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Abstract 

Recent breakthroughs in self-supervised learning have ena-
bled the use of large unlabeled datasets to train visual foun-
dation models that can generalize to a variety of downstream 
tasks. While this training paradigm is well suited for the med-
ical domain where annotations are scarce, large-scale pre-
training in healthcare, and in particular pathology, has not 
been extensively studied. Previous work in self-supervised 
learning in pathology has focused on relatively small datasets 
for both pre-training and performance evaluation of down-
stream tasks. The aim of this work is to explore foundation 
models at a scale that goes orders of magnitude beyond the 
state of the art and benchmark current self-supervised learn-
ing algorithms by pre-training and evaluating downstream 
performance on large clinically relevant pathology tasks. 
  We compiled the largest academic pathology dataset to 
date, consisting of over 3 billion images from 423 thousand 
digital microscopy slides. We compared the pre-training of 
visual transformer models with focus on masked autoencod-
ers (MAE) and self-distillation models (DINO). Downstream 
performance is evaluated on six clinically relevant tasks from 
three anatomic sites and two institutions: breast cancer detec-
tion, inflammatory bowel disease detection, breast cancer es-
trogen receptor prediction, lung adenocarcinoma EGFR mu-
tation prediction, and lung cancer immunotherapy response 
prediction. 
  The results demonstrate that pre-training on pathology 
data is beneficial for downstream performance compared to 
pre-training on natural images. Additionally, the DINO algo-
rithm achieved better generalization performance across all 
tasks tested. The presented model performances signify a 
phase change in computational pathology research, paving 
the way into a new era of more performant models based on 
large-scale, parallel pre-training at the billion-image scale. 

 Introduction 
Artificial Intelligence (AI) is revolutionizing the medical 
field. The introduction of deep learning1 has greatly accel-
erated the development of predictive models for high-di-
mensional data modalities such as images and text that are 
not amenable to classical machine learning algorithms. Con-
volutional neural networks (CNNs) and vision transformers2 
(ViTs) have been used to great effect in a myriad of prob-
lems involving supervised learning and have enabled the 
training of predictive models for a variety of tasks with high 
performance. Recently, the development of self-supervised 
learning (SSL) algorithms has marked a paradigm shift by 

enabling the training of deep neural networks on very large 
unlabeled datasets, yielding results on par with supervised 
learning strategies. Large neural networks trained this way 
can be described as foundation models that can be used for 
a wide variety of downstream tasks with little to no fine-
tuning. Despite the great successes in the computer vision 
and natural language fields, SSL algorithms and foundation 
models are still in their infancy in the medical domain. One 
of the main reasons is the lack of datasets and the necessary 
computing infrastructure which makes large-scale SSL ex-
periments only possible at large well-funded institutions. 
 In pathology, the lack of data is even more acute due to 
the still low adoption of digital pathology. Additionally, dig-
ital pathology slides are orders of magnitude larger than 
other image modalities, with resolutions of tens to hundreds 
of thousands of pixels in each dimension. This poses chal-
lenges in terms of the methods used to analyze the images 
and the hardware requirements to effectively perform exper-
iments. A common strategy to analyze these images is to di-
vide the slide into tiles and encode them using a deep neural 
network, expressing the slide as a list of feature vectors and 
thus reducing the dimensionality of the slide by multiple or-
ders of magnitude. In a second step, the feature vectors are 
aggregated using a neural network to obtain a slide-level 
representation. The first step is by far the most computation-
ally expensive, while the second step requires much fewer 
resources. This is why most studies in computational pathol-
ogy rely on already existing pretrained encoders, usually 
trained on natural images and not pathology. There is a need 
for strategies that enable training of encoders directly on pa-
thology images, and SSL lends itself well for this task as it 
does not require any sort of labels and could allow for the 
training of a pathology foundation model on large datasets. 
SSL for pathology has recently received lots of attention, 
and there are many academic and non-academic efforts to 
generate a general-purpose pathology model3–9. We present 
a summary of notable works in this area in the Supplemen-
tary Related Works section. 
 It is becoming abundantly clear that using SSL to train 
image encoders on unlabeled pathology data is superior to 



