires careful tuning of bL in K-FAC.
Figure S.8 examines the effect of bL on accuracy in K-FAC and Shampoo. In this figure, HPs are
tuned with the following settings. Note that we tuned the variance of weights at width=128 since
K-FAC is sensitive to the variance of the last layer.

• learning rate = {1e-1, 1e-2, 1e-3 }

• embedding weight multiplier = {1, 1e-1, 1e-2}

• output weight multiplier = {1, 2, 4, 8, 16}

As shown in Figure S.8 , K-FAC achieves high accuracy only around bL = 1. On the other hand,
Shampoo achieves high accuracy in a wide range of bL. This example implies that while K-FAC
learns features in Word2Vec, K-FAC requires more careful tuning of bL than Shampoo.

F ADDITIONAL EXPERIMENTS ON LEARNING RATE TRANSFER

F.1 SHAMPOO

Figure S.9 shows that µP for Shampoo allows the learning rate tuned in a small model to be re-used
in a larger model. In Shampoo, the learning rate is stable even in SP while in µP, the wider model
achieves higher accuracy over a wide range of learning rates.

F.2 FOOF

Since we introduced general exponents eA and eB , we can consider µP for FOOF. The µP for FOOF
is immediately derived from Proposition 9.

bl =


0 l = 1

1/2 1 < l < L

1 l = L

, cl =


−1 l = 1

−1 1 < l < L

0 l = L

, dAl =

{
−1 1 < l ≤ L

0 l = 1
.

(S.81)
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Figure S.9 : µP for Shampoo allows the learning rate (η′) to transfer across widths. We trained
various models with SP and µP by Shampoo. We trained 3-layer MLP on MNIST, 3-layer CNN
on FashionMNIST, Myrtle-5 on FashionMNIST and ResNet18 on FashionMNIST. The number of
samples is reduced to 1024.

Figure S.10 shows that µP for FOOF enables the learning rate to transfer across the width as well as
in SGD or K-FAC. The learning rate may be transferred across widths since the SP for FOOF is a
stable parameterization. In addition, we can observe that accuracy obtained by training with µP is
higher than SP, especially in wide models.
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Figure S.10 : µP for FOOF allows the learning rate (η′) to transfer across widths. We trained a
3-layer MLP on MNIST and a 3-layer CNN on FashionMNIST. The number of samples is reduced to
1024.

F.3 LEARNING RATE TRANSFER WHEN THE SAMPLE SIZE IS FULL

In Figure 6, we reduced the training samples. By reducing the dataset size, finite-width models are
known to behave more closely to infinite-width models, as has often been seen in papers examining
the theoretical aspects of second-order optimization and feature learning(Geiger et al., 2020; Karakida
& Osawa, 2020; Amari et al., 2021). However, even when training on the full dataset, its learning rate
can be transferred using µP as shown in Figure S.11 . In addition, we can observe that the learning
rate is correctly transferred when we optimize ResNet50 on ImageNet. As shown in Figure S.1 , the
optimal learning rate is fixed at 0.2 regardless of the width.

F.4 ACTIVATION FUNCTION AND LOSS FUNCTION

In Figure 6, we trained 3-layer MLP with ReLU activation by MSE Loss. Similar observations can be
made when using Tanh activation or cross-entropy loss as shown in Figure S.12 . Note that squashing
activation functions such as tanh and softmax are not recommended in some experiments in Yang
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Figure S.11 : µP allows the learning rate (η′) to transfer across widths(Full Dataset)
Using µP, one can transfer the learning rate with respect to width. We trained a 3-layer MLP on

FashionMNIST and a 3-layer CNN on FashionMNIST. In contrast to Figure 6, the sample size is not
been reduced. In KFAC with SP, we use damping heuristics which prevent the transfer of learning

rate.

Learning Rate
width 0.025 0.050 0.100 0.200 0.400

0.5 69.26 70.07 70.19 70.56 70.15
1.0 74.35 74.67 75.54 75.92 75.32
2.0 77.45 78.07 78.47 78.79 47.64

Table S.1 : optimal learning rate does not
shift in training ResNet50 on ImageNet.
The optimal learning rate is fixed at 0.2 and
does not shift when scaling the width.

et al. (2021) D.3. However, the properties of the hyperparameter landscape for each parameterization
in Figure S.12 are almost the same as in Figure 6.

G ADDITIONAL EXPERIMENTS ON TRAINING WIDE MODELS

G.1 ANOTHER DATASET AND MODELS

In Figure 3, we compare the test accuracy with SP and µP and find µP takes a higher accuracy
than SP in wide models. This tendency is also true for other settings. As shown in Figure S.13
and Figure S.14 , µP achieves higher valuation accuracy than SP in many cases. Specifically, the
difference between SP and µP is larger for wider models, and the difference is often larger in the
early stages of learning.

G.2 ERROR BAR

Table.S.2 shows the results of the comparison of the accuracy of SP and µP with standard deviation.
There is a significant difference in accuracy between SP and µP regardless of the effect of seed.