relying on models pretrained on other domains such as nat-
ural images. While general vision SSL methods and pathol-
ogy specific SSL methods hold immense potential, there are 
still some challenges to be overcome before pathology foun-
dation models can be used reliably in clinical workflows. 
Datasets used to train pathology models are still very small 
compared to other domains. While there are many studies in 
radiology that include millions of images10,11, the majority 
of SSL studies for pathology to date are based on TCGA 
which consists of around thirty thousand slides only. Given 
the evidence from the natural language and vision domains 
that larger datasets and higher capacity models will produce 
better performance especially in the SSL setting, training on 
larger pathology datasets should be a priority. Furthermore, 
the downstream performance of SSL models for pathology 
is rarely assessed on clinically oriented tasks. Tile-based 
predictions, organ classification, coarse segmentation, cap-
tioning, retrieval, and VQA are valuable scientific explora-
tions, but less relevant in the clinical setting. This effect is 
compounded by the use of curated public datasets which 
may not be suited for assessing generalization to real world 
data. Downstream performance should be evaluated on clin-
ical data, preferably from multiple institutions, for clinically 
relevant tasks such as diagnostic assessment, biomarker pre-
diction, and outcome prediction. 
 To overcome these limitations, we introduce a library of 
models trained on the largest pathology dataset to date con-
sisting of over 3 billion images from over 420 thousand clin-
ical slides from a large health system. In this work we strive 
to benchmark state-of-the-art SSL algorithms on a variety of 
clinically relevant tasks, anatomic sites, and disease indica-
tions. Our aims are to determine the best training strategies 
for foundation models in pathology, and to share with the 
research community resources for embedding and bench-
marking. To this point we have trained various ViT variants 

with DINO12 and MAE13 and analyzed their performance on 
six clinically relevant tasks from three anatomic sites. 

Foundation Model Pre-Training 
To perform pre-training of pathology foundation models we 
leveraged a large clinical dataset consisting of 423,563 
slides from 88,035 cases and 76,794 patients. The dataset 
included slides from 70 distinct organs across all the spe-
cialties of pathology. The total storage required for the com-
pressed image files was around 600TB. The presented da-
taset is one order of magnitude larger than any previous ef-
fort in computational pathology. For training we constructed 
pseudo-epoch consisting of 65 million tiles from one fifth of 
the slides, equivalent to 50.7 ImageNet epochs14. Hence, 
five pseudo-epochs are needed for a complete pass through 
every slide in the dataset. The SSL algorithms were cloned 
directly from their official GitHub repositories. No changes 
were made to the code except for customizing the data load-
ing procedures. Models were trained in parallel on at least 8 
GPUs, and up to 24 GPUs, depending on cluster availability. 
Further details can be found in the Supplementary Methods 
section. The SSL algorithms tested so far include i) DINO12, 
a self-distillation-based algorithm and ii) MAE13, a masked 
image modeling-based algorithm. The following models 
were trained: i) A ViT-small (21.7M parameters, 384 feature 
dimensionality) with DINO for 25 pseudo-epochs on 12 

Figure 1. Training curves for the SSL algorithms: left - DINO with a ViT-small and ViT-base models, right - MAE with a 
ViT-large model. On the y axis the respective training loss is reported. On the x axis pseudo-epochs and ImageNet epochs are 
shown. 



A100 40GB GPUs with batch size of 90 per GPU. Training 
was completed in roughly 17 days and 16 hours. ii) A ViT-
base (85.8M parameters, 768 feature dimensionality) with 
DINO for 25 pseudo-epochs on 8 H100 80GB GPUs with 
batch size of 100 per GPU. iii) A ViT-large (303.3M param-
eters, 1024 feature dimensionality) was trained with MAE 
for 50 pseudo-epochs on 8 A100 40GB GPUs with batch 
size of 180 per GPU. Training was completed in roughly 17 
days and 10 hours. 
 Figure 1 shows the training curves of the pre-training 
experiments in terms of pseudo-epochs and ImageNet 
equivalent epochs. 

Clinical Benchmarking Results 
To assess generalization performance to downstream tasks, 
we collected six datasets from two institutions: Mount Sinai 
Health System (MSHS) and Memorial Sloan Kettering Can-
cer Center (MSKCC). Across the two institutions slides 
were scanned on Philips Ultrafast scanners and Leica Aperio 
AT2 scanners. The tasks included are: 
• MSHS breast cancer (BCa) detection cohort, 1,998 slides 
(999 positive and 999 negative). 
• MSHS BCa ER prediction cohort, 2,000 slides (1,000 pos-
itive and 1,000 negative). 
• MSHS inflammatory bowel disease (IBD) detection co-
hort, 1,441 slides (717 with active inflammation and 724 
with normal mucosa). 
• MSHS EGFR mutation detection in Lung Adenocarci-
noma (LUAD), 294 slides (103 positive and 191 negative). 

• MSKCC EGFR mutation detection in LUAD, 1,000 slides 
(307 positive and 693 negative). 
• MSKCC non-small cell lung cancer (NSCLC) immuno-
therapy response prediction, 454 slides (86 positive and 368 
negative). 
More detailed information on the tasks can be found in the 
Supplementary Methods section. 
 Downstream task performance was assessed by training a 
Gated MIL Attention (GMA)15 slide aggregation model with 
a linear classifier on top. Since GMA does not consider the 
spatial distribution of tiles over the slide in its prediction, it 
is a simple method to test the expressiveness of the feature 
space generated by the SSL pretraining akin to linear prob-
ing used in traditional SSL literature. Generalization perfor-
mance was estimated using 20 rounds of Monte Carlo 
Cross-Validation (MCCV) for each model and task. As a 
baseline we used an ImageNet pre-trained truncated Res-
Net50 as in Lu et. al.16. 
 Convergence curves summarizing the comparison be-
tween baselines and trained SSL models are presented in 
Supplementary Figure 1. Not surprisingly, detection tasks 
achieved high performance with AUCs over 90%. Bi-
omarker prediction tasks exhibited more variability in the 
performance depending on the biomarker in question. The 
outcome prediction task included yielded poor results across 
all tested models. The models trained using DINO showed 
superior performance across all downstream tasks, except 
for outcome prediction, where all strategies resulted in a per-
formance close to chance. It is interesting to note that the 
ResNet50 experiments showed signs of overfitting in every 

Figure 2. Downstream performance for the DINO models at various checkpoints during training. Each plot shows the distri-
bution of the MCCV results. Tasks from top left to bottom right are: i) MSHS breast cancer detection, ii) MSHS IBD detec-
tion, iii) MSHS breast cancer ER prediction, iv) MSHS lung cancer EGFR prediction, v) MSKCC lung cancer EGFR predic-
tion, vi) MSKCC lung cancer immunotherapy outcome prediction. It is interesting to note that downstream performance 
starts to saturate early during training, after around 5 pseudo-epochs. 



task, possibly due to the higher dimensionality of the em-
beddings. If considering using a ResNet50, it may be bene-
ficial to use early stopping. Conversely, the features ex-
tracted from the ViT-small and ViT-base models trained 
with DINO led to faster convergence without signs of over-
fitting. 
 To investigate the importance of dataset size, we analyzed 
the downstream performance of the features extracted from 
the DINO models at various checkpoints during pre-train-
ing. The results of this analysis are presented in Figure 2. It 
can be observed that saturation of downstream performance 
tends to occur early during training. In most cases, after 5 
pseudo-epochs performance reaches its maximum or it is 
close to it. Longer pre-training led to small or no improve-
ments, and in some cases, the performance degraded on 
downstream tasks. It is interesting to note that 5 pseudo-
epochs (also equivalent to 325 million tiles) correspond to a 
full pass through all the slides in the pre-training dataset. It 
may be that once all the slides have been included in the 
training, additional training passes result in diminishing re-
turns. 