G.3 DISTANCE FROM INITIAL WEIGHT

The relative distance from their initial weights value ∆W/|W | is often used in the analysis of infinite-
width models. If ∆W/|W | is always zero throughout training, the model will fall into a lazy regime.
As shown in Figure S.15 , in the early stages of training with SP, ∆W/|W | of wide-width models is
almost zero. As the training proceeds, the weights begin to deviate from their initial values, which
can be considered as finite-width effects. The wider the width, the longer the time that ∆W/|W |
is almost zero. This suggests that the weights do not move away from their initial values in the
infinite-width limit. In µP, however, the point at which weights start to move away from their initial
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Figure S.12 : Learning rate transfer across different activation functions and loss functions.
We trained a 3-layer MLP on MNIST. We used tanh activation with MSE loss in the first row, tanh
activation with cross-entropy loss in the second row, and ReLU activation with cross-entropy loss in
the last row. We trained on MNIST dataset and the sample size was reduced to 1024.

Epochs=100 Epochs=200 Epochs=300
K-FAC Shampoo K-FAC Shampoo K-FAC Shampoo

wid SP / µP SP / µP SP / µP SP / µP SP / µP SP / µP
1 89.54/+0.00 88.27/+0.43 91.35/+0.00 91.01/-0.25 91.97/+0.00 91.57/-0.14
2 92.10/+0.26 91.31/+0.40 93.92/+0.30 93.62/+0.14 94.32/+0.03 93.95/+0.05
4 93.64/+0.57 93.32/+0.22 95.11/+0.45 95.19/-0.15 95.57/+0.14 95.56/-0.10
8 93.56/+0.74 94.02/+0.33 95.44/+0.20 95.81/+0.19 95.73/+0.44 96.09/-0.04
16 93.00/+1.36 94.81/+0.96 95.04/+0.66 96.28/+0.14 95.31/+0.72 96.49/+0.24

Figure S.13 : Test Accuracies of ResNet18 on CIFAR10. We trained ResNet18 on CIFAR100 with
η = 0.003, ρ′ = 10. µP has a higher accuracy than SP in models with wide widths.

values remains the same, even as the width increases, which implies that training can proceed even at
an infinite width limit.

H ADDITIONAL EXPERIMENTS ON DAMPING TRANSFER

H.1 ON FIXED DAMPING SCALING

In this paper, we determine damping mainly by Eq. 15 as this is consistent with µP. However, even
if damping is determined by Eq. 7, damping is still consistent with µP. In Figure S.16 , we trained
3-layer MLP with damping determined by Eq. 7. Its learning rate is fixed at 0.01. ρ′A and ρ′B are
tuned using the following grid:

• ρ′A = 2z , where z ∈ {0, 1, 2, ..., 10}
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Epochs=100 Epochs=200 Epochs=300
K-FAC Shampoo K-FAC Shampoo K-FAC Shampoo

wid SP / µP SP / µP SP / µP SP / µP SP / µP SP / µP
1 68.53/+1.87 65.36/-0.31 71.55/+1.88 68.49/+0.30 72.28/+1.93 69.20/-0.02
2 71.28/+3.66 69.28/+0.54 73.85/+2.99 72.24/+0.11 74.30/+3.23 73.05/+0.20
4 69.45/+7.87 72.81/+0.78 73.39/+5.83 75.59/+0.38 73.79/+5.91 76.57/+0.31
8 61.15/+17.01 74.87/+0.28 68.13/+11.63 77.10/+1.64 68.56/+12.09 78.08/+1.74

Figure S.14 : Test Accuracies of ResNet50 on CIFAR100. We trained ResNet50 on CIFAR100
with η = 0.003, ρ′ = 10. µP has a higher accuracy than SP in models with wide widths. Note that in
the training of K-FAC, the standard deviation of the last layer at width=1 is tuned carefully and it is
1/16 of the default SP value.

VGG19 (C100) ResNet18 (C100)
Shampoo K-FAC Shampoo

width SP µP SP µP SP µP
1 63.30(0.26) 63.01(0.44) 67.02(0.33) 67.00(0.30) 67.01(0.33) 66.99(0.35)
2 70.10(0.23) 70.21(0.29) 71.88(0.36) 72.31(0.39) 70.83(0.18) 71.68(0.21)

4 74.65(0.24) 75.04(0.18) 74.09(0.33) 75.06(0.22) 73.80(0.26) 75.28(0.34)

8 76.51(0.38) 77.30(0.21) 74.90(0.20) 76.92(0.12) 76.23(0.21) 78.39(0.17)

16 77.89(0.18) 78.35(0.19) 74.29(0.41) 78.12(0.25) 78.05(0.21) 80.24(0.23)

Table S.2 : Test accuracies with different widths (with error bar). The results are averaged over 5
random seeds, with standard deviation shown in the brackets. The settings are the same as in Table.3.

• ρ′B = 2z , where z ∈ {0,−1,−2, ...,−10}

Figure S.16 shows that the optimal damping value for wide width models is given at (dA, dB) = (-1,
1) in Eq. 7. This is consistent with the scaling in Eq. 9.

There are two reasons why we determine damping using Eq. 15 instead of Eq. 7. The first reason is
that the optimal values for ρ′A and ρ′B are generally different, resulting in one extra hyperparameter.
The second reason is that the eigenvalues of the curvature matrix may change over training and the
optimal values for ρ′A and ρ′B may change during training(Zhang et al., 2019b). Figure S.16 shows
that the mean eigenvalue of Al and Bl change during the training and the damping determined by
Eq. 15 and Eq. 14 is adjusted according to the change of mean eigenvalue.
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Figure S.15 : For SP, ∆W/|W | in the early stages of training depends on the model width
In training with SP, ∆W/|W | depends on the width, especially in the early stages of training.
Specifically, as the width increases, the period during which ∆Wl/|Wl| ≈ 0 gets longer. This
suggests that in the infinite width limit with SP, ∆W/|W | remains 0 throughout training. On the
other hand, in µP, the point at which weights start to move away from their initial values remains the
same, even as the width increases (Left) We trained VGG19 on CIFAR100 using K-FAC. (Right) We
trained ResNet50 on CIFAR100 using K-FAC.
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Figure S.16 : Damping term needs to be scaled as
dA = −1 and dB = 1 (Eq. 7). We trained a 3-layer
MLP on MNIST with K-FAC. The number of samples
is reduced to 1024 and trained by MSE loss. Validation
accuracy is highest at dA = −1 and dB = 1
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Figure S.17 : Mean eigenvalues and the heuristics damping terms vary during training. We
trained ResNet18 on CIFAR10 and CIFAR100 by K-FAC. (Left) Transition of the mean eigenvalues
of Al and Bl in each layer during the training process. We can observe that the mean eigenvalues
change significantly during the training. This implies that ρA and ρB need to be modified during
the training to retain their second-order properties for numerical stability. Note that the transition
of damping determined by Eq. 15 is consistent with the transition of mean eigenvalues. (Right)
Transition of the damping determined by Eq. 14. The trend of damping determined by Eq. 14 is
generally consistent with that of mean eigenvalues.

H.2 DAMPING TRANSFER ON MLP

In Section 5.3, we have observed that when using heuristics damping, the optimal damping value
shifts as the width increases. We have also confirmed that rescaling damping prevents this shift. This
phenomenon is observed not only in CNN but also in MLP as shown in Figure S.18 . In the second
column of Figure S.18 , the dataset size is not reduced, but again the damping is transferred by using
rescaling damping.

I LAZY PARAMETERIZATION

In the lazy regime, the network output changes by an order of Θ(1), but feature learning does not
occur, i.e., rl<L > 0. Consider the uniform parameterization (UP), which is easy to characterize and
known to include two important parameterization methods; µP and NTK parameterization (Yang &
Hu, 2021). It is defined by rl<L = r and WL satisfying Conditions A.1 and A.2. For K-FAC, we
obtain 2aL + cL + eA − 1 = 0, aL + bL = 1− r from these conditions and thus

2a1 + c1 − eB(2r − 1) = 2r − 1,

2al + cl + eA − eB(2r − 1) = 2r,

2aL + cL + eA − 1 = 0,

aL + bL = 1− r.

(S.82)
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Figure S.18 : We can transfer
damping in MLP We trained a 3-
layer MLP on MNIST and a 3-layer
MLP on FashionMNIST with K-
FAC. When training MNIST, the
number of samples is reduced to
1024 while in FashionMNIST we
trained MLP by full-dataset. When
using heuristics damping, the maxi-
mum damping value that does not
diverge increases as the width in-
creases.

We usually suppose r = 1/2 for NTK parameterization. By fixing the shift invariance by al = 0, we
have {

c1 = 0, cl>1 = 1− eA,

b1 = 0, bl>1 = 1/2.
(S.83)

This means that K-FAC in SP achieves the lazy regime for the constant learning rates of Θ(1). In
contrast, the first-order gradient (eA = 0) in SP requires the re-scaled learning rates of Θ(1/M) for
the lazy regime. Given that the naive setting of default hyperparameters in implementation often
assumes SP and constant learning rates, it can be said that K-FAC is more likely to suffer from
the lazy regime compared to (S)GD. It is also noteworthy that the obtained abc-parameterization is
consistent with the parameterization used in parameterization used in the previous work on K-FAC in
the NTK regime (Karakida & Osawa, 2020).

Similarly, for Shampoo, we obtain {
c1 = 0, cl>1 = 1− e,

b1 = 0, bl>1 = 1/2.
(S.84)
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Figure S.19 : UP allows the learning rate to transfer while the accuracy of UP is lower than µP.
We trained a 3-layer MLP on MNIST and the sample size was reduced to 1024. Note that in K-FAC
SP is equal to the UP.
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Table S.3 : Lazy parameterization for SGD, K-FAC, FOOF and Shampoo

Input weights & all biases Output weights Hidden weights

SGD b = 0, c = 0 b = 1/2, c = 1 b = 1/2, c = 1
Shampoo b = 0, c = 0 b = 1/2, c = 1/2 b = 1/2, c = 1/2
K-FAC b = 0, c = 0 b = 1/2, c = 0 b = 1/2, c = 0
FOOF b = 0, c = 0 b = 1/2, c = 0 b = 1/2, c = 0
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