Discussion 
Self-Supervised Learning and in general large-scale pre-
training have obtained results that were unimaginable only 
a few years ago. We expect that the scaling rules observed 
for SLL experiments in computer vision and natural lan-
guage processing will apply in the context of pathology as 
well. In this study we explored the use of two SSL algo-
rithms to pre-train vision models on the largest pathology 
dataset to date. Compared to previous efforts to train pathol-
ogy foundation models, our work presents a pre-training da-
taset that is at least one order of magnitude larger and con-
sists entirely of slides produced during routine clinical 
workflows without any data curation. Additionally, the 
downstream performance of these models was tested on 
clinically relevant tasks spanning diagnosis, biomarker, and 
outcome prediction. Our results support the idea that SSL-
based pre-training is able to extract relevant morphological 
information from histology and achieves better performance 
than other pre-training strategies that do not involve pathol-
ogy images. 
 Despite the evidence presented here, many important 
questions still have to be addressed concerning many as-
pects of such experimental set-ups: pre-training data, en-
coder architecture, training algorithm, and downstream 
tasks. In terms of the dataset, we observed that downstream 
performance plateaued relatively early during pre-training. 
Investigating how the dataset size and variability influences 
the generalization performance could lead to more efficient 
data strategies. How many slides and how many tiles are re-
quired for optimal performance are important questions that 

we will address in future iterations of this work. Tightly 
linked to the dataset size is the choice of encoder architec-
ture. Due to lack of resources, we only trained a small ViT 
variant with the DINO algorithm. Smaller architectures may 
saturate at lower data regimes. As we increase our dataset 
sizes, larger models will become necessary. While our re-
sults indicate that the off-the-shelf DINO strategy can boost 
performance over natural image pre-training, other strate-
gies may be better suited to pathology data and some algo-
rithms explicitly take advantage of the characteristics of pa-
thology images. We plan to expand the number of algo-
rithms benchmarked in this project, which will allow us to 
determine optimal training strategies for SSL in pathology. 
Lastly, while we strived to include as many clinically rele-
vant tasks as possible, there is much room for improvement. 
We will include more tasks and critically, more organs and 
diseases, with more emphasis on more challenging tasks 
such as outcome prediction. Furthermore, the inclusion of 
diverse benchmarking cohorts will enable us to study 
whether biases can arise when developing predictive models 
based on pathology data. 
 As a final note, the computational pathology field would 
benefit from the release of publicly available pathology data 
that goes beyond small and curated datasets. A public 
benchmark of clinically relevant tasks would allow for algo-
rithm and model comparisons with better generalization po-
tential. As AI and clinical data have become highly valued, 
it is unlikely that the current lack of public datasets will 
change. In a parallel with large language models, where only 
large companies have the resources to train them at scale, 
only well-funded health systems which have digitized their 
pathology departments and have amassed large amounts of 
digital slides will be able to train clinically sound pathology 
foundation models. In the interest of the community, we are 
working towards building a service and an API for users to: 
i) produce embeddings from our trained models and ii) 
benchmark their models on our clinical tasks. It is our hope 
that this effort will boost computational pathology research 
and facilitate the development of clinical-grade decision 
support systems. 
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Supplementary Related Works 
Wang et al.3 proposed SRCL, an SSL method based on 
MoCo v317, along with CTransPath, a model architecture 
that combines convolutional layers with the Swin Trans-
former18 model. They trained their model on 15.6 million 
tiles from 32,220 slides from the TCGA and PAIP datasets 
spanning 25 anatomic sites and over 32 cancer subtypes. 
The downstream performance was assessed on patch re-
trieval, supervised patch classification, weakly-supervised 
WSI classification, mitosis detection, and colorectal adeno-
carcinoma gland segmentation. Methodological advances 
include the introduction of a strategy to sample positive ex-
amples for the contrastive approach, and the hybrid convo-
lutional-transformer model architecture.  
 Kang et al.4 analyzed the performance of four SSL meth-
ods (MoCo v219, SwAV20, Barlow Twins21, and DINO12) ap-
plied to pathology data. They sourced 19 million patches 
from 20,994 TCGA slides to train their models. In contrast 
to other works which focus on 20x magnification, they used 
both 20x and 40x. Downstream task performance was eval-
uated on four tile-level image classification tasks and one 
nuclei segmentation task. The main contribution in terms of 
methodology is the optimization of augmentation strategies 
for histology data.  
 Filiot et al.5 analyzed the performance of iBOT22, an SSL 
framework that combines masked image modeling and con-
trastive learning, on histology data. They trained several 
ViT models on a dataset consisting of up to 43.3 million tiles 
from 6,093 TCGA slides and 13 anatomic sites. They as-
sessed the performance of learned features on 17 down-
stream tasks across seven cancer indications including tile-
level and slide-level tasks for subtype, genomic alteration, 
and overall survival prediction. 
 Lu et al.6 proposed CONCH, a pathology foundation 
model framework that features a vision-language joint em-
bedding space. They first trained a ViT on a sample of 16 
million tiles from 21,442 proprietary in-house WSIs using 
the iBOT22 SSL framework. Further, based on the previous 
ViT backbone, they trained a visual-language model based 
on CoCa23 using 1.17 million image-caption pairs originat-
ing from educational resources and PubMed articles. The 
capabilities of the model were tested on 13 downstream 
tasks including tile and slide classification, cross-modal im-
age-to-text and text-to-image retrieval, coarse WSI segmen-
tation, and image captioning.  
 Tu et al.7 proposed a proof of concept for a generalist bi-
omedical AI system. They first introduced MultiMedBench, 
a collection of 12 open-source datasets for a variety of tasks 

that span language and various imaging modalities. One of 
the tasks included is Path-VQA24, a visual question answer-
ing (VQA) dataset for pathology consisting of 4,998 tiles 
associated with over 30 thousand question-answer pairs. 
They then finetuned a PaLM-E25 model on the Multi-
MedBench set. The result is Med-PaLM-M, a multi-modal 
system that can analyze inputs coming from various medical 
data modalities. 
 Chen et al.8 introduced UNI, a ViT-large model trained 
on 100 thousand proprietary slides using the DINOv226 SSL 
algorithm. The pre-training dataset they used included 100 
million tiles from 20 major tissue types. They assessed the 
downstream performance on 33 tasks including tile-level 
tasks for classification, segmentation, and retrieval and 
slide-level classification tasks. 
 Vorontsov et al.9 introduced Virchow, a ViT-huge model 
trained on 381 million tiles coming from almost 1.5 million 
proprietary slides with DINOv2. Slides from 24 tissue types 
were included. Downstream task performance was assessed 
on tile-level and slide-level benchmarks including tissue 
classification and biomarker prediction. 

Supplementary Methods 

Pre-Training Datasets 
For pretraining purposes, we collected the largest digital pa-
thology dataset to date, consisting of 423,563 H&E-stained 
slides from 88,035 cases and 76,794 patients. The dataset 
included slides from 70 distinct organs across all the spe-
cialties of pathology. All slides were scanned on a Philips 
Ultrafast scanner at 0.25 microns per pixel (MPP) resolu-
tion, de-identified and converted to tiff format. The total 
storage required for the raw tiff files was around 600TB. As 
a preprocessing step, tissue tiles were extracted from each 
slide at 0.5 MPP resolution. The total number of tiles gener-
ated was over 3 billion, for a total storage requirement of 
about 100TB. To put this into perspective, the largest study 
to date on SSL for pathology used over 1.5 million slides, 
but sampled less than 400 million tiles9. The largest dataset 
described in an academic setting included 100 million tiles 
from 100 thousand slides8. The presented dataset is one or-
der of magnitude larger than any previous effort in compu-
tational pathology. 
 To allow for reproducible experiments, the tile-level 
training schedule was hardcoded. Due to unbalanced organ 
frequencies in the dataset, tiles were sampled from slides 
based on their organ to obtain a more balanced representa-
tion of all organs. For each pseudo-epoch, 65 million tiles 
were sampled from one fifth of the slides, where each 
pseudo-epoch corresponds to 50.7 ImageNet epochs14. 
Hence, five pseudo-epochs are needed for a complete pass 
through every slide in the dataset. Training schedules were 



hardcoded for 50 pseudo-epochs for a total of 10 passes 
through the 423 thousand slides and 3.2 billion tiles. It is 
important to note that training durations will be different for 
different experiments due to constraints in computing re-
sources. 

Computing Infrastructure and Software 
MSHS’s HPC cluster utilizes 24,214 Intel Platinum com-
pute cores. It includes 22 GPU nodes: 12 V100 GPU nodes 
and 10 A100 GPU nodes. It includes 32 petabytes of spin-
ning storage accessed via IBM’s Spectrum Scale/General 
Parallel File System (GPFS) for a total of 2 petaflops of 
compute power. Experiments were conducted on GPU 
nodes using python and the pytorch27 library. Pytorch’s dis-
tributed data parallel (DDP)28 was used to run multi-node 
multi-gpu workloads. 

Baselines 
Performance on downstream tasks of the SSL trained mod-
els were compared to popular slide analysis strategies from 
the computational pathology field. We extracted features 
from a truncated ResNet50 (8.5M parameters, 1024 feature 
dimensionality) pretrained on ImageNet as in Lu et al.16. Ad-
ditionally, we also extracted features from a ResNet50 
(23.5M parameters, 2048 feature dimensionality) pretrained 
on ImageNet. 

Self-Supervised Pre-Training 
The SSL algorithms were cloned directly from their official 
GitHub repositories. No changes were made to the code ex-
cept for customizing the data loading procedures. Models 
were trained in parallel on at least 8 GPUs, and up to 24 
GPUs, depending on cluster availability. The SSL algo-
rithms tested so far include i) DINO12, a self-distillation-
based algorithm and ii) MAE13, a masked image modeling-
based algorithm. The following models were trained: 
• A ViT-small (21.7M parameters, 384 feature dimension-

ality) with DINO for 25 pseudo-epochs on 12 A100 40GB 
GPUs with batch size of 90 per GPU. Training was com-
pleted in roughly 17 days and 16 hours. 

• A ViT-base (85.8M parameters, 768 feature dimensional-
ity) with DINO for 18 pseudo-epochs on 8 A100 80GB 
GPUs with batch size of 100 per GPU. 

• A ViT-large (303.3M parameters, 1024 feature dimen-
sionality) was trained with MAE for 50 pseudo-epochs on 
8 A100 40GB GPUs with batch size of 180 per GPU. 
Training was completed in roughly 17 days and 10 hours. 

Benchmark Datasets 
To assess generalization performance to downstream tasks, 
we collected six datasets from two institutions. The Mount 

Sinai Health System’s slides were scanned on Philips Ultra-
fast scanners, while the slides from Memorial Sloan Ketter-
ing were scanned on Leica Aperio AT2 scanners. 
 MSHS breast cancer (BCa) detection cohort. Breast can-
cer blocks and normal breast blocks were obtained from the 
pathology LIS. A total of 1,998 slides were sampled, 999 
positive and 999 negative. The positive slides were selected 
from blocks that received the routine biomarker panel for 
cancer cases (estrogen receptor ER, progesterone receptor 
PR, HER2, and Ki67), while negative slides were selected 
from breast cases that did not have an order for the routine 
panel. Additionally, negative cases were selected if they 
were not a mastectomy case, did not have a synoptic report 
associated with the case, and had no mention of cancer or 
carcinoma in the report. 
 MSHS 1 BCa Estrogen Receptor (ER) prediction cohort. 
Breast cancer cases with orders for ER IHC were queried 
from the LIS. The IHC result was automatically extracted 
from the pathology report. A total of 2000 slides were sam-
pled, 1000 positive, 1000 negative. 
 MSHS Inflammatory Bowel Disease (IBD) detection co-
hort. Normal mucosa samples were obtained from patients 



undergoing screening and routine surveillance lower endos-
copy from 2018 to 2022. IBD cases, including first diagno-
ses and follow ups, were included. Active IBD samples were 
scored using the Mount Sinai histologic disease criteria and 
found to have Histologic Activity Score (HAI) ≥ 129.  A total 
of 1441 slides were sampled, 717 with active inflammation 
and 724 with normal mucosa. 
 MSHS EGFR mutation detection in Lung Adenocarci-
noma (LUAD). A total of 294 slides were obtained from the 
clinical slide database, 103 positive and 191 negative. The 
cohort was built following the guidelines described in Cam-
panella et al.30 to map mutations to a binary target. 
 MSKCC EGFR mutation detection in LUAD. This is a 
sample of the dataset described in Campanella et al.30.  A 
total of 1000 slides were sampled at random, 307 positive 
and 693 negative. 
 MSKCC lung cancer immunotherapy response predic-
tion.  Non-small cell lung cancer (NSCLC) patients who re-
ceived PD-L1 blockade-based immunotherapy between 
2013 and 2019 at MSKCC were considered. Cytology spec-
imens were excluded. Objective overall response was deter-
mined by RECIST31 and performed by a blinded thoracic 
radiologist. A total of 454 slides were obtained, 86 positive 
and 368 negative. 

Benchmark Training 
In the SSL literature, the performance of downstream tasks 
is frequently assessed by training a linear classifier (linear 
probing) on top of features extracted by the frozen encoder, 
or via zero-shot approaches such as k-NN. For pathology 
slides, there is no direct way to translate these approaches 
without having tile-level annotations. To overcome this 
challenge, we trained a slide-level aggregator based on the 
popular Gated MIL Attention (GMA) model15 with a linear 
classifier on top. Since GMA does not consider the spatial 
distribution of tiles over the slide in its prediction, it is a 
simple method to test the expressiveness of the feature space 
generated by the SSL pretraining. 
 To estimate generalization performance, we employed a 
Monte Carlo Cross-Validation (MCCV) strategy where for 
each MCCV split, 80% of the samples were assigned to the 
training and the rest to validation. For each benchmark task 
the 20 MCCV folds were randomly sampled and kept fixed 
for all experiments. Each MCCV split was run twice to as-
sess stochastic fluctuations during training. All models were 
trained with a single V100 GPU for 50 epochs using the 
AdamW32 optimizer. A cosine decay with warm up schedule 
was used for the learning rate and weight decay hyperpa-
rameters. For reporting the experimental results, line plots 
of the convergence of loss and AUC show all 40 runs (20 
MCCV splits, 2 replicas) for each experiment. Line plots 

Supplementary Figure 1. Benchmark task results. Each panel depicts the training results for a specific task, comparing base-
lines and SSL models. Each line summarizes the training of a GMA aggregation model on 20 MCCV splits with 2 replicas 
each. The solid line represents the average, while the shaded area represents the 95% confidence interval (CI) computed via 
bootstrapping with 1000 iterations. Tasks from top left to bottom right are: i) Institution 1 breast cancer detection (1,998 
slides), ii) Institution 1 IBD detection (1,441 slides), iii) Institution 1 breast cancer ER prediction (2,000 slides), iv) Institu-
tion 1 lung cancer EGFR prediction (294 slides), v) Institution 2 lung cancer EGFR prediction (1,000 slides), vi) Institution 2 
lung cancer immunotherapy outcome prediction (454 slides). In general, we observe a superior performance from the DINO 
trained model with significant improvement for biomarker prediction. The outcome prediction task is the exception where all 
models result in poor performance. 



summarizing the results for each experiment are constructed 
by taking the final validation AUC after training and aver-
aging the replicas of the same MCCV split. 

Supplementary Results 

Clinical Benchmarking Results 
Convergence curves summarizing the comparison between 
baselines and trained SSL models are presented in Supple-
mentary Figure 1.  
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